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For M.M. Rao

Professor M.M. Rao has had a long and distinguished research career.
His research spans the areas of probability, statistics, stochastic processes,
Banach space theory, measure theory and differential equations - both deter-
ministic and stochastic. The prolific published research of M.M. Rao impacts
each of these broad areas of mathematics

During M.M.’s career, he has had eighteen Ph.D. students. Many of his
students have gone on to very successful careers in mathematics and are
recognized experts in their field of study. Six of his former students have
written tribute essays about M.M. and each are affectionately dedicated to
him. These essays were written by J.A. Goldstein, M.L. Green, N.E. Gretsky,
A.C. Krinik, R.J. Swift and J.J. Uhl

Jerry Goldstein is a Professor of Mathematics at the University of Mem-
phis. He is a internationally known for his outstanding work in semigroup
theory, functional analysis and differential equations.

Mike Green is an Assistant Professor of Mathematics at California State
Polytechnic University, Pomona. His research is in the area of multi-parameter
manifold valued semi-martingales and aspects of applied probability.

Neil Gretsky is an Associate Professor of Mathematics at the University
of California, Riverside. He is recognized for his research in the geometry
of Banach spaces and recently his work in game-theoretic applications in
€conomics.

Alan Krinik is a Professor of Mathematics at California State Polytechnic
University, Pomona. He is noted for his work in lattice path combinatorics
and its application to queueing theory and birth-death processes. He is also
the co-editor of this volume.

Randy Swift is an Associate Professor of Mathematics at California State
Polytechnic University, Pomona. He is well-known for his work in harmoniz-
able processes, mathematical modeling and differential equations. He is also
the co-editor of this volume.

Jerry Uhl is a Professor of Mathematics at the University of Illinois,
Urbana-Champaign. He is known for his work in vector measures and Banach
space theory. He is also noted for his work in calculus reform.
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An Appreciation of my teacher, M.M. Rao

I want to record my thoughts about M. M. Rao as a teacher. He was a
really great teacher and his teaching continues to have a major impact on
my career.

As a first year graduate student at Carnegie Tech, in 1963-64, 1 took Rao’s
year long course on Functional Analysis. There were a lot of good students
around Tech at that time; included in Rao’s class were second year students
Neil Gretsky and Jerry Uhl. Rao’s ambitious style was to cover one major
result in each lecture, or three per week. And all major theorems had de-
scriptive names, some standard (“Dominated Convergence Theorem”) and
some not (“Law of the Unconscious Statistician” ). The use of those names
made the results easier to remember; I think Rao got this idea from Michel
Loeve’s book (from which I learned probability theory). Our text was by
Angus E. Taylor, but we didn’t use it much. Rao taught mostly out of Dun-
ford & Schwartz (Vol. 1) and Hille & Phillips. His organization of the topics
was excellent. An unusually large amount of material was covered per class.
So ‘much so that details were often omitted (or, sometimes in our minds,
incorrectly given). With great regularity Gretsky, Uhl and I would stay after
class and work out the complete details of the arguments we had just seen.
Sometimes we realized that Rao really had given all the details; after all we
were merely beginners and not yet well versed in mathematics. We always
found that all of his results had correct versions, occasionally slightly differ-
ent from what one of us thought when the discussion began. But by the end
of the year, I learned so much that, for the first time, I considered myself
a mathematician. Gretsky, Uhl and I were somehow teaching assistants to
Rao, helping to teach one another. At the time I didn’t give Rao credit for
orchestrating this, but I think he did, at least to a substantial extent. He
conveyed his love of mathematical depth and understanding and his passion
for intense mathematical discussions.

I took many more grad courses from Rao prior to graduating in May 1967.
They were all great courses, but none matched that extraordinary course in
Functional Analysis. That course had a permanent influence on me, and for
the rest of my life I will feel close and grateful to M.M. and to Neil and Jerry
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4 J. A. Goldstein

as well.

Having gotten my BS at Tech in 1963 and anticipating my MS in 1964, 1
decided to apply elsewhere (in the fall of 1963) to do my Ph.D. away from my
birthplace, Fittsburgh. But my wife had a teaching job in Pittsburgh and
her applications elsewhere were unsuccessful. So, despite fellowship offers
from more prestigious institutions, I was happy to stay at Tech because I
knew (from the Functional Analysis course) that a great thesis advisor was
available. Gretsky and Uhl were already doing research reading under Rao,
and in the spring of 1964 I told Rao I wished to work with him in Functional
Analysis (as Neil and Jerry were doing). He said he would be glad to be
my advisor, but he had a problem in probability theory for me. I protested,
saying I didn’t know any probability theory. He pointed out that I had taken
a year long junior level probability course from Morrie DeGroot, an excellent
teacher and probabilist. (Of course, he was right, but I was mystified, being
so in love with Functional Analysis). But, as my main focus was to work
under M.M., I said OK. The first paper he gave me to read was by Dynkin,
and it defined a Markov process as a 21 tuple (or something like that).
Numbers larger than my combined fingers and toes made me nervous; and
I was unable to read Dynkin’s paper, Rao suggested I try Loeve’s book and
work a lot of the problems. This was a great suggestion, and Rao helped me
a lot when I got stuck. And, happily, 6 or 8 months later I was able to read
and understand Dynkin’s paper (which was indeed a toughie).

M.M. ran great seminars and, among other things forced his students
to present papers they read and their own work. His ferocious but kind
questioning taught us never to give a seminar less than fully prepared. And
he taught us to work together and learn from one another. This is a very
important point which was evident, but I didn’t realize it as the time. Rao’s
teaching and advising styles were shamelessly adopted by me in my capacity
as a teacher and advisor. I have had over 20 Ph.D. students ( “children”) and
at least 8 “grandchildren”, most of whom never met Rao and probably are
largely unaware of the major hidden role he played in their education.

I love to reread occasionally the article Rao wrote in the Raofest volume,
celebrating his 65th birthday. Rao did something special and unusual; he
gave his best research problems to his students. I have tried to follow his
lead, and I believe our profession would be better of if more thesis advisors
did the same thing.

Rao was uncompromising in his high standards, but he was gentle and
helpful. Not all of his Ph.D. students had the native brilliance of Gretsky
or Uhl, but all of them (that I know) wrote excellent theses. Rao got his
students to live up to their potential. I think that is the highest praise one
can give to a teacher.

Rao was also an excellent researcher. As a departmental citizen he was
pretty feisty. He objected to (mathematical) political issues taking prece-
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dence over issues of quality and scholarship. Doing the “right thing” is not
always the way to maximize one’s popularity. But M.M. never hesitated to
stand up and fight for his principles.

I suppose I should tell one anecdote. The enormous length of Rao’s first
two names reminds me of Dynkin’s definition of a Markov process (which
took me 6 or 8 months to understand). So once I asked Dick Moore what
Rao’s nickname was. Dick’s response: “He doesn’t have one. People call
him M.M. But he should have one.”- Dick thought about it and hit on
the nickname Mmmmmmmmm. But it never stuck.

I feel much affection for M.M. I always respected and admired him, and
there were moments during my grad student days, when the term “affection”
did not characterize my feelings toward him. But I was young, brash and
impatient; some things I could figure out very quickly and some not. Was
I lucky to have M.M. as my principal teacher and mentor? Absolutely yes.
Could I have done better either at Tech or elsewhere? I don’t think so.
Rao shaped my passion for mathematics, my desires to understand things
fully, my standards, and my teaching and advising techniques. I owe him so
much, more that I can usually imagine. Thank you M.M., for being such an
inspiration and such a friend.

J.A. Goldstein



1001 words about Rao

My first contact with M.M. Rao was in the fall quarter of 1989 in an
Advanced Calculus class. Before this course, like a typical undergraduate, I
inquired of other students about him. Most of my information came from the
graduate students at UCR, since they were the ones who had taken courses
from him. The graduate students generally regarded him as a hard, but fair
teacher. This positive tone, however, was laced with an undertone, not unlike
the sort one would receive about a blind date, who in all other respects was
perfect, except for some peculiar habit. It required only one lecture to dis-
cover the peculiarity of M.M. Rao. He is so absorbed into mathematics that
where the man ended and the math began was blurred until the separation
of the two is unimaginable.

His lectures are wonderful. The students of Rao have coined the phrase
“Rao Math” for the rather distinctive style he has when presenting mathe-
matics. He carefully prepares all his lectures, often writing them out in their
entirety before the beginning of the quarter. An appropriate motto he has
given is “If we do this for the general case, the rest will follow as corollaries.”
One need only read one of his books to see the verity of this motto. A good
example is his text for Real Analysis, Measure Theory and Integration. He of-
ten immediately began lecture upon entering the room and always went over
the allotted time leaving the next class waiting at the door. On more than
one occasion, he was writing as he walked out the door! These peculiarities
are symptoms of his strength, a single-minded dedication to his profession
coupled with a deep interest and curiosity in the subject. In M.M. Rao, I met
someone that hit the 35th level of Math™, a true math guru. To be fair,
not everyone prospered under Rao. The lack of concrete examples was the
typical student complaint about M.M. Rao’s instruction. I guess M.M. Rao
had been getting some grief about not being concrete enough, for during one
class he declared, “I am an applied mathematician! I apply this theorem to
prove that one!” This is a typical Raoism.

The beauty of mathematics as presented by him seduced me. I know that
I am not the only one to experience this and like others I started taking more
courses from Rao after my first introduction to him in advanced calculus. 1
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8 M. L. Green

began learning more analysis and in particular probability as a consequence.
A tremendous benefit to my education was the open door I always found at
his office and the many conversations I had with Rao about mathematics
and his research have enriched my life. As a student, I never felt belittled or
talked down to by Rao even when discussing his research. During my seeking
of an advisor for my Ph.D. thesis, some of the other professors cautioned me
about Rao, concerning his ability to win the best students. A reputation well
deserved. I mulled over several individuals, all very capable mathematicians,
but the accessibility of M.M. Rao won me over, even though my first interests
were in algebra and topology.

His work ethic was intimidating. Sleeping four or fewer hours per night
working on mathematics most of the day, seven days a week he labored with
“a devil on his back” to complete his projects. He only took a half-day oft
on Sunday. He once said, “Mathematics is a harsh mistress. Either you love
her, or she will leave you.”

My thesis topic was to extend stochastic integration to multi-parameter
manifold valued semi-martingales using the generalized Bochner bounded-
ness principle. The students of Rao have termed his theses topics as “topics
in the clouds”. A few of the completed theses are “Orlicz spaces of addi-
tive set functions and set martingales”, “Integral representations of chains
and vector measures” and “Multi-parameter semi-martingales integrals and
boundedness principles.” The last being my own, coming up short on the
manifold part. The theses that Rao has guided tend to be on the long side,
my own was 138 pages, not the longest.

This propensity to generalize has worked well for M.M. Rao. Take for
instance what Rao has done with ideas from S. Bochner. In 1956, Bochner
wrote “Stationarity, boundedness, almost periodicity of random valued func-
tions” in the Proceedings of the Third Berkeley Symposium. In this paper
Bochner defined V-bounded processes and noted that these processes were
an extension Loeve’s harmonizable processes. Rao’s idea was to define two
classes of processes, the V-bounded being called weakly harmonizable pro-
cesses which includes the processes of Loeve, now called strongly harmoniz-
able. This definition opened up a whole new area of research in harmonizabil-
ity being still actively pursued. Another idea Rao gleaned from this paper is
to define stochastic integration via a boundedness principle. His generalized
Bochner boundedness principle provides a unified approach to stochastic in-
tegration including all known stochastic integrals under one umbrella. This
principle would still be unknown if M.M. Rao had not pursued mathematics
in his own distinctive manner. For the Young functions from Orlicz space
theory were necessary for the result. Rao met with Bochner three times.

Bochner must have been impressed, since he communicated three of Rao’s
papers to the National Academy of Sciences. Rao still has not been entered

as a member of the Academy.
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Rao still lies dear in my heart as he does in the hearts of many others
who have come across his path. M.M. Rao asked me to not compare him as
an equal to Bochner, his modesty is showing, but in my eyes, he is a great
mathematician and a great man. He still shows his faith in me and has many
expectations for my work, encouraging me to continue my labors. My wish
is that he finds a satisfaction in his life and work that brings him peace. 1
look forward to the years that come to see what new worlds he will open in
mathematics.

M.L. Green



A Guide to Life, Mathematical and Otherwise

When I went to graduate school in the early '60s I started in the Systems
& Communications Sciences interdisciplinary program at Carnegie Tech. I
knew that I wanted to study and work in Numerical Analysis and Comput-
ing. In my second year I decided to take a Functional Analysis course because
I had some half-formed idea that this would be a valuable tool for Numeri-
cal Analysis. I did not in any way anticipate the ensuing life-changing event
of meeting M.M. Rao. The course became an almost-religious epiphany for
me: this was truly the way, the truth, and the light! M.M.’s lectures were
magnificent; the material was spell-binding; the problem sets were really chal-
lenging. Several of my fellow students felt the same way ~ especially Jerry
Uhl and Jerry Goldstein. We took more courses and seminars with M.M.
and we chose to write our theses under his direction. The three of us spent
a lot of time challenging each other and guiding each other under M.M.’s
firm but insightful hand. In the last vestiges of the medieval guild system,
we apprenticed ourselves to a guild master — a true master.

There was certainly a deep love for Mathematics and a lifelong friendship
and bond that we developed together under M.M.’s direction, but there was
much more to M.M.’s influence. M.M. had a deep concern for, and loyalty to,
his students. No matter how busy he was, he always had time and energy for
us in all aspects of our development. When my wife left me in the final year
of my thesis work, M.M. was there to counsel and comfort me. Unbeknownst
to me at the time, he had also spoken with my wife to see if there were any
possible solution. When I mistakenly thought that one of my thesis results

was contained in an earlier paper, he brought me out of my depression and
led me to see the positive differences in the work. When I succumbed to

procrastination and other earthly temptations, he was there to inspire me
with his example. He was never accusatory or condemning, just exemplary
and inspiring. When a new department chair took a personal dislike to me,
M.M. was there to defend his student. Of course, this was the same M.M.
who liked to put an occasional (unannounced) unsolved problem on his take-
home exams in the advanced topics courses.

When I received a job offer from the Mathematics Department at UCR,
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12 N. E. Gretsky

he told me that it was a great opportunity because Howard Tucker was there
and he repeatedly advised me that “ ... you will really like Professor Tucker
”. This stuck in my mind so deeply that when I finally met Howard and he
told me to call him Howard, my natural response was “Yes sir, Professor
Tucker”.

A few years later, my new department wanted to recruit a senior person
in Functional Analysis and Probability. M.M. was not in the market for a
new job, but I knew that he was not happy with his department chair. Our
department managed to interview him twice and convinced him to come.
So we wound up in the same department for thirty years. Once again he
me led to learn life’s great lessons. At first I needed to assert my indepen-
dence from him. That must have been painful for him, but he never showed
it. Then I needed to again succumb to procrastination and earthly temp-
tations. Once again, he was over the space of many years non-accusatory
and supportive. Coming back into the fold, I started to drift into areas of
applications of Functional Analysis and Measure Theory. He renamed our
continuing Functional Analysis Seminar the Functional Analysis and Related
Topics Seminar.

It has been a very large feature of my life as well as a remarkable pleasure
and privilege to be his student, his colleague, and his friend.

N.E. Gretsky



Rao and the early Riverside years

M.M. Rao first came to the University of California, Riverside Mathemat-
ics Department from Carnegie-Melon in 1973. There was much excitement
and anticipation of his coming by both new colleagues and graduate stu-
dents in the UCR Math Department. Neil Gretsky (a former Rao graduate
student from Carnegie-Melon) was already on the faculty at UCR. Neil and
others had alerted UCR graduate students of M.M. Rao’s prominence in
probability and functional analysis. M.M. Rao was a welcome addition of
a talented research mathematician who was receptive to graduate students.
This enhanced an already formidable mathematics department that had F.
Burton Jones in topology, Richard Block in algebra and Victor Shapiro in
differential equations among other notable faculty members.

As a new graduate student at UCR (coming from UCLA) in 1973, I knew
very little of the anticipation surrounding M.M. Rao’s first academic year
at UCR. However, I became quickly familiar with Rao’s teaching style as
I took his inaugural graduate sequence in real analysis at UCR: Math 209,
210, 211 starting in September 1973. The course was taught at a high level
of abstraction. The first quarter was measure theory developed on general
sigma rings using an outer measure approach restricted down to measurable
sets via the Caratheodory construction. The second quarter contained the
major results of general integration theory. The third quarter included an
introduction to Choquet’s capacity theory. There was no specific textbook
for the course but rather a list of several recommended texts. The course
was carefully and clearly presented by M.M. Rao, a man in his early forties
(originally from India) with a lively personality, who wore a suit to class. |
tried to take careful notes and absorb the material since I knew a compre-
hensive qualifying exam on real analysis based on this course was waiting
for me at the end of the academic year. However, the material was not easy
for me. I passed the qualifying exam but considered myself fortunate. As for
this introduction to Rao, I found him an animated professor completely en-
gaged in the subject of real analysis. He developed the theory from a modern
abstract viewpoint but was concerned about the history of the subject and
was careful to credit various mathematicians as we proceeded (Lebesgue,
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14 A. C. Krinik

Caratheodory, Vitali, Saks, Fubini, Egoroff, Choquet, etc.).

Several very talented UCR graduate students, including Stephen Noltie
and Michael Brennan, were seemingly planning to work with Rao even before
he arrived at UCR.. By the time, I asked Professor Rao to be my advisor in
1975-76, 1 was his sixth Ph.D. student at UCR. I was grateful he agreed to
take me as his student. From the beginning, Rao had the reputation of be-
ing more demanding than most other professors at UCR. Rao would oversee
your progress but he would not help you in the writing of your thesis. Rao
expected his students to be prepared in many different areas of mathematics.
As a consequence, Rao students routinely took additional coursework past
the qualifiers. For example, I took graduate sequences in functional analy-
sis, advanced statistical inference and probability theory after my qualifying
exams. The idea was to be prepared to solve our dissertation problem from
a variety of different possible perspectives.

Another important aspect of being a Rao graduate student in the 1970’s
was an ongoing quarterly seminar on functional analysis or stochastic pro-
cesses. This seminar (which still meets) consisted of Rao, his students and
any other interested parties. Everyone attending talked sooner or later. When
the discussion became very specialized, the seminar often reduced down to
Rao and his graduate students. For me, I recall having to present material
that originated from a seminal 1969 article written by D.W. Stroock and
S.R.S. Varadhan on solutions of diffusion processes in d-dimensions using
the martingale problem approach. I vividly recall preparing this challenging
material for what seemed like an endless number of consecutive weeks. It
was stressful but very helpful in forcing me to understand this paper which I
eventually generalized into my dissertation. Understanding came slowly (and
in phases). I learned how to present material when there were holes or unre-
solved problem areas and how to talk around topics until I was able to make
complete arguments. The whole experience also brought the Rao students
together in a common misery and made me appreciative of the mathematical
abilities of my fellow grad student, Michael Brennan, who kindly helped me
understand the more incomprehensible parts of this paper. This seminar ex-
perience was a common learning experience for Rao students in the 1970’s. It
is an activity that I still do today on a modified basis with my own graduate
students.

At UCR, M.M. Rao was primarily known among graduate students as
a consummate researcher in mathematics-a man whose research interests
connected functional analysis and integration theory with probability theory
and stochastic processes. He was also recognized as an engaging professor
who attracted some of the stronger graduate students to work with him and
take a wide range of graduate classes. From a work ethic point of view role,
no one worked harder than Rao. In the 70’s, Rao occupied the (eastward) end
office of a string of about twelve windowed offices on the third floor of Sproul
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Hall that faced south overlooking University drive. Any passer-by, looking
up at these offices in the evening would customarily see only two or three
lights on after dark. Sometimes if the hour was late only one light burned.
M.M. Rao’s window was almost always lit. He was up there doing research,
reviewing articles and in the 70’s writing his first book. His colleagues and
graduate students knew he was there. They also knew that he would be
back in his ofhce at least one day over the weekend as well. Rao displayed
a commitment to his profession that was hard to match. From a graduate
student’s point of view, no one could complain that Rao was inaccessible or
difficult to find.

M.M. Rao of the 1970’s was a confident, forceful and demanding advi-
sor. As an outstanding mathematician, Rao had expectations or intuition
of how the solution of mathematical problems should turn out. Whenever
graduate student progress did not fit his long range view, he expected to
be consulted or convinced as to why these mathematical objectives were
not possible. He also expected graduate students to make a dedicated ef-
fort and work hard. Finally, Rao expected his stronger graduate students to
make significant contributions by doing future mathematical research. Af-
ter all, Rao himself lived according to these standards. These expectations
sometimes caused tensions between Rao and his students. For example, grad-
uate students, myself included, would at times “disappear” for weeks or even
months. When this happened there could be many possible reasonable expla-
nations (and some unreasonable explanations as well)-including outside life
factors effecting the unreal graduate school existence. Sometimes, a grad-
uate student just rather “lay low” while trying to achieve progress rather
than share their “failed attempts” at solving a problem. I can remember
Rao asking “Where is ___7-I haven’t seen him in weeks!” These incidents
had both good and bad consequences. Rao students developed an indepen-
dence and self reliance in doing mathematical research and also provided
more opportunities for Rao students to bond together. Rao stories, like war
stories, were swapped over lunch or over a few beers. Sometimes even an old
Rao story from the legendary days of Gretsky, Uhl and Goldstein would be
recycled when pertinent. In the end, Rao’s forceful personality and expec-
tations played differently among his graduate students (some of whom also
had strong personalities and different goals).

M.M. Rao views his graduate students as one big family. Certainly, there
are many of his former students who have flourished in mathematical careers
engaged in many of the same aspects of the profession that have occupied
Rao. There are also former, highly capable, graduate students who presently
have little interest in mathematical research and have chosen exciting alter-
native career paths. M.M. Rao is interested and always enjoys hearing (and
talking at length about) how each of his graduate students is doing. How-
ever, make no mistake about it, Rao is a true believer. M.M. Rao’s career
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in mathematics is distinguished by his talent, passion and energy in doing
mathematics. There has never been any doubt in his mind that (if one has
the ability) being a research mathematician is the best way to go. I think
that even today, Rao would not understand how a graduate student in math-
ematics with outstanding potential in research could choose to do anything
else. It is also very difficult to imagine M.M. not being engaged in mathe-
matical activities. Rao is a lifer. Currently, at age 74, he is going strong. Rao
1s busy writing books with plans for additional books in the future.

M.M. Rao did a wonderful job of protecting and promoting his grad-
uate students. He was influential and resourceful in securing teaching as-
sistantships and research assistantships to support his graduate students
throughout graduate school. During the 1970’s, Rao was preparing his first
book, Stochastic Processes and Integration. I, along with several other grad
students, worked as a research assistant, proof-reading this monograph. Pro-
fessor Rao was very receptive to student reaction to his writing. At first, I
was hesitant to mention where I had difficulty in understanding his text but
it became very clear that he was sincerely interested in both my mathemat-
ical and stylistic comments. Rao, in discussion, would often tell me of the
history of various portions of the text and what different mathematicians
had contributed. These were good times for me. I was seeing mathematics
from an insider’s perspective. Sometimes, Rao would go off describing some
current mathematicians. For example, he knew I was studying a paper of
the Russian mathematician Daletskii and Rao would tell me of his personal
meeting with Daletskii on a visit to Russia and how nice a man he was even
presenting M.M. a bottle of Vodka (or Cognac) as a gift. Rao still had the
gift somewhere in his office. These exchanges were memorable.

The academic environment and spirit for faculty and graduate students
in the UCR Mathematics Department of the 1970’s was very good. The
Department was a friendly place and a good place to study mathematics.
Al Stralka chaired the Department. I recall colloquia given by Erdos, Hal-
mos, Bing, Stein and Uhl. I recall the excitement of the four color problem
being solved at that time. There was an entertaining talk on properties of
Fibonocci numbers as well. The colloquia were preceded by a reception that
usually included cookies-a sure way to attract graduate students. For at least
two years, the math graduate students participated in intramural basketball
games. Our team names of “Zorn’s Dilemma” and “The Hardy-Haar Mea-
sure” accurately reflected our team’s abilities. We had measure 1 of going
the whole season without a victory. Except, there was one anomalous game
where we actually nipped the lowly and equally winless Physics team on a
last second miracle shot-which demonstrated once and for all that events
of measure 0 can indeed happen! We had fun with basketball but actually
looked forward to the pizza and beer get-togethers after the game more than
the game itself.



RAO AND THE EARLY RIVERSIDE YEARS 17

During the mid 1970’s, Rao students were united by the knowledge that
we were committed to a challenging route working under M.M. Rao and
hopeful of his influence to secure us academic employment at a notoriously
difficult time period for new Ph.D.’s to find jobs as professors in mathe-
matics. We were also united by having taken an unusually large number
of courses from Rao. The following pet phrases (and situations) were often
repeated (or experienced) many times in class and today serve to help us
recapture, with affection, his unique personality and style:

“We make the following definition with complete ‘malice of forethought’.”

“Did you think it was going to be easy? No! That is why his name is on
the theorem.”

“Be careful whenever you see that word ‘consider’ for what follows is a
new idea...”

“From there he went on to develop (pronounced ‘devil-up’) the whole
theory...”

“You ask me if I can change the order of integration? I DID IT!”
“That’s the one, that’s the condition you need...”
“You work and work and work and that is what comes out...”

“Now we have proved the Dynkin-Doob Lemma which is also used by
statisticians who have no idea why it is true, so we call this result the
Theorem of the ‘Unconscious Statistician’...”

“If you wish to avoid making any mistakes, do nothing at all and that,
of course, would be the biggest mistake of all...”

“What a loss...that is the death of his career as research mathematician”,
(Rao’s reaction upon hearing a local mathematics professor had become
dean.)

“You can take this book and throw it in the ditch...”

Many times Rao would smile and laugh as he repeated these sayings in
different settings. Occasionally, M.M. would re-tell a joke or funny story and
break out laughing aloud before reaching his own punch-line.

And finally the signature (literally and figuratively) of most Rao chalk
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talks was the amazing amount of mathematical material he was able to
cram into the lower right hand corner of the board as class time expired. His
writing became a space filling curve as he adjusted by writing smaller and
smaller-working several minutes past when the class was scheduled to stop-
leaving students dazed and hopelessly trying to decipher his final scribbling.

Rao could push and posture. During my last year in graduate school Rao
had monitored all my dissertation work. I had passed my oral exams and was
in the process of writing up my final results. We were 3 months away from
being done. He looked at my folder of dissertation results and then back at
me and announced, “It’s not enough”. I felt my heart sink and had nothing
to say. I went home wondering what more I could do. There was no more
but he was still seeing if he could squeeze some new results out of me. I did
not like the pressure but I understood his intent. It soon became clear to
him (if it wasn’t already) that there was nothing else to do on my problem.
It never came up again and I finished my Ph.D. as originally scheduled three
months later.

In 1978, Rao still had three of his six graduate students (Brennan, Kelsh
and Krinik) anxious to get out. Rao was leaving on a sabbatical (I believe
to France) starting Fall 1978 and the realization dawned on us that Rao’s
sabbatical was our best chance of finally finishing up. Otherwise, we would
have to postpone our graduation until Rao’s return to UCR a year later and,
of course, no one wanted to wait. In a furious finish, we all made it. I was
the last of the three to finish and remember happily driving M.M. to the
airport.

After graduation, my relationship and appreciation of M.M. Rao grew and
matured. As a graduate student, I was always appreciative of his financial
support for all his students and his academic support for me in particular.
After graduation, Rao became a major player in my career. He was always
in my corner, helping me. From key letters of recommendation to help me
secure positions at JPL, University of Nevada, Reno and Cal Poly Pomona,
to advising me where to try to publish my results, to being supportive when
my efforts were not always successful, to providing me with opportunities to
resume research activities and to finally just being there as a good friend.
His encouragement and assistance in developing my professional activities
has been and remains a constant.

In 1985, I invited M.M. to give a colloquium at Cal Poly Pomona. M. M.
did his usual super job and in the audience sat a talented graduating senior
who would not forget the talk nor the speaker. That senior was Randy Swift
who eventually went on to earn his Ph.D. under M.M. Rao and who today is
a good friend and valuable colleague at Cal Poly Pomona. Randy is also the
real editor of this volume which we both affectionately dedicate to M.M.,
our mutual mentor. In tribute to M.M. Rao’s stellar career, Randy compiled
this volume of research articles.
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The eighteen Rao students share a special bond and understanding of what
it means to earn your doctorate degree in mathematics under the direction
of M.M. This collection of essays and articles in honor of M.M. illustrates
this bond crosses four decades and bridges his Carnegie-Mellon University
students of the 60’s with the University of California, Riverside students
of the 70’s , 80’s and 90’s. It’s been a pleasure to have the opportunity to
celebrate M.M. Rao’s many contributions and to be “one of Rao’s students”.

Alan Krinik



On M.M. Rao

I first met Professor M.M. Rao in 1985, when I was an undergraduate
attending California State Polytechnic University, Pomona. Alan Krinik had
invited M.M. to give a colloquium talk in the department.

At the time, I was a senior math major and one of the department’s
promising students. I had attended departmental colloquium talks, but never
had I been exposed to a mathematician of the caliber of M.M. Rao.

His talk began in a very elementary fashion, but the breadth and depth
of the mathematics it spanned greatly impressed me. I was struck by the
passion for mathematics that he displayed. I had not been in the presence
of someone totally devoted to his discipline.

After I completed my Masters degree, I worked for a while in the aerospace
industry. I found myself desiring to pursue a PhD. My interest in probability
theory and my strong recollection of M.M. led me to apply to the University
of California, Riverside.

As fate would have it, and in my good fortune, I took M.M. for a graduate
course in Probability, his lectures were absolutely beautiful. Spanning the
subject with depth and presented with crystal clarity. Of course, he used his
text Probability Theory with Applications, perhaps the finest graduate text
written on the subject.

This course, and indeed, this text, set the tone for what working with M.M.
would be like. M.M. believes that homework should challenge his students.
During his courses, he assigns a problem or two per week. These problems
are not routine homework problems, rather they are problems from the re-
search literature. They are not mere exercises. Indeed, his students spend
vast amounts of time working on them. To this end, he is preparing his stu-
dents for research. Many of these problems aid his students in their future
works.

M. M. greatly respects effort. If he sees that a student is working, he will
guide the student gently down the appropriate path. He has an incredible
memory for details, often if a student was stuck on an idea, he would say,
go see this page of a particular paper or text. On that page, you would find
what you needed to get going again on the problem. From these interactions,
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M.M. seems to gauge a student’s ability. I became a student of his after I
had completed the course in probability theory, a seminar on random fields
and a course in stochastic processes. I never asked him to be my advisor;
rather, it seemed to be a natural evolution.

The first problem that he asked me to study involved the sample path
behavior of harmonizable processes. I spent a large part of that first summer
developing my facility with these processes. By the end of the summer, I
obtained my first minor result; it was on the analyticity of the sample paths.
However, the goal was to consider the almost periodic behavior of these
sample paths and I was stuck.

I toiled in vain for the next few months on this problem. One day, late in
November, I went to talk with M.M. about the problem, he listened intently
and then said, “let it rest there, for now, I would like you to look at this
calculation I have been working upon with harmonizable isotropic random
fields.”

He had obtained a representation for the covariance that involved some
rather complicated special functions. He asked me to see what I could do
with it, in particular, could it be made to look similar to the representation
obtained by Bochner for the stationary isotropic case.

I told him that I would try, and he said “There is no try, there is only do,
and I know that you can.”

By Sunday afternoon of that weekend, I had simplified the expression and
had showed that it reduced to Bochner’s representation in a very natural
way.

That Monday, I gave him the result. He, in a very delighted manner, then
said to me, “See if you can push it. Look at Yadrenko’s book and use this
representation to extend his results.”

This began a glorious 3-month stretch of research production. I obtained
several major results for harmonizable isotropic random fields.

Riding the tide of this success, he said to me “And what of the almost
periodicity?”

With the confidence I had obtained, I went back to the problem. Within
a month or so, I had obtained the results I had long sought. This experience
gave me great confidence in my ability to do research. It also gave me a very
broad research program to pursue. The confidence that M.M. showed in my
abilities as a mathematician remains with me today. It has allowed me to
flourish.

Many years later, M.M. told me that the first string of results I had
obtained after I had obtained the representation was likely enough for the
PhD. However, he saw that I was on track and he was going to have me do
as much as I could.

This story is very typical of the relationships he has with his students.
He works them very hard, always encouraging, and yet unyielding in his
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determination that they do their very best work.

In this setting, many of his students have become mathematicians com-
pletely devoted to the discipline. Whether this devotion is shown through
excellence in teaching, or excellence in research, or both, for each of us, it
is likely attributable to the role M.M. played, and continues to play, in our
lives.

It is no wonder then, that for some of us, M.M. holds a place in our hearts,
and we remain devoted to him as former students and now colleagues.

R.J. Swift



Reflections on M.M. Rao

Jerry Goldstein, Neil Gretsky, Bill Kraynek and I all fell under the charms
and passions of M.M. at Carnegie Tech at the same time during the mid-
1960’s. It was a glorious time for us and it was a glorious time for math at
Carnegie. We had close access to mathematicians such as Dick Duffin, Nehari
( who claimed not to have a first name), Alan Perlis, Dick MacCamy, Roger
Pederson, Dick Moore, Vic Mizel, Charlie Coffman and of course M.M.. Not
only did we study under these fellows but we also socialized with them too.
Some drank beer with us, some drank scotch with us and they all drank coffee
with us. They welcomed us into a flourishing community of math research.
They made us feel like mathematicians. We all owe so much to them.

With all these mathematicians (most of whom were in their prime) avail-
able to us, why did Goldstein, Gretsky and I choose to work under M.M.7 I
believe the reason was the sheer passion with which M.M. taught his courses.
I'll never forget the M.M.’s closing lecture on the Bochner and Pettis inte-
grals. Looking directly in our eyes, he said, “And now you know more about
the Bochner and Pettis integrals than anyone in the department.” Then he
made a dramatic exit. This lecture must have grabbed me in a big way be-
cause I spent the next thirty years on research matters centering around the
Bochner and Pettis integrals.

There was another reason we chose M.M. The word was out that M.M.
really cared about his students. We found this to be true in spades. M.M.’s
door was always open and he devoted unlimited time to us. When we had
personal problems, M.M. always tried to help. When Gretsky didn’t show
up for a week, M.M. took to the math department hallways asking every-
one, “Where is Gretsky? Where is Gretsky?” Another time when I was fin-
ishing my thesis, M.M. was hospitalized for an eye condition under doctor’s
orders to rest his eyes. But when I visited him in the hospital, there he was
going over my thesis in detail.

M.M. did not baby us and certainly did not do our work for us. Somehow
he was able to extract good work from us. One of his favorite techniques was
to ask why we were stuck on a point. Quite often, we later found how to
get around the apparent obstacle. All of our theses contained important new
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work and opened up wide opportunities for future research. I thank M.M.
for preparing me so well to do what I love to do.

There was a lighter side to M.M. One day department chair Ignace Kolod-
ner ordered all advanced grad students to attend a seminar meeting Wednes-
days at 4:00. Gretsky exclaimed:” But our intramural team plays Wednes-
days at 4:00!” Kolodner said: “What’s more important: Sports or Mathemat-
ics? Professor Rao what do you say?” In a completely straight face, M.M.
said,“I'm on the team; but I don’t play.” The seminar was rescheduled.

Just after I took my final Ph. D. oral fellow grad students threw a surprise
party for me outside Pittsburgh in a bar near Harmarville. M.M. came in
Roger Pederson’s car and made it clear he was delighted to be there. I went
over to him and asked him what he wanted to drink. In true M.M. form,
he said, “Ginger ale.” I want to the bar and ordered a double bourbon and
ginger ale highball. He took the glass, took a swallow and remarked, “This is
very good ginger ale.” Needless to say, M.M. and the rest of us had a very
good time that evening. The next day, M.M. said,” I don’t understand. On
the way home I became dizzy and nauseous - so much so that I had to ask
Roger to stop the car for a while.” To this day I don’t know whether M.M.
knew what he had been drinking that night. I prefer to believe he did.

In my long career, I have never met a Ph.D. advisor who was as respected
and as loved by his Ph.D. students as M.M. I hope the reasons are now clear.

Jerry Uhl
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Abstract

In this paper some interesting and nontrivial relations be-
tween certain key areas of stochastic processes and some clas-
sical and other function spaces connected with exponential Or-
licz spaces are shown. The intimate relationship between these
two areas, and several resulting problems for investigation in
both areas are pointed out. The connection between the the-
ory of large deviations and exponential as well as vector Orlicz,
Fenchel-Orlicz, and Besov-Orlicz spaces are presented. These
lead to new problems for solution. Relations between certain
Holder spaces and the range of stochastic flows as well as stochas-
tic Sobolev spaces for SPDEs are also pointed out.

1. Introduction

To motivate the problem, consider a real random variable X on (£2,%, P), a
probability triple, with its Laplace transform Mx(:), or its moment gener-
ating function, existing so that

My () =/ne”f dP, t € R, (1)
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is finite. Since Mx(t) > 0, consider its (natural) logarithm also called the
cumulant (or semi-invariant) function A : ¢ — log Mx(t). Then A(0) = 0 and
has the remarkable property that it is convex. In fact, if 0 < a=1- < 1,
then one has

Alas + (t) = lt::-g(/n elsa+tf)X 4 py

< log(( / e*X dP)%( / e* dP)?), by Holder’s inequality,
Q {1
= al(s) + BA(1). (2)

SoastTo00,0=A(0) <A(t) T oo, and the convexity of A(-) plays a funda-
mental role in connecting the probabilistic behavior of X and the contin-
uouity properties of A. First let us note that by the well-known integral
representation, one has

t
A(t) = Aa) + /ﬂ A'(u) du, (3)

where A’(-) is the left derivative of A which exists everywhere and is nonde-

creasing. Taking a = 0, consider the (generalized) inverse of A’, say A’. It is
given by A’ : ¢t~ inf{t > a = 0: A'(u) > t}, which, if A’ is strictly increas-
ing, is the usual inverse function A’ = (A")~!. Then A’ is also nondecreasing
and left continuous. Let A be its indefinite integral:

A(t) = / "A(v) do. (4)

A problem of fundamental importance in Probability Theory is the rate of
convergence in a limit theorem for its application in practical situations. It
will be very desirable if the decay to the limit is exponentially fast. The
class of problems for which this occurs constitute a central part of the large
deviation analysis. Its relation with Orlicz spaces and related function spaces
is of interest here. Let us illustrate this with a simple, but nontrivial, problem
which also serves as a suitable motivation for the subject to follow.

Consider a sequence of independent random variables X;, X5,... on a prob-
ability space (2, X, P) with a common distribution F' for which the Laplace
transform (or the moment generating function) exists. Then the classical
Kolmogorov law of large numbers states that the averages converge with

probability 1 to their mean, i.e.,
1 n
~ Y Xi— E(X;)=m. (ae.)
1=1

Expressed differently, one has for each € > 0, h,(¢) — 0 as n — o0 in:
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P(Ay) Pu-ZX E(X1)| > €] = hn(e) + o(n); (5)
:-1

and later it was found that h,(¢) = E";‘(E), with A as the Legendre transform
of A, the latter being the cumulant function of F', or A(t) = log Mp(t),t € IR,
and A is given by

A(t) = sup{st — A(t) : t € R}. (6)

The function A defined differently by (4) and (6) can be shown to be the
same so that there is no conflict in notation. The following example illustrates
and leads to further work. [A of (6) is also termed the complementary or
conjugate function of A.|

Let the X,, above be Bernoulli variables so that P(X,, = 1] = p and P|X,, =
0] =¢(=1-p),0 < p < 1. Then the cumulant function A is given by At) =

t

log(q + pe') and hence A'(t) = l—pi(?-- Ty One finds its complementary func-
tion to be, since m = E(X;) = p and A(m) =0,

X t
A(t) =/ A (w)] tdu, t>m,

/lﬂg du, O<p<u<t<l,
l—u

=t log lﬂgl_t 0<t<l. (7)

(l—t)

and for other values E(t) = 00. If the X,, describe a fair coin, so that p = ¢ =
5, one gets A(t) =tlog = +log2(1 —¢),0 <t < 1, = oo, otherwise. The
complementary function, written in a more symmetric form can be expressed
as:

A(t) =tlog2t+ (1 —t)log2(1 —t), 0<t<l;=o0,teR-{t:0<t<1}. (8)

A direct computation using exact values of (5) with the binomial probability

argument shows that for any Borel set A C Rand A, = {k: |2 — 3| > ¢} N
A:

() =P =3 ()5 Q

keEA,

One can simplify this with Stirling’s approximation for the factorials in

T
(k) = ki.(ik)n and get
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lim log Qn(A) = — lim min ﬂ(%

) = — inf A(z). (10)

T€A

The result (8) (or (7)) for A(:) shows how the convexity of A may be
utilized along with the classical Young complementary function calculation
to arrive at (10) directly. The latter observation gives a connection with
certain important function spaces. This is better identified if the random
variables are also symmetric, i.e.,

P[X =1]=%=P[X =-1], n>1,

andY, = > Y%, X;, Qn, = PoY, ! Then it is seen immediately that A(t) =
A(—t), A(0) =0 and A(t) = oo, |t| > 1, so that A is a classical Young func-
tion as used in functional anlysis (cf., e.g., Krasnoselski and Rutickii (1961)),
and its complementary function is seen at once from (7) to be:

1+ ¢ t—1
log(1 +t) —
5 og(l+1) 5

A(t) = log(l—1t), |t|<1; =00, |t|>1. (11)

In this case (10) can be obtained directly and it is simpler than the proba-
bilistic calculation.

Similar computations can be performed for random variables with continuous
distributions. For instance, let the X,, above be exponentially distributed,
e, P[X, <z]=1-e"%z >0 so that its cumulant function is given by
A(t) = —log(l —t),t < 1, and since E(X,) =1, one has as in (7), A(t) =
N %)dy = (t—1—logt),t > 0;= oo, otherwise. More general (but not
all) distributions, with cumulant functions such as a Gamma, can be illus-
trated.

The basic problem here is the evaluation of the complementary function
explicitly from the (convex) cumulant function of the random variable X;.
However, for a general Young function ¢ : IR — IR this is not always sim-
ple (or even possible). For instance if ¢(t) = et” — 1, which is a symmet-
ric nonnegative convex function vanishing at the origin, its complementary
function ¢ : ¢ +— ¥(t) = sup{|t|s — ¢(s) : s > 0} exists uniquely but cannot
be computed explicitly, although many properties can be studied in great
detail. This implies that one may find a suitable subclass of Young functions
for which the complementary function may be explicitly calculated, but now
even dropping the previous symmetry condition. This is motivated by the
large deviation study, and will be considered in the next section. Then in Sec-
tion 3 the regularity of stochastic processes and exponential Orlicz spaces
will be treated. The Fenchel-Legendre transforms and their study on infi-
nite dimensional spaces are discussed in Section 4. Also the perturbation
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of stochastic differential equations and the sample path behavior leads to
Besov-Orlicz spaces. Stochastic flows take values in certain Holder spaces,
and all of this is considered in Section 5. Finally the analysis of SPDE and
stochastic Sobolev speces are briefly noted in Section 6 to explain the close
relations. The work shows a clear usefulness of analyzing the problems with
the ideas and results of one area in the other, and the mutual benefits for
both subjects.

2. Large deviations and function spaces of Orlicz type

The first substatial result, subsuming the Bernoulli case discussed in the
preceding section, is due to H. Cramér (1938). It will be presented to focus
the general problem of large deviations, and to explain the connection more
concretely.

1. Theorem. Let {X,,n > 1} be a sequence of independent identically dis-
tributed random variables on a probability space (2, %, P), for which the cu-
mulant generating function A(-) exists on IR. Let Y, be the sample average,
i.€., Yp = % " Xi. IfQn = PoY, ! is the image measure of Yy, on IR, and
A C R is a Borel set such that P o X{'(8A) = 0 where 8A is the boundary
of A which is clearly measurable, then one has

lim = log Qn(A) = — inf A(A), (12)

T€A

n—oo N

where A is the complementary function of the Young function A, i.e., the
one defined by (6) of the last section.

It should be noted that A > 0, convex, and not symmetric, which is reflected
by (similar) properties of A. The proof of this result is nontrivial, compared
to the Bernoulli case, and the details are spelled out, e.g., in Rao and Ren
[(2002), Chapter VIII]. The point to note is the fundamental role played by
the complementary function A for the assertion of (12). Let us abstract this
conclusion to proceed further. Motivated by the special Bernoulli problem,
one may term Qn(-) the ‘large deviation probability’ and (12) implies that
it decreases to zero exponentially fast when A does not contain E(X;), the
pointwise limit of the Y,, being a consequence of the Kolmogorov law of large
numbers.

Since for vector or JR*-valued random variables X,,, if the cumulant function
A : R*F — IRt exists, A defined by (6), with st replaced by (s, t), (the inner
product) is also nonnegative, in this case the mapping is called the Fenchel-
Legendre transform, alternatively to the term ‘complementary function’, of
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A. So to take into account of all the cases seen in the solutions above, one
may introduce directly a mapping I : IR™ — IR™, called the rate function, as
follows:

Definition 2. Let I : ¥ — Rt be a mapping, X being a complete separable
metric (also termed a Polish) space, and @, : B(X') — [0,1]| (an image prob-
ability before) a measure on the Borel o-algebra of A'. Then the sequence
{Qn,n > 1} is said to have the large deviation property relative to I (called
the rate or entropy function) if the following properties hold:

(i) I(-) is lower semi-continuous,
(ii) {z: I(z) < a},a > 0, is compact in X for each a € R™,

(iii) for each A € B(X’) one has

— inf I(z) < lim inf—:-l— log Qn(A) < limsup 1 log Qn(A) < — inf I(2),

r€A° n—oc an n—oo Qn T€EA

where A° is the interior and A the closure of A and 0 < a, T 0. [If X
is infinite dimensional, [ is also termed action functional. Different names
originating in diverse applications.]

It is seen above that if A is the cumulant function of P, A its complementary
function (or the Fenchel-Legendre transform), then the latter qualifies to be
a rate function of the large deviation problem for Bernoulli variables; but it
is also true when X = IR*, k > 1 and a, = n. A detailed argument of this
fact is in Ellis ((1985),Chapter 11, Section 4) where the rate function is called
an entropy function, and as noted above it is also termed action functional.
If X is infinite dimensional, for instance a separable Hilbert space, then the
Young function and the Fenchel-Legendre transform and its conjugate have
to be considered with some care, and this will be discussed further below.

To understand the significance of the close relationship between the (mul-
tidimensional) Young complementary pair and the corresponding rate or
action function a version of the multidimensional Cramér theorem will be
presented, first in JR* and then for infinite dimensions, both of which ac-
tually arise in important applications in stochastic analysis. It will be seen
that the connection, not yet fully exploited, shows various aspects of func-
tion space results. They are needed here but are also of interest in different
parts of (abstract) analysis. This makes it clear that a comparative study of
these areas is beneficial mutually.

Theorem 3. Let {X,,n > 1} be independent identically distributed ran-

(13)
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dom variables on a probability space (Q,X,P) with values in R* k > 1,
having a well-defined (moment or) cumulant generating futmtinn A:t—
log( fq eltX1W)) dP(w)),t € IR*. Then the rate function I(= A, the comple-

mentary function of A) is given by
A(s) = I(s) = sup{(s,t) — A(t) : t € IR*} >0, (14)

(-,-) being the inner product of IR*. Moreover A is convez, continuous, and
has its minimum at a = E(X;).

A direct proof of this result was first sketched by Sanov (1957), and a full ar-
gument is considerably more involved than its one-dimensional counterpart.

The classical study of Young’s complementary function suggests that (3) may
be considered as a definition of the conjugate function A. This was verified in
a basic paper by Fenchel (1949) in IR* k > 1, but a careful reinterpretation of
it gives a useful generalization as follows. Indeed, the complementary Young
pair satisfying (2) symmetrically in the sense that if A is such a convex
(continuous) function, with A as its conjugate, then

At) = sup{(s,t) — A(s) : s € R¥}
= —inf{A(s) + (s,t) : s € R*}, (15)

since the mapping s — —s is a homeomorphism on IR* onto itself. It can be

shown that one always has A = A if X is a reflexive separable Banach space,
while the same is not true for a general (nonreflexive) A'. But this is true
for X = IR*, since all finite dimensional Banach spaces are reflexive. Thus

if A: X - IR* is a Young functional and A is defined with IR* replaced by
A, using the duality mapping (-, ;) : X x X* = IRsothat A : X* — IR*, one
has A : X** — R*. Hence A = A|X when X is identified as a subspace of

A** by the standard natural embedding. [For this extension procedure, see
Levin (1975).] These relations can be generalized as follows.

To begin, let us rewrite (4), using the fact that A = A on IR, a finite di-
mensional Banach space. Thus one has

A(t) = log(E(e'"*1))) = —inf{(s,t) + I(s) : s € X* = R*}, s € R*. (16)

Since the X, are independent and identically distributed, (13) and (16) give
on replacing X by Y, = % > X

An(t) = log(E(e“*))) = nlog(E(e!**)) = n(-),
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and (15) becomes
An(t) = —inf{nA(s) + n(%,s) : s € IR*}.

Replacing t by n7, this becomes on cancelling the factor n:

1 .
- log(E(e™™¥))) = — inf{A(s) + (s,7) : s € RF},n > 1.
Here letting n — oo, the limit exists, and one has on setting h;(:) = (t, ), so
that h; is a bounded linear function on IR,

lim — log(E(e™ (™)) = —inf{A(s) + he(s) : s € R*}. (17)

n—00 1N

This result admits an extension if h: A — IR is not necessarily linear but
simply bounded and continuous and IR is replaced by a (separable) Banach
space when the left side limit is assumed to exist. This is also motivated
by a classical evaluation, due to Laplace, of the integral by a Taylor series
expansion of the smooth function A : [0,1] — IR to obtain

1 1
lim —1 —nh(Z) dr) = min h(z). 1
Jim_ ~ log( /U e z) i, (z) (18)

Combining (17) and (18), one gets the following generalization, proved di-
rectly by Varadhan (1966) for an arbitrary random sequence {X,,n > 1}
with values in a complete separable metric (or a Polish) space X', whose dis-
tributions (i.e., the image measures on X’) satisfy the large deviation principle
in the sense of Definition 2 above. This generalizes the result of Theorem 2
above with cumulant function A and its conjugate A as the rate function.
More precisely one has:

Theorem 4. Let {X,,n > 1} be a sequence of X valued random variables
obeying the large deviation principle with an action functional I : X — IRt
where X is a Polish space. Then for any h € Cy(X'), the space of real bounded
continuous functions on X, equation (17) holds, i.e., one has:

lim ~ log(E(e ™ Xn)y = —inf{h(z) + I(z) : z € X}. (19)

n—00 7

Conversely, if (19) holds for any h € Cy(X), for an X -valued sequence
{Xn,n > 1} of random wvariables, then the latter satisfies the large devia-

tion principle for a unique action functional I in the sense of Definition
2.

If A" is a separable adjoint Banach space, Cy(X’) is replaced by A'* in the
above, and A; is the cumulant functional of X; for each t € J, an index set,
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then one can extend the above result to the case of a continuous parameter
process or field. Let us illustrate this with the case of Brownian Motion (or
BM), and then give an immediate extension to all centered Gaussian pro-
cesses with continuous covariance functions. In these cases admitting infinite
dimensional X is essential as will now be seen. If ¢ = % | O then (17) becomes
formally

H{% log(E(e” %h(w))) = —inf{A(s) + h(s) : s € IRF},
E

where Y¢ is defined in terms of the X-process, so that Y* — 0 in probability
as € \ 0. Indeed, if Y*(t) = /X (t) for a process X(t) with zero mean and
covariance 7, then the Cebyshev inequality gives for each § > 0

er(t,t)

PIY(t) > 8] < SE(X (@) = —5

6

— 0, (20)

as € \, 0 for each t. If X; is the BM which has continuous paths, i.e.,
Xy(w) : [0,1] = Co([0,1]) = &, then the problem is to find the (exponential)
rate of convergence Y* — 0 (for all ¢) as € N\, 0, and this means to find the
rate or action functional related to the BM on the (Polish) space Cy([0, 1}),
the space of real continuous functions on [0,1] vanishing at 0 under the
uniform norm. To get out of the ¢t-points here one considers the probability
measure determined by the entire process, and then the problem is solved
from it, as follows.

The canonical representation of a real process is obtained, using the classical
Kolmogorov existence theorem, with Q = IR, ¥ = the cylinder o-algebra of
2, and P determined by the compatible family of all finite dimensional distri-
butions. Then the process has the coordinate (or function space) representa-
tion X;(w) =w(t),w € Q,t € T, and whose finite dimensional distributions
are the given ones, i.e.,

Plw: X, (w) <ziyi=1,...,n|=F, 4 (z1,...,Zn), z; € R, t; € T.

The Fourier transform of the process related to P is defined uniquely as:

[ eZim X ap() = [ X9 4p(w) (21)
(2 {1

where (X, z)(w) = %) Xy, (w)zj(= [Jp Xeu(dt))(w) with p as a signed (Stielt-
jes) measure on 1" having values z; at t;. Thus it may be written as (X, z) =
(w(+),;), w € 2. In the case that P is a Gaussian measure on X = RI01]
(20) can be evaluated to obtain:

/ XD gp(y) = e Q@D ¢ € X, (22)
{2

where Q : X* x X* — IR" is a positive definite bilinear form, X'* being the
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adjoint space of the vector space A, so that Q(z,z) = V;, the variance, and
Q(z,y) = C;z y the covariance of the process X. For a BM which has contin-
uous paths, & = Cy([0,1]) and so A* = M|0, 1], the space of regular signed
Borel measures, and (X, z) = (X, u)(= fol X;u(dt)), a standard Bochner (or
abstract vector Lebesgue) integral. In this case (21) is expressible as:

/ ei(xm)(w}dp(w) — ] et (w.k) dP(w)
Q ﬁ
— o~ AK)

= e~ 3 Jo Jo ristu(ds)udt) (23)

where r(s,t) = s At, and A(-) is the cumulant function as before. It can be
verified (nontrivially) that (cf., e.g., Deuschel and Stroock (1989),p.85)

Aw) = 5@ ) = [ (@7 Plda), ne 2, (24)

where P is the image measure of the process on its range space X'. It follows
by the duality pairing (and the CBS inequality) that (|| - | denoting norms
in both &', &)

Aw) < Iul? [ llz| dP(z). (25)

Consequently the conjugate function A of A (or the generalized complemen-
tary Young function) is given by

A(z) = sup{(u,z) — A(p) : p € X*}, z € X. (26)

It is now necessary to have explicit expressions for A, and this is now
considered.

Recalling (19) and (20), let P be the probability measure of the BM process,
and consider the measure P that of Y = /e X, so that it has values again
in X = Cp([0, 1]) and lim.\ o P = dp, the point measure at 0 (vague conver-
gence). Then one has the following explicit evaluation of A due to Schilder
(1966), with a different (and shorter) proof in Varadhan (1984):

Theorem 5. The family of probability measures {Fe,e > 0} satisfies the
large deviation principle with the action functional A given on XA by:

Ay =3 [ 170k, (27)

for all absolutely continuous f € Cy([0,1]) whose derivatives are square in-
tegrable, and A(f) = oo otherwise. Thus the domain of A in which it is finite
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is the subset of Cp([0,1]) given by Ay = {f € A : ful If'(t)2dt = ||f']|* < o0},
which is a Hilbert space, a subspace of X but with a stronger norm topology.

It will next be shown how this admits an extension to general Gaussian
processes, with continuous covariance and mean functions. Thus let X =
{Xi,t € T = [a,b]} be a centered Gaussian process with a continuous covari-
ance function r : T' x T' — IR. Consider the integral operator R with kernel
r, so that

(RA)® = [ r(s,)f(s)ds, (28)

which is compact (even Hilbert-Schmidt) on Ap and is positive definite. Also

R is nonsingular and has a unique square root R? which has an inverse. Then
the range space M = R? (L%(T,dt)) can be described precisely as follows. For
each f € M C Q = IR?, consider a new process defined by 1’}_f (w) = Xi(w) +
f(t) whose probability measure Py has the property that Py < P. Such an
f is called an admissible mean of the X;-process. Then M can be provided
with a new inner product as follows. Since f; € M = f; = Rihi,i =1, 2,
let (f1, f2)m = (Rhy, h2)p2(T,41), the last symbol being the scalar product of
L?(T,dt). Then M is a Hilbert space (cf., e.g., Rao (1975) for a proof of
this fact), and R? also has a kernel representation (cf. Dunford-Schwartz
(1958),V1.9.59) as:

£(t) = (RYR)(t) = /T G(s,t)h(s)ds, he LX(T,dt), (29)

so that the covariance r can be expressed as:

r(s,t)=/TG(3,u)G(t,u) du. (30)

Next define a new process on the same canonical space: X; = Jr G(s,t) dBs,

where {B;, s € T'} is the standard BM on the same space. This being a linear
transformation, {)E't,t € T'} is also a centered Gaussian process having the
same covariance function r as the X;-process. Since a Gaussian process is
determined by its mean and covariance functions, these two processes can be
identified, X; = X;,a.e.,t € T. Now f = R3h,h € L*(T,dt) and R %exists,
and so by Theorem 5, one has the following exact form of the conjugate
function A of A:

A(f) = SIRASIP = SR, Niaray, § € M = RE(LA(T, dt)), (31)

and A(f) = o0, otherwise. This may be summerized as:
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Theorem 6. Let {X§ = /eX;,t € T,e > 0} be a centered Gaussian process
with a continuous covariance function. Then X§-process obeys the large de-
viation principle with the action or rate functional A qiven by (20).

This was first established by Freidlin with a slightly different argument (cf.,
Freidlin and Wentzell (1998), Sec. 3.4). The point of these cases here is that
the Fenchel-Young (or cumulant) functions A are defined on infinite dimen-
sional (separable) Hilbert or Banach spaces, and their action functionals A
are explicitly calculable. They are of primary interest in the large deviation
problems. Because of this circumstance these spaces will be analyzed from
the function space point of view in Section 4 below.

It is also useful to discuss another class of fast growing Young functions to
be included in that study since it is not usually detailed in general abstract
analysis.

3. Exponential Orlicz spaces and stochastic processes

The following familiar problem leads to a consideration of exponential Or-
licz spaces, as path spaces of the associated process whose structure provides
precise description of the growth of sample functions of interest in applica-
tions. Thus consider a Poisson process { X;,t > 0} used to describe telephone
traffic, so that the process has independent and stationary increments. Then
Xg = 0,a.e. and for 0 < t; < t9 are any time points,

_ k
P[th - Xﬁl — k] — E_c(tz_tl) (C(t2 X tl)) y k= 0, 1,2, voae (32)

Here ¢ > 0 is a constant, called the intensity parameter. Let Y be a sym-
metric Bernoulli random variable, independent of the X;-process, so that
PlY = -1 = P[Y = +1] = 1. Let {Z, = Y(—1)*t,¢t > 0}, a process which
has practical interest and has bounded paths. It is desired to describe the
growth behavior of t — Z;(w), for almost all sample points w. Note that the
Z-process is also stationary and has moving discontinuities. This will follow
from the computation, given below, for the growth rate of the increments
of the process in terms of an exponential Orlicz norm. Indeed, since X; and
Y are independent E(Y) = 0, one has E(Z;) = 0 and using the independent
increment property of the X;-process, it is seen that for s < ¢

E(Z,Z,) = E(Y?)E((-1)** %) E((-1)***)
— o~ 2¢c(t-s) (33)

So for 0 < s,t < 00, one has Cov(Zs, Z;) = e~2¢lt-s| implying the (Khint-
chine) stationarity of the Z;-process. Also by definition Z; — Z, takes only
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the three values 0,11, and then

P|Z, — Zy=0] = P|X, — X; =2k, k=0,1,2,..]
= e~ %""* cosh(c(t — 5)) = a(s,t), (say), (34)

and similarly that

PlZ, - Zs=1=Pl|Z; — Zs = —-1] = —;-[1 — a(s,t)]. (35)

If ®(-) is an N-function (i.e., a symmetric nonnegative convex function,
®(0) = 0, 35:51 — 0(00) as  — 0(00)), and A(z) = e®® — 1, which is again
an N-function, then the space L*(P) on a probability space (Q, %, P) of
functions f : Q — IR for which [ A(kf)dP < oo for some k > 0 is an ezpo-
nential Orlicz space which is a Banach space under the norm:

£y = inf{k >0: [ A(%)aP <1} (36)

when equivalent functions are identified. This is well known (cf., e.g., Rao

and Ren (2002)). Such A satisfy the so-called A% condition, i.e., there ex-

ist constants K > 0,z > 0 such that A%(z) < A(Kz), = > 0, and the above
function satisfies this, since A2(z) = e2®@) 4 1 — 2%®) < £2(22) _ 1 = A(22),2 >
0. Moreover, any A? function has the growth condition satisfying (as seen
from Rao and Ren, loc. cit.):

e < Az), z>z1>0,
for some a > 0 and an z;. It is also easy to see that

L*(P) C LMP) C Nys1 LP(P) C Ups LP(P) C LA(P) c LY(P), (37)

where A is the complementary function of A. Since Z; is bounded, it is
in LA(P). Using (36) one can compute ||Z; — Zs||(an) for any exponential
N-function A and get:

12~ Zullwy = inf{k > 0: [A(- 1) + A2 <13, (A(0) = 0)
= inf{k > 0 : A(-}E)(l —a(s,t)) <1}, by symmetry of A,
_ 1 -
= [A 1(1 - a(s,t))] }

Also from the fact that for any to > 0
P(|Zy, — Zo| > 0] = 1 — a(0,tp) > 1 — e~ 0, (38)
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it follows that P||Zi;4+e — Z¢y—¢| > 0] — 0 as €\, 0, since a(0,e) — 1 as
e — 0. Thus £y > 0 is not a fixed discontinuity point, but is a moving one.

This example shows that exponential Orlicz spaces L (P) for A(z) = ®(®) —
1, with & as an N- (or a continuous Young-) function, are of interest in
applications. The spaces LA(P) lie between L?(P) and L*(P) for all p > 1,
as seen from (37). They also play a key role in pre-Gaussian random variables.
Several applications may be found in Budygin and Kozachenko (2000).

Recall that a random variable X is pre- (or sub-) Gaussian if its moment
generating function exists, in a nondegenerate neighborhood of the origin
(or IR) and is dominated by that of a centered Gaussian variable in that
neighborhood (in all IR), i.e., there are an a > 0 and a 3 > 0 such that

¢252

E(eX)<e T, Vie(-a,a), (t€ R). (39)

Thus the cumulant function of X is dominated by a quadratic form in
that interval. If Gy denotes the class of pre-Gaussian random variables, then
Go C LA(P) for a suitable exponential Orlicz space, and is a closed subspace,
hence a Banach space. This is a nontrivial fact, depending on properties of
the latter function spaces, somewhat similar to the preceding sections. This
point is a consequence of the following result.

Theorem 1. Let A :  +— €®®) — 1 where ® is a continuous Young function
such that ®(z) > 0 for x > 0, and consider the (exponential) Orlicz space
LM(P), as above. Then:

(i) f € LA(P) iff there ezist constanta C(= Cy) > 0, D(= Dy) > 0 such that

Plw:|f(w)| > ] < Ce™®B), z>0, (40)
and then
C
I flla) < (1 + E)D; (41)

(i) if ®(x) = ||P,p > 1, and N(f) = supny; 122, where || - |np is the Lebesgue
norm of L"P(P), then N(-) is a norm equivalent to | - ||(a).

Here (i) is from Buldyagin and Kozachenko (2000) whose bound for the
norm in (10) is slightly improved ((1 + %) instead of (1 + C') there). This
whole result is detailed in Rao and Ren (2002, Sec. 8.3). For (ii) which is
essentially due to Fernique (1971), and which is also in the latter reference,
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there is unfortunately a typographical slip at a key point which may confuse
the reader. So it will be sketched here for convenience. As a consequence
of this part, one obtains that the space of pre-Gaussian variables Gy is a
Banach space.

Sketch of Proof of (ii). Since ®(z) = |zP, A(z) = e — 1 = ¥, B, de-

fine the functional M : f +— sup,>,; Mﬂi and an a, > 0, by the equation

(n!) #p

ﬂn(n!);‘l‘; = ”f”np Then one has

N L £ llnp np
A P =
12 | A7) 2 2 Gl

_ n_ \np
-,g(”f“(h)) ’ )

Thus a, < || f|la),n 2 1, and so M(f) < || fll(a)- However

1
SZz_ﬂzl’

n=1
since by definition of a,, one has a, < M(f),n > 1. Consequently, ||f|[x) <
25 M (f), using the definition of the gauge norm. Hence

M(f) < |Ifllay € 22 M(f) < 2M(f), p 2> 1,f € LA(P), (43)

so that the functionals M(-) and || - ||(5) are equivalent.

Now observe that ||f|l. T || flloc, and by Stirling’s approximation for n!, one

gets easily supﬂal(ﬁl[)ﬁ ~ SUP;>1 #, and hence N : f — N(f) = sup,>; H%"ﬁz
is a norm functional and is equivalent to M(-). Thus N(f) ~ || fll(a), or the
norms N(-) and || - [|(A) are equivalent.

Remark. If f is a pre-Gaussian variable, then one finds that N : f —
supﬂzl(uﬂﬂ)# is a norm and it is equivalent to N and hence to || - [|(a).
Thus the set Gy of pre-Gaussian variables f for which N(f) < oo is a sub-
space of LA(P), by part (ii) of the above theorem. By the equivalence of
norms and the completeness of an (exponetial) Orlicz space, one concludes
that (Gg, N(-)) is a Banach space. A direct proof of this fact without the
Orlicz space theory is considerably more difficult.

It is natural to seek a common abstract function space analysis that combines
both this and the preceding multidimensional Young function versions to give
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an overview of the underlying functional structure. This is discussed in the
next section.

4. Fenchel-Orlicz spaces for stochastic applications

In the problems of large deviations of BM and the general Gaussian pro-
cesses, it was seen that the Fenchel-Young function A : X — IRt where X is
an infinite dimensional Polish space, and in the preceding section the clas-
sical Young functions leading to exponential Orlicz spaces. These two facts
motivate the following functional analysis study. Thus A must be convex
but not necessarily symmetric and not bounded, i.e., A(tz) — o0 as t — o0
for each 0 # z € X. Simple examples show that even when X = IR? the last
condition need not hold for a convex A, and has to be assumed. In this ex-
tension, even if A(—z) = A(z), i.e., symmetric, its conjugate A need not be.
A first step in this direction may be formulated as follows.

Definition 1. Let (X,||-||) be a Banach space, A: X — IR*, a convex
function such that A(0) =0,A(—z) = A(z) and {z : A(tx) < o0, for some
t >0} = X. Then the Fenchel-Orlicz space on a measure space ({2, %, u)
denoted L*(u,X) is the class of strongly measurable f : 2 — X such that
Jq A(kf)dp < oo for some k > 0 (Bochner integral). The (gauge) norm, with
which equivalent classes are identified, is given by

I£lay = inf{hk > 0+ [ A(%)du <1} (44)

The basic statement about the space can be presented as:

Proposition 2. The normed linear space (L™(u,X),|| - |l(a)) is a Banach
space if either X 1is finite dimensional, the complementary (or conjugate)
function A is continuous at 0, or A satisfies the equivalent condition that

A(z) > allz|| + B8 for some o, > 0 and all z € X — {0}.

A proof of this result, and several of the properties discussed below can be
obtained from the work of Turett (1980). After stating some geometrical

aspects of L*(u, X)), the problem of interest in stochastic analysis will be
highlighted.

The standard growth condition used for Young function is also meaningful for
the general case. Thus A is As-regular if there are constants K; > 0,1 = 1, 2,
such that A(2z) < K1A(z) for ||z|| > K;. A similar condition is meaningful
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for the conjugate function A of A, as in the classical case. With these concepts
the following exemplifies some geometric facts of these spaces.

Theorem 3. Let X be a Banach space and A : X — RR* be a convezr func-
tion, as in Definition 1, and L™(u,X) be the corresponding Fenchel-Orlicz
space. Then (L™ (u, X), || - l(a)) s reflexive whenever X' is reflexive and both

(A, A) satisfy a Ag-condition.

For these spaces, the geometric structure as well as other related properties
have been detailed by Turett (1980). The analysis of the corresponding spaces
if A is not symmetric, as desired by the work of the preceding two sections,
is not yet available but desirable.

This will also be of interest even in the classical convex analysis, as discussed,
for instance, by Brgndsted (1964), and in fact much of the work in Rock-
afellar’s (1970) book, to have extensions to the general case with A" infinite
dimensional. This is at present largely unexplored.

In the next section, another set of spaces that are needed for an analysis of
the sample paths of solutions of stochastic differential equations and related
perturbation theory will be considered.

5. Function spaces for stochastic differential equations

Suppose that a process {X;,t > 0} is a solution of a first order stochastic
differential equation

dXt = EJ(Xt, t)dBt + bE(Xt, t)dt, t > 0 (45)

where b, : IR x RY — IR, called the ‘drift’ and o : IR? x IR™ — IRT, the
‘diffusion’ coefficients, and € > 0 is a parameter, B; being the BM-process.
If b is independent of £, and then £ = 0 making the first term disappear,
one has an ordinary differential equation. In the general case when £ > 0 is
fixed, and b., o satisfy a standard Lipschitz condition, and a given initial
value X§ = = (or Xp = z in the nonstochastic case) the Ito theory implies
that there is a unique solution of (45). [The matter is discussed even for
higher order equations in Rao (1997).] A solution of (45) is called a diffusion
process. The problem is to find conditions on b; and ¢ and the range space in
order that the solution of the perturbed equation tends to the unperturbed
one, and find conditions that the deviations decrease exponentially. Thus the
problem becomes a continuous parameter analog of the large deviation ques-
tions considered in the earlier sections. For simplicity b, will be assumed
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to be defined just on IR? so that the diffusion process will have stationary
transitions, but the extension to the general case is then also possible and
useful, as discussed in the last reference.

Since the solution should be “smooth”, one has to find a proper space in
which the process takes its values. Naturally these are Orlicz type spaces
whose elements are “smooth”. The appropriate spaces here are the Besov-
Orlicz and Orlicz-Sobolev spaces, the latter being more suitable for the
stochastic partial differential equations. First a brief recall of these spaces is
given to make the discription intelligible, and then to state the results for
the solution of (45).

Consider the probability space (§2, £, P) where Q2 = [0, 1], £ = Borel o-algebra.
For f € LA»(P),Ay(z) = € — 1,p > 1, the modulous of continuity is given
as:

wa,(f,t) = sup ||Anflla,), 0t <1, (46)
0<h<t
the norm || - ||(o,) was defined earlier in Section 3, and (A, f)(z) = (:1: +
h) — f(z) for 0 < z <1 - h. This is scaled by w,5:t+— t“(lng%)ﬂ 0<
1, and set
WA, (f ‘)
Il Ap)wa g0 = I ll(ap) + | > lloo- (47)

Then (47) defines a norm and the subset of the exponential Orlicz space
LA»(P) defined by

B= Bwa 800 = {f € LAP (P) : ”f”(ﬁtp),wﬂ'ﬂ,m < Dﬂ}: (48)

is the desired vector space, and it can be verified that B is a Banach space,

called the Besov-Orlicz space. The diffusion process, a solution of (45), can be
shown to take values actually in the separable subspace B of B, determined
by the Schauder functions in it, and it can be defined precisely.

Moreover, the early work of Schilder (1966) has already shown that the
BM process verifies the Large Deviation Principle (LDP), and this property
is reflected for diffusion processes, the solutions of equations such as (47)
driven by the BM with coefficients satisfying the usual Lipschitz conditions.

Thus the conjugate (or complementary) function of A, is definable again on

subspaces such as Ay given in (26) of Section 2 above. In the present context,
it is the space:

Yo = {h € CD([O, 1]) : -/01 |h"(t)l2 dt < DO}
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relative to which the rate function can be defined. This is given by the
following:

Theorem 1. Let X¥ and X;™*, t € [0,1] be the (unique) solutions of (45)
in the original and perturbed cases with the initial condition X§ = z = X"
where X; denotes the solution withe = 1,b; = b, and the Lipschitz conditions
are assumed. Then XF, X;'* take values in the separable subspace BY of the
Besov-Orlicz space B given by (48), and X;'* satisfies the LDP, i.e., for

each Borel set A C B° one has (with the process in canonical form so that
Xi(w) = w(t),t €[0,1]):
0 s s 2 E,T
—I(A%) < 11131\:&1f5 log P:| X" € A
< limsup €? log PI[XE‘)I € Al < -I(A), (49)
N0

where I : B — IR" is the rate (or conjugate of Az) function, written I(A) =
inf{I(f): f € A}, A° A are the interior and closure of A, with

1) = mif [ IW@Fdt: £ €, s()@) = £(z)

and s : Yo — B° is a mapping such that s(h) is continuous on balls of BY,
and satisfies the ordinary differential equation, associated with (also called a
‘skeleton’ of ) (45) as:

ds(h)

o (&) = o(s(h)(OR'(t) + b(s(R))(t), s(h)(0) = z. (50)

The details of proof, as one can expect, involve several estimates that are
tedious but somewhat standard in this area, and are given by Eddahbi and
Ouknine (1997). A two parameter extension (i.e., for fields X;,t = (£;,£2) €
[0,1] x [0,1]) is also available with an exact extension, but involves more
work. It is recently obtained by Boufoussi, Eddahbi and N’zi (2000). The role
of Besov-Orlicz spaces and exponential Orlicz spaces here need no further
emphasis, being crucial for the work.

Let us also note briefly the spaces that appear in the study of stochastic
flows, which are continuous function spaces but are of a different type. Here
nonlinear operations appear from the start, and the analysis is localized. A
brief discussion will now be included.

Consider the mappings ¢y : IR x Q — B(IR%), the space of d x d matrices
on IR and suppose the following three conditions hold on (2,%, P) for 0 <
s<t<u<o:
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