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Foreword

Educators, generals, dieticians, psychologists, and parents program. Ar-
mies, students, and some societies are programmed. An assault on large
problems employs a succession of programs, most of which spring into
existence en route. These programs are rife with issues that appear to
be particular to the problem at hand. To appreciate programming as an
intellectual activity in its own right you must turn to computer program-
ming; you must read and write computer programs—many of them. It
doesn’t matter much what the programs are about or what applications
they serve. What does matter is how well they perform and how smoothly
they fit with other programs in the creation of still greater programs. The
programmer must seek both perfection of part and adequacy of collec-
tion. In this book the use of “program” is focused on the creation, exe-
cution, and study of programs written in a dialect of Lisp for execution
on a digital computer. Using Lisp we restrict or limit not what we may
program, but only the notation for our program descriptions.

Our traffic with the subject matter of this book involves us with three
foci of phenomena: the human mind, collections of computer programs,
and the computer. Every computer program is a model, hatched in the
mind, of a real or mental process. These processes, arising from human
experience and thought, are huge in number, intricate in detail, and at
any time only partially understood. They are modeled to our perma-
nent satisfaction rarely by our computer programs. Thus even though
our programs are carefully handcrafted discrete collections of symbols,
mosaics of interlocking functions, they continually evolve: we change
them as our perception of the model deepens, enlarges, generalizes until
the model ultimately attains a metastable place within still another model
with which we struggle. The source of the exhilaration associated with
computer programming is the continual unfolding within the mind and
on the computer of mechanisms expressed as programs and the explosion
of perception they generate. If art interprets our dreams, the computer
executes them in the guise of programs!

For all its power, the computer i1s a harsh taskmaster. Its programs
must be correct, and what we wish to say must be said accurately in
every detail. As in every other symbolic activity, we become convinced
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of program truth through argument. Lisp itself can be assigned a se-
mantics (another model, by the way), and if a program’s function can
be specified, say, in the predicate calculus, the proof methods of logic
can be used to make an acceptable correctness argument. Unfortunately,
as programs get large and complicated, as they almost always do, the
adequacy, consistency, and correctness of the specifications themselves
become open to doubt, so that complete formal arguments of correctness
seldom accompany large programs. Since large programs grow from
small ones, it is crucial that we develop an arsenal of standard program
structures of whose correctness we have become sure—we call them
idioms—and learn to combine them into larger structures using orga-
nizational techniques of proven value. These techniques are treated at
length in this book, and understanding them is essential to participation
in the Promethean enterprise called programming. More than anything
else, the uncovering and mastery of powerful organizational techniques
accelerates our ability to create large, significant programs. Conversely,
since writing large programs is very taxing, we are stimulated to invent
new methods of reducing the mass of function and detail to be fitted into
large programs.

Unlike programs, computers must obey the laws of physics. If they
wish to perform rapidly—a few nanoseconds per state change—they
must transmit electrons only small distances (at most l% feet). The
heat generated by the huge number of devices so concentrated in space
has to be removed. An exquisite engineering art has been developed
balancing between multiplicity of function and density of devices. In
any event, hardware always operates at a level more primitive than that
at which we care to program. The processes that transform our Lisp
programs to “machine” programs are themselves abstract models which
we program. Their study and creation give a great deal of insight into the
organizational programs associated with programming arbitrary models.
Of course the computer itself can be so modeled. Think of it: the behav-
ior of the smallest physical switching element is modeled by quantum
mechanics described by differential equations whose detailed behavior
1s captured by numerical approximations represented in computer pro-
grams executing on computers composed of ... !

It is not merely a matter of tactical convenience to separately iden-
tify the three foci. Even though, as they say, it’s all in the head, this
logical separation induces an acceleration of symbolic traffic between
these foci whose richness, vitality, and potential is exceeded in human
experience only by the evolution of life itself. At best, relationships
between the foci are metastable. The computers are never large enough
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Is it possible that software is not like anything else, that
it is meant to be discarded: that the whole point is to
always see it as a soap bubble?

Alan J. Perlis

The material in this book has been the basis of MIT’s entry-level com-
puter science subject since 1980. We had been teaching this material
for four years when the first edition was published, and twelve more
years have elapsed until the appearance of this second edition. We are
pleased that our work has been widely adopted and incorporated into
other texts. We have seen our students take the ideas and programs in
this book and build them in as the core of new computer systems and
languages. In literal realization of an ancient Talmudic pun, our students
have become our builders. We are lucky to have such capable students
and such accomplished builders.

In preparing this edition, we have incorporated hundreds of clarifica-
tions suggested by our own teaching experience and the comments of
colleagues at MIT and elsewhere. We have redesigned most of the ma-
jor programming systems in the book, including the generic-arithmetic
system, the interpreters, the register-machine simulator, and the com-
piler; and we have rewritten all the program examples to ensure that any
Scheme implementation conforming to the IEEE Scheme standard (IEEE
1990) will be able to run the code.

This edition emphasizes several new themes. The most important of
these is the central role played by different approaches to dealing with
time in computational models: objects with state, concurrent program-
ming, functional programming, lazy evaluation, and nondeterministic
programming. We have included new sections on concurrency and non-
determinism, and we have tried to integrate this theme throughout the
book.

The first edition of the book closely followed the syllabus of our MIT
one-semester subject. With all the new material in the second edition, it
will not be possible to cover everything in a single semester, so the in-
structor will have to pick and choose. In our own teaching, we sometimes
skip the section on logic programming (section 4.4), we have students
use the register-machine simulator but we do not cover its implementa-
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tion (section 5.2), and we give only a cursory overview of the compiler
(section 5.5). Even so, this is still an intense course. Some instructors
may wish to cover only the first three or four chapters, leaving the other
material for subsequent courses.

The World-Wide-Web site www-mitpress.mit.edu/sicp provides
support for users of this book. This includes programs from the book,
sample programming assignments, supplementary materials, and down-
loadable implementations of the Scheme dialect of Lisp.



Preface to the First Edition

A computer is like a violin. You can imagine a novice
trying first a phonograph and then a violin. The latter, he
says, sounds terrible. That is the argument we have heard
from our humanists and most of our computer scientists.
Computer programs are good, they say, for particular
purposes, but they aren’t flexible. Neither is a violin, or a
typewriter, until you learn how to use it.

Marvin Minsky, “Why Programming Is a Good
Medium for Expressing Poorly-Understood and
Sloppily-Formulated Ideas”

“The Structure and Interpretation of Computer Programs™ is the entry-
level subject in computer science at the Massachusetts Institute of Tech-
nology. It is required of all students at MIT who major in electrical
engineering or in computer science, as one-fourth of the “common core
curriculum,” which also includes two subjects on circuits and linear sys-
tems and a subject on the design of digital systems. We have been in-
volved in the development of this subject since 1978, and we have taught
this material in its present form since the fall of 1980 to between 600
and 700 students each year. Most of these students have had little or no
prior formal training in computation, although many have played with
computers a bit and a few have had extensive programming or hardware-
design experience.

Our design of this introductory computer-science subject reflects two
major concerns. First, we want to establish the idea that a computer
language 1s not just a way of getting a computer to perform operations
but rather that it is a novel formal medium for expressing ideas about
methodology. Thus, programs must be written for people to read, and
only incidentally for machines to execute. Second, we believe that the es-
sential material to be addressed by a subject at this level 1s not the syntax
of particular programming-language constructs, nor clever algorithms
for computing particular functions efficiently, nor even the mathematical
analysis of algorithms and the foundations of computing, but rather the
techniques used to control the intellectual complexity of large software
systems.

Our goal is that students who complete this subject should have a good
feel for the elements of style and the aesthetics of programming. They
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should have command of the major techniques for controlling complexity
in a large system. They should be capable of reading a 50-page-long
program, if it is written in an exemplary style. They should know what
not to read, and what they need not understand at any moment. They
should feel secure about modifying a program, retaining the spirit and
style of the original author.

These skills are by no means unique to computer programming. The
techniques we teach and draw upon are common to all of engineering
design. We control complexity by building abstractions that hide details
when appropriate. We control complexity by establishing conventional
interfaces that enable us to construct systems by combining standard,
well-understood pieces in a “mix and match” way. We control complex-
ity by establishing new languages for describing a design, each of which
emphasizes particular aspects of the design and deemphasizes others.

Underlying our approach to this subject is our conviction that “com-
puter science’ is not a science and that its significance has little to do with
computers. The computer revolution is a revolution in the way we think
and in the way we express what we think. The essence of this change is
the emergence of what might best be called procedural epistemology—
the study of the structure of knowledge from an imperative point of
view, as opposed to the more declarative point of view taken by classical
mathematical subjects. Mathematics provides a framework for dealing
precisely with notions of “what i1s.” Computation provides a framework
for dealing precisely with notions of “how to.”

In teaching our material we use a dialect of the programming language
Lisp. We never formally teach the language, because we don’t have to.
We just use it, and students pick it up in a few days. This is one great
advantage of Lisp-like languages: They have very few ways of forming
compound expressions, and almost no syntactic structure. All of the
formal properties can be covered in an hour, like the rules of chess. After
a short time we forget about syntactic details of the language (because
there are none) and get on with the real issues—figuring out what we
want to compute, how we will decompose problems into manageable
parts, and how we will work on the parts. Another advantage of Lisp
1s that it supports (but does not enforce) more of the large-scale strate-
gies for modular decomposition of programs than any other language
we know. We can make procedural and data abstractions, we can use
higher-order functions to capture common patterns of usage, we can
model local state using assignment and data mutation, we can link parts
of a program with streams and delayed evaluation, and we can easily
implement embedded languages. All of this i1s embedded in an interac-
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tive environment with excellent support for incremental program design,
construction, testing, and debugging. We thank all the generations of
Lisp wizards, starting with John McCarthy, who have fashioned a fine
tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an attempt to bring to-
gether the power and elegance of Lisp and Algol. From Lisp we take the
metalinguistic power that derives from the simple syntax, the uniform
representation of programs as data objects, and the garbage-collected
heap-allocated data. From Algol we take lexical scoping and block struc-
ture, which are gifts from the pioneers of programming-language design
who were on the Algol committee. We wish to cite John Reynolds and
Peter Landin for their insights into the relationship of Church’s lambda
calculus to the structure of programming languages. We also recognize
our debt to the mathematicians who scouted out this territory decades
before computers appeared on the scene. These pioneers include Alonzo
Church, Barkley Rosser, Stephen Kleene, and Haskell Curry.
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included for this purpose new data objects known as atoms and lists,
which most strikingly set it apart from all other languages of the period.

Lisp was not the product of a concerted design effort. Instead, it
evolved informally in an experimental manner in response to users’ needs
and to pragmatic implementation considerations. Lisp’s informal evolu-
tion has continued through the years, and the community of Lisp users
has traditionally resisted attempts to promulgate any “official” definition
of the language. This evolution, together with the flexibility and elegance
of the initial conception, has enabled Lisp, which is the second oldest
language in widespread use today (only Fortran is older), to continually
adapt to encompass the most modern ideas about program design. Thus,
Lisp is by now a family of dialects, which, while sharing most of the
original features, may differ from one another in significant ways. The
dialect of Lisp used in this book is called Scheme.?

Because of its experimental character and its emphasis on symbol ma-
nipulation, Lisp was at first very inefficient for numerical computations,
at least in comparison with Fortran. Over the years, however, Lisp com-
pilers have been developed that translate programs into machine code
that can perform numerical computations reasonably efficiently. And for
special applications, Lisp has been used with great effectiveness.” Al-
though Lisp has not yet overcome its old reputation as hopelessly ineffi-
cient, Lisp 1s now used in many applications where efficiency is not the
central concern. For example, Lisp has become a language of choice for
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30ne such special application was a breakthrough computation of scientific importance—
an integration of the motion of the Solar System that extended previous results by nearly
two orders of magnitude, and demonstrated that the dynamics of the Solar System is
chaotic. This computation was made possible by new integration algorithms, a special-
purpose compiler, and a special-purpose computer all implemented with the aid of soft-
ware tools written in Lisp (Abelson et al. 1992; Sussman and Wisdom 1992).
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operating-system shell languages and for extension languages for editors
and computer-aided design systems.

If Lisp 1s not a mainstream language, why are we using it as the
framework for our discussion of programming? Because the language
possesses unique features that make it an excellent medium for studying
important programming constructs and data structures and for relating
them to the linguistic features that support them. The most significant of
these features is the fact that Lisp descriptions of processes, called pro-
cedures, can themselves be represented and manipulated as Lisp data.
The importance of this is that there are powerful program-design tech-
niques that rely on the ability to blur the traditional distinction between
“passive’” data and “active” processes. As we shall discover, Lisp’s flexi-
bility in handling procedures as data makes it one of the most convenient
languages in existence for exploring these techniques. The ability to
represent procedures as data also makes Lisp an excellent language for
writing programs that must manipulate other programs as data, such as
the interpreters and compilers that support computer languages. Above
and beyond these considerations, programming in Lisp is great fun.

1.1 The Elements of Programming

A powerful programming language is more than just a means for in-
structing a computer to perform tasks. The language also serves as a
framework within which we organize our ideas about processes. Thus,
when we describe a language, we should pay particular attention to the
means that the language provides for combining simple ideas to form
more complex ideas. Every powerful language has three mechanisms for
accomplishing this:

e primitive expressions, which represent the simplest entities the lan-
guage 1s concerned with,

e means of combination, by which compound elements are built from
simpler ones, and

e means of abstraction, by which compound elements can be named
and manipulated as units.

In programming, we deal with two kinds of elements: procedures and
data. (Later we will discover that they are really not so distinct.) In-
formally, data is “stuff”’ that we want to manipulate, and procedures are
descriptions of the rules for manipulating the data. Thus, any power-
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ful programming language should be able to describe primitive data and
primitive procedures and should have methods for combining and ab-
stracting procedures and data.

In this chapter we will deal only with simple numerical data so that
we can focus on the rules for building procedures.* In later chapters we
will see that these same rules allow us to build procedures to manipulate
compound data as well.

1.1.1 Expressions

One easy way to get started at programming is to examine some typical
interactions with an interpreter for the Scheme dialect of Lisp. Imagine
that you are sitting at a computer terminal. You type an expression, and
the interpreter responds by displaying the result of its evaluating that
expression.

One kind of primitive expression you might type is a number. (More
precisely, the expression that you type consists of the numerals that rep-
resent the number in base 10.) If you present Lisp with a number

486

the interpreter will respond by printing®

486

Expressions representing numbers may be combined with an expres-
sion representing a primitive procedure (such as + or *) to form a com-

“The characterization of numbers as “simple data” is a barefaced bluff. In fact, the treat-
ment of numbers is one of the trickiest and most confusing aspects of any programming
language. Some typical issues involved are these: Some computer systems distinguish in-
tegers, such as 2, from real numbers, such as 2.71. Is the real number 2.00 different from
the integer 27 Are the arithmetic operations used for integers the same as the operations
used for real numbers? Does 6 divided by 2 produce 3, or 3.07 How large a number can we
represent? How many decimal places of accuracy can we represent? Is the range of inte-
gers the same as the range of real numbers? Above and beyond these questions, of course,
lies a collection of issues concerning roundoff and truncation errors—the entire science of
numerical analysis. Since our focus in this book is on large-scale program design rather
than on numerical techniques, we are going to ignore these problems. The numerical ex-
amples in this chapter will exhibit the usual roundoff behavior that one observes when
using arithmetic operations that preserve a limited number of decimal places of accuracy
in noninteger operations.

‘Throughout this book, when we wish to emphasize the distinction between the input typed
by the user and the response printed by the interpreter, we will show the latter in slanted
characters.
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pound expression that represents the application of the procedure to those
numbers. For example:

(+ 137 349)
486

(- 1000 334)
666

(*» 5 99)
495

(/ 10 5)
2

(+ 2.7 10)
12.7

Expressions such as these, formed by delimiting a list of expressions
within parentheses in order to denote procedure application, are called
combinations. The leftmost element in the list i1s called the operator,
and the other elements are called operands. The value of a combination
is obtained by applying the procedure specified by the operator to the
arguments that are the values of the operands.

The convention of placing the operator to the left of the operands is
known as prefix notation, and it may be somewhat confusing at first be-
cause it departs significantly from the customary mathematical conven-
tion. Prefix notation has several advantages, however. One of them is
that it can accommodate procedures that may take an arbitrary number
of arguments, as in the following examples:

(+ 21 35 12 7)
75

(* 25 4 12)
1200

No ambiguity can arise, because the operator 1s always the leftmost ele-
ment and the entire combination is delimited by the parentheses.

A second advantage of prefix notation is that it extends in a straight-
forward way to allow combinations to be nested, that is, to have combi-
nations whose elements are themselves combinations:

(+ (* 35) (- 10 6))
19
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There is no limit (in principle) to the depth of such nesting and to
the overall complexity of the expressions that the Lisp interpreter can

evaluate. It is we humans who get confused by still relatively simple
expressions such as

(+ (3 (+ (x24) (+385))) (+ (-107) 86))

which the interpreter would readily evaluate to be 57. We can help our-
selves by writing such an expression in the form

(+ (= 3
(+ (» 2 4)
(+ 3 5)))
(+ (- 107)
6))

following a formatting convention known as pretty-printing, in which
each long combination is written so that the operands are aligned ver-
tically. The resulting indentations display clearly the structure of the
expression.®

Even with complex expressions, the interpreter always operates in the
same basic cycle: It reads an expression from the terminal, evaluates
the expression, and prints the result. This mode of operation is often
expressed by saying that the interpreter runs in a read-eval-print loop.
Observe in particular that it is not necessary to explicitly instruct the
interpreter to print the value of the expression.’

1.1.2 Naming and the Environment

A critical aspect of a programming language is the means it provides for
using names to refer to computational objects. We say that the name
identifies a variable whose value is the object.

In the Scheme dialect of Lisp, we name things with define. Typing

(define size 2)

SLisp systems typically provide features to aid the user in formatting expressions. Two
especially useful features are one that automatically indents to the proper pretty-print po-
sition whenever a new line is started and one that highlights the matching left parenthesis
whenever a right parenthesis is typed.

"Lisp obeys the convention that every expression has a value. This convention, together
with the old reputation of Lisp as an inefficient language, is the source of the quip by Alan
Perlis (paraphrasing Oscar Wilde) that “Lisp programmers know the value of everything
but the cost of nothing.”
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390

26 15

Figure 1.1 Tree representation, showing the value of each subcombination.

either operators or numbers. Viewing evaluation in terms of the tree, we
can imagine that the values of the operands percolate upward, starting
from the terminal nodes and then combining at higher and higher levels.
In general, we shall see that recursion is a very powerful technique for
dealing with hierarchical, treelike objects. In fact, the “percolate values
upward” form of the evaluation rule is an example of a general kind of
process known as tree accumulation.

Next, observe that the repeated application of the first step brings us
to the point where we need to evaluate, not combinations, but primitive
expressions such as numerals, built-in operators, or other names. We
take care of the primitive cases by stipulating that

e the values of numerals are the numbers that they name,

e the values of built-in operators are the machine instruction sequences
that carry out the corresponding operations, and

e the values of other names are the objects associated with those names
in the environment.

We may regard the second rule as a special case of the third one by stip-
ulating that symbols such as + and * are also included in the global envi-
ronment, and are associated with the sequences of machine instructions
that are their “values.” The key point to notice is the role of the environ-
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ment in determining the meaning of the symbols in expressions. In an
interactive language such as Lisp, it is meaningless to speak of the value
of an expression such as (+ x 1) without specifying any information
about the environment that would provide a meaning for the symbol x
(or even for the symbol +). As we shall see in chapter 3, the general
notion of the environment as providing a context in which evaluation
takes place will play an important role in our understanding of program
execution.

Notice that the evaluation rule given above does not handle definitions.
For instance, evaluating (define x 3) does not apply define to two
arguments, one of which is the value of the symbol x and the other of
which is 3, since the purpose of the define is precisely to associate x
with a value. (That is, (define x 3) is not a combination.)

Such exceptions to the general evaluation rule are called special forms.
Define is the only example of a special form that we have seen so far,
but we will meet others shortly. Each special form has its own evaluation
rule. The various kinds of expressions (each with its associated evalua-
tion rule) constitute the syntax of the programming language. In com-
parison with most other programming languages, Lisp has a very simple
syntax; that is, the evaluation rule for expressions can be described by a
simple general rule together with specialized rules for a small number of
special forms. '’

1.1.4 Compound Procedures

We have identified in Lisp some of the elements that must appear in any
powerful programming language:

e Numbers and arithmetic operations are primitive data and procedures.
e Nesting of combinations provides a means of combining operations.

e Definitions that associate names with values provide a limited means
of abstraction.

'ISpecial syntactic forms that are simply convenient alternative surface structures for
things that can be written in more uniform ways are sometimes called syntactic sugar,
1o use a phrase coined by Peter Landin. In comparison with users of other languages, Lisp
programmers, as a rule, are less concerned with matters of syntax. (By contrast, examine
any Pascal manual and notice how much of it is devoted to descriptions of syntax.) This
disdain for syntax is due partly to the flexibility of Lisp, which makes it easy to change
surface syntax, and partly to the observation that many “convenient” syntactic constructs,
which make the language less uniform, end up causing more trouble than they are worth
when programs become large and complex. In the words of Alan Perlis, “Syntactic sugar
causes cancer of the semicolon.”
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Now we will learn about procedure definitions, a much more powerful
abstraction technique by which a compound operation can be given a
name and then referred to as a unit.

We begin by examining how to express the idea of “squaring.” We
might say, “To square something, multiply it by itself.” This is expressed
in our language as

(define (square x) (* x x))

We can understand this in the following way:

(define (square x) (* x x))
[ T I
To square something, multiply it by itself.

We have here a compound procedure, which has been given the name
square. The procedure represents the operation of multiplying some-
thing by itself. The thing to be multiplied is given a local name, x, which
plays the same role that a pronoun plays in natural language. Evaluating
the definition creates this compound procedure and associates it with the
name square.'?

The general form of a procedure definition is

(define ((name) (formal parameters)) (body))

The ( name ) is a symbol to be associated with the procedure definition in
the environment.'® The (formal parameters ) are the names used within
the body of the procedure to refer to the corresponding arguments of the
procedure. The (body) is an expression that will yield the value of the
procedure application when the formal parameters are replaced by the
actual arguments to which the procedure is applied.'* The (name) and

'Observe that there are two different operations being combined here: we are creating
the procedure, and we are giving it the name square. It is possible, indeed important, to
be able to separate these two notions—to create procedures without naming them, and to
give names to procedures that have already been created. We will see how to do this in

section 1.3.2.

S Throughout this book, we will describe the general syntax of expressions by using italic
symbols delimited by angle brackets—e.g., ( name )—1to denote the “slots” in the expres-
sion to be filled in when such an expression is actually used.

'“More generally, the body of the procedure can be a sequence of expressions. In this case,
the interpreter evaluates each expression in the sequence in tumn and returns the value of
the final expression as the value of the procedure application.
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the (formal parameters) are grouped within parentheses, just as they
would be in an actual call to the procedure being defined.
Having defined square, we can now use it:

(square 21)
441

(square (+ 2 5))
49

(square (square 3))
81

We can also use square as a building block in defining other proce-
dures. For example, x> + y? can be expressed as

(+ (square x) (square y))

We can easily define a procedure sum-of-squares that, given any two
numbers as arguments, produces the sum of their squares:

(define (sum-of-squares x y)
(+ (square x) (square y)))

(sum-of-squares 3 4)
25

Now we can use sum-of-squares as a building block in constructing
further procedures:

(define (f a)
(sum-of-squares (+ a 1) (* a 2)))

(f 56)
136

Compound procedures are used in exactly the same way as primitive
procedures. Indeed, one could not tell by looking at the definition of
sum-of-squares given above whether square was built into the inter-
preter, like + and *, or defined as a compound procedure.

1.1.5 The Substitution Model for Procedure Application

To evaluate a combination whose operator names a compound proce-
dure, the interpreter follows much the same process as for combinations
whose operators name primitive procedures, which we described in sec-
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tion 1.1.3. That is, the interpreter evaluates the elements of the combina-
tion and applies the procedure (which is the value of the operator of the
combination) to the arguments (which are the values of the operands of
the combination).

We can assume that the mechanism for applying primitive procedures
to arguments is built into the interpreter. For compound procedures, the
application process is as follows:

e To apply a compound procedure to arguments, evaluate the body of
the procedure with each formal parameter replaced by the corresponding

argument.

To illustrate this process, let’s evaluate the combination

(f 5)

where £ is the procedure defined in section 1.1.4. We begin by retrieving
the body of £:

(sum-of-squares (+ a 1) (* a 2))

Then we replace the formal parameter a by the argument 5:

(sum-of-squares (+ 5 1) (* 5 2))

Thus the problem reduces to the evaluation of a combination with two
operands and an operator sum-of-squares. Evaluating this combina-
tion involves three subproblems. We must evaluate the operator to get
the procedure to be applied, and we must evaluate the operands to get
the arguments. Now (+ 5 1) produces 6 and (* 5 2) produces 10,
so we must apply the sum-of-squares procedure to 6 and 10. These
values are substituted for the formal parameters x and y in the body of
sum-of-squares, reducing the expression to

(+ (square 6) (square 10))
If we use the definition of square, this reduces to

(+ (» 6 6) (= 10 10))

which reduces by multiplication to

(+ 36 100)
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Lisp uses applicative-order evaluation, partly because of the additional
efficiency obtained from avoiding multiple evaluations of expressions
such as those illustrated with (+ 5 1) and (* 5 2) above and, more
significantly, because normal-order evaluation becomes much more com-
plicated to deal with when we leave the realm of procedures that can be
modeled by substitution. On the other hand, normal-order evaluation
can be an extremely valuable tool, and we will investigate some of its
implications in chapters 3 and 4.'°

1.1.6 Conditional Expressions and Predicates

The expressive power of the class of procedures that we can define at
this point is very limited, because we have no way to make tests and
to perform different operations depending on the result of a test. For
instance, we cannot define a procedure that computes the absolute value
of a number by testing whether the number is positive, negative, or zero
and taking different actions in the different cases according to the rule

x ifx>0
x| = 0 ifx=0
—x ifx <0

This construct is called a case analysis, and there is a special form in
Lisp for notating such a case analysis. It is called cond (which stands for
“conditional™), and it is used as follows:

(define (abs x)
(cond ((> x 0) x)
((=x 0) 0)
((<x0) (- x))))

The general form of a conditional expression is

(cond ((p1) (e1))
((p2) (e2))

Upn) (en)))

'®In chapter 3 we will introduce stream processing, which is a way of handling apparently
“infinite” data structures by incorporating a limited form of normal-order evaluation. In
section 4.2 we will modify the Scheme interpreter to produce a normal-order variant of
Scheme.
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consisting of the symbol cond followed by parenthesized pairs of ex-
pressions ((p) (e)) called clauses. The first expression in each pair is
a predicate—that is, an expression whose value is interpreted as either
true or false.'’

Conditional expressions are evaluated as follows. The predicate (p, )
is evaluated first. If its value is false, then (p, ) is evaluated. If (p;)’s
value is also false, then (p3 ) is evaluated. This process continues until
a predicate is found whose value is true, in which case the interpreter
returns the value of the corresponding consequent expression (e ) of the
clause as the value of the conditional expression. If none of the (p)’s is
found to be true, the value of the cond is undefined.

The word predicate is used for procedures that return true or false,
as well as for expressions that evaluate to true or false. The absolute-
value procedure abs makes use of the primitive predicates >, <, and =.'8
These take two numbers as arguments and test whether the first number
is, respectively, greater than, less than, or equal to the second number,
returning true or false accordingly.

Another way to write the absolute-value procedure 1s

(define (abs x)
(cond ((< x 0) (- x))
(else x)))

which could be expressed in English as “If x is less than zero return —x;
otherwise return x.” Else is a special symbol that can be used in place of
the (p) in the final clause of a cond. This causes the cond to return as its
value the value of the corresponding (e ) whenever all previous clauses
have been bypassed. In fact, any expression that always evaluates to a
true value could be used as the ( p ) here.

Here is yet another way to write the absolute-value procedure:

(define (abs x)
(if (< x 0)
(- x)
x))

"“Interpreted as either true or false” means this: In Scheme, there are two distinguished
values that are denoted by the constants #t and #f. When the interpreter checks a predi-
cate’s value, it interprets #f as false. Any other value is treated as true. (Thus, providing
#t is logically unnecessary, but it 1s convenient.) In this book we will use names true and
false, which are associated with the values #t and #f respectively.

'®Abs also uses the “minus” operator -, which, when used with a single operand, as in
(- x), indicates negation.
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This uses the special form if, a restricted type of conditional that can be

used when there are precisely two cases in the case analysis. The general
form of an if expression is

(if (predicate) (consequent) (alternative))

To evaluate an if expression, the interpreter starts by evaluating the
(predicate ) part of the expression. If the (predicate) evaluates to a
true value, the interpreter then evaluates the (consequent) and returns
its value. Otherwise it evaluates the ( alternative ) and returns its value.'?

In addition to primitive predicates such as <, =, and >, there are logical
composition operations, which enable us to construct compound predi-
cates. The three most frequently used are these:

e (and (ey) ... (e,))

The interpreter evaluates the expressions (e ) one at a time, in left-to-
right order. If any ( e ) evaluates to false, the value of the and expression
1s false, and the rest of the (e)’s are not evaluated. If all (e)’s evaluate
to true values, the value of the and expression is the value of the last one.

e (or (ey) ... (en))

The interpreter evaluates the expressions (e ) one at a time, in left-to-
right order. If any (e ) evaluates to a true value, that value is returned as
the value of the or expression, and the rest of the (e )’s are not evaluated.
If all (e)’s evaluate to false, the value of the or expression is false.

e (not (e))

The value of a not expression is true when the expression (e ) evaluates
to false, and false otherwise.

Notice that and and or are special forms, not procedures, because the
subexpressions are not necessarily all evaluated. Not is an ordinary pro-
cedure.

As an example of how these are used, the condition that a number x
be in the range 5 < x < 10 may be expressed as

(and (> x 6) (< x 10))

' A minor difference between if and cond is that the {e) part of each cond clause may
be a sequence of expressions. If the corresponding ( p ) is found to be true, the expressions
(e) are evaluated in sequence and the value of the final expression in the sequence is
returned as the value of the cond. In an if expression, however, the ( consequent ) and
( alternative ) must be single expressions.
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As another example, we can define a predicate to test whether one num-
ber is greater than or equal to another as

(define (>= x y)
(or O xy) (=x¥y)))

or alternatively as

(define (>= x y)
(not (< x y)))

Exercise 1.1

Below is a sequence of expressions. What is the result printed by the interpreter
In response to each expression? Assume that the sequence is to be evaluated in
the order in which it is presented.

10

(+ 53 4)

(-9 1)

(/ 6 2)

(+ (» 2 4) (- 46))

(define a 3)

(define b (+ a 1))

(+ab (* ab))

(= a b)

(if (and (> b a) (< b (* a b)))
R

(cond ((= a 4) 6)

((=b4) (+67 a))
(else 25))

(+ 2 (if > b a) b a))

(¢« (cond ((> a b) a)
((< a b) b)
(else -1))
(+ a 1))
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Exercise 1.2
Translate the following expression into prefix form

5+4+(2-(3-6+19))
3(6-2)2~-7)

Exercise 1.3

Define a procedure that takes three numbers as arguments and returns the sum
of the squares of the two larger numbers.

Exercise 1.4

Observe that our model of evaluation allows for combinations whose operators
are compound expressions. Use this observation to describe the behavior of the
following procedure:

(define (a-plus-abs-b a b)
(1f > b0) +-) ab))

Exercise 1.5

Ben Bitdiddle has invented a test to determine whether the interpreter he is faced
with is using applicative-order evaluation or normal-order evaluation. He defines
the following two procedures:

(define (p) (p))

(define (test x y)
(if (= x 0)
0

y))
Then he evaluates the expression
(test 0 (p))

What behavior will Ben observe with an interpreter that uses applicative-order
evaluation? What behavior will he observe with an interpreter that uses normal-
order evaluation? Explain your answer. (Assume that the evaluation rule for the
special form if is the same whether the interpreter is using normal or applica-
tive order: The predicate expression is evaluated first, and the result determines
whether to evaluate the consequent or the alternative expression.)

1.1.7 Example: Square Roots by Newton’s Method

Procedures, as introduced above, are much like ordinary mathematical
functions. They specify a value that is determined by one or more pa-
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We also have to say what we mean by “good enough.” The following will
do for illustration, but it is not really a very good test. (See exercise 1.7.)
The idea is to improve the answer until it i1s close enough so that its
square differs from the radicand by less than a predetermined tolerance
(here 0.001):%2

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

Finally, we need a way to get started. For instance, we can always guess
that the square root of any number is 1:%

(define (sqrt x)
(sqrt-iter 1.0 x))

If we type these definitions to the interpreter, we can use sqrt just as we
can use any procedure:

(sqrt 9)
3.00009155413138

(sqrt (+ 100 37))
11.704699917758145

(sqrt (+ (sqrt 2) (sqrt 3)))
1.7739279023207892

(square (sqrt 1000))
1000.000369924366

The sqrt program also illustrates that the simple procedural language
we have introduced so far is sufficient for writing any purely numerical
program that one could write in, say, C or Pascal. This might seem sur-

#2We will usually give predicates names ending with question marks, to help us remember
that they are predicates. This is just a stylistic convention. As far as the interpreter is
concerned, the question mark is just an ordinary character.
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prising, since we have not included in our language any iterative (loop-
Ing) constructs that direct the computer to do something over and over
again. Sqrt-iter, on the other hand, demonstrates how iteration can be
accomplished using no special construct other than the ordinary ability
to call a procedure.*

Exercise 1.6

Alyssa P. Hacker doesn’t see why if needs to be provided as a special form.
“Why can’t | just define it as an ordinary procedure in terms of cond?” she asks.
Alyssa’s friend Eva Lu Ator claims this can indeed be done, and she defines a
new version of if:

(define (new-if predicate then-clause else-clause)
(cond (predicate then-clause)
(else else-clause)))

Eva demonstrates the program for Alyssa:

(new-if (= 2 3) 0 5)
5

(new-if (= 1 1) 0 5)
0

Delighted, Alyssa uses new-if to rewrite the square-root program:

(define (sqrt-iter guess x)
(new-if (good-enough? guess x)

guess
(sqrt-iter (improve guess x)

x)))

What happens when Alyssa attempts to use this to compute square roots? Ex-
plain.

Exercise 1.7

The good-enough? test used in computing square roots will not be very effec-
tive for finding the square roots of very small numbers. Also, in real computers,
arithmetic operations are almost always performed with limited precision. This
makes our test inadequate for very large numbers. Explain these statements, with
examples showing how the test fails for small and large numbers. An alternative
strategy for implementing good-enough? is to watch how guess changes from
one iteration to the next and to stop when the change is a very small fraction of
the guess. Design a square-root procedure that uses this kind of end test. Does
this work better for small and large numbers?

**Readers who are worried about the efficiency issues involved in using procedure calls to
implement iteration should note the remarks on “tail recursion” in section 1.2.1.
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Exercise 1.8

Newton’s method for cube roots is based on the fact that if y is an approximation
to the cube root of x, then a better approximation is given by the value

x/y* + 2y
3
Use this formula to implement a cube-root procedure analogous to the square-

root procedure. (In section 1.3.4 we will see how to implement Newton’s method
in general as an abstraction of these square-root and cube-root procedures.)

1.1.8 Procedures as Black-Box Abstractions

Sqrt is our first example of a process defined by a set of mutually defined
procedures. Notice that the definition of sqrt-iter is recursive; that
is, the procedure is defined in terms of itself. The idea of being able
to define a procedure in terms of itself may be disturbing; it may seem
unclear how such a “circular” definition could make sense at all, much
less specify a well-defined process to be carried out by a computer. This
will be addressed more carefully in section 1.2. But first let’s consider
some other important points illustrated by the sqrt example.

Observe that the problem of computing square roots breaks up natu-
rally into a number of subproblems: how to tell whether a guess is good
enough, how to improve a guess, and so on. Each of these tasks is ac-
complished by a separate procedure. The entire sqrt program can be
viewed as a cluster of procedures (shown in figure 1.2) that mirrors the
decomposition of the problem into subproblems.

The importance of this decomposition strategy is not simply that one
1s dividing the program into parts. After all, we could take any large
program and divide it into parts—the first ten lines, the next ten lines,
the next ten lines, and so on. Rather, it is crucial that each procedure
accomplishes an identifiable task that can be used as a module in defin-
ing other procedures. For example, when we define the good-enough?
procedure in terms of square, we are able to regard the square proce-
dure as a “black box.” We are not at that moment concerned with how
the procedure computes its result, only with the fact that it computes the
square. The details of how the square is computed can be suppressed,
to be considered at a later time. Indeed, as far as the good-enough?
procedure is concerned, square is not quite a procedure but rather an
abstraction of a procedure, a so-called procedural abstraction. At this

level of abstraction, any procedure that computes the square is equally
good.
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Figure 1.2 Procedural decomposition of the sqrt program.

Thus, considering only the values they return, the following two pro-
cedures for squaring a number should be indistinguishable. Each takes

a numerical argument and produces the square of that number as the
value.?

(define (square x) (* x x))

(define (square x)
(exp (double (log x))))

(define (double x) (+ x x))

So a procedure definition should be able to suppress detail. The users
of the procedure may not have written the procedure themselves, but may
have obtained it from another programmer as a black box. A user should
not need to know how the procedure is implemented in order to use it.

Local names

One detail of a procedure’s implementation that should not matter to
the user of the procedure is the implementer’s choice of names for the

51t is not even clear which of these procedures is a more efficient implementation. This
depends upon the hardware available. There are machines for which the “obvious” im-
plementation is the less efficient one. Consider a machine that has extensive tables of
logarithms and antilogarithms stored in a very efficient manner.
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procedure’s formal parameters. Thus, the following procedures should
not be distinguishable:

(define (square x) (* x x))
(define (square y) (* y y))

This principle—that the meaning of a procedure should be independent
of the parameter names used by its author—seems on the surface to be
self-evident, but its consequences are profound. The simplest conse-
quence is that the parameter names of a procedure must be local to the
body of the procedure. For example, we used square in the definition of
good-enough? in our square-root procedure:

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

The intention of the author of good-enough? is to determine if the square
of the first argument is within a given tolerance of the second argument.
We see that the author of good-enough? used the name guess to refer to
the first argument and x to refer to the second argument. The argument
of square is guess. If the author of square used x (as above) to refer to
that argument, we see that the x in good-enough? must be a different x
than the one in square. Running the procedure square must not affect
the value of x that is used by good-enough?, because that value of x may
be needed by good-enough? after square is done computing.

If the parameters were not local to the bodies of their respective pro-
cedures, then the parameter x in square could be confused with the pa-
rameter x in good-enough?, and the behavior of good-enough? would
depend upon which version of square we used. Thus, square would
not be the black box we desired.

A formal parameter of a procedure has a very special role in the proce-
dure definition, in that it doesn’t matter what name the formal parameter
has. Such a name is called a bound variable, and we say that the pro-
cedure definition binds its formal parameters. The meaning of a proce-
dure definition is unchanged if a bound variable is consistently renamed
throughout the definition.?® If a variable is not bound, we say that it is
free. The set of expressions for which a binding defines a name is called
the scope of that name. In a procedure definition, the bound variables

e — m— v O E I —— R a e —————————_ T T =—m —

**The concept of consistent renaming is actually subtle and difficult to define formally.
Famous logicians have made embarrassing errors here.
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We will use block structure extensively to help us break up large pro-
grams into tractable pieces.”® The idea of block structure originated with
the programming language Algol 60. It appears in most advanced pro-
gramming languages and is an important tool for helping to organize the
construction of large programs.

1.2 Procedures and the Processes They Generate

We have now considered the elements of programming: We have used
primitive arithmetic operations, we have combined these operations, and
we have abstracted these composite operations by defining them as com-
pound procedures. But that is not enough to enable us to say that we
know how to program. Our situation is analogous to that of someone who
has learned the rules for how the pieces move in chess but knows nothing
of typical openings, tactics, or strategy. Like the novice chess player, we
don’t yet know the common patterns of usage in the domain. We lack
the knowledge of which moves are worth making (which procedures are
worth defining). We lack the experience to predict the consequences of
making a move (executing a procedure).

The ability to visualize the consequences of the actions under consid-
eration 1s crucial to becoming an expert programmer, just as it is in any
synthetic, creative activity. In becoming an expert photographer, for ex-
ample, one must learn how to look at a scene and know how dark each
region will appear on a print for each possible choice of exposure and
development conditions. Only then can one reason backward, planning
framing, lighting, exposure, and development to obtain the desired ef-
fects. So it is with programming, where we are planning the course of
action to be taken by a process and where we control the process by
means of a program. To become experts, we must learn to visualize the
processes generated by various types of procedures. Only after we have
developed such a skill can we learn to reliably construct programs that
exhibit the desired behavior.

A procedure is a pattern for the local evolution of a computational pro-
cess. It specifies how each stage of the process is built upon the previous
stage. We would like to be able to make statements about the overall, or
global, behavior of a process whose local evolution has been specified
by a procedure. This is very difficult to do in general, but we can at least
try to describe some typical patterns of process evolution.

“Embedded definitions must come first in a procedure body. The management is not
responsible for the consequences of running programs that intertwine definition and use.
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(factorial 6)
(* 6 (factorial 5))
(* (* 5 (factorial 4)))
(* (* 5 (* 4 (factorial 3))))
(* (* 5 (* (* 3 (factorial 2)))))
5
5
5

4

(® (¢ (* 4 (* 3 (* 2 (factorial 1))))))
(* (* (* 4 (*3 (*2 1)))))

(¢ (* 4 (* 3 2))))
(* 4 6)))
(* )

(* 6 120)
720

Figure 1.3 A linear recursive process for computing 6!.

In this section we will examine some common “‘shapes™ for processes
generated by simple procedures. We will also investigate the rates at
which these processes consume the important computational resources of
time and space. The procedures we will consider are very simple. Their
role is like that played by test patterns in photography: as oversimplified
prototypical patterns, rather than practical examples in their own right.

1.2.1 Linear Recursion and Iteration

We begin by considering the factorial function, defined by
n'=n-n-1)-n-2)---3-2-1

There are many ways to compute factorials. One way 1s to make use
of the observation that n! 1s equal to n times (n — 1)! for any positive
integer n:

n'=n-[n-1)-n-2)---3-2:-1J=n-(n-1)!

Thus, we can compute n! by computing (n — 1)! and multiplying the
result by n. If we add the stipulation that 1! is equal to 1, this observation
translates directly into a procedure:

(define (factorial n)
(if (=n 1)
1
(* n (factorial (- n 1)))))
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(factorial 6)
(fact-iter 1
(fact-iter 1
(fact-iter 2
(fact-iter 6
(fact-iter 24
(fact-iter 120
(fact-iter 720
720

Figure 1.4 A linear iterative process for computing 6!.

We can use the substitution model of section 1.1.5 to watch this proce-
dure in action computing 6!, as shown in figure 1.3.

Now let’s take a different perspective on computing factorials. We
could describe a rule for computing n! by specifying that we first multi-
ply 1 by 2, then multiply the result by 3, then by 4, and so on until we
reach n. More formally, we maintain a running product, together with a
counter that counts from 1 up to n. We can describe the computation by
saying that the counter and the product simultaneously change from one
step to the next according to the rule

product < counter - product
counter < counter + |

and stipulating that n! is the value of the product when the counter ex-
ceeds n.

Once again, we can recast our description as a procedure for comput-
ing factorials:*’

In a real program we would probably use the block structure introduced in the last section
to hide the definition of fact-iter:

(define (factorial n)
(define (iter product counter)
(if (> counter n)
product
(iter (* counter product)
(+ counter 1))))
(iter 1 1))

We avoided doing this here so as to minimize the number of things to think about at once.
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(define (factorial n)
(fact-iter 1 1 n))

(define (fact-iter product counter max-count)
(if (> counter max-count)
product
(fact-iter (* counter product)
(+ counter 1)
max-count)))

As before, we can use the substitution model to visualize the process of
computing 6!, as shown in figure 1.4.

Compare the two processes. From one point of view, they seem hardly
different at all. Both compute the same mathematical function on the
same domain, and each requires a number of steps proportional to n to
compute n!. Indeed, both processes even carry out the same sequence of
multiplications, obtaining the same sequence of partial products. On the
other hand, when we consider the “shapes” of the two processes, we find
that they evolve quite differently.

Consider the first process. The substitution model reveals a shape of
expansion followed by contraction, indicated by the arrow in figure 1.3.
The expansion occurs as the process builds up a chain of deferred oper-
ations (in this case, a chain of multiplications). The contraction occurs
as the operations are actually performed. This type of process, charac-
terized by a chain of deferred operations, is called a recursive process.
Carrying out this process requires that the interpreter keep track of the
operations to be performed later on. In the computation of n!, the length
of the chain of deferred multiplications, and hence the amount of infor-
mation needed to keep track of it, grows linearly with n (is proportional
to n), just like the number of steps. Such a process is called a linear
reCUrsive process.

By contrast, the second process does not grow and shrink. At each
step, all we need to keep track of, for any n, are the current values of the
variables product, counter, and max-count. We call this an iterative
process. In general, an iterative process is one whose state can be sum-
marized by a fixed number of stare variables, together with a fixed rule
that describes how the state variables should be updated as the process
moves from state to state and an (optional) end test that specifies con-
ditions under which the process should terminate. In computing n!, the
number of steps required grows linearly with n. Such a process is called
a linear iterative process.
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The contrast between the two processes can be seen in another way. In
the iterative case, the program variables provide a complete description
of the state of the process at any point. If we stopped the computation
between steps, all we would need to do to resume the computation is
to supply the interpreter with the values of the three program variables.
Not so with the recursive process. In this case there is some additional
“hidden” information, maintained by the interpreter and not contained in
the program variables, which indicates “where the process 1s” in nego-
tiating the chain of deferred operations. The longer the chain, the more
information must be maintained.”’

In contrasting iteration and recursion, we must be careful not to con-
fuse the notion of a recursive process with the notion of a recursive pro-
cedure. When we describe a procedure as recursive, we are referring to
the syntactic fact that the procedure definition refers (either directly or
indirectly) to the procedure itself. But when we describe a process as
following a pattern that is, say, linearly recursive, we are speaking about
how the process evolves, not about the syntax of how a procedure is writ-
ten. It may seem disturbing that we refer to a recursive procedure such
as fact-iter as generating an iterative process. However, the process
really is iterative: Its state is captured completely by its three state vari-
ables, and an interpreter need keep track of only three variables in order
to execute the process.

One reason that the distinction between process and procedure may be
confusing is that most implementations of common languages (including
Ada, Pascal, and C) are designed in such a way that the interpretation of
any recursive procedure consumes an amount of memory that grows with
the number of procedure calls, even when the process described is, in
principle, iterative. As a consequence, these languages can describe iter-
ative processes only by resorting to special-purpose “looping constructs”
such as do, repeat, until, for, and while. The implementation of
Scheme we shall consider in chapter 5 does not share this defect. It will
execute an iterative process in constant space, even if the iterative pro-
cess is described by a recursive procedure. An implementation with this
property is called rail-recursive. With a tail-recursive implementation,

When we discuss the implementation of procedures on register machines in chapter 5,
we will see that any iterative process can be realized “in hardware” as a machine that has
a fixed set of registers and no auxiliary memory. In contrast, realizing a recursive process
requires a machine that uses an auxiliary data structure known as a stack.
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Figure 1.5 The tree-recursive process generated in computing (fib 5).

redundant computation. Notice in figure 1.5 that the entire computation
of (fib 3)—almost half the work—is duplicated. In fact, it is not hard
to show that the number of times the procedure will compute (fib 1) or
(fib 0) (the number of leaves in the above tree, in general) is precisely
Fib(n 4 1). To get an idea of how bad this is, one can show that the value

of Fib(n) grows exponentially with n. More precisely (see exercise 1.13),
Fib(n) is the closest integer to ¢" /+/5, where

¢ =(14++5)/2~1.6180
1s the golden ratio, which satisfies the equation
' =¢+1

Thus, the process uses a number of steps that grows exponentially with
the input. On the other hand, the space required grows only linearly with
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the input, because we need keep track only of which nodes are above
us in the tree at any point in the computation. In general, the number
of steps required by a tree-recursive process will be proportional to the
number of nodes in the tree, while the space required will be proportional
to the maximum depth of the tree.

We can also formulate an iterative process for computing the Fibo-
nacci numbers. The idea is to use a pair of integers a and b, initialized
to Fib(1) = 1 and Fib(0) = 0, and to repeatedly apply the simultaneous
transformations

a<«~—a+b
b « a

It 1s not hard to show that, after applying this transformation n times, a
and b will be equal, respectively, to Fib(n + 1) and Fib(n). Thus, we can
compute Fibonacci numbers iteratively using the procedure

(define (fib n)
(fib-iter 1 0 n))

(define (fib-iter a b count)
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1))))

This second method for computing Fib(n) is a linear iteration. The dif-
ference in number of steps required by the two methods—one linear in n,
one growing as fast as Fib(n) itself—is enormous, even for small inputs.

One should not conclude from this that tree-recursive processes are
useless. When we consider processes that operate on hierarchically struc-
tured data rather than numbers, we will find that tree recursion is a natu-
ral and powerful tool.”? But even in numerical operations, tree-recursive
processes can be useful in helping us to understand and design programs.
For instance, although the first £ib procedure is much less efficient than
the second one, it is more straightforward, being little more than a trans-
lation into Lisp of the definition of the Fibonacci sequence. To formulate
the iterative algorithm required noticing that the computation could be
recast as an iteration with three state variables.

e e S S — = —_—r —m s —— ——  r——— T

32 An example of this was hinted at in section 1.1.3: The interpreter itself evaluates expres-
sions using a tree-recursive process.
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Example: Counting change
It takes only a bit of cleverness to come up with the iterative Fibonacci
algorithm. In contrast, consider the following problem: How many dif-
ferent ways can we make change of $1.00, given half-dollars, quarters,
dimes, nickels, and pennies? More generally, can we write a procedure
to compute the number of ways to change any given amount of money?
This problem has a simple solution as a recursive procedure. Suppose
we think of the types of coins available as arranged in some order. Then
the following relation holds:

The number of ways to change amount a using n kinds of coins equals

e the number of ways to change amount a using all but the first kind of
coin, plus

¢ the number of ways to change amount a — d using all n kinds of coins,
where d is the denomination of the first kind of coin.

To see why this is true, observe that the ways to make change can be
divided into two groups: those that do not use any of the first kind of coin,
and those that do. Therefore, the total number of ways to make change
for some amount is equal to the number of ways to make change for the
amount without using any of the first kind of coin, plus the number of
ways to make change assuming that we do use the first kind of coin. But
the latter number is equal to the number of ways to make change for the
amount that remains after using a coin of the first kind.

Thus, we can recursively reduce the problem of changing a given
amount to the problem of changing smaller amounts using fewer kinds
of coins. Consider this reduction rule carefully, and convince yourself
that we can use it to describe an algorithm if we specify the following
degenerate cases:*’

e If a is exactly O, we should count that as 1 way to make change.
e If a is less than 0, we should count that as 0 ways to make change.

e If n 1s 0, we should count that as 0 ways to make change.

We can easily translate this description into a recursive procedure:

(define (count-change amount)
(cc amount 5))

3For example, work through in detail how the reduction rule applies to the problem of
making change for 10 cents using pennies and nickels.
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(define (cc amount kinds-of-coins)
(cond ((= amount 0) 1)

((or (< amount 0) (= kinds-of-coins 0)) 0)

(else (+ (cc amount
(- kinds-of-coins 1))

(cc (- amount
(first-denomination kinds-of-coins))

kinds-of-coins)))))

(define (first-denomination kinds-of-coins)
(cond ((= kinds-of-coins 1) 1)
((= kinds-of-coins 2) §5)
((= kinds-of-coins 3) 10)
((= kinds-of-coins 4) 25)
((= kinds-of-coins 5) 50)))

(The first-denomination procedure takes as input the number of
kinds of coins available and returns the denomination of the first kind.
Here we are thinking of the coins as arranged-in order from largest to
smallest, but any order would do as well.) We can now answer our orig-
inal question about changing a dollar:

(count-change 100)
292

Count-change generates a tree-recursive process with redundancies
similar to those in our first implementation of £ib. (It will take quite a
while for that 292 to be computed.) On the other hand, it is not obvious
how to design a better algorithm for computing the result, and we leave
this problem as a challenge. The observation that a tree-recursive process
may be highly inefficient but often easy to specify and understand has led
people to propose that one could get the best of both worlds by designing
a “smart compiler” that could transform tree-recursive procedures into
more efficient procedures that compute the same result.**

3 One approach to coping with redundant computations is to arrange matters so that we
automatically construct a table of values as they are computed. Each time we are asked to
apply the procedure to some argument, we first look to see if the value is already stored
in the table, in which case we avoid performing the redundant computation. This strategy,
known as tabulation or memoization, can be implemented in a straightforward way. Tab-
ulation can sometimes be used to transform processes that require an exponential number
of steps (such as count-change) into processes whose space and time requirements grow
linearly with the input. See exercise 3.27.
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Exercise 1.11

A function f is defined by the rule that f(n) = nifn < 3 and f(n) =
fn=1)+2f(n-2)43f(n—-3)if n > 3. Write a procedure that com-
putes f by means of a recursive process. Write a procedure that computes f by
means of an iterative process.

Exercise 1.12
The following pattern of numbers is called Pascal’s triangle.

1 3 3 1
1 4 6 4 1

The numbers at the edge of the triangle are all 1, and each number inside the tri-
angle is the sum of the two numbers above it.*> Write a procedure that computes
elements of Pascal’s triangle by means of a recursive process.

Exercise 1.13

Prove that Fib(n) is the closest integer to ¢" / V5, where ¢ =(1+ \/5) /2. Hint:
Let ¥ = (1 —+/5)/2. Use induction and the definition of the Fibonacci numbers
(see section 1.2.2) to prove that Fib(n) = (¢" — ¥")/ V5.

1.2.3 Orders of Growth

The previous examples illustrate that processes can differ considerably
in the rates at which they consume computational resources. One con-
venient way to describe this difference is to use the notion of order of
growth to obtain a gross measure of the resources required by a process
as the inputs become larger.

Let n be a parameter that measures the size of the problem, and let
R(n) be the amount of resources the process requires for a problem of
size n. In our previous examples we took n to be the number for which
a given function is to be computed, but there are other possibilities. For
instance, if our goal is to compute an approximation to the square root of

33The elements of Pascal’s triangle are called the binomial coefficients, because the nth
row consists of the coefficients of the terms in the expansion of (x + y)". This pattern for
computing the coefficients appeared in Blaise Pascal’s 1653 seminal work on probability
theory, Traité du triangle arithmétique. According to Knuth (1973), the same pattern
appears in the Szu-yuen Yii-chien (*The Precious Mirror of the Four Elements™), published
by the Chinese mathematician Chu Shih-chieh in 1303, in the works of the twelfth-century
Persian poet and mathematician Omar Khayyam, and in the works of the twelfth-century
Hindu mathematician Bhéscara Achdrya.
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This is a linear recursive process, which requires ®(n) steps and ©(n)
space. Just as with factorial, we can readily formulate an equivalent
linear iteration:

(define (expt b n)
(expt-iter b n 1))

(define (expt-iter b counter product)
(if (= counter 0)
product
(expt-iter b
(- counter 1)
(* b product))))

This version requires ®(n) steps and ©(1) space.
We can compute exponentials in fewer steps by using successive
squaring. For instance, rather than computing b® as

b-(b-(b-(b-(b-(b-(b-D))))))

we can compute it using three multiplications:

b*=b-b
b* = b* . b?
b® = b*.p*

This method works fine for exponents that are powers of 2. We can
also take advantage of successive squaring in computing exponentials in
general if we use the rule

b = (b"/?)? if n is even
" =b . b if n is odd

We can express this method as a procedure:

(define (fast-expt b n)
(cond ((=n 0) 1)
((even? n) (square (fast-expt b (/ n 2))))
(else (* b (fast-expt b (- n 1))))))

where the predicate to test whether an integer is even is defined in terms
of the primitive procedure remainder by

(define (even? n)
(= (remainder n 2) 0))

The process evolved by fast-expt grows logarithmically with n in both
space and number of steps. To see this, observe that computing »** using
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fast-expt requires only one more multiplication than computing b".
The size of the exponent we can compute therefore doubles (approxi-
mately) with every new multiplication we are allowed. Thus, the number

of multiplications required for an exponent of n grows about as fast as

the logarithm of n to the base 2. The process has ©(logn) growth.”’

The difference between ®(logn) growth and ©(n) growth becomes
striking as n becomes large. For example, fast-expt for n = 1000
requires only 14 multiplications.’® It is also possible to use the idea of
successive squaring to devise an iterative algorithm that computes expo-
nentials with a logarithmic number of steps (see exercise 1.16), although,
as is often the case with iterative algorithms, this is not written down so
straightforwardly as the recursive algorithm.*

Exercise 1.16

Design a procedure that evolves an iterative exponentiation process that uses
successive squaring and uses a logarithmic number of steps, as does fast-expt.
(Hint: Using the observation that (b"/%)? = (b*)"/?, keep, along with the expo-
nent n and the base b, an additional state variable a, and define the state trans-
formation in such a way that the product ab” is unchanged from state to state.
At the beginning of the process a is taken to be 1, and the answer is given by
the value of a at the end of the process. In general, the technique of defining an
invariant quantity that remains unchanged from state to state is a powerful way
to think about the design of iterative algorithms.)

Exercise 1.17

The exponentiation algorithms in this section are based on performing exponen-
tiation by means of repeated muluplication. In a similar way, one can perform
integer multiplication by means of repeated addition. The following multipli-
cation procedure (in which it is assumed that our language can only add, not
multiply) is analogous to the expt procedure:

(define (* a b)
(if (= b 0)
0
(+a(*a(-b1)))))

e — = ke sl = — Sl kil = = = ————

"More precisely, the number of multiplications required is equal to 1 less than the log
base 2 of n plus the number of ones in the binary representation of n. This total is always
less than twice the log base 2 of n. The arbitrary constants k; and k; in the definition of
order notation imply that, for a logarithmic process, the base to which logarithms are taken
does not matter, so all such processes are described as ©(logn).

% You may wonder why anyone would care about raising numbers to the 1000th power.
See section 1.2.6.

This iterative algorithm is ancient. It appears in the Chandah-sutra by Achdrya Pingala,
written before 200 B.C. See Knuth 1981, section 4.6.3, for a full discussion and analysis
of this and other methods of exponentiation.
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This algorithm takes a number of steps that is linear in b. Now suppose we in-
clude, together with addition, operations double, which doubles an integer, and
halve, which divides an (even) integer by 2. Using these, design a multiplica-
tion procedure analogous to fast-expt that uses a logarithmic number of steps.

Exercise 1.18

Using the results of exercises 1.16 and 1.17, devise a procedure that generates
an iterative process for multiplying two integers in terms of adding, doubling,
and halving and uses a logarithmic number of steps.*

Exercise 1.19

There 1s a clever algorithm for computing the Fibonacci numbers in a logarith-
mic number of steps. Recall the transformation of the state variables @ ana o in
the fib-iter process of section 1.2.2: @ <« a+b and b « a. Call this transfor-
mation 7', and observe that applying T over and over again n times, starting with
I and 0, produces the pair Fib(n + 1) and Fib(n). In other words, the Fibonacci
numbers are produced by applying 7", the nth power of the transformation T,
starting with the pair (1, 0). Now consider T to be the special case of p = 0 and
q = 1 in a family of transformations T),,, where T, transforms the pair (a, b)
according to a < bg + aq + ap and b < bp + aq. Show that if we apply
such a transformation T, twice, the effect is the same as using a single trans-
formation T, of the same form, and compute p’ and ¢’ in terms of p and q.
This gives us an explicit way to square these transformations, and thus we can
compute 7" using successive squaring, as in the fast-expt procedure. Put this
all together to complete the following procedure, which runs in a logarithmic
number of steps:*!

(define (fib n)
(fib-iter 1 0 0 1 n))

(define (fib-iter a b p q count)
(cond ((= count 0) b)
((even? count)

(fib-iter a
b
(?7) ; compute p’
(?7) ; compute g’

(/ count 2)))
(else (fib-iter (+ (* b q) (* a q) (* a p))
(+ (*x bp) (+aqg)
P

q
(- count 1)))))

%This algorithm, which is sometimes known as the “Russian peasant method” of multi-
plication, is ancient. Examples of its use are found in the Rhind Papyrus, one of the two
oldest mathematical documents in existence, written about 1700 B.C. (and copied from an
even older document) by an Egyptian scribe named A'h-mose.

*I'This exercise was suggested to us by Joe Stoy, based on an example in Kaldewaij 1990.
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1.2.5 Greatest Common Divisors

The greatest common divisor (GCD) of two integers a and b is defined
to be the largest integer that divides both a and b with no remainder. For
example, the GCD of 16 and 28 is 4. In chapter 2, when we investigate
how to implement rational-number arithmetic, we will need to be able to
compute GCDs in order to reduce rational numbers to lowest terms. (To
reduce a rational number to lowest terms, we must divide both the nu-
merator and the denominator by their GCD. For example, 16/28 reduces
to 4/7.) One way to find the GCD of two integers is to factor them and
search for common factors, but there is a famous algorithm that is much
more efficient.

The idea of the algorithm is based on the observation that, if r 1s the
remainder when a is divided by b, then the common divisors of @ and b
are precisely the same as the common divisors of b and r. Thus, we can
use the equation

GCD(a, b) = GCD(b, r)

to successively reduce the problem of computing a GCD to the problem
of computing the GCD of smaller and smaller pairs of integers. For
example,

GCD(206, 40) = GCD(40, 6)
= GCD(6, 4)
= GCD(4, 2)
= GCD(2,0)
=2

reduces GCD(206,40) to GCD(2,0), which is 2. It is possible to show
that starting with any two positive integers and performing repeated re-
ductions will always eventually produce a pair where the second number
is 0. Then the GCD is the other number in the pair. This method for
computing the GCD is known as Euclid’s Algorithm.**

“Euclid’s Algorithm is so called because it appears in Euclid’s Elements (Book 7, ca.
300 B.C.). According to Knuth (1973), it can be considered the oldest known nontrivial
algorithm. The ancient Egyptian method of multiplication (exercise 1.18) is surely older,
but, as Knuth explains, Euclid’s algorithm is the oldest known to have been presented as a
general algonithm, rather than as a set of 1llustrative examples.
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It is easy to express Euclid’s Algorithm as a procedure:

(define (gcd a b)
(if (= b 0)
a
(gcd b (remainder a b))))

This generates an iterative process, whose number of steps grows as the
logarithm of the numbers involved.

The fact that the number of steps required by Euclid’s Algorithm has
logarithmic growth bears an interesting relation to the Fibonacci num-
bers:

Lamé’s Theorem: If Euclid’s Algorithm requires k steps to compute the
GCD of some pair, then the smaller number in the pair must be greater
than or equal to the kth Fibonacci number.*’

We can use this theorem to get an order-of-growth estimate for Eu-
clid’s Algorithm. Let n be the smaller of the two inputs to the procedure.
If the process takes k steps, then we must have n > Fib(k) =~ ¢*/\/§.
Therefore the number of steps k grows as the logarithm (to the base ¢)
of n. Hence, the order of growth is ®(logn).

Exercise 1.20

The process that a procedure generates is of course dependent on the rules
used by the interpreter. As an example, consider the iterative gcd procedure
given above. Suppose we were to interpret this procedure using normal-order
evaluation, as discussed in section 1.1.5. (The normal-order-evaluation rule
for if is described in exercise 1.5.) Using the substitution method (for nor-
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This is very similar to the fast-expt procedure of section 1.2.4. It uses
successive squaring, so that the number of steps grows logarithmically
with the exponent.*

The Fermat test is performed by choosing at random a number a be-
tween 1 and n — | inclusive and checking whether the remainder modulo
n of the nth power of a is equal to a. The random number a is chosen
using the procedure random, which we assume is included as a primitive
in Scheme. Random returns a nonnegative integer less than its integer
input. Hence, to obtain a random number between 1 and n — 1, we call
random with an input of n — 1 and add 1 to the result:

(define (fermat-test n)
(define (try-it a)
(= (expmod a n n) a))
(try-it (+ 1 (random (- n 1)))))

The following procedure runs the test a given number of times, as
specified by a parameter. Its value is true if the test succeeds every time,
and false otherwise.

(define (fast-prime? n times)
(cond ((= times 0) true)
((fermat-test n) (fast-prime? n (- times 1)))
(else false)))

Probabilistic methods

The Fermat test differs in character from most familiar algorithms, in
which one computes an answer that is guaranteed to be correct. Here,
the answer obtained is only probably correct. More precisely, if n ever
fails the Fermat test, we can be certain that n i1s not prime. But the fact
that n passes the test, while an extremely strong indication, is still not
a guarantee that n is prime. What we would like to say is that for any
number n, if we perform the test enough times and find that n always
passes the test, then the probability of error in our primality test can be
made as small as we like.

*The reduction steps in the cases where the exponent e is greater than 1 are based on the
fact that, for any integers x, y, and m, we can find the remainder of x times y modulo m by
computing separately the remainders of x modulo m and y modulo m, multiplying these,
and then taking the remainder of the result modulo m. For instance, in the case where e
is even, we compute the remainder of b*/? modulo m, square this, and take the remainder
modulo m. This technique is useful because it means we can perform our computation
without ever having to deal with numbers much larger than m. (Compare exercise 1.25.)
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Unfortunately, this assertion is not quite correct. There do exist num-
bers that fool the Fermat test: numbers n that are not prime and yet have
the property that a” is congruent to a modulo n for all integers a < n.
Such numbers are extremely rare, so the Fermat test is quite reliable in
practice.*’ There are variations of the Fermat test that cannot be fooled.
In these tests, as with the Fermat method, one tests the primality of an
integer n by choosing a random integer a < n and checking some condi-
tion that depends upon n and a. (See exercise 1.28 for an example of such
a test.) On the other hand, in contrast to the Fermat test, one can prove
that, for any n, the condition does not hold for most of the integersa < n
unless n is prime. Thus, if n passes the test for some random choice of a,
the chances are better than even that n is prime. If n passes the test for
two random choices of a, the chances are better than 3 out of 4 that n is
prime. By running the test with more and more randomly chosen values
of a we can make the probability of error as small as we like.

The existence of tests for which one can prove that the chance of error
becomes arbitrarily small has sparked interest in algorithms of this type,
which have come to be known as probabilistic algorithms. There is a
great deal of research activity in this area, and probabilistic algorithms
have been fruitfully applied to many fields.*®

Exercise 1.21

Use the smallest-divisor procedure to find the smallest divisor of each of
the following numbers: 199, 1999, 19999.

“"Numbers that fool the Fermat test are called Carmichael numbers, and little is known
about them other than that they are extremely rare. There are 255 Carmichael numbers
below 100,000,000. The smallest few are 561, 1105, 1729, 2465, 2821, and 6601. In
testing primality of very large numbers chosen at random, the chance of stumbling upon a
value that fools the Fermat test is less than the chance that cosmic radiation will cause the
computer to make an error in carrying out a “correct” algorithm. Considening an algorithm
to be inadequate for the first reason but not for the second illustrates the difference between
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Exercise 1.22

Most Lisp implementations include a primitive called runtime that returns an
integer that specifies the amount of time the system has been running (measured,
for example, in microseconds). The following timed-prime-test procedure,
when called with an integer n, prints n and checks to see if n is prime. If n is
prime, the procedure prints three asterisks followed by the amount of time used
in performing the test.

(define (timed-prime-test n)
(newline)
(display n)
(start-prime-test n (runtime)))

(define (start-prime-test n start-time)
(if (prime? n)
(report-prime (- (runtime) start-time))))

(define (report-prime elapsed-time)
(display " »*x ")
(display elapsed-time))

Using this procedure, write a procedure search-for-primes that checks the
primality of consecutive odd integers in a specified range. Use your procedure
to find the three smallest primes larger than 1000; larger than 10,000; larger than
100,000; larger than 1,000,000. Note the time needed to test each prime. Since
the testing algorithm has order of growth of ©(,/n), you should expect that

testing for primes around 10,000 should take about V10 times as long as testing
for primes around 1000. Do your timing data bear this out? How well do the data
for 100,000 and 1,000,000 support the \/n prediction? Is your result compatible
with the notion that programs on your machine run in time proportional to the
number of steps required for the computation?

Exercise 1.23

The smallest-divisor procedure shown at the start of this section does lots
of needless testing: After it checks to see if the number is divisible by 2 there
1s no point in checking to see if it is divisible by any larger even numbers. This
suggests that the values used for test-divisor should notbe 2, 3,4, 5, 6, ...,
but rather 2, 3, 5, 7, 9, .... To implement this change, define a procedure next
that returns 3 if its input is equal to 2 and otherwise returns its input plus 2.
Modify the smallest-divisor procedure to use (next test-divisor) in-
stead of (+ test-divisor 1). With timed-prime-test incorporating this
modified version of smallest-divisor, run the test for each of the 12 primes
found in exercise 1.22. Since this modification halves the number of test steps,
you should expect it to run about twice as fast. Is this expectation confirmed? If
not, what is the observed ratio of the speeds of the two algorithms, and how do
you explain the fact that it is different from 2?



1.2.6 Example: Testing for Primality 55

Exercise 1.24

Modify the timed-prime-test procedure of exercise 1.22 touse fast-prime?
(the Fermat method), and test each of the 12 primes you found in that exercise.
Since the Fermat test has ®(logn) growth, how would you expect the time to
test primes near 1,000,000 to compare with the time needed to test primes near
10007 Do your data bear this out? Can you explain any discrepancy you find?

Exercise 1.25

Alyssa P. Hacker complains that we went to a lot of extra work in writing
expmod. After all, she says, since we already know how to compute exponen-
tials, we could have simply written

(define (expmod base exp m)
(remainder (fast-expt base exp) m))

Is she correct? Would this procedure serve as well for our fast pnme tester?
Explain.

Exercise 1.26

Louis Reasoner i1s having great difficulty doing exercise 1.24. His fast-prime?
test seems to run more slowly than his prime? test. Louis calls his friend Eva
Lu Ator over to help. When they examine Louis’s code, they find that he has
rewritten the expmod procedure to use an explicit multiplication, rather than
calling square:

(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(remainder (* (expmod base (/ exp 2) m)
(expmod base (/ exp 2) m))

m))

(else

(remainder (* base (expmod base (- exp 1) m))
m))))

“I don’t see what difference that could make,” says Louis. “I do.” says Eva. “By
writing the procedure like that, you have transformed the ©(log n) process into
a ©(n) process.” Explain.

Exercise 1.27

Demonstrate that the Carmichael numbers listed in footnote 47 really do fool the
Fermat test. That is, write a procedure that takes an integer n and tests whether
a” is congruent to a modulo n for every a < n, and try your procedure on the
given Carmichael numbers.
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Exercise 1.28

One vanant of the Fermat test that cannot be fooled is called the Miller-Rabin
test (Miller 1976; Rabin 1980). This starts from an alternate form of Fermat’s
Little Theorem, which states that if n is a prime number and a is any positive in-
teger less than n, then a raised to the (n — 1)st power is congruent to 1 modulo n.
To test the primality of a number n by the Miller-Rabin test, we pick a random
number @ < n and raise a to the (n — 1)st power modulo n using the expmod
procedure. However, whenever we perform the squaring step in expmod, we
check to see if we have discovered a “nontrivial square root of 1 modulo n,”
that is, a number not equal to |1 or n — 1 whose square is equal to 1 modulo n.
It 1s possible to prove that if such a nontrivial square root of 1 exists, then n
is not prime. It is also possible to prove that if n is an odd number that is not
prime, then, for at least half the numbers a < n, computing a"~' in this way
will reveal a nontrivial square root of 1 modulo n. (This is why the Miller-Rabin
test cannot be fooled.) Modify the expmod procedure to signal if it discovers a
nontrivial square root of 1, and use this to implement the Miller-Rabin test with
a procedure analogous to fermat-test. Check your procedure by testing vari-
ous known primes and non-primes. Hint: One convenient way to make expmod
signal is to have it return 0.

1.3 Formulating Abstractions with Higher-Order Procedures

We have seen that procedures are, in effect, abstractions that describe
compound operations on numbers independent of the particular numbers.

For example, when we

(define (cube x) (* x x x))

we are not talking about the cube of a particular number, but rather about
a method for obtaining the cube of any number. Of course we could get
along without ever defining this procedure, by always writing expres-
sions such as

(* 3 3 3)
(* x x x)

(*yyy

and never mentioning cube explicitly. This would place us at a serious
disadvantage, forcing us to work always at the level of the particular op-
erations that happen to be primitives in the language (multiplication, in
this case) rather than in terms of higher-level operations. Our programs
would be able to compute cubes, but our language would lack the ability
to express the concept of cubing. One of the things we should demand
from a powerful programming language is the ability to build abstrac-
tions by assigning names to common patterns and then to work in terms
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(define (sum-cubes a b)
(sum cube a inc b))

Using this, we can compute the sum of the cubes of the integers from 1
to 10:

(sum-cubes 1 10)
3025

With the aid of an identity procedure to compute the term, we can define
sum-integers in terms of sum:

(define (identity x) x)

(define (sum-integers a b)
(sum identity a inc b))

Then we can add up the integers from 1 to 10:

(sum-integers 1 10)
55

We can also define pi-sum in the same way:>°

(define (pi-sum a b)
(define (pi-term x)
(/ 1.0 (* x (+ x 2))))
(define (pi-next x)
(+ x 4))
(sum pi-term a pi-next b))

Using these procedures, we can compute an approximation to :

(* 8 (pi-sum 1 1000))
3.139592655589783

Once we have sum, we can use it as a building block in formulat-
ing further concepts. For instance, the definite integral of a function f
between the limits a and b can be approximated numerically using the
formula

fbf=[f(a+d%)+f(a+dx+%)+f(a+2dx+d?x)+---]dx

for small values of dx. We can express this directly as a procedure:

ONotice that we have used block structure (section 1.1.8) to embed the definitions of
pi-next and pi-term within pi-sum, since these procedures are unlikely to be useful
for any other purpose. We will see how to get rid of them altogether in section 1.3.2.
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(define (integral f a b dx)
(define (add-dx x) (+ x dx))
(* (sum £ (+ a (/ dx 2.0)) add-dx b)
dx))

(integral cube 0 1 0.01)
.24998750000000042

(integral cube 0 1 0.001)
.249999875000001

(The exact value of the integral of cube between O and 1 1s 1/4.)

Exercise 1.29

Simpson’s Rule is a more accurate method of numerical integration than the
method illustrated above. Using Simpson’s Rule, the integral of a function f
between a and b is approximated as

h
Elyn +4y +2y:+4y3 +2ys + -+ 2yp-2 + 4Yn-1 + Y

where h = (b —a)/n, for some even integer n, and y; = f(a +kh). (Increasing
n increases the accuracy of the approximation.) Define a procedure that takes as
arguments f, a, b, and n and returns the value of the integral, computed using

Simpson’s Rule. Use your procedure to integrate cube between 0 and 1 (with
n = 100 and n = 1000), and compare the results to those of the integral

procedure shown above.

Exercise 1.30

The sum procedure above generates a linear recursion. The procedure can be
rewritten so that the sum is performed iteratively. Show how to do this by filling
in the missing expressions in the following definition:

(define (sum term a next b)
(define (iter a result)
(if (??)
(?7)
(iter (??) (??))))
(iter (??) (?7)))

Exercise 1.31

a. The sum procedure is only the simplest of a vast number of similar abstrac-
tions that can be captured as higher-order procedures.’’ Write an analogous

5I'The intent of exercises 1.31-1.33 is to demonstrate the expressive power that is attained
by using an appropriate abstraction to consolidate many seemingly disparate operations.
However, though accumulation and filtering are elegant ideas, our hands are somewhat
tied in using them at this point since we do not yet have data structures to provide suitable
means of combination for these abstractions. We will return to these ideas in section 2.2.3
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procedure called product that returns the product of the values of a function at
points over a given range. Show how to define factorial in terms of ?ruduct.
Also use product to compute approximations to  using the formula?

T 2-4-4.6-6-8--.
4 3-3-5-5-7-7---

b. If your product procedure generates a recursive process, write one that gen-
erates an iterative process. If it generates an iterative process, write one that
generates a recursive process.

Exercise 1.32

a. Show that sum and product (exercise 1.31) are both special cases of a still
more general notion called accumulate that combines a collection of terms,
using some general accumulation function:

(accumulate combiner null-value term a next b)

Accumulate takes as arguments the same term and range specifications as sum
and product, together with a combiner procedure (of two arguments) that spec-
ifies how the current term is to be combined with the accumulation of the pre-
ceding terms and a null-value that specifies what base value to use when the
terms run out. Write accumulate and show how sum and product can both be
defined as simple calls to accumulate.

b. If your accumulate procedure generates a recursive process, write one that
generates an iterative process. If it generates an iterative process, write one that
generates a recursive process.

Exercise 1.33

You can obtain an even more general version of accumulate (exercise 1.32) by
introducing the notion of a filter on the terms to be combined. That is, com-
bine only those terms derived from values in the range that satisfy a specified
condition. The resulting filtered-accumulate abstraction takes the same ar-
guments as accumulate, together with an additional predicate of one argument
that specifies the filter. Write filtered-accumulate as a procedure. Show
how to express the following using filtered-accumulate:

a. the sum of the squares of the prime numbers in the interval a to b (assuming
that you have a prime? predicate already written)

b. the product of all the positive integers less than n that are relatively prime ton
(i.e., all positive integers i < n such that GCD(i, n) = 1).

when we show how to use sequences as interfaces for combining filters and accumulators
to build even more powerful abstractions. We will see there how these methods really
come into their own as a powerful and elegant approach to designing programs.

2This formula was discovered by the seventeenth-century English mathematician John
Wallis.
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1.3.2 Constructing Procedures Using Lambda

In using sum as in section 1.3.1, it seems terribly awkward to have to
define trivial procedures such as pi-term and pi-next just so we can
use them as arguments to our higher-order procedure. Rather than define
pi-next and pi-term, it would be more convenient to have a way to
directly specify “the procedure that returns its input incremented by 4”
and “the procedure that returns the reciprocal of its input times its input
plus 2.” We can do this by introducing the special form lambda, which
creates procedures. Using 1ambda we can describe what we want as

(lambda (x) (+ x 4))

and

(lambda (x) (/ 1.0 (* x (+ x 2))))

Then our pi-sum procedure can be expressed without defining any aux-
iliary procedures as

(define (pi-sum a b)
(sum (lambda (x) (/ 1.0 (* x (+ x 2))))
a
(lambda (x) (+ x 4))
b))

Again using lambda, we can write the integral procedure without
having to define the auxihiary procedure add-dx:

(define (integral f a b dx)
(* (sum f
(+ a (/ dx 2.0))
(lambda (x) (+ x dx))
b)
dx))

In general, 1ambda is used to create procedures in the same way as
define, except that no name is specified for the procedure:

(lambda ((formal-parameters)) {(body))

The resulting procedure is just as much a procedure as one that is created
using define. The only difference is that it has not been associated with
any name in the environment. In fact,

(define (plus4d x) (+ x 4))
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1s equivalent to

(define plus4 (lambda (x) (+ x 4)))

We can read a 1ambda expression as follows:

(lambda (x) (+ x 4))

T T 11

the procedure of an argument x that adds x and 4

Like any expression that has a procedure as its value, a 1lambda ex-
pression can be used as the operator in a combination such as

((lambda (x y z) (+ x y (square z))) 1 2 3)
12

or, more generally, in any context where we would normally use a pro-
cedure name.””

Using let to create local variables

Another use of lambda is in creating local varniables. We often need
local variables in our procedures other than those that have been bound
as formal parameters. For example, suppose we wish to compute the
function

f, ) =x(1+xy)* + y(1 = y)+ (1 +xy)(1 = y)
which we could also express as

a=1+xy
b=1-y
f(x,y)=.xaz+yb+ab

In writing a procedure to compute f, we would like to include as local
variables not only x and y but also the names of intermediate quantities
like @ and b. One way to accomplish this is to use an auxiliary procedure
to bind the local variables:

531t would be clearer and less intimidating to people learning Lisp if a name more ob-
vious than lambda, such as make-procedure, were used. But the convention is firmly
entrenched. The notation is adopted from the A calculus, a mathematical formalism in-
troduced by the mathematical logician Alonzo Church (1941). Church developed the A
calculus to provide a rigorous foundation for studying the notions of function and function
application. The A calculus has become a basic tool for mathematical investigations of the
semantics of programming languages.
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Sometimes we can use internal definitions to get the same effect as
with 1let. For example, we could have defined the procedure £ above as

(define (f x y)
(define a (+ 1 (* x y)))
(define b (- 1 y))
(+ (* x (square a))
(* y b)
(* a b)))

We prefer, however, to use let in situations like this and to use internal
define only for internal procedures.>*

Exercise 1.34
Suppose we define the procedure

(define (f g)
(g 2))

Then we have

(f square)
“

(f (lambda (z) (* z (+ z 1))))
6

What happens if we (perversely) ask the interpreter to evaluate the combination
(f £)? Explain.

1.3.3 Procedures as General Methods

We introduced compound procedures in section 1.1.4 as a mechanism
for abstracting patterns of numerical operations so as to make them in-
dependent of the particular numbers involved. With higher-order proce-
dures, such as the integral procedure of section 1.3.1, we began to see
a more powerful kind of abstraction: procedures used to express gen-
eral methods of computation, independent of the particular functions in-
volved. In this section we discuss two more elaborate examples—general
methods for finding zeros and fixed points of functions—and show how
these methods can be expressed directly as procedures.

¥ Understanding internal definitions well enough to be sure a program means what we
intend it to mean requires a more elaborate model of the evaluation process than we have
presented in this chapter. The subtleties do not arise with internal definitions of procedures,
however. We will return to this issue in section 4.1.6, after we learn more about evaluation.



1.3.3  Procedures as General Methods 67

Finding roots of equations by the half-interval method

The half-interval method 1s a simple but powerful technique for finding
roots of an equation f(x) = 0, where f is a continuous function. The
idea is that, if we are given points @ and b such that f(a) < 0 < f(b),
then f must have at least one zero between a and b. To locate a zero,
let x be the average of a and b and compute f(x). If f(x) > 0, then
f must have a zero between a and x. If f(x) < 0, then f must have a
zero between x and b. Continuing in this way, we can identify smaller
and smaller intervals on which f must have a zero. When we reach a
point where the interval is small enough, the process stops. Since the
interval of uncertainty is reduced by half at each step of the process, the
number of steps required grows as ©(log(L/T)), where L is the length
of the original interval and T 1s the error tolerance (that is, the size of
the interval we will consider “small enough™). Here is a procedure that
implements this strategy:

(define (search f neg-point pos-point)
(let ((midpoint (average neg-point pos-point)))
(if (close-enough? neg-point pos-point)
midpoint
(let ((test-value (f midpoint)))
(cond ((positive? test-value)

(search f neg-point midpoint))
((negative? test-value)
(search f midpoint pos-point))
(else midpoint))))))

We assume that we are initially given the function f together with
points at which 1ts values are negative and positive. We first compute
the midpoint of the two given points. Next we check to see if the given
interval i1s small enough, and if so we simply return the midpoint as our
answer. Otherwise, we compute as a test value the value of f at the
midpoint. If the test value is positive, then we continue the process with
a new interval running from the original negative point to the midpoint. If
the test value 1s negative, we continue with the interval from the midpoint
to the positive point. Finally, there is the possibility that the test value
is 0, in which case the midpoint is itself the root we are searching for.

To test whether the endpoints are “close enough” we can use a proce-
dure similar to the one used in section 1.1.7 for computing square roots:>”

SWe have used 0.001 as a representative “small” number to indicate a tolerance for the
acceptable error in a calculation. The appropriate tolerance for a real calculation depends
upon the problem to be solved and the limitations of the computer and the algorithm. This
is often a very subtle consideration, requiring help from a numerical analyst or some other
kind of magician.
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(define (close-enough? x y)
(< (abs (- x y)) 0.001))

Search 1s awkward to use directly, because we can accidentally give
it points at which f’s values do not have the required sign, in which case
we get a wrong answer. Instead we will use search via the following
procedure, which checks to see which of the endpoints has a negative
function value and which has a positive value, and calls the search pro-
cedure accordingly. If the function has the same sign on the two given
points, the half-interval method cannot be used, in which case the proce-

dure signals an error.®

(define (half-interval-method f a b)
(let ((a-value (f a))
(b-value (f b)))
(cond ((and (negative? a-value) (positive? b-value))
(search f a b))
((and (negative? b-value) (positive? a-value))

(search f b a))

(else
(error "Values are not of opposite sign" a b)))))

The following example uses the half-interval method to approximate
n as the root between 2 and 4 of sin x = 0:

(half-interval-method sin 2.0 4.0)
3.14111328125

Here is another example, using the half-interval method to search for
a root of the equation x> — 2x — 3 = 0 between 1 and 2:

(half-interval-method (lambda (x) (- (* x x x) (* 2 x) 3))

1.0
2.0)
1.89306640625
Finding fixed points of functions

A number x is called a fixed point of a function f if x satisfies the equa-
tion f(x) = x. For some functions f we can locate a fixed point by

beginning with an initial guess and applying f repeatedly,
[, fOfx)), fOf(f(x))),...

%This can be accomplished using error, which takes as arguments a number of items
that are printed as error messages.
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until the value does not change very much. Using this idea, we can devise
a procedure fixed-point that takes as inputs a function and an initial
guess and produces an approximation to a fixed point of the function. We
apply the function repeatedly until we find two successive values whose
difference is less than some prescribed tolerance:

(define tolerance 0.00001)

(define (fixed-point f first-guess)
(define (close-enough? vi v2)
(< (abs (- v1 v2)) tolerance))
(define (try guess)
(let ((next (f guess)))
(if (close-enough? guess next)
next
(try next))))
(try first-guess))

For example, we can use this method to approximate the fixed point of
the cosine function, starting with 1 as an initial approximation:>’

(fixed-point cos 1.0)
. 7390822985224023

Similarly, we can find a solution to the equation y = sin y + cos y:

(fixed-point (lambda (y) (+ (sin y) (cos y)))
1.0)
1,2587315962971173

The fixed-point process is reminiscent of the process we used for find-
ing square roots in section 1.1.7. Both are based on the idea of repeat-
edly improving a guess until the result satisfies some criterion. In fact,
we can readily formulate the square-root computation as a fixed-point
search. Computing the square root of some number x requires finding
a y such that y*> = x. Putting this equation into the equivalent form
y = x/y, we recognize that we are looking for a fixed point of the func-
tion®® y > x/y, and we can therefore try to compute square roots as

(define (sqrt x)
(fixed-point (lambda (y) (/ x y))
1.0))

""Try this during a boring lecture: Set your calculator to radians mode and then repeatedly
press the cos button until you obtain the fixed point.

%> (pronounced “maps t0”) is the mathematician’s way of writing lambda. y > x/y
means (lambda(y) (/ x y)), thatis, the function whose value at y is x/y.
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Unfortunately, this fixed-point search does not converge. Consider
an initial guess y;. The next guess 1s y; = x/y; and the next guess 1s
y3 =x/y2 = x/(x/y;) = y;. This results in an infinite loop in which the
two guesses y; and y; repeat over and over, oscillating about the answer.

One way to control such oscillations is to prevent the guesses from
changing so much. Since the answer is always between our guess y
and x/y, we can make a new guess that 1s not as far from y as x/y by
averaging y with x/y, so that the next guess after y is %( y+x/y) instead
of x/y. The process of making such a sequence of guesses is simply the
process of looking for a fixed point of y — %(y +x/y):

(define (sqrt x)
(fixed-point (lambda (y) (average y (/ x y)))
1.0))

(Note that y = %( y + x/y) 1s a simple transformation of the equation
y = x/y; to derive it, add y to both sides of the equation and divide
by 2.)

With this modification, the square-root procedure works. In fact, if we
unravel the definitions, we can see that the sequence of approximations to
the square root generated here is precisely the same as the one generated
by our original square-root procedure of section 1.1.7. This approach of
averaging successive approximations to a solution, a technique we call
average damping, often aids the convergence of fixed-point searches.

Exercise 1.35

Show that the golden ratio ¢ (section 1.2.2) is a fixed point of the transformation
x = 1 4 1/x, and use this fact to compute ¢ by means of the fixed-point

procedure.

Exercise 1.36

Modify fixed-point so that it prints the sequence of approximations it gener-
ates, using the newline and display primitives shown in exercise 1.22. Then
find a solution to x* = 1000 by finding a fixed point of x > log(1000)/ log(x).
(Use Scheme’s primitive log procedure, which computes natural logarithms.)
Compare the number of steps this takes with and without average damping.
(Note that you cannot start fixed-point with a guess of 1, as this would cause
division by log(1) = 0.)
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((average-damp square) 10)
55

Using average-damp, we can reformulate the square-root procedure
as follows:

(define (sqrt x)

(fixed-point (average-damp (lambda (y) (/ x y)))
1.0))

Notice how this formulation makes explicit the three ideas in the method:
fixed-point search, average damping, and the function y +— x/y. Itis in-
structive to compare this formulation of the square-root method with the
original version given in section 1.1.7. Bear in mind that these proce-
dures express the same process, and notice how much clearer the idea
becomes when we express the process in terms of these abstractions.
In general, there are many ways to formulate a process as a procedure.
Experienced programmers know how to choose procedural formulations
that are particularly perspicuous, and where useful elements of the pro-
cess are exposed as separate entities that can be reused in other applica-
tions. As a simple example of reuse, notice that the cube root of x is a
fixed point of the function y > x/y?, so we can immediately generalize
our square-root procedure to one that extracts cube roots:®

(define (cube-root x)
(fixed-point (average-damp (lambda (y) (/ x (square y))))
1.0))

Newton’s method

When we first introduced the square-root procedure, in section 1.1.7, we
mentioned that this was a special case of Newton's method. If x — g(x)
is a differentiable function, then a solution of the equation g(x) =01sa
fixed point of the function x +> f(x) where

g(x)
Dg(x)
and Dg(x) is the derivative of g evaluated at x. Newton’s method 1s the

use of the fixed-point method we saw above to approximate a solution of
the equation by finding a fixed point of the function f.°' For many func-

f(x)=x

0See exercise 1.45 for a further generalization.

1 Elementary calculus books usually describe Newton’s method in terms of the sequence
of approximations x,.; = x, — g(x,)/Dg(x,). Having language for talking about pro-
cesses and using the idea of fixed points simplifies the description of the method.
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tions g and for sufficiently good initial guesses for x, Newton’s method
converges very rapidly to a solution of g(x) = 0.9

In order to implement Newton’s method as a procedure, we must first
express the idea of derivative. Note that “derivative,” like average damp-
ing, is something that transforms a function into another function. For
instance, the derivative of the function x — x° is the function x — 3x2.
In general, if g 1s a function and dx i1s a small number, then the derivative
Dg of g is the function whose value at any number x is given (in the limit
of small dx) by

g(x +dx) — g(x)
dx

Thus, we can express the idea of derivative (taking dx to be, say, 0.00001)
as the procedure

Dg(x) =

(define (deriv g)
(lambda (x)
(/ (- (g (+ x dx)) (g x))
dx)))

along with the definition

(define dx 0.00001)

Like average-damp, deriv is a procedure that takes a procedure as
argument and returns a procedure as value. For example, to approximate
the derivative of x > x° at 5 (whose exact value is 75) we can evaluate

(define (cube x) (* x x x))

((deriv cube) 5)
75.00014999664018

With the aid of deriv, we can express Newton’s method as a fixed-
point process:

(define (newton-transform g)
(lambda (x)
(- x (/ (g x) ((deriv g) x)))))

%2Newton’s method does not always converge to an answer, but it can be shown that in
favorable cases each iteration doubles the number-of-digits accuracy of the approximation
to the solution. In such cases, Newton's method will converge much more rapidly than the

half-interval method.
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(define (newtons-method g guess)
(fixed-point (newton-transform g) guess))

The newton-transform procedure expresses the formula at the begin-
ning of this section, and newtons-method is readily defined in terms
of this. It takes as arguments a procedure that computes the function for
which we want to find a zero, together with an initial guess. For instance,
to find the square root of x, we can use Newton’s method to find a zero
of the function y + y? — x starting with an initial guess of 1. This
provides yet another form of the square-root procedure:

(define (sqrt x)

(newtons-method (lambda (y) (- (square y) x))
1.0))

Abstractions and first-class procedures

We've seen two ways to express the square-root computation as an in-
stance of a more general method, once as a fixed-point search and once
using Newton’s method. Since Newton’s method was itself expressed
as a fixed-point process, we actually saw two ways to compute square
roots as fixed points. Each method begins with a function and finds a
fixed point of some transformation of the function. We can express this
general idea itself as a procedure:

(define (fixed-point-of-transform g transform guess)
(fixed-point (transform g) guess))

This very general procedure takes as its arguments a procedure g that
computes some function, a procedure that transforms g, and an initial
guess. The returned result is a fixed point of the transformed function.

Using this abstraction, we can recast the first square-root computation
from this section (where we look for a fixed point of the average-damped
version of y > x/y) as an instance of this general method:

(define (sqrt x)
(fixed-point-of-transform (lambda (y) (/ x y))
average-damp
1.0))

53For finding square roots, Newton's method converges rapidly to the correct solution from
any starting point.
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Similarly, we can express the second square-root computation from this
section (an instance of Newton’s method that finds a fixed point of the

Newton transform of y > y? — x) as

(define (sqrt x)
(fixed-point-of-transform (lambda (y) (- (square y) x))
newton-transform
1.0))

We began section 1.3 with the observation that compound procedures
are a crucial abstraction mechanism, because they permit us to express
general methods of computing as explicit elements in our programming
language. Now we’ve seen how higher-order procedures permit us to
manipulate these general methods to create further abstractions.

As programmers, we should be alert to opportunities to identify the
underlying abstractions in our programs and to build upon them and gen-
eralize them to create more powerful abstractions. This is not to say that
one should always write programs in the most abstract way possible;
expert programmers know how to choose the level of abstraction appro-
priate to their task. But it is important to be able to think in terms of these
abstractions, so that we can be ready to apply them in new contexts. The
significance of higher-order procedures is that they enable us to represent

these abstractions explicitly as elements in our programming language,
so that they can be handled just like other computational elements.

In general, programming languages impose restrictions on the ways
in which computational elements can be manipulated. Elements with the
fewest restrictions are said to have first-class status. Some of the “rights
and privileges” of first-class elements are:**

e They may be named by variables.
e They may be passed as arguments to procedures.
e They may be returned as the results of procedures.

e They may be included in data structures.®

*The notion of first-class status of programming-language elements is due to the British
computer scientist Christopher Strachey (1916-1975).

55We'll see examples of this after we introduce data structures in chapter 2.



