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CHAPTER 1

Past developments
and present capabilities

e begin by looking back. History, at the largest scale, seems to
Wexhibit a sequence of distinct growth modes, each much more

rapid than its predecessor. This pattern has been taken to suggest
that another (even faster) growth mode might be possible. However, we do not
place much weight on this observation—this is not a book about “technological
acceleration” or “exponential growth” or the miscellaneous notions sometimes
gathered under the rubric of “the singularity.” Next, we review the history of
artificial intelligence. We then survey the field’s current capabilities. Finally, we
glance at some recent expert opinion surveys, and contemplate our ignorance
about the timeline of future advances.

Growth modes and big history

A mere few million years ago our ancestors were still swinging from the branches
in the African canopy. On a geological or even evolutionary timescale, the rise
of Homo sapiens from our last common ancestor with the great apes happened
swiftly. We developed upright posture, opposable thumbs, and—crucially—some
relatively minor changes in brain size and neurological organization that led to
a great leap in cognitive ability. As a consequence, humans can think abstractly,
communicate complex thoughts, and culturally accumulate information over the
generations far better than any other species on the planet.

These capabilities let humans develop increasingly eflicient productive technol-
ogies, making it possible for our ancestors to migrate far away from the rainforest
and the savanna. Especially after the adoption of agriculture, population densi-
ties rose along with the total size of the human population. More people meant
more ideas; greater densities meant that ideas could spread more readily and that
some individuals could devote themselves to developing specialized skills. These
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developments increased the rate of growth of economic productivity and techno-
logical capacity. Later developments, related to the Industrial Revolution, brought
about a second, comparable step change in the rate of growth.

Such changes in the rate of growth have important consequences. A few hun-
dred thousand years ago, in early human (or hominid) prehistory, growth was so
slow that it took on the order of one million years for human productive capacity
to increase sufficiently to sustain an additional one million individuals living at
subsistence level. By 5000 Bc, following the Agricultural Revolution, the rate of
growth had increased to the point where the same amount of growth took just two
centuries. Today, following the Industrial Revolution, the world economy grows
on average by that amount every ninety minutes.!

Even the present rate of growth will produce impressive results if maintained
for a moderately long time. If the world economy continues to grow at the same
pace as it has over the past fifty years, then the world will be some 4.8 times richer
by 2050 and about 34 times richer by 2100 than it is today.”

Yet the prospect of continuing on a steady exponential growth path pales in
comparison to what would happen if the world were to experience another step
change in the rate of growth comparable in magnitude to those associated with
the Agricultural Revolution and the Industrial Revolution. The economist Robin
Hanson estimates, based on historical economic and population data, a char-
acteristic world economy doubling time for Pleistocene hunter-gatherer soci-
ety of 224,000 years; for farming society, 909 years; and for industrial society,
6.3 years.” (In Hanson’s model, the present epoch is a mixture of the farming and
the industrial growth modes—the world economy as a whole is not yet growing at
the 6.3-year doubling rate.) If another such transition to a different growth mode
were to occur, and it were of similar magnitude to the previous two, it would result
in a new growth regime in which the world economy would double in size about
every two weeks.

Such a growth rate seems fantastic by current lights. Observers in earlier
epochs might have found it equally preposterous to suppose that the world econ-
omy would one day be doubling several times within a single lifespan. Yet that is
the extraordinary condition we now take to be ordinary.

The idea of a coming technological singularity has by now been widely popu-
larized, starting with Vernor Vinge’s seminal essay and continuing with the writ-
ings of Ray Kurzweil and others.* The term “singularity,” however, has been used
confusedly in many disparate senses and has accreted an unholy (yet almost mil-
lenarian) aura of techno-utopian connotations.® Since most of these meanings
and connotations are irrelevant to our argument, we can gain clarity by dispens-
ing with the “singularity” word in favor of more precise terminology.

The singularity-related idea that interests us here is the possibility of an intel-
ligence explosion, particularly the prospect of machine superintelligence. There
may be those who are persuaded by growth diagrams like the ones in Figure 1
that another drastic change in growth mode is in the cards, comparable to the
Agricultural or Industrial Revolution. These folk may then reflect that it is hard
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Figure 1 Long-term history of world GDP. Plotted on a linear scale, the history of the world
economy looks like a flat line hugging the x-axis, until it suddenly spikes vertically upward. (a) Even
when we zoom in on the most recent 10,000 years, the pattern remains essentially one of a single
90° angle. (b) Only within the past 100 years or so does the curve lift perceptibly above the zero-
level. (The different lines in the plot correspond to different data sets, which yield slightly different
estimates.”)

to conceive of a scenario in which the world economy’s doubling time shortens
to mere weeks that does not involve the creation of minds that are much faster
and more efficient than the familiar biological kind. However, the case for tak-
ing seriously the prospect of a machine intelligence revolution need not rely on
curve-fitting exercises or extrapolations from past economic growth. As we shall
see, there are stronger reasons for taking heed.

Great expectations

Machines matching humans in general intelligence—that is, possessing com-
mon sense and an effective ability to learn, reason, and plan to meet complex
information-processing challenges across a wide range of natural and abstract
domains—have been expected since the invention of computers in the 1940s. At
that time, the advent of such machines was often placed some twenty years into
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the future.” Since then, the expected arrival date has been receding at a rate of one
year per year; so that today, futurists who concern themselves with the possibility
of artificial general intelligence still often believe that intelligent machines are a
couple of decades away.®

Two decades is a sweet spot for prognosticators of radical change: near enough
to be attention-grabbing and relevant, yet far enough to make it possible to sup-
pose that a string of breakthroughs, currently only vaguely imaginable, might
by then have occurred. Contrast this with shorter timescales: most technologies
that will have a big impact on the world in five or ten years from now are already
in limited use, while technologies that will reshape the world in less than fifteen
years probably exist as laboratory prototypes. Twenty years may also be close to
the typical duration remaining of a forecaster’s career, bounding the reputational
risk of a bold prediction.

From the fact that some individuals have overpredicted artificial intelligence in
the past, however, it does not follow that Al is impossible or will never be devel-
oped.” The main reason why progress has been slower than expected is that the
technical difficulties of constructing intelligent machines have proved greater
than the pioneers foresaw. But this leaves open just how great those difficulties
are and how far we now are from overcoming them. Sometimes a problem that
initially looks hopelessly complicated turns out to have a surprisingly simple
solution (though the reverse is probably more common).

In the next chapter, we will look at different paths that may lead to human-level
machine intelligence. But let us note at the outset that however many stops there
are between here and human-level machine intelligence, the latter is not the final
destination. The next stop, just a short distance farther along the tracks, is super-
human-level machine intelligence. The train might not pause or even decelerate
at Humanville Station. It is likely to swoosh right by.

The mathematician 1. J]. Good, who had served as chief statistician in Alan
Turing’s code-breaking team in World War II, might have been the first to enun-
ciate the essential aspects of this scenario. In an oft-quoted passage from 1965, he
wrote:

Let an ultraintelligent machine be defined as a machine that can far surpass all the intel-
lectual activities of any man however clever. Since the design of machines is one of these
intellectual activities, an ultraintelligent machine could design even better machines; there
would then unquestionably be an “intelligence explosion,” and the intelligence of man
would be left far behind. Thus the first ultraintelligent machine is the last invention that
man need ever make, provided that the machine is docile enough to tell us how to keep it
under control.?

It may seem obvious now that major existential risks would be associated with
such an intelligence explosion, and that the prospect should therefore be exam-
ined with the utmost seriousness even if it were known (which it is not) to have but
a moderately small probability of coming to pass. The pioneers of artificial intel-
ligence, however, notwithstanding their belief in the imminence of human-level
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Al, mostly did not contemplate the possibility of greater-than-human Al It is as
though their speculation muscle had so exhausted itself in conceiving the radical
possibility of machines reaching human intelligence that it could not grasp the
corollary—that machines would subsequently become superintelligent.

The Al pioneers for the most part did not countenance the possibility that
their enterprise might involve risk."" They gave no lip service—let alone seri-
ous thought—to any safety concern or ethical qualm related to the creation of
artificial minds and potential computer overlords: a lacuna that astonishes even
against the background of the era’s not-so-impressive standards of critical tech-
nology assessment.' We must hope that by the time the enterprise eventually does
become feasible, we will have gained not only the technological proficiency to
set off an intelligence explosion but also the higher level of mastery that may be
necessary to make the detonation survivable.

But before we turn to what lies ahead, it will be useful to take a quick glance at
the history of machine intelligence to date.

Seasons of hope and despair

In the summer of 1956 at Dartmouth College, ten scientists sharing an inter-
est in neural nets, automata theory, and the study of intelligence convened for
a six-week workshop. This Dartmouth Summer Project is often regarded as the
cockcrow of artificial intelligence as a field of research. Many of the participants
would later be recognized as founding figures. The optimistic outlook among the
delegates is reflected in the proposal submitted to the Rockefeller Foundation,
which provided funding for the event:

We propose that a 2 month, 10 man study of artificial intelligence be carried out. . . .
The study is to proceed on the basis of the conjecture that every aspect of learning or
any other feature of intelligence can in principle be so precisely described that a machine
can be made to simulate it. An attempt will be made to find how to make machines that
use language, form abstractions and concepts, solve kinds of problems now reserved for
humans, and improve themselves. We think that a significant advance can be made in one
or more of these problems if a carefully selected group of scientists work on it together
for a summer.

In the six decades since this brash beginning, the field of artificial intelligence has
been through periods of hype and high expectations alternating with periods of
setback and disappointment.

The first period of excitement, which began with the Dartmouth meeting, was
later described by John McCarthy (the event’s main organizer) as the “Look, Ma,
no hands!” era. During these early days, researchers built systems designed to
refute claims of the form “No machine could ever do X!” Such skeptical claims were
common at the time. To counter them, the Al researchers created small systems
that achieved X in a “microworld” (a well-defined, limited domain that enabled
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a pared-down version of the performance to be demonstrated), thus providing a
proof of concept and showing that X could, in principle, be done by machine. One
such early system, the Logic Theorist, was able to prove most of the theorems in
the second chapter of Whitehead and Russell’s Principia Mathematica, and even
came up with one proof that was much more elegant than the original, thereby
debunking the notion that machines could “only think numerically” and show-
ing that machines were also able to do deduction and to invent logical proofs.”* A
follow-up program, the General Problem Solver, could in principle solve a wide
range of formally specified problems."* Programs that could solve calculus prob-
lems typical of first-year college courses, visual analogy problems of the type that
appear in some IQ tests, and simple verbal algebra problems were also written.”®
The Shakey robot (so named because of its tendency to tremble during opera-
tion) demonstrated how logical reasoning could be integrated with perception
and used to plan and control physical activity.'® The ELIZA program showed how
a computer could impersonate a Rogerian psychotherapist.'” In the mid-seventies,
the program SHRDLU showed how a simulated robotic arm in a simulated world
of geometric blocks could follow instructions and answer questions in English
that were typed in by a user."” In later decades, systems would be created that
demonstrated that machines could compose music in the style of various classical
composers, outperform junior doctors in certain clinical diagnostic tasks, drive
cars autonomously, and make patentable inventions."” There has even been an Al
that cracked original jokes.* (Not that its level of humor was high—*“What do
you get when you cross an optic with a mental object? An eye-dea”—but children
reportedly found its puns consistently entertaining.)

The methods that produced successes in the early demonstration systems often
proved difficult to extend to a wider variety of problems or to harder problem
instances. One reason for this is the “combinatorial explosion” of possibilities that
must be explored by methods that rely on something like exhaustive search. Such
methods work well for simple instances of a problem, but fail when things get a bit
more complicated. For instance, to prove a theorem that has a 5-line long proofin
a deduction system with one inference rule and 5 axioms, one could simply enu-
merate the 3,125 possible combinations and check each one to see if it delivers the
intended conclusion. Exhaustive search would also work for 6- and 7-line proofs.
But as the task becomes more difficult, the method of exhaustive search soon
runs into trouble. Proving a theorem with a 50-line proof does not take ten times
longer than proving a theorem that has a 5-line proof: rather, if one uses exhaus-
tive search, it requires combing through 5° ~ 8.9 x 10 possible sequences—which
is computationally infeasible even with the fastest supercomputers.

To overcome the combinatorial explosion, one needs algorithms that exploit
structure in the target domain and take advantage of prior knowledge by using
heuristic search, planning, and flexible abstract representations—capabilities
that were poorly developed in the early Al systems. The performance of these
early systems also suffered because of poor methods for handling uncertainty,
reliance on brittle and ungrounded symbolic representations, data scarcity, and
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severe hardware limitations on memory capacity and processor speed. By the
mid-1970s, there was a growing awareness of these problems. The realization that
many Al projects could never make good on their initial promises led to the onset
of the first “Al winter™ a period of retrenchment, during which funding decreased
and skepticism increased, and Al fell out of fashion.

A new springtime arrived in the early 1980s, when Japan launched its Fifth-
Generation Computer Systems Project, a well-funded public-private partner-
ship that aimed to leapfrog the state of the art by developing a massively parallel
computing architecture that would serve as a platform for artificial intelligence.
This occurred at peak fascination with the Japanese “post-war economic mir-
acle,” a period when Western government and business leaders anxiously sought
to divine the formula behind Japan’s economic success in hope of replicating the
magic at home. When Japan decided to invest big in AI, several other countries
followed suit.

The ensuing years saw a great proliferation of expert systems. Designed as sup-
port tools for decision makers, expert systems were rule-based programs that
made simple inferences from a knowledge base of facts, which had been elicited
from human domain experts and painstakingly hand-coded in a formal lan-
guage. Hundreds of these expert systems were built. However, the smaller systems
provided little benefit, and the larger ones proved expensive to develop, validate,
and keep updated, and were generally cumbersome to use. It was impractical to
acquire a standalone computer just for the sake of running one program. By the
late 1980s, this growth season, too, had run its course.

The Fifth-Generation Project failed to meet its objectives, as did its counterparts
in the United States and Europe. A second Al winter descended. At this point, a
critic could justifiably bemoan “the history of artificial intelligence research to
date, consisting always of very limited success in particular areas, followed imme-
diately by failure to reach the broader goals at which these initial successes seem
at first to hint.”?! Private investors began to shun any venture carrying the brand
of “artificial intelligence.” Even among academics and their funders, “AI” became
an unwanted epithet.”

Technical work continued apace, however, and by the 1990s, the second Al
winter gradually thawed. Optimism was rekindled by the introduction of new
techniques, which seemed to offer alternatives to the traditional logicist paradigm
(often referred to as “Good Old-Fashioned Artificial Intelligence,” or “GOFAI”
for short), which had focused on high-level symbol manipulation and which
had reached its apogee in the expert systems of the 1980s. The newly popular
techniques, which included neural networks and genetic algorithms, promised
to overcome some of the shortcomings of the GOFAI approach, in particular
the “brittleness” that characterized classical Al programs (which typically pro-
duced complete nonsense if the programmers made even a single slightly erro-
neous assumption). The new techniques boasted a more organic performance.
For example, neural networks exhibited the property of “graceful degradation™
a small amount of damage to a neural network typically resulted in a small
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degradation of its performance, rather than a total crash. Even more importantly,
neural networks could learn from experience, finding natural ways of general-
izing from examples and finding hidden statistical patterns in their input.? This
made the nets good at pattern recognition and classification problems. For exam-
ple, by training a neural network on a data set of sonar signals, it could be taught
to distinguish the acoustic profiles of submarines, mines, and sea life with bet-
ter accuracy than human experts—and this could be done without anybody first
having to figure out in advance exactly how the categories were to be defined or
how different features were to be weighted.

While simple neural network models had been known since the late 1950s, the
field enjoyed a renaissance after the introduction of the backpropagation algo-
rithm, which made it possible to train multi-layered neural networks.** Such
multilayered networks, which have one or more intermediary (“hidden”) layers
of neurons between the input and output layers, can learn a much wider range
of functions than their simpler predecessors.”” Combined with the increasingly
powerful computers that were becoming available, these algorithmic improve-
ments enabled engineers to build neural networks that were good enough to be
practically useful in many applications.

The brain-like qualities of neural networks contrasted favorably with the rig-
idly logic-chopping but brittle performance of traditional rule-based GOFAI
systems—enough so to inspire a new “-ism,” connectionism, which emphasized
the importance of massively parallel sub-symbolic processing. More than 150,000
academic papers have since been published on artificial neural networks, and they
continue to be an important approach in machine learning.

Evolution-based methods, such as genetic algorithms and genetic program-
ming, constitute another approach whose emergence helped end the second AI
winter. It made perhaps a smaller academic impact than neural nets but was
widely popularized. In evolutionary models, a population of candidate solutions
(which can be data structures or programs) is maintained, and new candidate
solutions are generated randomly by mutating or recombining variants in the
existing population. Periodically, the population is pruned by applying a selection
criterion (a fitness function) that allows only the better candidates to survive into
the next generation. Iterated over thousands of generations, the average quality of
the solutions in the candidate pool gradually increases. When it works, this kind
of algorithm can produce efficient solutions to a very wide range of problems—
solutions that may be strikingly novel and unintuitive, often looking more like
natural structures than anything that a human engineer would design. And in
principle, this can happen without much need for human input beyond the ini-
tial specification of the fitness function, which is often very simple. In practice,
however, getting evolutionary methods to work well requires skill and ingenu-
ity, particularly in devising a good representational format. Without an efficient
way to encode candidate solutions (a genetic language that matches latent struc-
ture in the target domain), evolutionary search tends to meander endlessly in a
vast search space or get stuck at a local optimum. Even if a good representational
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format is found, evolution is computationally demanding and is often defeated by
the combinatorial explosion.

Neural networks and genetic algorithms are examples of methods that stim-
ulated excitement in the 1990s by appearing to offer alternatives to the stagnat-
ing GOFAI paradigm. But the intention here is not to sing the praises of these
two methods or to elevate them above the many other techniques in machine
learning. In fact, one of the major theoretical developments of the past twenty
years has been a clearer realization of how superficially disparate techniques
can be understood as special cases within a common mathematical framework.
For example, many types of artificial neural network can be viewed as classi-
fiers that perform a particular kind of statistical calculation (maximum likeli-
hood estimation).? This perspective allows neural nets to be compared with
a larger class of algorithms for learning classifiers from examples—“decision
trees,” “logistic regression models,” “support vector machines,” “naive Bayes,”
“k-nearest-neighbors regression,” among others.”” In a similar manner, genetic
algorithms can be viewed as performing stochastic hill-climbing, which is
again a subset of a wider class of algorithms for optimization. Each of these
algorithms for building classifiers or for searching a solution space has its own
profile of strengths and weaknesses which can be studied mathematically.
Algorithms differ in their processor time and memory space requirements,
which inductive biases they presuppose, the ease with which externally pro-
duced content can be incorporated, and how transparent their inner workings
are to a human analyst.

Behind the razzle-dazzle of machine learning and creative problem-solving
thus lies a set of mathematically well-specified tradeoffs. The ideal is that of the
perfect Bayesian agent, one that makes probabilistically optimal use of available
information. This ideal is unattainable because it is too computationally demand-
ing to be implemented in any physical computer (see Box 1). Accordingly, one can
view artificial intelligence as a quest to find shortcuts: ways of tractably approxi-
mating the Bayesian ideal by sacrificing some optimality or generality while pre-
serving enough to get high performance in the actual domains of interest.

A reflection of this picture can be seen in the work done over the past couple of
decades on probabilistic graphical models, such as Bayesian networks. Bayesian
networks provide a concise way of representing probabilistic and conditional
independence relations that hold in some particular domain. (Exploiting such
independence relations is essential for overcoming the combinatorial explosion,
which is as much of a problem for probabilistic inference as it is for logical deduc-
tion.) They also provide important insight into the concept of causality.?®

One advantage of relating learning problems from specific domains to the gen-
eral problem of Bayesian inference is that new algorithms that make Bayesian
inference more efficient will then yield immediate improvements across many
different areas. Advances in Monte Carlo approximation techniques, for exam-
ple, are directly applied in computer vision, robotics, and computational genet-
ics. Another advantage is that it lets researchers from different disciplines more

» «
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Box 1 An optimal Bayesian agent

An ideal Bayesian agent starts out with a "prior probability distribution,” a func-
tion that assigns probabilities to each “possible world” (i.e. to each maximally
specific way the world could turn out to be).”” This prior incorporates an induc-
tive bias such that simpler possible worlds are assigned higher probabilities. (One
way to formally define the simplicity of a possible world is in terms of its
"Kolmogorov complexity,” a measure based on the length of the shortest com-
puter program that generates a complete description of the world.3%) The prior
also incorporates any background knowledge that the programmers wish to give
to the agent.

As the agent receives new information from its sensors, it updates its prob-
ability distribution by conditionalizing the distribution on the new information
according to Bayes' theorem.*' Conditionalization is the mathematical operation
that sets the new probability of those worlds that are inconsistent with the in-
formation received to zero and renormalizes the probability distribution over
the remaining possible worlds. The result is a “posterior probability distribution”
(which the agent may use as its new prior in the next time step). As the agent
makes observations, its probability mass thus gets concentrated on the shrinking
set of possible worlds that remain consistent with the evidence; and among these
possible worlds, simpler ones always have more probability.

Metaphorically, we can think of a probability as sand on a large sheet of paper.
The paper is partitioned into areas of various sizes, each area corresponding to
one possible world, with larger areas corresponding to simpler possible worlds.
Imagine also a layer of sand of even thickness spread across the entire sheet: this
is our prior probability distribution. Whenever an observation is made that rules
out some possible worlds, we remove the sand from the corresponding areas of
the paper and redistribute it evenly over the areas that remain in play. Thus, the
total amount of sand on the sheet never changes, it just gets concentrated into
fewer areas as observational evidence accumulates. This is a picture of learning in
its purest form. (To calculate the probability of a hypothesis, we simply measure
the amount of sand in all the areas that correspond to the possible worlds in
which the hypothesis is true.)

So far, we have defined a learning rule. To get an agent, we also need a deci-
sion rule. To this end, we endow the agent with a “utility function™ which assigns
a number to each possible world. The number represents the desirability of
that world according to the agent's basic preferences. Now, at each time step,
the agent selects the action with the highest expected utility.* (To find the ac-
tion with the highest expected utility, the agent could list all possible actions. It
could then compute the conditional probability distribution given the action—
the probability distribution that would result from conditionalizing its current
probability distribution on the observation that the action had just been taken.
Finally, it could calculate the expected value of the action as the sum of the value
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Box 1 Continued

of each possible world multiplied by the conditional probability of that world
given the action.*)

The learning rule and the decision rule together define an “optimality notion”
for an agent. (Essentially the same optimality notion has been broadly used in
artificial intelligence, epistemology, philosophy of science, economics, and statis-
tics.*) In reality, it is impossible to build such an agent because it is computation-
ally intractable to perform the requisite calculations. Any attempt to do so suc
cumbs to a combinatorial explosion just like the one described in our discussion
of GOFAIl. To see why this is so, consider one tiny subset of all possible worlds:
those that consist of a single computer monitor floating in an endless vacuum.
The monitor has 1,000 x 1,000 pixels, each of which is perpetually either on or
off. Even this subset of possible worlds is enormously large: the 2419001000 pos-
sible monitor states outnumber all the computations expected ever to take place
in the observable universe. Thus, we could not even enumerate all the possible
worlds in this tiny subset of all possible worlds, let alone perform more elaborate
computations on each of them individually.

Optimality notions can be of theoretical interest even if they are physically
unrealizable. They give us a standard by which to judge heuristic approximations,
and sometimes we can reason about what an optimal agent would do in some
special case. We will encounter some alternative optimality notions for artificial
agents in Chapter 12.

easily pool their findings. Graphical models and Bayesian statistics have become
a shared focus of research in many fields, including machine learning, statisti-
cal physics, bioinformatics, combinatorial optimization, and communication
theory.” A fair amount of the recent progress in machine learning has resulted
from incorporating formal results originally derived in other academic fields.
(Machine learning applications have also benefitted enormously from faster
computers and greater availability of large data sets.)

State of the art

Artificial intelligence already outperforms human intelligence in many domains.
Table 1 surveys the state of game-playing computers, showing that Als now beat
human champions in a wide range of games.*

These achievements might not seem impressive today. But this is because our
standards for what is impressive keep adapting to the advances being made. Expert
chess playing, for example, was once thought to epitomize human intellection. In
the view of several experts in the late fifties: “If one could devise a successful chess
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Table 1 Game-playing Al

Checkers

Backgammon

Traveller TCS

Othello

Chess

Crosswords

Superhuman

Superhuman

Superhuman in
collaboration
with human*

Superhuman

Superhuman

Expert level

Arthur Samuel's checkers program, originally
written in 1952 and later improved (the
1955 version incorporating machine learning),
becomes the first program to learn to play

a game better than its creator.”” In 1994,

the program CHINOOK beats the reigning
human champion, marking the first time a
program wins an official world championship
in a game of skill. In 2002, Jonathan Schaeffer
and his team “'solve"” checkers, i.e. produce a
program that always makes the best possible
move (combining alpha-beta search with a
database of 39 trillion endgame positions).
Perfect play by both sides leads to a draw.™

1979: The backgammon program BKG by
Hans Berliner defeats the world champion—
the first computer program to defeat (in an
exhibition match) a world champion in any
game—though Berliner later attributes the
win to luck with the dice rolls.*

1992: The backgammon program TD-
Gammon by Gerry Tesauro reaches
championship-level ability, using temporal
difference learning (a form of reinforcement
learning) and repeated plays against itself to
improve.*

In the years since, backgammon programs
have far surpassed the best human players."!

In both 1981 and 1982, Douglas Lenat's
program Eurisko wins the US championship
in Traveller TCS (a futuristic naval war game),
prompting rule changes to block its unortho-
dox strategies.” Eurisko had heuristics for
designing its fleet, and it also had heuristics
for modifying its heuristics.

1997: The program Logistello wins every
game in a six-game match against world
champion Takeshi Murakami.*

1997: Deep Blue beats the world chess
champion, Garry Kasparov. Kasparov claims
to have seen glimpses of true intelligence and
creativity in some of the computer’s moves.*
Since then, chess engines have continued to
improve.*

1999: The crossword-solving program Prov-
erb outperforms the average crossword-
solver”
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Table 1 Continued

2012: The program Dr. Fill, created by Matt
Ginsberg, scores in the top quartile among
the otherwise human contestants in the
American Crossword Puzzle Tournament.
(Dr. Fill's performance is uneven. It completes
perfectly the puzzle rated most difficult

by humans, yet is stumped by a couple of
nonstandard puzzles that involved spelling
backwards or writing answers diagonally))*

Scrabble Superhuman As of 2002, Scrabble-playing software sur-
passes the best human players.*
Bridge Equal to the By 2005, contract bridge playing software
best reaches parity with the best human bridge
players.®®
Jeopardy! Superhuman 2010: IBM's Watson defeats the two all-time-

greatest human Jeopardy! champions, Ken
Jennings and Brad Rutter:® Jecpardy! is a tel-
evised game show with trivia questions about
history, literature, sports, geography, pop
culture, science, and other topics. Questions
are presented in the form of clues, and often
involve wordplay.

Poker Varied Computer poker players remain slightly
below the best humans for full-ring Texas
hold 'em but perform at a superhuman level
in some poker variants.*?

FreeCell Superhuman Heuristics evolved using genetic algorithms
produce a solver for the solitaire game
FreeCell (which in its generalized form is NP-
complete) that is able to beat high-ranking
human players.>

Go Very strong As of 2012, the Zen series of go-playing pro-

amateur level grams has reached rank 6 dan in fast games
(the level of a very strong amateur player),
using Monte Carlo tree search and machine
learning techniques.®* Go-playing programs
have been improving at a rate of about 1 dan/
year in recent years. If this rate of improve-
ment continues, they might beat the human
world champion in about a decade.

machine, one would seem to have penetrated to the core of human intellectual
endeavor.” This no longer seems so. One sympathizes with John McCarthy, who
lamented: “As soon as it works, no one calls it Al anymore.”®

There is an important sense, however, in which chess-playing Al turned out
to be a lesser triumph than many imagined it would be. It was once supposed,
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perhaps not unreasonably, that in order for a computer to play chess at grandmas-
ter level, it would have to be endowed with a high degree of general intelligence.”
One might have thought, for example, that great chess playing requires being able
to learn abstract concepts, think cleverly about strategy, compose flexible plans,
make a wide range of ingenious logical deductions, and maybe even model one’s
opponent’s thinking. Not so. It turned out to be possible to build a perfectly fine
chess engine around a special-purpose algorithm.’® When implemented on the
fast processors that became available towards the end of the twentieth century, it
produces very strong play. But an AI built like that is narrow. It plays chess; it can
do no other.*

In other domains, solutions have turned out to be more complicated than
initially expected, and progress slower. The computer scientist Donald Knuth
was struck that “AI has by now succeeded in doing essentially everything that
requires ‘thinking’ but has failed to do most of what people and animals do
‘without thinking’—that, somehow, is much harder!™® Analyzing visual scenes,
recognizing objects, or controlling a robot’s behavior as it interacts with a natural
environment has proved challenging. Nevertheless, a fair amount of progress has
been made and continues to be made, aided by steady improvements in hardware.

Common sense and natural language understanding have also turned out to be
difficult. It is now often thought that achieving a fully human-level performance
on these tasks is an “Al-complete” problem, meaning that the difficulty of solv-
ing these problems is essentially equivalent to the difficulty of building generally
human-level intelligent machines.® In other words, if somebody were to succeed
in creating an Al that could understand natural language as well as a human
adult, they would in all likelihood also either already have succeeded in creating
an Al that could do everything else that human intelligence can do, or they would
be but a very short step from such a general capability.®

Chess-playing expertise turned out to be achievable by means of a surprisingly
simple algorithm. It is tempting to speculate that other capabilities—such as gen-
eral reasoning ability, or some key ability involved in programming—might like-
wise be achievable through some surprisingly simple algorithm. The fact that the
best performance at one time is attained through a complicated mechanism does
not mean that no simple mechanism could do the job as well or better. It might
simply be that nobody has yet found the simpler alternative. The Ptolemaic system
(with the Earth in the center, orbited by the Sun, the Moon, planets, and stars)
represented the state of the art in astronomy for over a thousand years, and its pre-
dictive accuracy was improved over the centuries by progressively complicating
the model: adding epicycles upon epicycles to the postulated celestial motions.
Then the entire system was overthrown by the heliocentric theory of Copernicus,
which was simpler and—though only after further elaboration by Kepler—more
predictively accurate.®

Artificial intelligence methods are now used in more areas than it would
make sense to review here, but mentioning a sampling of them will give an idea
of the breadth of applications. Aside from the game Als listed in Table 1, there
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are hearing aids with algorithms that filter out ambient noise; route-finders that
display maps and offer navigation advice to drivers; reccommender systems that
suggest books and music albums based on a user’s previous purchases and ratings;
and medical decision support systems that help doctors diagnose breast cancer,
recommend treatment plans, and aid in the interpretation of electrocardiograms.
There are robotic pets and cleaning robots, lawn-mowing robots, rescue robots,
surgical robots, and over a million industrial robots.* The world population of
robots exceeds 10 million.*

Modern speech recognition, based on statistical techniques such as hidden
Markov models, has become sufficiently accurate for practical use (some frag-
ments of this book were drafted with the help of a speech recognition program).
Personal digital assistants, such as Apple’s Siri, respond to spoken commands and
can answer simple questions and execute commands. Optical character recogni-
tion of handwritten and typewritten text is routinely used in applications such as
mail sorting and digitization of old documents.*

Machine translation remains imperfect but is good enough for many applica-
tions. Early systems used the GOFAI approach of hand-coded grammars that had
to be developed by skilled linguists from the ground up for each language. Newer
systems use statistical machine learning techniques that automatically build sta-
tistical models from observed usage patterns. The machine infers the parameters
for these models by analyzing bilingual corpora. This approach dispenses with
linguists: the programmers building these systems need not even speak the lan-
guages they are working with.*

Face recognition has improved sufficiently in recent years that it is now used
at automated border crossings in Europe and Australia. The US Department of
State operates a face recognition system with over 75 million photographs for visa
processing. Surveillance systems employ increasingly sophisticated AI and data-
mining technologies to analyze voice, video, or text, large quantities of which are
trawled from the world’s electronic communications media and stored in giant
data centers.

Theorem-proving and equation-solving are by now so well established that
they are hardly regarded as AI anymore. Equation solvers are included in sci-
entific computing programs such as Mathematica. Formal verification methods,
including automated theorem provers, are routinely used by chip manufacturers
to verify the behavior of circuit designs prior to production.

The US military and intelligence establishments have been leading the way to
the large-scale deployment of bomb-disposing robots, surveillance and attack
drones, and other unmanned vehicles. These still depend mainly on remote
control by human operators, but work is underway to extend their autonomous
capabilities.

Intelligent scheduling is a major area of success. The DART tool for automated
logistics planning and scheduling was used in Operation Desert Storm in 1991
to such effect that DARPA (the Defense Advanced Research Projects Agency in
the United States) claims that this single application more than paid back their
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thirty-year investment in AL® Airline reservation systems use sophisticated
scheduling and pricing systems. Businesses make wide use of Al techniques in
inventory control systems. They also use automatic telephone reservation systems
and helplines connected to speech recognition software to usher their hapless
customers through labyrinths of interlocking menu options.

Altechnologies underlie many Internet services. Software polices the world’s
email traffic, and despite continual adaptation by spammers to circumvent
the countermeasures being brought against them, Bayesian spam filters have
largely managed to hold the spam tide at bay. Software using Al components
is responsible for automatically approving or declining credit card transac-
tions, and continuously monitors account activity for signs of fraudulent use.
Information retrieval systems also make extensive use of machine learning.
The Google search engine is, arguably, the greatest Al system that has yet been
built.

Now, it must be stressed that the demarcation between artificial intelligence
and software in general is not sharp. Some of the applications listed above might
be viewed more as generic software applications rather than Al in particular—
though this brings us back to McCarthy’s dictum that when something works
it is no longer called AI. A more relevant distinction for our purposes is that
between systems that have a narrow range of cognitive capability (whether they
be called “AI” or not) and systems that have more generally applicable problem-
solving capacities. Essentially all the systems currently in use are of the former
type: narrow. However, many of them contain components that might also play
arole in future artificial general intelligence or be of service in its development—
components such as classifiers, search algorithms, planners, solvers, and repre-
sentational frameworks.

One high-stakes and extremely competitive environment in which AI sys-
tems operate today is the global financial market. Automated stock-trading
systems are widely used by major investing houses. While some of these are
simply ways of automating the execution of particular buy or sell orders issued
by a human fund manager, others pursue complicated trading strategies that
adapt to changing market conditions. Analytic systems use an assortment of
data-mining techniques and time series analysis to scan for patterns and trends
in securities markets or to correlate historical price movements with external
variables such as keywords in news tickers. Financial news providers sell news-
feeds that are specially formatted for use by such AI programs. Other systems
specialize in finding arbitrage opportunities within or between markets, or in
high-frequency trading that seeks to profit from minute price movements that
occur over the course of milliseconds (a timescale at which communication
latencies even for speed-of-light signals in optical fiber cable become significant,
making it advantageous to locate computers near the exchange). Algorithmic
high-frequency traders account for more than half of equity shares traded on
US markets.® Algorithmic trading has been implicated in the 2010 Flash Crash
(see Box 2).
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Box 2 The 2010 Flash Crash

By the afternoon of May, 6, 2010, US equity markets were already down 4%
on worries about the European debt crisis. At 2:32 pm., a large seller (a mu-
tual fund complex) initiated a sell algorithm to dispose of a large number of the
E-Mini S&P 500 futures contracts to be sold off at a sell rate linked to a measure
of minute-to-minute liquidity on the exchange. These contracts were bought by
algorithmic high-frequency traders, which were programmed to quickly eliminate
their temporary long positions by selling the contracts on to other traders. With
demand from fundamental buyers slacking, the algorithmic traders started to sell
the E-Minis primarily to other algorithmic traders, which in turn passed them
on to other algorithmic traders, creating a "hot potato” effect driving up trad-
ing volume—this being interpreted by the sell algorithm as an indicator of high
liquidity, prompting it to increase the rate at which it was putting E-Mini contracts
on the market, pushing the downward spiral. At some point, the high-frequency
traders started withdrawing from the market, drying up liquidity while prices con-
tinued to fall. At 2:45 p.m., trading on the E-Mini was halted by an automatic circuit
breaker, the exchange'’s stop logic functionality. When trading was restarted, a
mere five seconds later, prices stabilized and soon began to recover most of the
losses. But for a while, at the trough of the crisis, a trillion dollars had been wiped
offthe market, and spillover effects had led to a substantial number of trades in in-
dividual securities being executed at “absurd” prices, such as one cent or 100,000
dollars. After the market closed for the day, representatives of the exchanges met
with regulators and decided to break all trades that had been executed at prices
60% or more away from their pre-crisis levels (deeming such transactions “clearly
erroneous’ and thus subject to post facte cancellation under existing trade rules).”

The retelling here of this episode is a digression because the computer pro-
grams involved in the Flash Crash were not particularly intelligent or sophisti-
cated, and the kind of threat they created is fundamentally different from the
concerns we shall raise later in this book in relation to the prospect of machine
superintelligence. Nevertheless, these events illustrate several useful lessons.
One is the reminder that interactions between individually simple components
(such as the sell algorithm and the high-frequency algorithmic trading programs)
can produce complicated and unexpected effects. Systemic risk can build up in
a system as new elements are introduced, risks that are not obvious until after
something goes wrong (and sometimes not even then).”!

Another lesson is that smart professionals might give an instruction to a pro-
gram based on a sensible-seeming and normally sound assumption (e.g. that trad-
ing volume is a good measure of market liquidity), and that this can produce
catastrophic results when the program continues to act on the instruction with
iron-clad logical consistency even in the unanticipated situation where the as-
sumption turns out to be invalid. The algorithm just does what it does; and unless

continued
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Box 2 Continued

it is a very special kind of algorithm, it does not care that we clasp our heads and
gasp in dumbstruck horror at the absurd inappropriateness of its actions. This is
atheme that we will encounter again.

A third observation in relation to the Flash Crash is that while automa-
tion contributed to the incident, it also contributed to its resolution. The pre-
preprogrammed stop order logic, which suspended trading when prices moved
too far out of whack, was set to execute automatically because it had been cor-
rectly anticipated that the triggering events could happen on a timescale too swift
for humans to respond. The need for pre-installed and automatically executing
safety functionality—as opposed to reliance on runtime human supervision—
again foreshadows a theme that will be important in our discussion of machine
superintelligence.”

P g )

Opinions about the future of machine intelligence

Progress on two major fronts—towards a more solid statistical and information-
theoretic foundation for machine learning on the one hand, and towards the
practical and commercial success of various problem-specific or domain-specific
applications on the other—has restored to Al research some of its lost prestige.
There may, however, be a residual cultural effect on the Al community of its
earlier history that makes many mainstream researchers reluctant to align
themselves with over-grand ambition. Thus Nils Nilsson, one of the old-timers
in the field, complains that his present-day colleagues lack the boldness of spirit
that propelled the pioneers of his own generation:

Concern for “respectability” has had, | think, a stultifying effect on some Al research-
ers. | hear them saying things like, "Al used to be criticized for its flossiness. Now that
we have made solid progress, let us not risk losing our respectability.” One result of this
conservatism has been increased concentration on “weak Al"—the variety devoted to
providing aids to human thought—and away from “strong Al"—the variety that attempts
to mechanize human-level intelligence.”

Nilsson’s sentiment has been echoed by several others of the founders, including
Marvin Minsky, John McCarthy, and Patrick Winston.™

The last few years have seen a resurgence of interest in Al, which might yet
spill over into renewed efforts towards artificial general intelligence (what
Nilsson calls “strong AI”). In addition to faster hardware, a contemporary pro-
ject would benefit from the great strides that have been made in the many sub-
fields of Al in software engineering more generally, and in neighboring fields
such as computational neuroscience. One indication of pent-up demand for
quality information and education is shown in the response to the free online
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offering of an introductory course in artificial intelligence at Stanford Uni-
versity in the fall of 2011, organized by Sebastian Thrun and Peter Norvig. Some
160,000 students from around the world signed up to take it (and 23,000 com-
pleted it).”®

Expert opinions about the future of Al vary wildly. There is disagreement about
timescales as well as about what forms AI might eventually take. Predictions
about the future development of artificial intelligence, one recent study noted,
“are as confident as they are diverse.””

Although the contemporary distribution of belief has not been very carefully
measured, we can get a rough impression from various smaller surveys and infor-
mal observations. In particular, a series of recent surveys have polled members
of several relevant expert communities on the question of when they expect
“human-level machine intelligence” (HLMI) to be developed, defined as “one
that can carry out most human professions at least as well as a typical human.””
Results are shown in Table 2. The combined sample gave the following (median)
estimate: 10% probability of HLMI by 2022, 50% probability by 2040, and 90%
probability by 2075. (Respondents were asked to premiss their estimates on the
assumption that “human scientific activity continues without major negative
disruption.”)

These numbers should be taken with some grains of salt: sample sizes are quite
small and not necessarily representative of the general expert population. They
are, however, in concordance with results from other surveys.”

The survey results are also in line with some recently published interviews with
about two-dozen researchers in Al-related fields. For example, Nils Nilsson has
spent a long and productive career working on problems in search, planning,
knowledge representation, and robotics; he has authored textbooks in artificial
intelligence; and he recently completed the most comprehensive history of the
field written to date.”” When asked about arrival dates for HLMI, he offered the
following opinion:®

10% chance: 2030
50% chance: 2050
90% chance: 2100

Table 2 When will human-level machine intelligence be attained?®

10% 50% 90%
PT-Al 2023 2048 2080
AGI 2022 2040 2065
EETN 2020 2050 2093
TOP100 2024 2050 2070
Combined 2022 2040 2075
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Judging from the published interview transcripts, Professor Nilsson’s probabil-
ity distribution appears to be quite representative of many experts in the area—
though again it must be emphasized that there is a wide spread of opinion: there
are practitioners who are substantially more boosterish, confidently expecting
HLMI in the 2020-40 range, and others who are confident either that it will
never happen or that it is indefinitely far off.* In addition, some interviewees
feel that the notion of a “human level” of artificial intelligence is ill-defined or
misleading, or are for other reasons reluctant to go on record with a quantitative
prediction.

My own view is that the median numbers reported in the expert survey do
not have enough probability mass on later arrival dates. A 10% probability of
HLMI not having been developed by 2075 or even 2100 (after conditionalizing on
“human scientific activity continuing without major negative disruption”) seems
too low.

Historically, Al researchers have not had a strong record of being able to pre-
dict the rate of advances in their own field or the shape that such advances would
take. On the one hand, some tasks, like chess playing, turned out to be achiev-
able by means of surprisingly simple programs; and naysayers who claimed that
machines would “never” be able to do this or that have repeatedly been proven
wrong. On the other hand, the more typical errors among practitioners have
been to underestimate the difficulties of getting a system to perform robustly on
real-world tasks, and to overestimate the advantages of their own particular pet
project or technique.

The survey also asked two other questions of relevance to our inquiry. One
inquired of respondents about how much longer they thought it would take to
reach superintelligence assuming human-level machine is first achieved. The
results are in Table 3.

Another question inquired what they thought would be the overall long-term
impact for humanity of achieving human-level machine intelligence. The answers
are summarized in Figure 2.

My own views again differ somewhat from the opinions expressed in the sur-
vey. I assign a higher probability to superintelligence being created relatively soon
after human-level machine intelligence. I also have a more polarized outlook on
the consequences, thinking an extremely good or an extremely bad outcome to
be somewhat more likely than a more balanced outcome. The reasons for this will
become clear later in the book.

Table 3 How long from human level to superintelligence?

Within 2 years after HLMI Within 30 years after HLMI
TOP100 5% 50%
Combined 10% 75%
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Figure 2 Overall long-term impact of HLMI.*

Small sample sizes, selection biases, and—above all—the inherent unreliability
of the subjective opinions elicited mean that one should not read too much into
these expert surveys and interviews. They do not let us draw any strong conclu-
sion. But they do hint at a weak conclusion. They suggest that (at least in lieu of
better data or analysis) it may be reasonable to believe that human-level machine
intelligence has a fairly sizeable chance of being developed by mid-century, and
that it has a non-trivial chance of being developed considerably sooner or much
later; that it might perhaps fairly soon thereafter result in superintelligence; and
that a wide range of outcomes may have a significant chance of occurring, includ-
ing extremely good outcomes and outcomes that are as bad as human extinc-
tion.* At the very least, they suggest that the topic is worth a closer look.
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CHAPTER 2

Paths to superintelligence

achines are currently far inferior to humans in general intelligence.

Yet one day (we have suggested) they will be superintelligent. How do

we get from here to there? This chapter explores several conceivable
technological paths. We look at artificial intelligence, whole brain emulation,
biological cognition, and human-machine interfaces, as well as networks and
organizations. We evaluate their different degrees of plausibility as pathways to
superintelligence. The existence of multiple paths increases the probability that
the destination can be reached via at least one of them.

We can tentatively define a superintelligence as any intellect that greatly exceeds
the cognitive performance of humans in virtually all domains of interest.! We will
have more to say about the concept of superintelligence in the next chapter, where
we will subject it to a kind of spectral analysis to distinguish some different pos-
sible forms of superintelligence. But for now, the rough characterization just given
will suffice. Note that the definition is noncommittal about how the superintelli-
gence is implemented. It is also noncommittal regarding qualia: whether a super-
intelligence would have subjective conscious experience might matter greatly for
some questions (in particular for some moral questions), but our primary focus
here is on the causal antecedents and consequences of superintelligence, not on
the metaphysics of mind.

The chess program Deep Fritz is not a superintelligence on this definition,
since Fritz is only smart within the narrow domain of chess. Certain kinds of
domain-specific superintelligence could, however, be important. When referring
to superintelligent performance limited to a particular domain, we will note the
restriction explicitly. For instance, an “engineering superintelligence” would be
an intellect that vastly outperforms the best current human minds in the domain
of engineering. Unless otherwise noted, we use the term to refer to systems that
have a superhuman level of general intelligence.

But how might we create superintelligence? Let us examine some possible paths.
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Artificial intelligence

Readers of this chapter must not expect a blueprint for programming an artificial
general intelligence. No such blueprint exists yet, of course. And had I been in
possession of such a blueprint, I most certainly would not have published it in a
book. (If the reasons for this are not immediately obvious, the arguments in sub-
sequent chapters will make them clear.)

We can, however, discern some general features of the kind of system that
would be required. It now seems clear that a capacity to learn would be an integral
feature of the core design of a system intended to attain general intelligence, not
something to be tacked on later as an extension or an afterthought. The same
holds for the ability to deal effectively with uncertainty and probabilistic informa-
tion. Some faculty for extracting useful concepts from sensory data and internal
states, and for leveraging acquired concepts into flexible combinatorial represen-
tations for use in logical and intuitive reasoning, also likely belong among the
core design features in a modern Al intended to attain general intelligence.

The early Good Old-Fashioned Artificial Intelligence systems did not, for the
most part, focus on learning, uncertainty, or concept formation, perhaps because
techniques for dealing with these dimensions were poorly developed at the time.
This is not to say that the underlying ideas are all that novel. The idea of using
learning as a means of bootstrapping a simpler system to human-level intelligence
can be traced back at least to Alan Turing’s notion of a “child machine,” which he
wrote about in 1950:

Instead of trying to produce a programme to simulate the adult mind, why not rather try
to produce one which simulates the child's? If this were then subjected to an appropriate
course of education one would obtain the adult brain.?

Turing envisaged an iterative process to develop such a child machine:

We cannot expect to find a good child machine at the first attempt. One must experiment
with teaching one such machine and see how well it learns. One can then try another
and see if it is better or worse. There is an obvious connection between this process
and evolution. . . . One may hope, however, that this process will be more expeditious
than evolution. The survival of the fittest is a slow method for measuring advantages. The
experimenter; by the exercise of intelligence, should be able to speed it up. Equally impor-
tant is the fact that he is not restricted to random mutations. If he can trace a cause for
some weakness he can probably think of the kind of mutation which will improve it.*

We know that blind evolutionary processes can produce human-level general
intelligence, since they have already done so at least once. Evolutionary processes
with foresight—that is, genetic programs designed and guided by an intelligent
human programmer—should be able to achieve a similar outcome with far greater
efficiency. This observation has been used by some philosophers and scientists,

ARTIFICIAL INTELLIGENCE | 23



including David Chalmers and Hans Moravec, to argue that human-level Al is
not only theoretically possible but feasible within this century.”> The idea is that
we can estimate the relative capabilities of evolution and human engineering to
produce intelligence, and find that human engineering is already vastly superior
to evolution in some areas and is likely to become superior in the remaining areas
before too long. The fact that evolution produced intelligence therefore indicates
that human engineering will soon be able to do the same. Thus, Moravec wrote
(already back in 1976):

The existence of several examples of intelligence designed under these constraints should
give us great confidence that we can achieve the same in short order. The situation is
analogous to the history of heavier than air flight, where birds, bats and insects clearly
demonstrated the possibility before our culture mastered it.®

One needs to be cautious, though, in what inferences one draws from this line
of reasoning. It is true that evolution produced heavier-than-air flight, and that
human engineers subsequently succeeded in doing likewise (albeit by means
of a very different mechanism). Other examples could also be adduced, such as
sonar, magnetic navigation, chemical weapons, photoreceptors, and all kinds
of mechanic and kinetic performance characteristics. However, one could
equally point to areas where human engineers have thus far failed to match
evolution: in morphogenesis, self-repair, and the immune defense, for example,
human efforts lag far behind what nature has accomplished. Moravec’s argu-
ment, therefore, cannot give us “great confidence” that we can achieve human-
level artificial intelligence “in short order.” At best, the evolution of intelligent
life places an upper bound on the intrinsic difficulty of designing intelligence.
But this upper bound could be quite far above current human engineering
capabilities.

Another way of deploying an evolutionary argument for the feasibility of Al is
via the idea that we could, by running genetic algorithms on sufficiently fast com-
puters, achieve results comparable to those of biological evolution. This version of
the evolutionary argument thus proposes a specific method whereby intelligence
could be produced.

But is it true that we will soon have computing power sufficient to recapitu-
late the relevant evolutionary processes that produced human intelligence? The
answer depends both on how much computing technology will advance over
the next decades and on how much computing power would be required to run
genetic algorithms with the same optimization power as the evolutionary process
of natural selection that lies in our past. Although, in the end, the conclusion we
get from pursuing this line of reasoning is disappointingly indeterminate, it is
instructive to attempt a rough estimate (see Box 3). If nothing else, the exercise
draws attention to some interesting unknowns.

The upshot is that the computational resources required to simply replicate the
relevant evolutionary processes on Earth that produced human-level intelligence
are severely out of reach—and will remain so even if Moore’s law were to continue
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Box 3 What would it take to recapitulate evolution?

Not every feat accomplished by evolution in the course of the development of
human intelligence is relevant to a human engineer trying to artificially evolve
machine intelligence. Only a small portion of evolutionary selection on Earth
has been selection for intelligence. More specifically, the problems that human
engineers cannot trivially bypass may have been the target of a very small portion
of total evolutionary selection. For example, since we can run our computers on
electrical power, we do not have to reinvent the molecules of the cellular energy
economy in order to create intelligent machines—yet such molecular evolution
of metabolic pathways might have used up a large part of the total amount of se-
lection power that was available to evolution over the course of Farth's history.”

One might argue that the key insights for Al are embodied in the structure of
nervous systems, which came into existence less than a billion years ago® If we take
that view, then the number of relevant “experiments” available to evolution is dras-
tically curtailed. There are some 4—6x10* prokaryotes in the world today, but only
10" insects, and fewer than 10" humans (while pre-agricultural populations were
orders of magnitude smaller).” These numbers are only moderately intimidating.

Evolutionary algorithms, however, require not only variations to select among
but also a fitness function to evaluate variants, and this is typically the most com-
putationally expensive component. A fitness function for the evolution of arti-
ficial intelligence plausibly requires simulation of neural development, learning,
and cognition to evaluate fitness. We might thus do better not to look at the raw
number of organisms with complex nervous systems, but instead to attend to
the number of neurons in biological organisms that we might need to simulate to
mimic evolution's fitness function. We can make a crude estimate of that latter
quantity by considering insects, which dominate terrestrial animal biomass (with
ants alone estimated to contribute some 15-209%).° Insect brain size varies sub-
stantially, with large and social insects sporting larger brains: a honeybee brain has
just under 10° neurons, a fruit fly brain has 10° neurons, and ants are in between
with 250,000 neurons." The majority of smaller insects may have brains of only a
few thousand neurons. Erring on the side of conservatively high, if we assigned all
10" insects fruit-fly numbers of neurons, the total would be 10 insect neurons
in the world. This could be augmented with an additional order of magnitude to
account for aquatic copepods, birds, reptiles, mammals, etc,, to reach 10%. (By
contrast, in pre-agricultural times there were fewer than 10” humans, with under
10" neurons each: thus fewer than 10 human neurons in total, though humans
have a higher number of synapses per neuron.)

The computational cost of simulating one neuron depends on the level of
detail that one includes in the simulation. Extremely simple neuron models use
about 1,000 floating-point operations per second (FLOPS) to simulate one neu-
ron (in real-time). The electrophysiologically realistic Hodgkin—Huxley model

continued
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Box 3 Continued

uses 1,200,000 FLOPS. A more detailed multi-compartmental model would
add another three to four orders of magnitude, while higher-level models that
abstract systems of neurons could subtract two to three orders of magnitude
from the simple models.” If we were to simulate 10** neurons over a billion years
of evolution (longer than the existence of nervous systems as we know them),
and we allow our computers to run for one year, these figures would give us a
requirement in the range of 10°'-10** FLOPS. For comparison, China's Tianhe-2,
the world's most powerful supercomputer as of September 2013, provides only
3.39%10'" FLOPS. In recent decades, it has taken approximately 6.7 years for
commedity computers to increase in power by one order of magnitude. Even a
century of continued Moore's law would not be enough to close this gap. Running
more specialized hardware, or allowing longer run-times, could contribute only a
few more orders of magnitude.

This figure is conservative in another respect. Evolution achieved human intel-
ligence without aiming at this outcome. In other words, the fitness functions for
natural organisms do not select only for intelligence and its precursors.® Even
environments in which organisms with superior information processing skills
reap various rewards may not select for intelligence, because improvements to
intelligence can (and often do) impose significant costs, such as higher energy con-
sumption or slower maturation times, and those costs may outweigh whatever
benefits are gained from smarter behavior. Excessively deadly environments also
reduce the value of intelligence: the shorter one's expected lifespan, the less time
there will be for increased learning ability to pay off. Reduced selective pressure
for intelligence slows the spread of intelligence-enhancing innovations, and thus
the opportunity for selection to favor subsequent innovations that depend on
them. Furthermore, evolution may wind up stuck in local optima that humans
would notice and bypass by altering tradeoffs between exploitation and explor-
ation or by providing a smooth progression of increasingly difficult intelligence
tests* And as mentioned earlier, evolution scatters much of its selection power
ontraits that are unrelated to intelligence (such as Red Queen's races of competi-
tive co-evolution between immune systems and parasites). Evolution continues
to waste resources producing mutations that have proved consistently lethal, and
it fails to take advantage of statistical similarities in the effects of different muta-
tions. These are all inefficiencies in natural selection (when viewed as a means
of evolving intelligence) that it would be relatively easy for a human engineer to
avoid while using evolutionary algorithms to develop intelligent software.

It is plausible that eliminating inefficiencies like those just described would trim
many orders of magnitude off the 10*'-10* FLOPS range calculated earlier. Un-
fortunately, it is difficult to know how many orders of magnitude. It is difficult
even to make a rough estimate—for aught we know, the efficiency savings could
be five orders of magnitude, or ten, or twenty-five.” )
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Figure 3 Supercomputer performance. In a narrow sense, “Moore’s law" refers to the obser-
vation that the number of transistors on integrated circuits have for several decades doubled
approximately every two years. However, the term is often used to refer to the more general
observation that many performance metrics in computing technology have followed a similarly fast
exponential trend. Here we plot peak speed of the world's fastest supercomputer as a function
of time (on a logarithmic vertical scale). In recent years, growth in the serial speed of processors
has stagnated, but increased use of parallelization has enabled the total number of computations
performed to remain on the trend line.®

for a century (cf. Figure 3). It is plausible, however, that compared with brute-force
replication of natural evolutionary processes, vast efficiency gains are achievable
by designing the search process to aim for intelligence, using various obvious
improvements over natural selection. Yet it is very hard to bound the magnitude
of those attainable efficiency gains. We cannot even say whether they amount to
five or to twenty-five orders of magnitude. Absent further elaboration, therefore,
evolutionary arguments are not able to meaningfully constrain our expectations
of either the difficulty of building human-level machine intelligence or the time-
scales for such developments.

There is a further complication with these kinds of evolutionary considera-
tions, one that makes it hard to derive from them even a very loose upper bound
on the difficulty of evolving intelligence. We must avoid the error of inferring,
from the fact that intelligent life evolved on Earth, that the evolutionary processes
involved had a reasonably high prior probability of producing intelligence. Such
an inference is unsound because it fails to take account of the observation selec-
tion effect that guarantees that all observers will find themselves having origi-
nated on a planet where intelligent life arose, no matter how likely or unlikely it
was for any given such planet to produce intelligence. Suppose, for example, that
in addition to the systematic effects of natural selection it required an enormous
amount of lucky coincidence to produce intelligent life—enough so that intelligent
life evolves on only one planet out of every 10°° planets on which simple replicators
arise. In that case, when we run our genetic algorithms to try to replicate what nat-
ural evolution did, we might find that we must run some 10*" simulations before
we find one where all the elements come together in just the right way. This seems
fully consistent with our observation that life did evolve here on Earth. Only by
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careful and somewhat intricate reasoning—by analyzing instances of convergent
evolution of intelligence-related traits and engaging with the subtleties of obser-
vation selection theory—can we partially circumvent this epistemological bar-
rier. Unless one takes the trouble to do so, one is not in a position to rule out the
possibility that the alleged “upper bound” on the computational requirements for
recapitulating the evolution of intelligence derived in Box 3 might be too low by
thirty orders of magnitude (or some other such large number).”

Another way of arguing for the feasibility of artificial intelligence is by point-
ing to the human brain and suggesting that we could use it as a template for a
machine intelligence. One can distinguish different versions of this approach
based on how closely they propose to imitate biological brain functions. At one
extreme—that of very close imitation—we have the idea of whole brain emulation,
which we will discuss in the next subsection. At the other extreme are approaches
that take their inspiration from the functioning of the brain but do not attempt
low-level imitation. Advances in neuroscience and cognitive psychology—which
will be aided by improvements in instrumentation—should eventually uncover
the general principles of brain function. This knowledge could then guide Al
efforts. We have already encountered neural networks as an example of a brain-
inspired Al technique. Hierarchical perceptual organization is another idea
that has been transferred from brain science to machine learning. The study of
reinforcement learning has been motivated (at least in part) by its role in psy-
chological theories of animal cognition, and reinforcement learning techniques
(e.g. the “TD-algorithm”) inspired by these theories are now widely used in AL
More cases like these will surely accumulate in the future. Since there is a limited
number—perhaps a very small number—of distinct fundamental mechanisms
that operate in the brain, continuing incremental progress in brain science should
eventually discover them all. Before this happens, though, it is possible that a
hybrid approach, combining some brain-inspired techniques with some purely
artificial methods, would cross the finishing line. In that case, the resultant sys-
tem need not be recognizably brain-like even though some brain-derived insights
were used in its development.

The availability of the brain as template provides strong support for the claim
that machine intelligence is ultimately feasible. This, however, does not enable us
to predict when it will be achieved because it is hard to predict the future rate of
discoveries in brain science. What we can say is that the further into the future
we look, the greater the likelihood that the secrets of the brain’s functionality will
have been decoded sufficiently to enable the creation of machine intelligence in
this manner.

Different people working toward machine intelligence hold different views
about how promising neuromorphic approaches are compared with approaches
that aim for completely synthetic designs. The existence of birds demonstrated
that heavier-than-air flight was physically possible and prompted efforts to build
flying machines. Yet the first functioning airplanes did not flap their wings. The
jury is out on whether machine intelligence will be like flight, which humans
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achieved through an artificial mechanism, or like combustion, which we initially
mastered by copying naturally occurring fires.

Turing’s idea of designing a program that acquires most of its content by learn-
ing, rather than having it pre-programmed at the outset, can apply equally to
neuromorphic and synthetic approaches to machine intelligence.

A variation on Turing’s conception of a child machine is the idea of a “seed
AL™" Whereas a child machine, as Turing seems to have envisaged it, would have
a relatively fixed architecture that simply develops its inherent potentialities by
accumulating content, a seed AI would be a more sophisticated artificial intel-
ligence capable of improving its own architecture. In the early stages of a seed A,
such improvements might occur mainly through trial and error, information
acquisition, or assistance from the programmers. At its later stages, however, a
seed Al should be able to understand its own workings sufficiently to engineer
new algorithms and computational structures to bootstrap its cognitive per-
formance. This needed understanding could result from the seed Al reaching
a sufficient level of general intelligence across many domains, or from crossing
some threshold in a particularly relevant domain such as computer science or
mathematics.

This brings us to another important concept, that of “recursive self-
improvement.” A successful seed Al would be able to iteratively enhance itself:
an early version of the Al could design an improved version of itself, and the
improved version—being smarter than the original—might be able to design an
even smarter version of itself, and so forth.?® Under some conditions, such a pro-
cess of recursive self-improvement might continue long enough to result in an
intelligence explosion—an event in which, in a short period of time, a system’s
level of intelligence increases from a relatively modest endowment of cognitive
capabilities (perhaps sub-human in most respects, but with a domain-specific tal-
ent for codingand Al research) to radical superintelligence. We will return to this
important possibility in Chapter 4, where the dynamics of such an event will be
analyzed more closely. Note that this model suggests the possibility of surprises:
attempts to build artificial general intelligence might fail pretty much completely
until the last missing critical component is put in place, at which point a seed Al
might become capable of sustained recursive self-improvement.

Before we end this subsection, there is one more thing that we should emphasize,
which is that an artificial intelligence need not much resemble a human mind. Als
could be—indeed, it is likely that most will be—extremely alien. We should expect
that they will have very different cognitive architectures than biological intelli-
gences, and in their early stages of development they will have very different pro-
files of cognitive strengths and weaknesses (though, as we shall later argue, they
could eventually overcome any initial weakness). Furthermore, the goal systems
of Als could diverge radically from those of human beings. There is no reason to
expect a generic Al to be motivated by love or hate or pride or other such common
human sentiments: these complex adaptations would require deliberate expen-
sive effort to recreate in Als. This is at once a big problem and a big opportunity.
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We will return to the issue of AI motivation in later chapters, but it is so central to
the argument in this book that it is worth bearing in mind throughout.

Whole brain emulation

In whole brain emulation (also known as “uploading”), intelligent software would
be produced by scanning and closely modeling the computational structure
of a biological brain. This approach thus represents a limiting case of drawing
inspiration from nature: barefaced plagiarism. Achieving whole brain emulation
requires the accomplishment of the following steps.

First, a sufficiently detailed scan of a particular human brain is created. This
might involve stabilizing the brain post-mortem through vitrification (a process
that turns tissue into a kind of glass). A machine could then dissect the tissue into
thin slices, which could be fed into another machine for scanning, perhaps by
an array of electron microscopes. Various stains might be applied at this stage to
bring out different structural and chemical properties. Many scanning machines
could work in parallel to process multiple brain slices simultaneously.

Second, the raw data from the scanners is fed to a computer for automated
image processing to reconstruct the three-dimensional neuronal network that
implemented cognition in the original brain. In practice, this step might pro-
ceed concurrently with the first step to reduce the amount of high-resolution
image data stored in buffers. The resulting map is then combined with a library of
neurocomputational models of different types of neurons or of different neuronal
elements (such as particular kinds of synaptic connectors). Figure 4 shows some
results of scanning and image processing produced with present-day technology.

In the third stage, the neurocomputational structure resulting from the previ-
ous step is implemented on a sufficiently powerful computer. If completely suc-
cessful, the result would be a digital reproduction of the original intellect, with
memory and personality intact. The emulated human mind now exists as soft-
ware on a computer. The mind can either inhabit a virtual reality or interface with
the external world by means of robotic appendages.

The whole brain emulation path does not require that we figure out how human
cognition works or how to program an artificial intelligence. It requires only that
we understand the low-level functional characteristics of the basic computational
elements of the brain. No fundamental conceptual or theoretical breakthrough is
needed for whole brain emulation to succeed.

Wholebrain emulation does, however, require some rather advanced enabling
technologies. There are three key prerequisites: (1) scanning: high-throughput
microscopy with sufficient resolution and detection of relevant properties; (2)
translation: automated image analysis to turn raw scanning data into an inter-
preted three-dimensional model of relevant neurocomputational elements; and
(3) simulation: hardware powerful enough to implement the resultant compu-
tational structure (see Table 4). (In comparison with these more challenging
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Figure 4 Reconstructing 3D neuro-
anatomy from electron microscope
images. Upper left: A typical electron
micrograph showing cross-sections
of neuronal matter—dendrites and
axons. Upper right: Volume image of
rabbit retinal neural tissue acquired
by serial block-face scanning electron
microscopy.”’ Individual 2D images
have been stacked into a cube (with a
side of approximately 11 um). Bottom:
Reconstruction of a subset of the
neuronal projections filling a volume
of neuropil, generated by an auto-
mated segmentation algorithm.??

steps, the construction of a basic virtual reality or a robotic embodiment with
an audiovisual input channel and some simple output channel is relatively
easy. Simple yet minimally adequate I/O seems feasible already with present
technology.”)

There is good reason to think that the requisite enabling technologies are
attainable, though not in the near future. Reasonable computational models
of many types of neuron and neuronal processes already exist. Image recogni-
tion software has been developed that can trace axons and dendrites through
a stack of two-dimensional images (though reliability needs to be improved).
And there are imaging tools that provide the necessary resolution—with a
scanning tunneling microscope it is possible to “see” individual atoms, which
is a far higher resolution than needed. However, although present knowledge
and capabilities suggest that there is no in-principle barrier to the develop-
ment of the requisite enabling technologies, it is clear that a very great deal of
incremental technical progress would be needed to bring human whole brain
emulation within reach.** For example, microscopy technology would need
not just sufficient resolution but also sufficient throughput. Using an atomic-
resolution scanning tunneling microscope to image the needed surface area
would be far too slow to be practicable. It would be more plausible to use a
lower-resolution electron microscope, but this would require new methods for

WHOLE BRAIN EMULATION | 31



