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Preface
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WHY SYMMETRY?

Some personal reflections

P. Roman
Boston University, Emeritus

Abstract e What is symmetry? e Why is symmetry important in science? e Historical
developments. o Mathematical characterization of Symmetry. e Basic areas
where symmetry principles are used. # Some special topics.

Thanks to the enthusiasm and administrative skills of Bruno Gruber, and to
the adroitness of his assistants, as well as the generosity of many sponsors, for
thirty years now we have been regaled with a periodic sequence of inspiring,
exciting, pleasurable encounters centered on the topic “Symmetries in Science”.
Since this is, unfortunately, the last occasion when this group of colleagues (nay
friends) meet, perhaps it will be not amiss to distance ourselves, briefly, from
details of our field, and spend some time on contemplating the deeper, perhaps
we may say philosophical aspects of Symmetry.

What follows will certainly not be a scholarly, exhaustive, authoritative treat-
ment of the topic. I can only transmit to you very individualistic, almost per-
sonal thoughts (or rather sentiments) about the topic in question. There have
been, virtually, whole libraries written on symmetry, and I cannot add more
wisdom. I shall not even be systematic in my exposition, and won’t attempt to
give credit to the workers in the field. If T quote opinion of authors, these will
be haphazard and far from comprehensive. Further, I'll take the viewpoint of
a physicist, neglecting, for instance, crystallography, chemistry, biology. Even
within physics, my treatment will be prejudiced by the views of the quantum
theory of “fundamental particles” and interactions.

Let us now start with the question: What is symmetry? To answer in
the broadest sense, it will be well to go back in time as far as the early stage
of mankind’s awakening. Perplexed and troubled by the apparent diversity,
complexity, and unpredictability of nature, man conceived and took solace in
the notion of an all-embracing, ultimate harmony of the Universe. “Harmony”,
that is congruence of parts, balance and unification of elements, is but one of the
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synonyms we use for “symmetry”. In fact, only the belief in some underlying
symmetry makes it possible for us to develop science. We shall come back
to this point later; right now I'd like to quote Hermann Weyl, one of the four
greatest mathematicians of the 20th century, to succinctly sum up these thoughts.
“Symmetry is one of the ideas” - Weyl notes - “by which man throughout the
ages has tried to comprehend and create order, beauty, and perfection.” This
applies to science, art, and human conduct in general.

Well then: why is symmetry important for science? Once again, we must
delve deeper and ask first what is science? Contrary to what is taught in most
junior high schools, science is not “the explanation of Nature”. Nature, be it
even objective reality, just is. It cannot be “explained”, at least not as far as
science is concerned. Existence is a primary category, including, by the way,
ourselves, too. (Which would imply that the explainer himself must be ex-
plained.) And certainly science is much more than “the description of Nature”.
That alone would be ad hoc, incidental, utterly unsatisfying. We have gone
far beyond such a casual phenomenology and even empiricism. We want to
“understand”, and we have in part succeeded. Indeed, as Anatole France has
put it: “The wonder is not that the field of stars is so vast, - but that man has
measured it”. And Einstein went even further: “The most incomprehensible
thing about our Universe is that it can be comprehended”, says he. Compre-
hended? What do we mean by that? Perhaps surprisingly, several humanists
of the past came near to a comprehensive characterization of science. Goethe
says: “Herein consists the scientific method: that we show the concept of a
single phenomenon in its connection with the rest of the world of ideas.” And
the twentieth century German writer Hermann Hesse tells us: “Every science is
...akind of ordering, simplifying; an attempt to make digestible for the spirit
that which is indigestible.”

Indeed, we are safe to say: Science is the attempt to correlate individual
phenomena and events into a coherent framework (or systems of such frame-
works). The correlation of part-entities into a coherent framework must satisfy
two criteria (at least): 1. It should be systematic, comprehensible, attractive,
nay: beautiful; 2. it should have predictive power, that is, the framework should
encompass special items that are extensions of the already encompassed ones.

A minute’s reflection then tells us: the essential feature of a scientific theory is
structure. And the framework for studying, analyzing, understanding, enjoying
structure is mathematics. That is why Wigner spoke of the “unreasonable
effectiveness of mathematics in the natural sciences” and came to the conclusion
that “mathematics does play a sovereign role in physics”, “it is, in a very real
sense, the correct language” of science.

Finally, we are back at the concept of symmetry. Mathematics deals with
structures in two basic ways: a) by topology, b) by algebra. Topological struc-
tures use mostly analysis; algebraic structures are much more varied and use
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mostly construction and composition. The concept of symmetry is a central
part of algebraic systems in revealing and classification of structures. This is
the answer to our question: why is symmetry so important for science.

Now that we have clarified the basic role of symmetry in scientific thinking,
we may come back for a moment to reconsider our earlier casual observation,
viz. that symmetry is a crucial element in the perception of beauty. The con-
nection to science goes both ways. We recognize willingly and with ease a
structure that, analyzed in terms of symmetry, is beautiful. Conversely, a struc-
ture scrutinized by symmetry-analysis becomes acceptable to us only if we find
that it is beautiful. It will be well to remember Einstein’s dictum: “A theory is
acceptable to us only if it is beautiful”. A similar statement was made by Dirac
when someone, in public, questioned him as to why he chose precisely his ex-
perimentally then unsupported equation out of other possible ones. “Because
it was beautiful” he answered. And, of course, beauty is created, assessed,
enjoyed via symmetry. Thus the circle closes.

We shall now remark on the historical development of the idea of symme-
try. Already to prehistoric man obvious, natural, concrete, geometric symmetry
in Nature was manifest: he recognized the patterns on sea-shells or the multi-
farious forms of snowflake crystals. Later these geometric symmetries became
consciously imitated and applied in art - to be soon abstracted to more sophisti-
cated manifestations (such as balance of colors), and applied to music (both in
the guise of harmony as well as rhythmic patterns). These roles of symmetry
continued and were amplified up to the present, but a discussion would lead us
too far.

Concerning rather the evolution of symmetry-ideas in science, we observe
that the development was slower. If we disregard such fancies as the orders of
Celestial Spheres and their music, it appears that the implanting of symmetry-
ideas into physics begins only with the late renaissance. But Galileo, and later
even Newton, relied on symmetry principles only unconsciously and implicitly.
Nevertheless, Newton made a giant step forward. He realized that in the study of
phenomenaone must make aclear distinction between the underlying dynamical
law on the one hand and the initial conditions on the other. The former are
rigorously structured; the latter are entirely irrelevant and haphazard, in that
they are not encompassed by the law. This separation made analytical science at
all possible. The for us at present important thing here is that the set of possible
initial conditions is obtained by applying onto the system certain symmetry
transformations. For example, subjecting the system to a translation in space,
we obtain a (shifted) initial coordinate. Subjecting the system to a Galilei
transformation, we obtain an initial state with a changed velocity. Furthermore,
if we know the relation between two initial specifications (given by a symmetry
transformation), then the resulting dynamical development in the second case
can be obtained from that pertaining to the first case by means of a certain
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code (given by a symmetry transformation) which does not depend on the
particular nature of the relevant specifications. Finally, the mathematical form
of the dynamical law cannot depend on the specific nature of the actual initial
specifications: this means that the dynamical law is covariant (form invariant)
under the pertinent symmetry transformations. We now see what fundamental
role symmetry considerations play in the very foundations of “doing science”
- but of course Newton did not use this language: he relied on his ingenious
instinct.

In the century or so following Newton, symmetries of known dynamical
laws were noted and described - but just as an interesting afterthought or obser-
vation. Also, various conservation laws were established (derived sometimes
tortuously, from the equations of motion), but without understanding (or even
noting) their relation to symmetries.

The turning point came at the beginning of the twentieth century. Two great
breakthroughs occurred at that time. The first was the establishment of rela-
tivity theory. Einstein was faced with a problem. There was a discrepancy
between the symmetries of mechanics and those of electrodynamics. The laws
of mechanics possessed Galilean symmetry (as we now call it), those of elec-
tromagnetism had Lorentz symmetry. With his unerring insight and intuition,
Einstein chose the latter as the guiding principle of physics. Thus was the theory
of special relativity born. For the first time in history, a symmetry consideration
became a guiding principle. From then on, it was not acceptable just to propose,
by trial and error or otherwise, a law of nature (and then examine its properties,
including symmetry), but rather it became obligatory to insist that any law of
nature should be formulated so that it exhibits Lorentz covariance. (We now
speak more generally of Poincaré covariance.) Thus postulates of symmetry
became guiding principles of exploration. That this was a radical change in
outlook may be illustrated by the fact that the Galilei symmetry group which
Einstein replaced by the Poincaré symmetry, had not ever been consciously
explored earlier; only in the 1960°s were we treated to a systematic study of the
Galilei group - even the name was not common knowledge. (Parenthetically
it should be mentioned that the inhomogeneous Galilei and Poincaré groups
are not closely related: the latter is purely kinematical, the former dynamical,
because it contains the equations of motion, too.)

At about the same time that Einstein radically changed our views on symme-
try transformations, Hilbert and his school in Gottingen made great progress in
the mathematical handling and application of symmetry. Here the connection
between symmetry and conservation laws was clarified, and by Noether’s theo-
rem the derivation of such laws was rendered almost automatic (for continuous
symmetries, at least).

The second great breakthrough in the history of symmetries occurred in the
1920’s when modern quantum theory was born. Symmetries play a much more
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fundamental role in quantum theory than in classical physics. The reason for
this is the linear structure of quantum theory: thatis, the superposition principle.
More explicitly: the set of states of a system corresponds to a set of vectors
in a suitable Hilbert space, and so symmetry operations connecting different
states give rise to linear operations in Hilbert space. These linear operations
thus carry a representation of the symmetry in the Hilbert space of the system.
Later we shall say a bit more about symmetries in quantum theory, but right
now we shall just recall two names: Eugene Wigner and Hermann Weyl. These
giants recognized very early the never-before-thought-of power of symmetry
principles in the quantum world.

Wigner’s 1928 book, applying representations of symmetry groups to atomic
and molecular physics, opened a new world and revolutionized spectroscopy as
well as chemistry. And when in 1939 he classified the unitary representations of
the Poincaré group in Hilbert space, he gave thereby a definition of elementary
particles which, essentially, is still valid. In fact, as Heisenberg remarked in
1973: “We will have to give up ...the concept of fundamental elementary
particles [and] should rather accept the concept of fundamental symmetry”.

On the other hand, Weyl, among several achievements in quantum symmetry
theory, discovered the basic ideas of gauge symmetry, which eventually grew
into the present fundamental theory of fields and particles, the Standard Model.

Next I will turn briefly to the mathematical characterization of symmetry.
When we talk of a symmetry, we mean thereby an automorphism of a given
system onto an equally possible description of the system. The details (both of
the specification of the system and of the particular features of the mapping)
vary enormously from case to case, but the principle is the same. Systems that
are related by a symmetry transformation form an equivalence-class. Thus, a
symmetry transformation leads to an equivalent alternative description of the
system, 1.e. it is a canonical transformation in classical physics and a unitary
transformation in quantum theory.

Most frequently we recognize not an isolated symmetry but a (finite or infi-
nite) set of them which, as an algebraic system, satisfies the axioms of a group.
Why such a conglomeration of closely related symmetries occur is not at all
clear to me, except for space-time groups.

Itis amusing to note that, for continuous space-time symmetries (and only for
those) one may take not the active but instead the passive view of description.
This consists of the following. Instead of saying that a state with transformed
data is a possible state of the same system as seen by a different observer, we
could also say that the system has been physically transformed into another one,
and the two descriptions are both given by the same observer. It is not clear to
me whether this is a triviality or whether it has some deeper meaning.
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Often the terms “symmetry” and “invariance” are used interchangeably. This
is a mistake. Any symmetry transformation can be performed on any system,
and it gives an alternative description of the system. The question is: do some
selected features of the system remain unchanged or not? In particular, for a
given physical system, is the dynamical behavior of the transformed system
the same as for the original? If yes, then we can say: the dynamical law is in-
variant under the symmetry transformation, we have an invariant law, we have
an “invariance”. This must be distinguished from covariance of an equation,
which simply means that the form of some equation doesn’t change. In addition,
the term “an invariant” has also several different meanings. Mostly, a selected
quantity whose numerical value does not change under a symmetry transforma-
tion is called “an invariant of the system”. Also, Casimir operators (see later)
of a symmetry group are “invariants”. In addition, a state which belongs to the
trivial one-dimensional (scalar) representation of some symmetry group, is also
often called “an invariant state™.

A piece of art with perfect symmetry may appear boring. Nature seems to
know this: indeed, very often we encounter broken symmetries. There are sev-
eral mechanisms operative here. First, if the system is not isolated, properties
of the environment may break the symmetry (such as the vertical gravitational
field on the surface of the Earth). We can safely disregard these as trivial cases.
Important (and not fully understood) are what one may call dynamical (or ex-
plicit) symmetry breakings. For a set of circumstances a symmetry holds, but
for other dynamical circumstances (other forces) only a subset of these are main-
tained. (Example: Systems governed fully by “strong interaction dynamics”
have iso-SU (2) symmetry, but systems governed by electrodynamical dynam-
ics [or which simultaneously are subject to strong and electromagnetic forces]
exhibit only U(1) symmetry.) Often a clash of symmetries causes symmetry
breaking. These phenomena lead sometimes to uneasy situations which we call
“approximate symmetries”. But apart from the explicit symmetry breaking,
more fundamental and more interesting is the case of spontaneous symmetry
breaking. We have here a situation where the equation of motion (the dynam-
ics)is invariant under a certain symmetry, but there are solutions which do not
conform with the symmetry. This is a typical quantum phenomenon. The cause
of such behavior is that the ground state of the system (“the vacuum state”) is not
invariant under the symmetry. In fact, it is degenerate. A related spontaneous
quantum symmetry breaking occurs in field theory when a so-called “triangular
(or similar) anomaly” occurs. Here the associated renormalization procedure
causes the effective breaking of symmetry. Spontaneous symmetry breaking
has enormous importance both in condensed matter physics as well as in the
quantum theory of fundamental particles. In the latter case, for example, it
leads to gauge particles’ achieving of mass, so that alone with this spontaneous
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symmetry breaking becomes the gauge theory of the electroweak interactions
possible.

Broken symmetries provide again an occasion to point out the difference
between symmetry and invariance. Even if a conservation law (invariance)
does not hold, symmetry may still be a useful and even powerful computational
concept. A good example is provided by current algebras. In the presence of
weak interactions the iso-SU(2) vector current is no longer conserved. Yet
the SU(2) algebra of the vector current holds, and leads to important physical
conclusions. More than this: the SU(2) axial-current is never conserved, but
the axial SU (2) symmetry algebraholds and leads to very deep physical results.

As a final remark to the topic of symmetry breaking we note that (in all types
of it) the breaking is not haphazard and disorderly, but is subject again to some
symmetry argument.

Above we have repeatedly pointed out the fundamental roles of symmetries
in physics. As a way of summary and overview, we will now explicitly list the
major areas where symmetry principles are used in the every day praxis of
physics.

1. Symmetry principles provide a most valuable heuristic guide in the search
for dynamical laws. We believe that all fundamental laws of nature share certain
symmetry properties, and specific branches of physics or specific systems may
exhibit additional symmetries. (We do not yet have, and may never have, a
“theory of everything”.) We intuit, from masses of observations, particular
symmetry properties, and then formulate laws so as to satisfy these symmetries
in a general and unified frame.

2. Once the appropriate fundamental equations have been found, symmetry
properties furnish powerful tools for their solution. This topic has two major
aspects:

2.a) The symmetries restrict the forms the solutions can take. Roughly speak-
ing, all admissible solutions will be classified by their symmetry character. This
is why, for example, the solutions of Lorentz covariant equations can be only
tensors or spinors. Similarly, the possible state vectors of a quantized system
must be and are labelled by appropriate characteristics (viz, eigenvalues of gen-
erators and values of Casimir operators) of the symmetry group allowed for by
the dynamical equations.

2.b) Invariance of the dynamical law under some symmetry gives rise to
conservation laws: constants of motion can be constructed. The existence of
such constants then leads to selection rules: processes that would connect states
with different values of the conserved quantity are forbidden.

The treatment is particularly striking in the framework of quantum theory.
It is easy to show that the (self-adjoint generator of the) unitary operator re-
alizing a symmetry is a constant of motion if and only if it commutes with
the Hamiltonian (or S-matrix). This means that then its expectation value is
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time independent; and if a state is an eigenstate of it with some eigenvalue at
a given time, then the same state at a later time will be still an eigenstate be-
longing to the same eigenvalue. It is important to note here that invariance of
the Hamiltonian and dynamical invariance of the system are equivalent state-
ments. In particular, we have a conservation law if and only if there exists a
symmetry (which, specifically, leaves the Hamiltonian invariant). In praxis,
we encounter mainly symmetry groups, and the physically interesting entities
(conserved observables) are the self-adjoint generators corresponding to the
infinitesimal unitary transformations. Besides these generators (all conserved,
but of course not all simultaneously measurable) we have also certain polyno-
mials of these generators, the so-called Casimir invariants in the enveloping
algebra, which automatically commute not only with the Hamiltonian (i.e. are
conserved) but also with the generators. This explains why eigenvalues of the
Casimir operators plus those of a selected set of commuting generators can be
used as a complete set of state labelling parameters.

We further note that invariance of the dynamics under a symmetry trans-
formation manifests itself in quantum theory also in the equality of transition
amplitudes for the original and the transformed pair of systems; a very useful
facet, both for establishing a symmetry and for exploiting its consequences.

3. Established symmetry properties greatly facilitate the computation of spe-
cific quantities that are of interest. For example, a lengthy calculation of matrix
elements can be shortened by invoking some symmetry property. Further, ma-
trix elements pertaining to different processes become related by symmetries
(cf. branching relations). In particular, if a symmetry holds, transition proba-
bilities between pairs of different states (i.e. rates of different processes) can be
expressed in terms of a small number of invariant amplitudes. (In fact, experi-
mentally observed relations between cross sections may be utilized to spot the
symmetry that underlies the processes.)

Quantum numbers labelling states of composite systems can be easily com-
puted from those of the constituents, if a symmetry holds.

Perturbational calculations are also facilitated in the presence of a known
symmetry. (For example, a symmetry imposes restrictions on admissible trial-
functions.)

Finally, symmetry principles often give, without any detailed calculation,
the general pattern of a perturbation’s effect when applied to an unperturbed
state or system. Actually, about 40 years ago attempts were made to reveal the
entire level system of an object by using only symmetry arguments, assuming
the operation of some very powerful symmetry group — this without explicitly
solving the energy eigenvalue equation. These attempts in particle theory went
under the name of “dynamical groups” and “spectrum generating algebras”.

In the rest of this individualistic survey I would like to pinpoint some isolated
special topics which, to me, appear interesting and not too outdated.
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1. There is, first of all, the topic of superselection rules, discovered by Wigner,
Wightman and Wick in the 1950°s. Suppose there is a generator of some
symmetry which is simultaneously measurable (commutes) not only with the
Hamiltonian but also with al! observables of a system. (A typical example is
the operator of electric charge.) Then this observable is not only conserved but
has a tremendous structural effect on the system’s quantum theory. It forces the
Hilbert space to decompose into incoherent subspaces: the superposition prin-
ciple becomes restricted. Matrix elements of transition operators between these
incoherent subspaces are automatically zero — hence the name “superselection
rule”. Even the concept of an observable becomes restricted if a superselection
rule operates. Thus, a symmetry property can influence the entire structure
of a quantal system. 1 feel that this topic has not yet been given sufficient
consideration.

2. Particle theorists used to distinguish between space-time symmetries and in-
ternal symmetries. (The Poincaré group, its possible conformal extension, the
de Sitter group etc. represent the first category; isospin-SU(2), flavor-SU(3)
etc. the second. Of course, there are further symmetries too, e.g. permutation
symmetry, which do not really fit in any category.) Somewhat misleadingly,
Wigner used to call internal symmetries “dynamical symmetries” because they
seem to be connected to specific forces. In the 1960°s beautiful attempts were
made to find some large symmetry group that nontrivially combines and contains
both the space-time and the internal symmetries, and reveals their connection.
Unfortunately, it soon turned out that such attempts, however successful they
seemed to be in particular aspects, are doomed because of deep lying alge-
braic reasons pertinent to the Poincaré algebra (O’Raiffertaigh’s theorem). So
the issue had to be dropped. But then, less than ten years later, gauge theo-
ries triumphed. The gauge symmetry idea lingered in the minds for decades.
The wonderful facet of gauge theories is that the form and even the relative
strengths of interactions becomes determined by local gauge invariance. This
is an entirely new aspect of invariance, the key being the local character of the
transformations. When the vexing problem of how to obtain masses for gauge
fields was solved by spontaneous symmetry breaking, and when the difficult
formalism of renormalization in gauge theories was mastered, the unification
of weak and electromagnetic forces was accomplished. Soon, strong inter-
action dynamics was also encompassed by an (unbroken) color-SU(3) gauge
invariance of the quark-gluon system. The necessary ingredients of confine-
ment and asymptotic freedom are also connected to the specifics of the gauge
group. More than that: an important ingredient in the renormalizability of the
quantum field theory is precisely gauge invariance. Thus, finally, the relation
of space-time to “internal” symmetries acquired a new and satisfying aspect.
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In the fiber bundle representation of gauge theories, the fiber built at each base
space-time point “contains” the appropriate “internal” gauge symmetry, rela-
tive to that point. This is implied by the locality principle underlying the gauge
symmetry concept.

In rapid sequel to these breakthroughs, courageous efforts were made to
unify the electroweak and strong interactions in some Grand Unified Theory
(GUT). Several gauge groups have been considered, primarily an SU (5) system.
Notwithstanding the formal attractiveness and some numerical successes of
GUT, several serious problems blemish the picture. First, because quarks and
leptons appear in the same representation of the Big Gauge Group, baryon and
lepton numbers are not conserved. In particular, baryon decays are predicted.
The calculated lifetime of the proton, unfortunately, is about two orders of
magnitude shorter than the experimentally allowed lower limit. Second, the
calculated relations between the masses of the fundamental fermions do not
appear to be correct. Then there is the obnoxious hierarchy problem: roughly
speaking, why is there a stable enormous gap between the energy scales of
symmetry breaking of the GUT group to the Standard Model symmetry, and
the breaking of the letter to the SU(3) [color] x U(1)[e.m.] world we live
in? This difficulty is connected to uncertainties, ambiguities, and technical
problems pertaining to the symmetry breaking Higgs scalars. Itis possible that
supersymmetry (see below) may alleviate these problems. On the other hand,
personally, I also feel uneasy about the subtleties of the various renormalization
schemes and regularization methods that must be used to get any numerical
results at all from GUTSs. In any case, the last word about GUT has not yet been
spoken.

It is interesting to observe that the “greater” the symmetry, the more unifica-
tion of particles and forces we obtain. The earlier the Universe, the hotter and
more energetic, the higher is the symmetry. Thus, it may well be that the dream-
land of an “ultimate unification” will be achieved by finding the “primeval”
(pre-Planck state) symmetry of the Universe.

3. Yet another relatively novel symmetry idea in particle theory is that of super-
symmetry. This implies quasi a symmetric role between fermions and bosons.
According to such schemes, to every fermion there corresponds a boson and
vice versa. Mathematically, supersymmetry may be realized by enlarging the
Poincaré group Lie algebra to a graded algebra. This is done by adjoining to the
tensorial generators of the Poincaré group one (or more) 4-spinor generators,
with appropriate commutators and anticommutators. One may reformulate the
theory by considering the fields as functions not only of the usual vectorial
Minkowski coordinates but also of suitable spinorial “coordinates”. If such an
attractive symmetry of Nature really exists, it must be badly broken, because the
“new” accompanying particles (s-lepton and s-quark bosons, gauginofermions,
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etc.) ought to have an enormous mass compared to their customary partners.
So far there is no evidence of s-particles, and personally I find it odd to have
a basic symmetry which, to manifest itself, must be badly broken to start with.
I say this despite the fact that supersymmetry, made into a local gauge the-
ory in the spinor coordinates, may perhaps include quantum gravity. Even this
“11-dimensional supergravity theory” seems by now to have been subsumed (to-
gether with all super-string theories) into what is fancifully called “M -theory™.
But the discussion would take us into even more unsafe waters.

4. There is one system that, by definition, is unique: this is our Universe. Yet,
even in cosmology symmetries play a basic role. It is generally accepted (and
used even as a guiding principle) that the Universe is endowed by the basic sym-
metries of spatial isotropy and spatial homogeneity. (The latter may be even
crucial for us to do science, since it guarantees that laws of nature are every-
where valid.) These symmetries are often called the “cosmological principle”.
Any deviation from these symmetries, global or even local, have tremendous
cosmological and astrophysical consequences. At one time (the 1950’s) the
idea was put forward that the Universe possesses also temporal homogeneity
(in the sense of stationarity). This was referred to by Hoyle and Bondi as the
“perfect cosmological principle”. Its consequence was shocking: it lead to
the beautifully attractive steady-state-theory of the cosmos. But observation
of the thermal cosmic background radiation refuted this convenient model and
gave way to the big bang picture. In the latter, a problem is encountered: the
traditional dissociation of initial conditions and laws becomes obscure.

Concomitantly, the role and application of symmetries pertaining to the pre-
Planck period ought to be thought over more carefully. There is also another
area of cosmology where symmetry (more accurately symmetry breaking) plays
a substantial role, to which we already hinted above. If some GUT theory of
all interactions and matter prevailed at the “earliest time” (when time could be
defined at all), then, to end up with the present features of the world, it must
have been broken in successive steps. Each step can be described as a phase
transition. These, again, are ruled by symmetry considerations. Together with
these phase transitions of GUT, some “space-time” symmetries are also affected.
In particular, PC is presumably broken - this permits the over-preponderance
of matter versus anti-matter. However, the most amazing discrete space-time
symmetry, TCP, remains unbroken. This symmetry has deep consequences: it
ensures that to every particle there belongs an antiparticle with the same mass
and lifetime. Here again we see the world-shaping role of symmetries.

Instead of summarizing, let us ask one more question: Why do we love
symmetries? Because symmetries are such a basic feature of nature, including
our mental apparatus, that they enable us to discover, explore, analyze - even,



12 XIT SYMPOSIUM ON “SYMMETRIES IN SCIENCL”

to some extent, understand - structure. And structure, recognized and properly
contemplated, allows us to enjoy and adore the miracle of the Creation.
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Abstract In this talk I shall introduce our recent works on general pairing interactions
and pair truncation approximations for fermions in a single-j shell, including the
spin zero dominance, and features of eigenvalues of fermion systems in a single-7
shell interacting by a .J-pairing interaction.

Keywords:  J-pairing interaction, sum-rules, spin zero dominance

1. Introduction

Itis my great pleasure to talk to you here. I would like to thank the organizers,
especially Dr. Bruno Gruber. I am extremely glad to see many of my friends
again today in this beautiful city Bregenz.

My talk consists of four subjects:

m Spin 0" ground state dominance
= Pair approximations for fermions in a single-7 shell
m  Regularities of states in the presence of Jy,.x-pairing

= Solutions for cases of n = 3 and 4 with H;

2. 0t ground state dominance

A preponderance of 0T ground states was discovered by Johnson, Bertsch
and Dean in 1998 [1] using the two-body random ensemble (TBRE), and was
related to a reminiscence of generalized seniority by Johnson, Bertsch, Dean
and Talmi in 1999 [2]. These phenomena have been confirmed in different
systems [3, 4].

Let us take a simple system consisting of four particles in a single-j shell.
The Hamiltonian that we use is as follows:
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Table 1. The angular momenta which give the lowest eigenvalues for 4 fermions in single-j

shells when G; = —1 and all other parameters are 0.

27 Go Gy Gy Gs Gs Gho G2 Gia G Gis Gao
7 0 4 2 8

9 0 4 0 0 12

11 0 4 0 4 8 16

13 0 4 0 2 2 12 20

15 0 4 0 2 0 0 16 24

17 0 4 6 0 4 2 0 20 28

19 0 4 8 0 2 8 2 16 24 32

21 0 4 8 0 2 0 0 0 20 28 36

H=Y GAT AT=>"G,v2T+1 [A'” x AJ] v
J J

J 1 (J) y ]_ - - J
= L ixl]? = vl o

V2 V2

where (7 j is given by
Gy = G*IIVIFT) -

Here V is a two-body interaction.

We have used a two-body random ensemble to confirm the interesting phe-
nomenon of 0" ground state dominance, and discovered an empirical method
to predict the probability of the ground state to have a spin I [5]. We keep only
one (G y to be —1 and all others O :

Gj= =05 .

We then diagonalize the Hamiltonian to find the angular momenta which give
the lowest eigenvalues. They are shown in Table I. We count how many different
(7 ;’s give the lowest eigenvalue to an angular momentum /. The number is
denoted as A7. For example for j = 2} and n = 4, Ng=5, No=Ni=Ng =
N2o=N2s=N36=1 and all others are equal to 0. The total number of different
G rsis N = 221 Then the I g.s. probability is approximately predicted as

1
PPed(T) = Ny /N. )

Fig. 1 shows a comparison between PP™4(0) and PTBRE(0), which is
obtained by diagonalization of a TBRE Hamiltonian for four fermions in a
single-j shell. Fig. 2 shows a comparison between PP™%(7) and PTBRE(T)
for examples of various systems.

One can see that the agreements between the PP™4(7) and PTERE(T) are
very good. It is therefore important to diagonalize H with Gy = —d75. For
this purpose we introduce the J-pair approximation for low-lying states.
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Figure 1. Comparison between P***!(0) and PT®F®(0) of four fermions in a single-7 shell.
The solid squares are obtained by 1000 runs of a TBRE Hamiltonian and the open squares are
predicted by Eq. (2).
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Figure 2. Comparison between PP***(I) and PTPRE(]) for more complicated systems.
The solid squares are obtained by 1000 runs of a TBRE Hamiltonian and the open squares are
predicted by Eq. (2).
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Figure 3. Ground state spin [ for four fermions in a single-7 shell for J = 6 in (a) and 14 in
(b) as a function of j. The solid squares are obtained by diagonalizing f{ ; in the full shell-model
space, and open circles are obtained by truncating the space to two pairs with spin .J only.

3. Pair Approximation for Fermions in a single-5 shell

Our Hamiltonian is defined as
Hy=—A'tT. 47, (3)

We first point out that the low-lying eigenvalues of f ; can be approximated
by wavefunctions of pairs with spin .J:

1 (
CI)(I):\/—N AJTXAJTX---XA’”] |0}, 4)

where \/LW is the normalization factor. It is very easy to prove that the J-pair
truncation (with one pair and one particle) describes the low-lying states exactly
in three-body systems.

Fig. 3(a) shows the spin of the ground state of j* configuration for .J = 6.
The ground states with spin O are obtained by exact shell-model calculations and
by the .J-pair approximation. Fig. 3 (b) shows the similar thing for J = 14. Fig.
4 shows energy levels obtained by the shell-model calculation and by the .J-pair
approximation when j = 25/2, J = 14 and n = 4. For the low-lying states,
the pair approximation is very good. Giving the four low-lying states, two of
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A comparison of low-lying spectra, obtained from two pairs with spin J = 14

(the column on the left hand side) and by a diagonalization of the full space (the columns in the
middle and on the right hand side) for the case of four nucleons in a single-j (7 = 25/2) shell.
The middle column plots the shell-model states which are well reproduced by the two J = 14
pairs, and the right column plots the shell-model states which are not well reproduced by two
J = 14 pairs. All the levels below 0" in the full shell-model space are included. One sees that
the low-lying states with I = 27, 67, 127, and 107 are well reproduced.
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them (61+ and lﬂf) compete to be the ground state. Their energies are almost
the same in both the exact shell-model calculation and the pair approximation.
This is why we failed to predict the ground state in this case, see Fig. 3 (b). For
the n=>5 and 6 cases that we have examined, the low-lying states are reasonably
well approximated by the .J-pair truncation.

So far J is general, between 0 and 25 — 1. Now let us take a very special
value, Jiax — 27 — 1. For H — Hyax — Hojq,the I — Iy — 47 — 6
corresponds to the lowest state, and I = [, — 2 state to the second lowest.
These two states can be constructed by using pairs with angular momenta of
either Jyax or Jhnax — 2. However, pairs with angular momentum Jy,, — 2
do not present a good approximation of the other [ states, while those with
angular momentum Jy,,x do. For example, for n — 4, [J2_ T = 0) is exact
but |(Jmax — 2)%, 1 = 0) is not exact, |J2__ . (< j)) is almost exact (~ —2)
but |(Jmax — 2)%, 1(< 7)) are not.

4. Regularities of states in the presence of H ;

max

We first point out that eigenvalues of low I states (n = 3,4, 5) are approx-
imately integers. This can be proved in terms of six-j symbols for n = 3 [6].
For n = 4, one can prove this in terms of nine-j symbols [7].

Another regularity may be exemplified below by j = 21/2 and n = 3 and
4. Among many states of n = 4 with the same I, the lowest eigenvalue is
expressed as &7 (obtained by a shell-model diagonalization). The &; of four
fermions in a single-7 (j = 21/2) shell with I between 18 to 25 are shown in
Table II. Note that there is no eigenvalue lower than —2 when [ is smaller than

18. The eigenvalue of the L(i)m(: 3j —3) state with three fermions in the same j
shell is —%:—2.26923076923077 (denoted as £ 3) ). From Table I, one sees
that the £;’s of n = 4 with 18< I < 25 are very close to Elﬁiﬂx and also very
g

close to that of an [ state constructed by ¥y = a} X [a} X a;[ X aﬂ
(denoted as 7). This indicates that the last added particle behaves just like a
spectator and do not contribute to the total energy of the system.

We have calculated overlaps between the above states of n = 4 and the
¥;. They are almost 1 within a precision of 10~°. This phenomenon has been
confirmed for nup to 6 (j > 11/2).
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SUPERSYMMETRY IN NUCLEI
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Abstract The concept of spectrum generating superalgebras and associated dynamic su-
persymmetries is introduced and placed within the general context of symmetry
in physics. Applications of this concept to the study of spectra of atomic nuclei
are presented.

1. Introduction

In the last 40 years the concept of spectrum generating algebras and dynamic
symmetries has been extensively used to study physical systems. In the late
1970’s this concept was enlarged to spectrum generating superalgebras and as-
sociated supersymmetries. In this article, dynamic symmetries are first placed
within the context of symmetries in physics and applications to the structure
of atomic nuclei are reviewed. Subsequently, the concept of dynamic super-
symmetries 18 introduced and placed within the context of supersymmetry in
physics. Applications to the study of spectra of nuclei are reviewed.

2. Symmetries

Symmetry is a wide-reaching concept used in a variety of ways.

2.1 Geometric symmetries

These symmetries are the first to be used in physics. They describe the
arrangement of constituent particles into a structure. Anexample of symmetries
of this type is the arrangement of atoms in a molecule. The mathematical
framework needed to describe these symmetries is finite groups, sometimes
called point groups. In Fig.1, the molecule Cgg 1s shown as an example. The
symmetry of this molecule is I;,. (Geometric symmetries are used to reduce
the complexity of the equations describing the system through the construction
of a symmetry adapted basis. The Hamiltonian matrix in this basis is block
diagonal.

23
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Figure 1. The fullerene molecule Cgg is shown as an example of geometric symmetry, [j,.

2.2 Space-time symmetries

These symmetries fix the form of the equations governing the motion of the
constituent particles. An example is provided by Lorentz invariance that fixes
the form of the Dirac equation to be

(i7" 9y — m)(x) = 0. (1)

The mathematical framework needed to describe these symmetries is continuous
groups, in particular Lie groups, here the Lorentz group SO(3,1).

2.3 Gauge symmetries

These symmetries fix the form of the interaction between constituent particles
and/or with external fields. An example is provided by the Dirac equation in
the presence of an external electromagnetic field

(YH(i0, — eA,) —mly(z) = 0. (2)

Electrodynamicsisinvariant under the gauge transformation A"u(a:) — Au(x)—
duA(x). Also here the mathematical framework is Lie groups, in the case of
electrodynamics being U (1). In view of the fact that the strong and weak forces
appear to be guided by gauge principles, gauge symmetries have become in
recent years, one of the most important tools in physics.

2.4 Dynamic symmetries

These symmetries fix the interaction between constituent particles and/or
external fields (hence the name dynamic). They determine the spectral proper-
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Figure 2. The spectrum of the non-relativistic hydrogen atom is shown as an example of

dynamic symmetry of the Schrodinger equation, SO(4).

ties of quantum systems (patterns of energy levels). They are described by Lie
groups.

The earliest example of this type of symmetry is provided by the non-
relativistic hydrogen atom. The Hamiltonian of this system can be written
in terms of the quadratic Casimir operator C's of SO(4) as [1]

P e

H - £ =
2m T

A

TGRSO+ 1 )

where A is a constant that depends on m and e. As a result, the energy eigen-
values can be written down explicitly in terms of quantum numbers

E(n,€,m) = -4 )

n2
providing a straightforward description of the spectrum, Fig.2.
Another example is provided by hadrons. These can be classified in terms of
a flavor SU#(3) symmetry [2]. The mass operator for hadrons can be written
in terms of the Casimir operators of isospin, SU(2), and hypercharge, U/ (1),
as

M = a4+ by (U] + ¢ | Ca(ST(2)) — %C?(U(l)) (5)
leading to the mass formula [4]

MY, I,I3)=a + bY + c[I(I +1)— %Yg]. (6)
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Figure 3. The spectrum of the baryon decuplet is shown as an example of dynamic symmetry
of the mass operator, SU§ (3).

This mass formula provides a very realistic description of hadron spectra, Fig.3.

The concept of dynamic symmetry was introduced implicitly by Pauli in the
above mentioned paper [1], expanded by Fock [5], and, reintroduced in explicit
form, by Dothan, Gell-Mann and Ne’emann [6] and Barut and Bohm [7]. It
has been used extensively in the last 25 years and has produced many important
discoveries. A mathematical definition is given in [8].

A dynamic symmetry is that situation in which:

(i) The Hamiltonian H is written in terms of elements, ¢, of an algebra G5,
called spectrum generating algebra (SGA), G, € G.

(i1) H contains only invariant (Casimir) operators, C';, of a chain of algebras
GODG DG >...

H = f(Cy). (7)

When a dynamic symmetry occurs, all observables can be written in explicit
analytic form. For example, the energy levels are

E = (H)=oa1(C1) + ag(Ca) + ... (8)

One of the best studied cases 1s that of atomic nuclei, to be described in the
following section.

3. Dynamic symmetries of the Interacting Boson Model

Atomic nuclei with an even number of nucleons can be described as a col-
lection of correlated pairs with angular momentum J = 0 and J = 2. When
the pairs are highly correlated they can be treated as bosons, called s and d.
The corresponding model description is called Interacting Boson Model [9].
The spectrum generating algebra (SGA) of the Interacting Boson Model can be
easily constructed by introducing six boson operators

balo=1,....6) = s,du(p = 0,+1,£2) ©)
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mathematical framework to describe it is point supergroups, that is discrete
subgroups of supergroups.

4.2

Space-time supersymmetries

These supersymmetries fix the form of the equation governing the motion
of mixed systems of bosons and fermions. An example is the original Wess-
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Zumino Lagrangian [17]

£ - L 04w - L 086 - Livwro.uw)

—%mQ[AQ(;L') + B*(x)| — %im@(m)w(w)

—gmA(x) [4%(2) + BX(@)] - 34° [4%(2) + B*(@)]
—igh(2) [A(x) — 1 B(@)] ().

The mathematical framework here is continuous supergroups, as for example
the SuperPoincaré group.

4.3 Gauge supersymmetries

These fix the form of interactions. For example in a supersymmetric gauge
theory one has the occurrence of both bosonic and fermionic gauge fields with
related properties.

4.4 Dynamic supersymmetries

These symmetries fix the interaction between constituent particles. They
produce patterns of energy levels for mixed systems of bosons and fermions.
They are a very ambitious unifying concept. A mathematical definition of
dynamic supersymmetries is given in [19].

A dynamic supersymmetry is that situation in which:

(1) The Hamiltonian H is written in terms of elements (77, of a graded algebra
G*.

(ii) H contains only Casimir operators of a chain of algebras G* > G* >
G*" o ... The subalgebras can be either graded or not.

One of the best studied cases is again that of atomic nuclei, where supersym-
metries were introduced in 1980 [19], as described in the following section.

5. Dynamic Supersymmetries of the Interacting
Boson-Fermion Model

In nuclei with an odd number of nucleons at least one is unpaired. Fur-
thermore at higher excitation energies, some of the pairs may be broken. A
comprehensive description of nuclei requires a simultaneous treatment of cor-
related pairs (bosons) and of fermions [20]. The corresponding model has
been called Interacting Boson-Fermion Model [22]. The building blocks in this
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model are:

Bosons : s(J = 0);du(J = 250 = 0,%+1,£2)

Fermions : aj,,(m = £j,+(j —1),..., ii—) (16)
The model Hamiltonian can be written as
H=Hgp |+ Hp + Vpr (17)
with
Hp = Eot+ Y capblbst D vawpsblbl bsby
of aa! B
Hp = Eé + Z'Th‘kalak + Z u@:ifkkfa;[aifakakf
ik il ki
Var = Y wagiblbpalar. (18)

afik
In order to study the possible symmetries of a mixed system of bosons and
fermions, a new mathematical framework is needed, namely that of graded Lie
algebras (also called superalgebras).
A set of elements

Gao, I (19)
are said to form a Lie superalgebra if they satisfy the following commutation
relations

[Ga,Gsl = 3G,
Ga Fi] = dF;
{Fi’Fj} - g?'Ga (20)

7
plus super Jacobi identities. [Graded semisimple Lie algebras with Z5 grading
have been classified by V. Kac [22]]. By inspection of Eq.(18) one can see that
the combined boson-fermion Hamiltonian can be written in terms of elements
of the graded superalgebra G* = U(n/m)

Gag = blbs
Gy = alg
FL- = bLai
Fia = alb, (21)

These elements can be arranged in matrix form

bhbs bha;
S 22
( al-LbQ,, alaj ) (22)
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The basis upon which the elements act is the totally supersymmetric irrep of
U(n/m) with Young supertableau

NI=KH...®. (23)

For applications to Nuclear Physics, N' = Np+ Np,n = 6and m = (25 +
1) = €, where € is the total degeneracy of the fermionic shell. A dynamic
supersymmetry occurs whenever the Hamiltonian of Eq.(18) can be written in
terms only of the Casimir operator of U (n/m) and its subalgebras.

5.1 Supersymmetry in nuclei found

One of the consequences of supersymmetry is that if bosonic states are
known, one can predict fermionic states. Both are given by the same energy
formula. Indeed all properties of the fermionic system can be found from a
knowledge of those of the bosonic system. Supersymmetry has thus a predic-
tive power that can be tested by experiment. After its introduction in the 1980’s,
several examples of spectra with supersymmetric properties were found, relat-
ing spectra of even-even nuclei with those of odd-even nuclei (odd proton or
odd neutron). In the first example, j = 3/2 fermions were coupled to s and
d bosons. States were classified then in terms of the group U(6/4) [23]. An
example is shown in Fig.7, referring to the pair of nuclei Os-Ir. Other cases
were subsequently found, for example j — 1/2,3/2,5/2 fermions with s and
d bosons, described algebraically by U (6/12) [24].

5.2 Supersymmetry in nuclei confirmed

Supersymmetry in nuclei has been recently confirmed in a series of experi-
ments involving several laboratories. The confirmation relates to an improved
description of nuclei in which proton and neutron degrees of freedom are explic-
itly introduced. The model with proton and neutron bosons is called Interacting
Boson Model-2. The basic building blocks of this model are boson operators
bar, bap(a = 1,...,6), where the index 7(») refers to proton (neutron). The
boson operators span a (six+six)-dimensional space with algebraic structure
Ur(6) & UL(6). Consequently, when going to nuclei with unpaired particles,
one has a model with two types of bosons (proton and neutron) and two types of
fermions (proton and neutron), called Interacting Boson-Fermion Model-2. If
supersymmetry occurs for this very complex systems one expects now to have
supersymmetric partners composed of a quartet of nuclei, even-even, even-odd,
odd-even and odd-odd, for example

194 Pt 195 Pt
195 Ag 196 Ay

Spectra of even-even and even-odd nuclei have been known for some time.
However, spectra of odd-odd nuclei are very difficult to measure, since the
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Some supersymmetric theories have been constructed in condensed matter
physics [28]. Nambu has suggested that supersymmetry may occur in Type II
superconductors [29].

Recently, it has been suggested that cuprate materials (high-7'. superconduc-
tors) may display supersymmetry. This case is being investigated at the present
time [30].

7. Conclusions

A form of supersymmetry has been found and confirmed in Nuclei!
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SEEING SCIENCE
THROUGH SYMMETRY

An Interdisciplinary Multimedia Course

L.I. Gould

Physies Department

University of Hartford

West Hartford, CT 06117 U.S.A.

Abstract Seeing Through Symmetry is a course that introduces non-science majors to the
pervasive influence of symmetry in science. The conceptof symmetry is used both
as a link between subjects (such as physics, biology, mathematics, music, poetry,
and art) and as a method within a subject. This is done through the development
and use of interactive multimedia learning environments to stimulate learning.
Computer-based labs enable the student to further explore the concept by being
gently led from the arts to science. This talk is an update that includes some
of the latest changes to the course. Explanations are given on methodology and
how a variety of interactive multimedia tools contribute to both the lecture and
lab portion of the course (created in 1991 and taught almost every semester since
then, including one in Sweden).

1. Introduction

Symmetry is something that we are all probably aware of, for better or for
worse, in our everyday lives: A desirable situation can occur in the supermar-
ket, when a shopper attempts to find another tomato in the pile that looks just
like the nice one already selected. In the faculty dining room, on the other
hand, a colleague sometimes guesses which of two apparently identical metal
dispensers contains the hot water for tea; and, failing the determination, releases
coffee onto a tea bag!

The subject of symmetry has been written about extensively. There are
numerous works on symmetry in science, art, mathematics, philosophy, music,
poetry, and information processing. From the World Wide Web, two journals
([11, [3D), articles from conference proceedings [5], and collections of essays
[2] can be found many examples covering all of those subjects... and more.
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The term “symmetry” used here has no meaning apart from some operation.
With this in mind one can put forth the following fairly standard definition: An
object is symmetric under a particular operation if it appears unchanged after
that operation has been performed. A very simple example: the square has
rotational symmetry because after rotating it about its center through 90°, in its
plane, the square appears as it did prior to the rotation. A more complicated
example: In the figure below there are four letters “T” and one letter “O”. The
whole figure has reflectional symmetry about two perpendicular lines passing
through the center of the “0”, 2-fold rotational symmetry about the same center,
and infinite-fold rotational symmetry of just the “O” (if it was a perfect circle)
with respect to that center.

Trial restriction
Furthermore, if you begin at the center and go counterclockwise through the
“T” at the upper right (UR), the “T” at the upper left (UL), and back to the
“0”, the word “OTTQ” is spelled. The identical word is spelled again if you go
clockwise (from the “O” to UL to UR and back to the “O”). Hence, one has what
can be dubbed a palindromic symmetry, usually called a palindrome (the same
palindrome occurs by going clockwise or counterclockwise using the bottom
half of the figure). Finally, starting at the “0”, going the counterclockwise route
through the top half of the figure, followed by a clockwise route through the
bottom half of the figure, will again bring you back to the “O”; thus tracing out
a figure eight which, moreover, repeats under those combined operations. The
Italian word for “eight” is “otto”!

If one defines an object’s “image” as the result of having performed a partic-
ular operation on the object, then a more concise definition of symmetry is: An
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