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1. Introduction to Symmetry

Our journey starts with the question: what does “symmetry”
mean? Look at the following four objects, and rank them from the
most symmetric to the least symmetric:

ki O~

How do you interpret this question in a manner which is precise
enough to lead you to a justifiable ranking of the four objects?
And how symmetric is the following painting by Robert Fathauer?

Seahorses and Eels by Robert Fathauer
http://members.cox.net/fathauerart/

To answer any of these questions, we must first make the
questions more precise.

K. Tapp, Symmetry: A Mathematical Exploration, DOI 10.1007/978-1-4614-0299-2 1, 1
© Springer Science+Business Media, LLC 2012



2 1. Introduction to Symmetry

A Precise Definition of “Symmetry”

Most people would agree that Seahorses and Eels looks
symmetric, perhaps because it contains repeated images. But
symmetry involves more than just repeated images. A haphazard
arrangement of green eels and purple seahorses would not look
nearly as symmetric. Fathauer arranged his seahorses and eels
together like jigsaw puzzle pieces, so that the pattern of
neighbors surrounding one eel is the same as the pattern
surrounding any other.

To phrase this idea more precisely, let us imagine that the
pattern is painted onto an infinite glass wall that extends
indefinitely up, down, right and left. Imagine that the painted
pattern extends indefinitely so as to cover the whole infinite wall,
which requires infinitely many seahorses and infinitely many eels.
This infinite painting looks exactly the same from many different
positions. If the viewer is positioned in front of the eye of one
right-facing eel, then what she sees is exactly the same as if she
were positioned in front of the eye of another right-facing eel.

Here is an equivalent way
to say the same thing, rephrased
in terms of moving the glass wall
rather than moving the viewer:
there are many ways in which % /
the glass wall could be moved/ : o ) '
repositioned so that the painted | =
image looks exactly the same
before and after the re-position-
ing. For example the wall,
together with the pattern painted
onto it, could be translated A translation symmetry
(which means slid) so that each right-facing eel moves one
position to the right. This translation is called a symmetry of the

Y

Y

Y




A Precise Definition of “Symmetry” 3

infinite painting because a viewer who closes her eyes while the
wall is moved, could not, after she opens her eyes, detect that
any change has occurred. This translation is encoded by the
length (about an inch) and direction (right) of the red arrow
pictured above. Several copies of the red arrow are included to
demonstrate that each composition element (the eye of a right-
facing eel, the tail of a down-facing eel, the center of the purple tail
spiral, etc.) moves exactly onto an identical element. That is why
a viewer would not detect the change.

This way of thinking about symmetry applies equally well
to other objects, including the orange and the purple star pictured
here. Imagine this star image is painted onto our
infinite glass wall. Again, there are several ways
in which the wall could be repositioned/moved

so that the image looks exactly the same
before and after the repositioning. For example,
it could be rotated 90° about the star’s center, or
180 or 270°. Each of these motions is called a
symmetry of the star image.

Here is our first attempt at formulating a precise definition of the
word “symmetry”:

DEFINITION: A symmetry of an object in the plane is a rigid
motion of the plane that leaves the object apparently unchanged.

In the above discussions, the “plane” was represented as
an infinite glass wall, the “object” was represented as a painting
on the wall (of a star or an infinite pattern), and a “rigid motion”
meant a moving or repositioning of the glass wall, like a rotation
or a translation. What does it mean for a rigid motion to “leave the
object apparently unchanged’? It means that, if a viewer was to
close her eyes during the repositioning, she would not detect a
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difference; the object would look exactly the same when she
opened her eyes.

Precise language is crucially important in mathematics!
Our above definition of symmetry cuts straight to the underlying
reason that objects intuitively appear symmetric (they look the
same from many positions and/or contain repeated images), but
in @ manner which is precise enough to form a foundation for a
rigorous mathematical investigation of symmetry. To really pull
this off, we will eventually require a more precise definition of the
term “rigid motion”. But for now, it will be enough to think of a
rigid motion as a moving/repositioning of the glass wall, like a
rotation or a translation. A rigid motion may NOT break, bend,
stretch, compress or otherwise distort distances on the glass wall
(you cannot use a glass cutter or a blow torch).

A rigid motion is always a motion of the whole plane (the
whole glass wall); one may then ask whether it is a symmetry of
any object in the plane. For example, in the illustration below, the
72° rotation about the red point is a rigid motion of the plane that
is a symmetry of the purple pentagon, but is not a symmetry of

Q
x| o
L 2©

Before rotation After rotation
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We emphasize that a rigid motion is completely
determined by its effect on each point of the plane; that is, two
motions that do the same thing to every point are considered the
same motion. For example, a rotation by 90° is the same as a
rotation by 90+360 = 450° about the same point. When
enumerating the symmetries of an object, we would NOT list both
a 90 and a 450° rotation, or any other such redundancies. What
matters is the effect of a motion, not the motion itself.

One type of rigid motion that we have not yet considered is
a flip over a line. Visualize a flip over a line as achieved by
flipping the glass wall over to expose its back surface (its
underside). Points along the line remain in their original position,
while points on one side of the line flip over to the opposite side
of the line. Imagine that the plane is a completely transparent
glass wall, so that any image in the plane shows through the
back surface of the glass, and looks reversed after the flip is
performed. For example, in the illustration below, the flip over the
red line is a rigid motion of the plane that is a symmetry of the
purple pentagon but is not a symmetry of the other shapes.

///’ O‘f////
]  J
%:QOFLP /%

Before flip After flip

The words flip and reflection are synonymous; we will
henceforth use these terms interchangeably.
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To better understand why the previously illustrated star
image appears symmetric, we will list all of its symmetries. There
are three obvious symmetries; namely
rotations about its center point by 90, 180,
and 270° (rotation angles are always
counterclockwise in this book). A fourth
valid symmetry is called the identity. This
is the motion that does nothing; it leaves
every point of the plane in its original
position. The identity can be considered a '
rotation (by 0°) or a translation (by zero  'hestars4reflectionlines
distance). The identity is the only rigid motion that is a symmetry
of every object. Thus, the star has four rotation symmetries. The
star can also be flipped over any of the four colored lines
illustrated here. In summary, the star has four rotation
symmetries and four reflection symmetries, giving exactly eight
symmetries in total. The number of symmetries which an object
has provides a measurement of how symmetric that object is.

Types of Symmetries and Types of Objects

To describe to me your favorite rotation or translation or
flip, what information must you give me? A rotation is specified by
its center point and its (counterclockwise) angle. A translation is
specified by the length and direction of a single arrow. A flip is
specified by its reflection line.

Rotations and translations are called “proper” rigid motions.
Flips are called “improper” rigid motions. The intuitive difference
is that improper motions leave the plane’s underside facing
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the viewer. A more precise
explanation of this difference
is obtained by comparing
how proper and improper
motions affect a right hand CRS

or a clock. In the illustration = = === == reflection line, _ . - - -
on the right, flipping the top
image over the red line u
transforms the right hand
into a left hand and the clock
into a “counterclock” (a clock
that turns counterclockwise). A flip reverses orientation

DEFINITION: A rigid motion is called proper if it preserves
orientation, which means that after the motion is applied, an
image of a right hand still looks like a right hand and a clock still
looks like a clock. It is called improper if it reverses orientation,
which means that it turns a right hand into a left hand and a clock
into a counterclock.

An even more precise definition of proper/improper will be
discussed later when we learn about matrices. For now, let us
turn our attention to another intuitive concept which needs to be
described more precisely. We previously imagined that the
pattern in the Seahorses and Eels painting was extended
infinitely up, down, right and left, so the resulting object is
“‘unbounded”. On the other hand, the star image did not extend
infinitely in any direction; we could fit the entire star image into
a frame, so it is called “bounded”. We make this distinction
precise by focusing, not on the imprecise “extended infinitely”
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verbiage, but instead on more precise issue of whether the object
can be framed (say by a square frame):

DEFINITION: An object in the plane is called bounded if it is fully
contained in some square in the plane. Otherwise it is called
unbounded.

The meaning would remain unaltered if the word “square” were
replaced by “circle” or “pentagon” or many other possibilities. If
an image can be framed by one of these frame shapes, then it
can be framed by all of them.

In the study of symmetry, the most important bounded
objects in the plane are the “regular polygons.”

DEFINITION: The regular n-sided polygon (also called the
regular_n-gon) is the shape in the plane enclosed by n equal
length straight sides, assembled so that all n of its angles are
equal.

Thus, a regular 3-gon means an equilateral triangle, a regular
4-gon means a square, a regular 5-gon means a pentagon,
a regular 6-gon means a hexagon, and so on.

n=2 n=3 n=4 n=>5 n=6 n=7

Regular polygons

The two sides of the 2-gon lie on top of each other (because they
meet at angles of 0°), so the 2-gon looks like a line segment.

Notice that each of these regular polygons has both
rotation and reflection symmetries. Can you think of a way to
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orient each of these polygons, which means to alter it in such a
way that its rotation symmetries are preserved but it no longer
has any reflection symmetries? For example, here are a few
artistic ways to orient the pentagon.

oW

Oriented pentagons

There are many other possibilities; whichever you choose, the
result is called an oriented pentagon. Each oriented pentagon
pictured above has five rotation symmetries but NO reflection
symmetries. Do you see why? A reflection would reverse the
issue of whether it appears to spin clockwise or counterclock-
wise, and would therefore not be a symmetry. Since the first
method is the simplest, we will use it to orient the other regular
polygons:

—~ANO@Q®

Oriented regular polygons

Here is the general definition:

DEFINITION: An object in the plane is called oriented if it has NO
improper symmetries.
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You can always detect that an oriented
object has been flipped. A clock is oriented
because flipping it would make it look like a
counterclock. Similarly, each oriented
regular polygon above appears to spin
counterclockwise, but would appear to spin
clockwise after being flipped. The knotted An oriented object
blue object pictured here is oriented; hold it up to a mirror, and
notice how its over/funder crossing pattern differs from that of its
mirror image. A flip would make it look like its mirror image, so a
flip could not be a symmetry.

There are two types of unbounded objects that are
classically important within the study of symmetry. First, a
wallpaper pattern intuitively means an unbounded pattern that
extends infinitely in all directions (left, right, up, and down)
according to some organized scheme. The Seahorse and Eels
painting is a wallpaper pattern (after being indefinitely extended).
Second, a border pattern (also called a Frieze pattern) means an
unbounded pattern that only extends infinitely along one line
(usually the x-axis). For example, if the following pattern is
extended infinitely to the right and left, then the result is a border
pattern:

1{@1@}}» 1({%‘%}‘;» 1{@‘%},‘-» 1{%‘@)»

A border pattern

Border patterns are usually drawn horizontally as above, so they
extend infinitely to the right and left, but not up or down. When
positioned like this, all of the pattern’s translation symmetries are
in directions parallel to a horizontal line. This observation helps
us to formulate a more precise definition.
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DEFINITION: An unbounded pattern in the plane that has at least
one translation symmetry (besides the identity) is called

a border pattern if all its translations are parallel to a single line.

a wallpaper pattern otherwise.

The previously illustrated border pattern has many types of
symmetries. You can translate it any number of positions to the
right or left. You can reflect it over the horizontal center line.
There are also vertical lines over which you can reflect it. If you
perform any pair of the above-mentioned symmetries, one after
the other, the result will also be a symmetry. For example, if you
translate it any number of positions to the right or left and then
reflect it over the horizontal center line, then the result is aptly
called a glide reflection.

DEFINITION: A glide reflection means the result of performing a
translation (other than the identity) followed by a reflection over a
line that is parallel to the direction of the translation.

It does not matter which you do first: translate or reflect. In the
illustration below, either order has the same effect of moving the
bottom-left gnome to the top-right position.

[ =1
I !l)
57 1
ODA
<

...Teflectionline 4

A glide reflection translates and flips
Gnome image (used here and elsewhere) created by Paul S6derholm, www.gnurf.net.
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Can you invent a border pattern with a glide reflection
symmetry that has the peculiar property that the reflection and
translation out of which it is built are not themselves symmetries
of the border pattern? An answer is found in an exercise at the
end of this chapter.

The Classification of Plane Rigid Motions

We began with vague intuitive notions of the word
“symmetry.” A symmetric object often contains repeated images,
and often looks the same from many positions. Based on these,
we formulated a mathematically precise definition: a symmetry of
an object is a rigid motion of the plane that leaves the object
apparently unchanged. We then formulated precise definitions of
other terms: “bounded”, “proper”, “oriented”, “border pattern”, and
“wallpaper pattern”. This provides us with a vocabulary for more
precisely discussing symmetry. In the remainder of the book, this
precision will serve us well. It will allow us to ask and answer
many precise questions, and eventually to prove beautiful
theorems about the possible types of symmetries that objects
may have. In this book, definitions are placed in green boxes and
theorems are placed in blue boxes.

What is still missing? Well, we defined a “symmetry” using
the term “rigid motion” but we have not yet precisely defined the
term “rigid motion”. Rather, we have relied on an intuitive feeling
for this concept. When it becomes necessary, we will eventually
give a more precise definition of “rigid motion.” To help us get by
for now, we mention the following (which our eventual precise
definition will allow us to prove):
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CLASSIFICATION OF PLANE RIGID MOTIONS (VERSION 1):

Every proper rigid motion of the plane is a translation, a rotation,
or a rotation followed by a translation.

Every improper rigid motion of the plane is a flip or a flip followed
by a translation.

In other words, there are no rigid motions other than the types
that we have already considered (and combinations thereof). You
may take this classification as your definition of rigid motion for
now, if you like.

The story is even simpler for rigid motions that are sym-
metries of a bounded object. The symmetries of a bounded
object include only flips and rotations (no translations). In fact:

THE CENTER POINT THEOREM: Any bounded object in the

plane has a “center point” such that:

(1) Every proper symmetry is a rotation about this center point.

(2) Every improper symmetry is a flip over a line through this
center point.

You might think of an object’'s center point as a balancing point; if
you cut the object out of cardboard and wish to balance it on your
finger tip, this is the correct place to position your finger.
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Exercises
Challenge problems are designated {}.
(1) Which are proper and which are improper:

1. A proper symmetry followed by an proper symmetry
2. A proper symmetry followed by an improper symmetry
3. An improper symmetry followed by an improper symmetry

(2) How many symmetries does each capital letter in the English
language have:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(3) How many symmetries does the n-gon have for each of the
values n=2, 3, 4, 5, 6, 7 (these polygons are illustrated in the
chapter)? Guess a general formula for the number of symmetries
of an n-gon. What about an oriented n-gon?

(4) Draw a wallpaper pattern with NO improper symmetries.

(5) How many symmetries does each object have? Which object
has the most? The least?

ik O~

(6) Any capital letter in the English language can be used to
create a border pattern like this:

~AAAAAAAA. ..
..BBBBBBBB..
~GECCCECCCC ..
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For each of the 26 letters, decide whether the resulting border
pattern (a) contains reflections across any horizontal lines,
(b) contains reflections across any vertical lines, and (c) contains
rotations (other than by 0°).

(7) Consider the following border pattern to be extended infinitely
to the right and left.

R R Rg=xg

Characterize all of its translation, rotation, reflection, and glide
reflection symmetries. What if the pattern was built from As rather
than Rs?

(8) Draw two different objects that have exactly the same
collection of symmetries.

(9) How many bounded objects can you think of that have
infinitely many symmetries?

(10) What do you think is the most symmetric object in the plane?

(11) Make sketches of several bounded objects that have
interesting collections of symmetries. Try to sketch a bounded
object whose collection of symmetries is significantly different
from that of an oriented or non-oriented polygon.

(12) “If an object has any translation symmetries (other than the
identity), then it must have infinitely many translation
symmetries.” Explain why this statement is true.

({+13) “If an object has any translation symmetries (other than
the identity), then it must be an unbounded object.” Prove this
statement from scratch (without using The Center Point
Theorem). HINT: Visualize the object as painted on the (glass)
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the answer. Think of “A*B” as meaning “A following B" or “A
performed after B.” It is important to keep the order straight — it is
the opposite of what you might have expected.

Cayley Tables

As a child, you became familiar with the algebraic
operations of addition and multiplication by memorizing tables.
Similarly, you will now study the algebraic operation of
composition by building a table that exhibits the result of
composing any pair of symmetries.

Let us start with a square. lts eight symmetries are:
{l, Roo, R1g0, R270, H, V, D, D'}

where H means horizontal flip, V means vertical flip, D and D’
mean the two diagonal flips, and R means a counterclockwise
rotation by the subscripted angle. The illustrations below show
the effect of these eight symmetries on a square whose corners
are labeled A, B, C, D and whose center is decorated with a
picture of a gnome. The front of the square is green and the back
is yellow.

These illustrations are followed by a table which exhibits
the composition of any pair of these symmetries. This table is
called a Cayley table for the square (or a Cayley table for the
symmetries of the square). You find a composition, A*B, in a
Cayley table like this one, by locating A along the left edge and B
along the top edge.



The Power of Inverses 27

illustrated). Your left column is now a list of all of
the proper symmetries. Your right column is a list - -

*
of all of the improper symmetries. The left and g‘ E*ﬁ‘
right columns have the same sizes; thus, there R2 F*Rl
are equal numbers of proper and improper :‘R3 F*R3
4 el

symmetries. Why are the symmetries in the right | :
column all improper? Because an improper L'_
symmetry composed with a proper symmetry is

always improper. Why does every improper symmetry appear
somewhere in the right column, with no repetitions? Because
every symmetry appears exactly once in F's row of the Cayley
tableln o oy e S et = e M o e i e ST

Our final application of the existence of inverses has to do
with objects that lack symmetry.

DEFINITION: An object is called asymmetric if it has no
symmetries other than the identity.

A haphazard doodle will almost certainly be asymmetric. The
next theorem says that asymmetric objects are very useful as
rigid motion detectors:

RIGID MOTION DETECTOR THEOREM: If an object is
asymmetric, then any rigid motion of the plane is uniquely
determined by knowing the object’s appearance after that motion
is applied.

To understand this theorem, let us first think about why it is NOT
true for a symmetric object, like a square. Suppose you close
your eyes and then reopen them to discover that the square has
moved 3 in. to the right. From this, you can NOT tell what motion
| performed while your eyes were closed. | might have translated
3 in. to the right or | might have rotated 90° and then translated
3 in. to the right. You have no way of knowing. The rotation part
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