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4 1 Introduction
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Figure 1.1

allows for the use of model organisms and for the critical
transfer of insights gained from one cell type to other cell
types. Applications include, for example, prediction of
protein function from similarity, prediction of network
properties from optimality principles, reconstruction of
phylogenetic trees, or the identification of regulatory
DNA sequences through cross-species comparisons.
However, the evolutionary process also leads to genetic
variations within species. Therefore, personalized medi-
cine and research is an important new challenge for bio-
medical research.

1.2
Models and Modeling

If we observe biological phenomena, we are confronted
with various complex processes that often cannot be
explained from first principles and the outcome of which
cannot reliably be foreseen from intuition. Even if general
biochemical principles are well established (e.g., the
central dogma of transcription and translation or the bio-
chemistry of enzyme-catalyzed reactions), the bio-
chemistry of individual molecules and systems is often
unknown and can vary considerably between species.
Experiments lead to biological hypotheses about individ-
ual processes, but it often remains unclear whether these
hypotheses can be combined into a larger coherent pic-
ture because it is often difficult to foresee the global

Time
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Length and time scales in biology. (Data from the BioNumbers database at bionumbers.hms.harvard.edu.)

behavior of a complex system from knowledge of its
parts. Mathematical modeling and computer simulations
can help us to understand the internal nature and
dynamics of these processes and to arrive at predictions
about their future development and the effect of interac-
tions with the environment.

1.2.1
What Is a Model?

The answer to this question will differ among communi-
ties of researchers. In a broad sense, a model is an
abstract representation of objects or processes that
explains features of these objects or processes (Figure 1.2).
A biochemical reaction network can be represented by a
graphical sketch showing dots for metabolites and arrows
for reactions; the same network could also be described by
a system of differential equations, which allows simulating
and predicting the dynamic behavior of that network. If a
model is used for simulations, it needs to be ensured that it
faithfully predicts the system's behavior — at least those
aspects that are supposed to be covered by the model.
Systems biology models are often based on well-established
physical laws that justify their general form, for instance,
the thermodynamics of chemical reactions. Besides this, a
computational model needs to make specific statements
about a system of interest — which are partially justified by
experiments and biochemical knowledge, and partially by
mere extrapolation from other systems. Such a model can
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Typical abstraction steps in mathematical modeling. (a) E. coli bacteria produce thousands of different proteins. If a specific

protein type is labeled with a fluorescent marker, cells glow under the microscope according to the concentration of this marker. (Courtesy of
M. Elowitz.) (b) In a simplified mental model, we assume that cells contain two enzymes of interest, X (red) and Y (blue), and that the molecules

(dots) can freely diffuse within the cell. All other substances are disregard

ed for the sake of simplicity. (c) The interactions between the two

protein types can be drawn in a wiring scheme: each protein can be produced or degraded (black arrows). In addition, we assume that proteins
of type X can increase the production of protein Y. (d) All individual processes to be considered are listed together with their rates a
(occurrence per time). The mathematical expressions for the rates are based on a simplified picture of the actual chemical processes. (e) The list
of processes can be translated into different sorts of dynamic models, in this case, deterministic rate equations for the protein concentrations x
and y. (f) By solving the model equations, predictions for the time-dependent concentrations can be obtained. If the predictions do not agree
with experimental data, this indicates that the model is wrong or too much simplified. In both cases, the model has to be refined.

summarize established knowledge about a system in a
coherent mathematical formulation. In experimental biol-
ogy, the term “model” is also used to denote a species that
is especially suitable for experiments; for example, a geneti-
cally modified mouse may serve as a model for human
genetic disorders.

1.2.2
Purpose and Adequateness of Models

Modeling is a subjective and selective procedure. A
model represents only specific aspects of reality but, if
done properly, this is sufficient since the intention of
modeling is to answer particular questions. If the only
aim is to predict system outputs from given input signals,
a model should display the correct input—output relation,
while its interior can be regarded as a black box. How-
ever, if instead a detailed biological mechanism has to be
elucidated, then the system’s structure and the relations
between its parts must be described realistically. Some
models are meant to be generally applicable to many
similar objects (e.g., Michaelis—Menten kinetics holds for
many enzymes, the promoter—operator concept is appli-
cable to many genes, and gene regulatory motifs are com-
mon), while others are specifically tailored to one

particular object (e.g., the 3D structure of a protein, the
sequence of a gene, or a model of deteriorating
mitochondria during aging). The mathematical part can
be kept as simple as possible to allow for easy implemen-
tation and comprehensible results. Or it can be modeled
very realistically and be much more complicated. None of
the characteristics mentioned above makes a model
wrong or right, but they determine whether a model is
appropriate to the problem to be solved. The phrase
“essentially, all models are wrong, but some are useful”
coined by the statistician George Box is indeed an appro-
priate guideline for model building.

1.23
Advantages of Computational Modeling

Models gain their reference to reality from comparison
with experiments, and their benefits therefore depend on
the quality of the experiments used. Nevertheless, model-
ing combined with experimentation has a lot of advan-
tages compared with purely experimental studies:

* Modeling drives conceptual clarification. It requires
verbal hypotheses to be made specific and conceptually
rigorous.
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* Modeling highlights gaps in knowledge or understanding.
During the process of model formulation, unspecified
components or interactions have to be determined.
Modeling provides independence of the modeled
object.

* Time and space may be stretched or compressed ad

libitum.

Solution algorithms and computer programs can be

used independently of the concrete system.

Modeling is cheap compared with experiments.

* Models exert by themselves no harm on animals or
plants and help to reduce ethical problems in experi-
ments. They do not pollute the environment.

* Modeling can assist experimentation. With an adequate
model, one may test different scenarios that are not
accessible by experiment. One may follow time courses
of compounds that cannot be measured in an experi-
ment. One may impose perturbations that are not feasi-
ble in the real system. One may cause precise
perturbations without directly changing other system
components, which is usually impossible in real sys-
tems. Model simulations can be repeated often and for
many different conditions.

* Model results can often be presented in precise mathe-

matical terms that allow for generalization. Graphical

representation and visualization make it easier to
understand the system.

Finally, modeling allows for making well-founded and

testable predictions.

.

The attempt to formulate current knowledge and open
problems in mathematical terms often uncovers a lack of
knowledge and requirements for clarification. Further-
more, computational models can be used to test whether
proposed explanations of biological phenomena are feasi-
ble. Computational models serve as repositories of cur-
rent knowledge, both established and hypothetical, about
how systems might operate. At the same time, they pro-
vide researchers with quantitative descriptions of this
knowledge and allow them to simulate the biological pro-
cess, which serves as a rigorous consistency test.

1.3
Basic Notions for Computational
Models

1.3.1
Model Scope

Systems biology models consist of mathematical elements
that describe properties of a biological system, for instance,
mathematical variables describing the concentrations of

metabolites. As a model can only describe certain aspects
of the system, all other properties of the system (e.g., con-
centrations of other substances or the environment of a
cell) are neglected or simplified. It is important — and, to
some extent, an art — to construct models in such ways
that the disregarded properties do not compromise the
basic results of the model.

1.3.2
Model Statements

Alongside the model elements, a model can contain vari-
ous kinds of statements and equations describing facts
about the model elements, most notably, their temporal
behavior. In kinetic models, the basic modeling paradigm
considered in this book, the dynamics is determined by a
set of ordinary differential equations describing the sub-
stance balances. Statements in other model types may
have the form of equality or inequality constraints (e.g.,
in flux balance analysis), maximality postulates, stochastic
processes, or probabilistic statements about quantities
that vary in time or between cells.

133
System State

In dynamical systems theory, a system is characterized by
its state, a snapshot of the system at a given time. The
state of the system is described by the set of variables that
must be kept track of in a model: in deterministic models,
it needs to contain enough information to predict the
behavior of the system for all future times. Each modeling
framework defines what is meant by the state of the sys-
tem. In kinetic rate equation models, for example, the
state is a list of substance concentrations. In the corre-
sponding stochastic model, it is a probability distribution
or a list of the current number of molecules of a species.
In a Boolean model of gene regulation, the state is a string
of bits indicating for each gene whether it is expressed
(“1") or not expressed (“0”). Also, the temporal behavior
can be described in fundamentally different ways. In a
dynamical system, the future states are determined by the
current state, while in a stochastic process, the future
states are not precisely predetermined. Instead, each pos-
sible future history has a certain probability to occur.

1.3.4
Variables, Parameters, and Constants

The quantities in a model can be classified as variables,
parameters, and constants. A constant is a quantity with a
fixed value, such as the natural number e or Avogadro’s
number (number of molecules per mole). Parameters are



quantities that have a given value, such as the K,, value of
an enzyme in a reaction. This value depends on the
method used and on the experimental conditions and
may change. Variables are quantities with a changeable
value for which the model establishes relations. A subset
of variables, the state variables, describes the system
behavior completely. They can assume independent val-
ues and each of them is necessary to define the system
state. Their number is equivalent to the dimension of the
system. For example, the diameter 4 and volume V of a
sphere obey the relation V=nrd"/6, where n and 6 are
constants, V and d are variables, but only one of them is
a state variable since the relation between them uniquely
determines the other one.

Whether a quantity is a variable or a parameter
depends on the model. In reaction kinetics, the enzyme
concentration appears as a parameter. However, the
enzyme concentration itself may change due to gene
expression or protein degradation, and in an extended
model, it may be described by a variable.
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Model Behavior

Two fundamental factors that determine the behavior of
a system are (i) influences from the environment (input)
and (ii) processes within the system. The system struc-
ture, that is, the relation among variables, parameters,
and constants, determines how endogenous and exoge-
nous forces are processed. However, different system
structures may still produce similar system behavior (out-
put); therefore, measurements of the system output often
do not suffice to choose between alternative models and
to determine the system’s internal organization.

1.3.6
Model Classification

For modeling, processes are classified with respect to a
set of criteria.

* A structural or qualitative model (e.g., a network graph)
specifies the interactions among model elements. A
quantitative model assigns values to the elements and to
their interactions, which may or may not change.

* In a deterministic model, the system evolution through
all following states can be predicted from the knowl-
edge of the current state. Stochastic descriptions give
instead a probability distribution for the successive
states.

* The nature of values that time, state, or space may
assume distinguishes a discrete model (where values are
taken from a discrete set) from a continuous model
(where values belong to a continuum).

1.3 Basic Netions for Computational Models 7

* Reversible processes can proceed in a forward and back-
ward direction. Irreversibility means that only one
direction is possible.

* Periodicity indicates that the system assumes a series of
states in the time interval {t, t+ At} and again in the
time interval {t + iAt, t+ (i + 1)At} fori=12,.. ..

1.3.7
Steady States

The concept of stationary states is important for the
modeling of dynamical systems. Stationary states (other
terms are steady states or fixed points) are determined by
the fact that the values of all state variables remain con-
stant in time. The asymptotic behavior of dynamic sys-
tems, that is, the behavior after a sufficiently long time, is
often stationary. Other types of asymptotic behavior are
oscillatory or chaotic regimes.

The consideration of steady states is actually an abstrac-
tion that is based on a separation of time scales. In nature,
everything flows. Fast and slow processes — ranging from
formation and breakage of chemical bonds within nano-
seconds to growth of individuals within years — are
coupled in the biological world. While fast processes often
reach a quasi-steady state after a short transition period,
the change of the value of slow variables is often negligi-
ble in the time window of consideration. Thus, each
steady state can be regarded as a quasi-steady state of a
system that is embedded in a larger nonstationary envi-
ronment. Despite this idealization, the concept of station-
ary states is important in kinetic modeling because it
points to typical behavioral modes of the system under
study and it often simplifies the mathematical problems.

Other theoretical concepts in systems biology are only
rough representations of their biological counterparts. For
example, the representation of gene regulatory networks
by Boolean networks, the description of complex enzyme
kinetics by simple mass action laws, or the representation
of multifarious reaction schemes by black boxes proved to
be helpful simplifications. Although being a simplification,
these models elucidate possible network properties and
help to check the reliability of basic assumptions and to
discover possible design principles in nature. Simplified
models can be used to test mathematically formulated
hypotheses about system dynamics, and such models are
easier to understand and to apply to different questions.

1.3.8
Model Assignment Is Not Unique

Biological phenomena can be described in mathematical
terms. Models developed during the last few decades
range from the description of glycolytic oscillations with
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ordinary differential equations to population dynamics
models with difference equations, stochastic equations
for signaling pathways, and Boolean networks for gene
expression. However, it is important to realize that a cer-
tain process can be described in more than one way: a
biological object can be investigated with different exper-
imental methods and each biological process can be
described with different (mathematical) models. Some-
times, a modeling framework represents a simplified lim-
iting case (e.g., kinetic models as limiting case of
stochastic models). On the other hand, the same mathe-
matical formalism may be applied to various biological
instances: statistical network analysis, for example, can be
applied to cellular transcription networks, the circuitry of
nerve cells, or food webs.

The choice of a mathematical model or an algorithm to
describe a biological object depends on the problem, the
purpose, and the intention of the investigator. Modeling
has to reflect essential properties of the system and differ-
ent models may highlight different aspects of the same
system. This ambiguity has the advantage that different
ways of studying a problem also provide different insights
into the system. However, the diversity of modeling
approaches makes it also very difficult to merge estab-
lished models (e.g., for individual metabolic pathways)
into larger supermodels (e.g., models of complete cell
metabolism).

1.4
Networks

The network is a crucial concept in systems biology. We
study protein—protein interaction networks, protein—
RNA interaction networks, metabolic networks (see
Chapters 3 and 4 and Section 12.1), signaling networks
(Section 12.2), guilt-by-association networks, and net-
works connecting gene defects with diseases or diseases
with other diseases via common gene defects [1].
Throughout this book, you will find more examples.
Networks are best represented by graphs that consist of
nodes and edges, which connect the nodes, as illustrated
in Figure 1.3. In protein—protein interaction networks, for
example, nodes are proteins and edges are their interac-
tions as can for instance be determined by yeast two-
hybrid experiments (see Chapter 14). If appropriate, one
can introduce different types of nodes for different types
of components. For example, the metabolites and con-
verting enzymes in metabolic networks can be repre-
sented with bipartite networks, which possess two types
of nodes — one for metabolites and the other for enzymes
— that are never directly connected by an edge, but only
via the other type of node. Petri net type of modeling

Figure 1.3
circles). Different node colors indicate different types of connected
components (e.g., proteins, mRNAs, and metabolites).

Network with nodes (circles) and edges (lines between

takes that property into account representing metabolites
as places and enzyme-catalyzed reactions as transitions
(see Section 7.1). By contrast, classical metabolic model-
ing considers only one type of node, but different types in
different approaches. Systems of ordinary differential
equations describing metabolite dynamics take metabo-
lites as nodes and enzymatic reactions as edges (Chapter
4), while flux balance analysis restricts itself to steady
states and now focusses on the fluxes through the
reactions (now as nodes) that are linked by the stationary
metabolites as edges.

1.5
Data Integration

Systems biology has evolved rapidly in the last few years,
driven by the new high-throughput technologies. The
most important impulse was given by large sequencing
projects such as the Human Genome Project, which
resulted in the full sequence of the human and other
genomes [2,3]. Proteomic technologies have been used to
identify the translation status of complete cells (2D gels,
mass spectrometry) and to elucidate protein—protein
interaction networks involving thousands of compo-
nents [4]. However, to validate such diverse high-
throughput data, one needs to correlate and integrate
such information. Thus, an important part of systems
biology is data integration.

On the lowest level of complexity, data integration
implies common schemes for data storage, data represen-
tation, and data transfer. For particular experimental



for developing mathematical models of all parts of a cell
of E. coli strain K-12,

1.7.2
Saccharomyces cerevisiae

The yeast S. cerevisiae is a unicellular fungus, belonging
to the ascomycetes (Figure 1.4b). It is not only a useful
organism needed for the production of wine, beer, and
bread, but also the best studied eukaryotic model system.
The cells are easy to grow and double under optimal
conditions every 90-100 min. Like E. coli, also S. cerevi-
siae can live under aerobic as well as anaerobic condi-
tions. If oxygen is present, the majority of energy is
generated via oxidative phosphorylation at the inner
mitochondrial membrane and without oxygen energy is
produced via glycolysis and fermentation. The yeast nor-
mally propagates as a diploid organism via mitosis. Under
stress, however, the diploid cells can undergo sporulation,
producing four haploid cells in the process. These hap-
loid cells belong to one of two mating classes (sexes),
called “a” and “o”. Haploids can either propagate via nor-
mal mitosis or mate with other haploids of the different
mating class, resulting again in diploid cells. This life
cycle makes S. cerevisiae interesting for genetic studies; it
has also been extensively used by experimental and
modeling studies of the cell cycle, glycolysis, osmotic
shock, and mating process [21-28]. Cell division occurs
in S. cerevisiae in an asymmetric fashion called budding
and single-cell studies have shown that yeast cells exhibit
replicative senescence with a maximum of 30-40 divi-
sions [29]. Since this process is very reminiscent of the
replicative senescence known from human fibro-
blasts [30], S. cerevisiae is also employed as a model sys-
tem for investigations of the aging process. Furthermore,
S. cerevisiae was also the first eukaryotic organism to be
sequenced and its genome consists of about 12 Mbp con-
taining roughly 6000 genes distributed over 16 chromo-
somes [31]. Homologous recombination (the exchange of
sequences between similar strands of DNA) is very effi-
cient in S. cerevisiae, which makes the organism also a
convenient model for studies of synthetic biology. Using
this mechanism, it was possible to replace the complete
chromosome 16 with a new, synthetic one through 11
successive rounds of transformation (see Chapter 14) [32].
The synthetic chromosome was streamlined by removing
all introns and superfluous tRNA genes and using only two
of the three possible stop codons. This opens the possibility
to extend the genetic code by a further amino acid once all
chromosomes are modified in this way. A good online
resource for further information about this model orga-
nism is the Saccharomyces Genome Database (www
.yeastgenome.org).
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1.7.3
Caenorhabditis elegans

Of course, model systems for multicellular organisms are
also needed and the nematode C. elegans (Figure 1.4c)
has become such a model since Sidney Brenner intro-
duced it to the research community [33]. Like the other
model organisms, it is easy to cultivate (feeding on bacte-
ria or synthetic medium) and thousands of the about
1 mm long animals can live on a large Petri dish. Wild
populations of C. elegans consist mainly of hermaphro-
dites together with a few males. Hermaphrodites not only
are capable of self-fertilization (leading to natural inbred
lines), but can also mate with males. The hermaphrodite
then lays eggs that develop into larvae after hatching and
after a total of four larval stages (L1-L4) the adult animal
emerges. The complete life cycle from egg to egg takes
between 2.5 and 5.5 days, depending on the temperature.
The total lifespan of C. elegans is rather short with 2-3
weeks. This made C. elegans another popular model sys-
tem for the investigation of the aging process [34]. How-
ever, the nematode is also an important model for other
fields of research such as molecular biology or neurology.
RNA interference (RNAI), for instance, is an important
experimental technique (Chapter 14) that was developed
based on experiments in C. elegans [35]. Furthermore,
adult nematodes have a fixed number of somatic cells
that is identical for all individuals (1031 in the male and
959 in the hermaphrodite), which makes it possible to
generate very detailed anatomical models of the worm.
The “slidable worm” (www.wormatlas.org/slidableworm.
htm), which is a resource available on the webpage of the
WormAtlas database, presents the results of such ana-
tomical studies using an easy-to-use interface. C. elegans
is also the only animal for which the complete wiring
diagram (connectome) of the nervous system has been
determined (using electron microscopy serial sec-
tions) [36,37]. Finally, C. elegans has also been the first
multicellular organism for which the complete genome
sequence has been determined [38,39]. The 97 Mbp contain
approximately 19000 genes dispersed over six chromo-
somes. Good online starting points for more information
are WormBase (www.wormbase.org), WormBook (www
wormbook.org/), or WormAtlas (www.wormatlas.org/).

1.74
Drosophila melanogaster

The fruit fly D. melanogaster (Figure 1.4d) is another,
immensely popular, model organism that shares many of
the properties of C. elegans. The animals are easy to breed
in captivity and because of their small size (around 1 mm)
it is possible to perform studies involving thousands of
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individuals (e.g., for selection or population studies). The
generation time (about 7 days at 29°C) and lifespan
(about 30 days at 29°C) are very short and depend
strongly on the ambient temperature. This facilitates, for
example, artificial selection studies, which take several
generations [40]. D. melanogaster has four chromosomes
(2n = 8), which can even be studied under the light micro-
scope because of a phenomenon called polyteny. As in
many insect larvae, the cells of the salivary glands of
D. melanogaster undergo multiple rounds of replication
without cell division, leading to hundreds of sister chro-
matids aligned to each other. Polytene chromosomes are
found in cells that need to express a large amount of a
specific gene product and transcriptionally active areas
appear under the microscope as swollen regions, so-called
puffs. Although this technique is now outdated regarding
the analysis of transcriptional activity, polytene chromo-
somes are still valuable for taxonomic problems. After
staining, the puffs form a specific banding pattern that
can be used to identify chromosomal deletions and dupli-
cations. This can be used in taxonomy to differentiate and
classify closely related subspecies. D. melanogaster was
arguably the most important model species for investigat-
ing developmental processes in multicellular orga-
nisms [41], which has led to the discovery of Hox
genes [42]. These genes code for a set of transcription
factors that contain a common 180 bp motif (the homeo-
domain) and control the development of the anterior—
posterior axis of the animal. A unique feature of these
genes is that they are arranged on the chromosomes in
the same linear order as the body region that they affect
(called collinearity). Thus, Hox genes at one end of the
cluster control the development of the anterior region
(head), while the genes at the other end of the cluster
influence the development of the posterior region (tail).
Although originally found in Drosophila, Hox genes have
been found in many metazoans, including vertebrates [43].
The complete genome was sequenced in 2000 [44] and
somewhat surprisingly the number of genes is with
approximately 14000 clearly smaller than the number of
genes in C. elegans. Further information, tools, and
resources are available at FlyBase (flybase.org) and
Ensembl Genome Browser (www.ensembl.org/Drosophila_
melanogaster).

1.7.5
Mus musculus

The last model system that we want to introduce here is
the house mouse M. musculus domesticus (Figure 1.4e). It
is clearly the model organism with the largest similarity
to humans and is therefore also of great relevance for

human research. Humans and mice are both mammals
and thus share a common ancestor roughly 80 million
years ago, a rather short time span compared with the
other model organisms. Consequently, the genome struc-
ture and organization is also very similar. The mouse
genome, sequenced in 2002 [45], contains 2.5 Gbp and is
thus somewhat smaller than the human genome with
2.9Gbp [2,3], although both genomes contain approxi-
mately 20000-25000 genes. The similarity at the gene
level is quite amazing insofar that for more than 99% of
mouse genes a homolog can also be found in the human
genome [3], and vice versa. The mouse is also a popular
model system because it is very amenable to genetic
manipulations. The first mice were cloned in 1998 [46]
and today it is common routine to create transgenic mice
by introducing DNA constructs into fertilized egg cells
and to study the function of existing genes by knocking
them out or down (see Chapter 14). The Knockout
Mouse Project (KOMP), for instance, aims at generating
and providing mouse embryonic stem cells (and eventu-
ally whole mice) with single-gene knockout for every
gene in the mouse genome (www.komp.org). Because
mice have been used for such a long time as model spe-
cies, many different inbred strains have been developed,
which differ in various aspects of their phenotype (e.g.,
size, lifespan, and disease susceptibility). Of special inter-
est are the various strains of nude mice that have a dele-
tion of the FOXN1 gene, which prevents the formation of
a functioning thymus. Without a thymus, these mice can-
not produce mature T lymphocytes and therefore lack
most forms of immune response (the lack of fur is a side
effect of this mutation). As a consequence, they are valu-
able tools to study tumor development and are also used
for transplantation studies, since they do not reject allo-
or xenografts. Useful starting points for further informa-
tion are, for instance, the Mouse Genome Informatics
(www.informatics.jax.org/), the Mouse Atlas Project
(www.emouseatlas.org), or the Ensembl Genome Browser
(www.ensembl.org/Mus_musculus).
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Modeling of Biochemical Systems

Over the last two decades, formulation of formal (often
mathematical) concepts and computational modeling
have become more and more familiar in biology,
although they have been applied much earlier. Leonardo
of Pisa used in his book from 1202 the Fibonacci num-
bers to describe the growth of a rabbit population. Lotka
and Volterra characterized population dynamics of lynx
and hares (predators and preys) with their famous equa-
tion in the 1920s. Michaels and Menten developed a
model to determine the rate for kinetic reactions in 1913.
In the mid of the last century, Ludwig von Bertalanffy
became famous for his work on biophysics of open sys-
tems, thermodynamics of living systems, and the intro-
duction of the notion of “Fliefigleichgewicht,” roughly
translated with dynamic equilibrium.

Since that time, many different approaches have been
introduced and applied for in-depth understanding of
biology, to relate independent biological observations to
each other (what has the protein content measured in
one experiment to do with the mRNA amounts measured
independent of another technique?). Concepts from
physics and engineering have fruitfully invaded biological
research, one example being concepts of control systems
for gene regulation. Biology is on its way to a quantitative
science like physics, chemistry, or geography. It requires
numbers and mathematical predictions to complement
biological measurements and to derive useful predictions
from them. We can compare it, in some sense, with the
weather forecast: Data are combined with models and
evaluated by computers to predict tomorrow’s weather.
The forecast is often not precise, but getting better. How-
ever, biology is much more complicated with different
species, different cell types making a higher organism,
and processes of development and evolution. Neverthe-
less, many promising results indicate that it is worth try-
ing to provide a mathematical description of biological
systems.

2.1 Overview of Common Modeling Approaches for
Biochemical Systems

2.2 ODE Systems for Biochemical Networks
* Basic Components of ODE Models
* lllustrative Examples of ODE Models

References

Further Reading

Here, we will give a short and cursory introduction to
model concepts and how to formulate a first model for
the process of interest. More detailed explanations of
construction and analysis procedures for models follow
in the later chapters.

2.1
Overview of Common Modeling
Approaches for Biochemical Systems

Summary

We give an overview of frequently used modeling
approaches in systems biology such as network-based
models, rule-based models, or statistical models and dis-
cuss their fields of application, strengths, and basic
underlying principles. Links to the individual chapters
with in-depth explanation, examples, and questions are
provided.

Understanding a biological system is not a straight,
unidirectional process. It requires understanding of its
topology or the structure of the system. It involves analy-
ses of its dynamical behavior and the control mechanisms
at play. Also, it requires interpreting how its design and
function relate one another in the overall context. The

Systems Biology: A Textbook, Second Edition. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, and Axel Kowald.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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2.2.1
Basic Components of ODE Models

To formulate an ODE model for a dynamic biochemical
reaction network, we need the following information:

1) The basic building blocks are all compounds and all
reactions converting these compounds into each
other. A list of the reactions and their substrates and
products gives us the stoichiometry of the network.
This approach is further detailed in Chapter 3.

2) The modeler must set the boundary of the system.
Which components should the model follow? They
become internal components. Which components are
not considered relevant for the model? They are com-
pletely left out. Which components determine the
model behavior, but are not changed by its dynamics?
They are called external components. For a metabolic
pathway, for example, all metabolites within the path-
way may be internal metabolites, while the concentra-
tion of a nutrient provided in the medium at fixed
experimental conditions may be an external metabo-
lite. All other cellular components may be ignored for
that specific study.

3) For all reactions that are part of the model, assign
kinetic laws (see Chapter 4).

4) Determine the values of the kinetic parameters used

in the kinetic laws. They can be taken either from

databases or literature or they can be fitted to exper-

imental data (Chapter 6).

On the basis of the well-formulated model, we can

perform different analysis steps:
Find out whether the system has a steady state or not.
Is the steady state uniquely defined or do we obtain
several steady states depending on the parameter val-
ues? Calculate steady state concentrations and reaction
rates.
Simulate the time course for a given set of parameter
values and initial conditions (tools and techniques are
introduced in Chapter 5).
Analyze the effect of perturbations. The impact of
small changes of parameter values is studied by sensi-
tivity analysis and — for biochemical networks — by
metabolic control analysis (see Section 4.2). One may
also test the effect of complete knockouts of enzymes
catalyzing the individual reactions or of knockdowns
or overexpression.

5

—

6

—

7

—

2.2.2
lllustrative Examples of ODE Models

To illustrate the steps introduced above, we consider two
little models: one for a metabolic network and the other
for a small regulatory network.

2.2.2.1 Metabolic Example
Metabolism serves the uptake of nutrients to convert
them into energy, mostly in the form of ATP, and into
building blocks such as amino acids and lipids. All meta-
bolic reactions are catalyzed by enzymes. The metabolic
network in Figure 2.1 resembles the first steps in glycoly-
sis, a major catabolic pathway for the uptake and initial
phosphorylation of glucose, which is afterward distrib-
uted to other catabolic and anabolic pathways to provide
building blocks and energy. Let us call extracellular glu-
cose Sp and its concentration Sy. Intracellular glucose is
Sy, singly phosphorylated glucose (glucose-6-phosphate,
G6P) is S,, and doubly phosphorylated fructose (fructose-
1,6-bisphosphate, F16P;) is S;. G6P is provided for other
synthetic pathways producing S;. Phosphorylation is car-
ried out by consuming ATP (A;) and converting it into
ADP (A,).

We can describe the dynamics of the network in
Figure 2.1a by a set of ordinary differential equations as
follows:

as;
a T

dS,

Y — Ve — 2.1
dr Vo —V3—Vy (2.1)
%—_ﬁ—v +v

a2

When we assign kinetics to the reactions, we can simu-
late the system. A simple choice of kinetics is mass action
kinetics, where the reaction rate is proportional to the
concentration of its substrates:

V1=kl, V2=k2'Sl'A3. V3=k3'83: V4=k4'Sg'A3.
(2.2)

You can find more information on kinetic laws in
Chapter 4. We will now use this set of equations to simu-
late the dynamic behavior of the network. Starting with
an ATP concentration of 1, an ADP concentration of 0,
and zero concentrations of the internal sugars (S, S,), we
find that ATP is consumed and ADP is produced. S, is
produced in an unlimited fashion through the uptake
reaction vy, but S, is produced only as long as ATP is
available, afterward it declines. Since there is unlimited
supply of Sy, the system has no steady state, that is, no
state with dS;/dt =0(i=1,...,n).

A steady state with dS; /d¢ = dS,/d¢ = 0 can be obtained
if we consider that ATP and ADP are kept constant by other
cellular processes, that is, dA3/dt = dA,/dt = 0. Then we
can consider them as external variables, as shown in
Figure 2.1¢ with the dynamics represented in Figure 2.1d.
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Time (a.u.)

Example of a metabolic model. (a) Network representation with Sy and S; considered external and S,, S, as well as A; and A5

treated as internal variables. (b) Time course resulting from dynamic simulation of the network shown in part (a). (c) The same network as in
part (a), but here A; and A; are also treated as external. (d) Time course resulting from dynamic simulation of the network shown in part ().
(e) Network representation with all components considered as internal and, therefore, dynamic. (f) Dynamics of the network shown in part (e).
The dynamics and kinetics are listed in Egs. (2.1) and (2.2). Parameter values: k; =1 (i=1,....4).

If So, S3, and S, were internal variables that can change
(dSo/dt = —vq, dS;3/dt =vs, dS4/dt = vy, respectively),
then the mass provided by Sy remains within the system
and it approaches a state where Sy, A3, and S, decline to
0, while A, reaches 1, S, and S, approach about 0.2, and
S5 about 0.6. However, the model will never reach a true
steady state (Figure 2.1e and f).

2.2.2.2 Regulatory Network Example

Stem cell research is of increasing importance in biologi-
cal research and of great interest in health care. Besides
many other promises, it provides the hope that in the
future many diseases can be cured by administration of
healthy cells of a specific tissue to a diseased person that
have been grown out of reprogrammed induced pluri-
potent stem cells (iPS cells) originating from the same
person. The three genes (and gene products) considered
as the main regulators of stemness of cells are Oct4,
Sox2, and Nanog. They activate each other, but they are
controlled by epigenetic marking and by growth factors.

Cellular differentiation is accompanied by hypermethyla-
tion of their promoters and by downregulation of their
gene expression. In order to create iPS cells, many exper-
imental procedures have been tested. The addition of
viral plasmid containing four factors — Sox2, Oct4, c-
Myc, and the microRNA Klf4 - that was introduced by
Takahashi and Yamanaka in 2006 [2] was most
successful.

Here, we will use a simple model to study some basic
properties of that system. Let us first assume that Oct4,
Sox2, and Nanog stabilize each other. Their expression
is suppressed by the epigenetic marking (the DNA
methylation), but the proteins also prevent DNA meth-
ylation (see Figure 2.2). This mutual inhibition can be
described on different levels of detail (e.g., including
the joint stabilization of the proteins or not). We will
use the following differential equation system that
focuses on the collective effect of stemness markers on
epigenetic marking and vice versa, that is, the double
negative feedback (resulting in a positive feedback) that



20

2 Modeling of Biochemical Systems

each component has on itself:

dOSN EM™
dt =V1—VZ—V3=k1—k2'm—k3'osN,
2
N = Vs = v = ke = ks N _ kg EM.
de (K% + OSN™)
(2.3)

OSN denotes the common activity of the stemness
markers Oct4, Sox2, and Nanog. EM represents the level
of epigenetic marking. The activity of OSN increases

linearly, but EM inhibits it in a fashion described with a
Hill function (see Chapter 4). Its basal degradation is
proportional to its current concentration. The respective
rules hold for EM with OSN as inhibitor. The behavior is
illustrated in Figure 2.2. It shows that the system has
three steady states. One steady state is unstable, the other
two steady states feature either low levels of epigenetic
marking and high expression of the stemness factors,
indicating that the cell is a stem cell, or high levels of
epigenetic marking and low levels of Oct4, Sox2, and
Nanog, indicating differentiation. In isolation, the system
will always reach one of these states, depending on the
initial conditions, and then remain there. It can only be

ERE!
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Figure 2.2 Network and dynamics of a model for epigenetic regulation of stemcellness. (a) Epigenetic regulation (EM) and the three factors

Oct4, Sox2, and Nanog (OSN) responsible for pluripotency. The dynamics is described with the ordinary differential equations system (2.3). (b)
The phase plan showing a plot of EM against OSN represents the three steady states of this system, one stable state for high values of EM
(indicated in blue), one stable state for high values of OSN (indicated in green), and one in-between. The state in-between is unstable. The small
light blue arrows indicate the actual flow of the system at each point in the phase plan. The green line is the line with no change (nullcline) of
OSN; hence, the flow arrows cross it always vertically. The blue line for steady values of EM is always crossed horizontally. The dashed yellow
line is called separatrix since it separates the basin of attraction for the steady state featuring high EM and low OSN (blue dot) from the basin of
attraction for the steady state with high OSN and low EM (green dot). The small time plots to the right exemplify that any starting condition
within these basins of attraction leads to the respective stable state. (c) The system can be pushed out of its current stable state by supply of
another component, here by OSN transcribed from an exogenous vector, which inhibits EM but is not regulated by it. (d) The effect depends
on the expression strength of external OSN; only if it is expressed strongly enough and for sufficient time, it can reverse the cellular decision
from high EM to high OSN (and low EM).



moved out of this state by external cues. Under natural
conditions, stem cells are forced into differentiation by
external signaling compounds such as Wnt or growth
factors. When trying to reprogram cells away from the
differentiated state toward induced pluripotency, the
strategy introduced by Takahashi and Yamanaka
favors OSN through the expression from a viral vec-
tor. This has the effect that these four compounds are
expressed and active, for example, in regulating epige-
netic marking, but they are not under epigenetic regu-
lation themselves. If their expression is strong and
long enough, they push the cells back into conditions
featuring pluripotency with high expression also of
endogenous stem cell factors.

Cellular reprogramming with viral vectors has provided
many opportunities to study the reprogramming process
in detail and determine the contribution of individual
regulatory mechanisms, such as cell cycle progression. It
is less suited for long-term application in human patients,
which is an interesting medical aim, since it implies using
viral material and since the uncontrolled expression of
pluripotency factors can also lead to unintended side
effects such as cancerogenesis. Hence, the search for
alternative ways for reprogramming is ongoing, for exam-
ple, by using small molecules.
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Table 3.1 Different reaction networks, their stoichiometric matrices, and the respective system of ODEs.
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Network Stoichiometric matrix ODE system
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Note that external metabolites are neither drawn in the network nor included in the stoichiometric matrix. Thin arrows denote reactions and bold

arrows denote activation.

state, we can also consider the vector J = (/1./5,... .],,)T
containing the steady-state fluxes. With these notions,
the balance equation reads

ds
— = Nv, 3.5
Tl (35)
a compact form that is suited for various types of
analyses.

3.1.2

Information Encoded in the Stoichiometric

Matrix N

The stoichiometric matrix contains important informa-
tion about the structure of the metabolic network. Using
the stoichiometric matrix, we may calculate which com-
binations of individual fluxes are possible in steady state
(i.e., calculate the admissible steady-state flux space).
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We may easily find out dead ends and unbranched
reaction pathways. In addition, we may discover the con-
servation relations for the included reactants.

In steady state, it holds that

5 =Nv=o (3.6)
Note that 0 is a vector with length n, that is,
0=(0,0,...,0)". The right equality sign in Eq. (3.6)
denotes a linear equation system for determination of the
rates v. From linear algebra, it is known that this equation
has nontrivial solutions only for Rank(N) < r (see Section
15.1 for an introduction to linear algebra). A kernel

matrix K fulfilling
NK=0 (3.7)

expresses the respective linear dependencies between
the columns of the stoichiometric matrix [3]. K con-
sists of r — Rank(N) basis vectors as columns and can
be determined using the Gauss algorithm (see mathe-
matical textbooks). The kernel is not uniquely defined.
Multiplication of K with a regular matrix Q of appro-
priate size (K' = K- Q, equivalently to linear combina-
tion of the columns of K) yields another valid kernel
K' of N.

Every possible set J of steady-state fluxes can be
expressed as linear combination of the columns k; of K:

r—Rank(N)
J= > a4k (3.8)
i=1
The coefficients must have units corresponding to the
units of reaction rates (e.g., mM s™!).

If the entries in a certain row are zero in all basis
vectors, we have found an equilibrium reaction. In any
steady state, the net rate of this reaction must be zero.
For the reaction system N4 in Table 3.1, it holds that » =
4 and Rank(N) = 3. Its kernel consists of only one col-
umn K= (1 1 1 0)". Hence, vs=Y", a-0=0.
In any steady state, the rates of production and degrada-
tion of S; must be equal, thereby leading to zero net
change.

If all basis vectors contain the same entries for a set of
rows, this indicates an unbranched reaction path. In each
steady state, the net rate of all respective reactions is equal.

Up to now, we have not been concerned about (ir)
reversibility of reactions in the network. The
irreversibility of a reaction does not affect the stoichio-
metric matrix. However, it has consequences for the
choice of basis vectors k; for the kernel K. A set of basis
vectors must be chosen to satisfy the signs of fluxes when
calculated by Eq. (3.8).

Example 3.1

For the network N2 in Table 3.1, we have r = 5 reactions and
Rank(N) = 4. The kernel matrix contains just 1 =5 — 4 basis
vectors, which are multiples of ky = (1 1 1 1 1 )T. This
means that in steady state the flux through all reactions must
be equal.

Network N3 comprises r=3 reactions and has
Rank(N) = 1. Each representation of the kernel matrix con-
tains 3 — 1 = 2 basis vectors, for example,

1 1
K=(k k;) with k1=(1), kzz(o), (3.9)
0 1

and for the steady-state flux holds

J=(]'| 'k'| + ;- kz, (310}

Network N6 can present a small signaling cascade. It has
five reactions and Rank(N) = 3. Two basis vectors of the
kernel are

k=(1 100 0),
kk=(0 0 1 1 o). (3.11)

If we calculate the possible steady-state fluxes according
to Eq. (3.10), we can easily see that in every steady state it
holds that production and degradation of S; are balanced
(Jy = J) and that the fluxes through the cycle are equal
(J3 = 44). In addition, Js must be equal to zero, otherwise Sy
would accumulate. One could prevent the last effect by
also including the degradation of S, into the network.

Example 3.2

Consider the reaction scheme

Vi Va Va Va

> 5 +——S, «— S5, «——> (3.12)

Ivs

The system comprises r = 6 reactions. The stoichiometric
matrix reads

1T =1 0 0 -1

N=1|0 1 -1 0o 0

(O o 1 -1 0
with Rank(N) = 3. Thus, the kernel matrix is spanned by three
basis vectors, for example, ky=(1 1100 -1),
k;=(100010)7, and ks=(-1 -1 =1 =1 0 0)".
The entries for the second and third reactions are always
equal; thus, in any steady state, the fluxes through reactions 2

and 3 must be equal.

- O O




3.1.3
The Flux Cone

The stoichiometric analysis of biochemical network anal-
ysis can be modified by considering only irreversible
reactions (e.g., by splitting reversible reactions into two
irreversible ones). Based on such a unidirectional repre-
sentation, the basis vectors (Eq. (3.8)) form a convex cone
in the flux space. This mapping relates stoichiometric
analysis to the concepts of convex geometry as follows.
The steady-state assumption requires that a flux vector is
an element of the null space of the stoichiometric matrix
N spanned by matrix K. A row of K can be interpreted as
a hyperplane in flux space. The intersection of all these
hyperplanes forms the null space. Provided that all
reactions are unidirectional or irreversible, the intersec-
tion of the null space with the semipositive orthant of the
flux space forms a polyhedral cone, the flux cone. The
intersection procedure results in a set of rays or edges
starting at 0, which fully describe the cone. The edges are
represented by vectors and any admissible steady state of
the system is a positive combination of these vectors. An
illustration is presented in Figure 3.1.

3.14
Elementary Flux Modes and Extreme
Pathways

A stringent definition of the term “pathway” in a meta-
bolic network is not straightforward. A descriptive defini-
tion of a pathway is a set of reactions that are linked by
common metabolites. Typical examples include glycolysis
or different amino acid synthesis pathways. More detailed
inspection of metabolic maps such as the Boehringer
chart [4] shows that metabolism is highly interconnected
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and better addressed as a network. Pathways that are
known for a long time from biochemical experience are
already hard to recognize, and it is even harder to find
out new pathways, for example, in metabolic maps that
have been reconstructed from sequenced genomes of
bacteria.

The problem of clearly identifying functional pathways
has been elaborated in the concepts of elementary flux
modes [3,5-10] and extreme pathways [11-14]. In both
cases, the stoichiometry of a metabolic network is investi-
gated to discover which direct routes are possible that
lead from one external metabolite to another external
metabolite. Both approaches use the steady-state assump-
tion and take into account that some reactions are revers-
ible, while others are irreversible. Despite these two
constraints, we still obtain too many solutions, especially
for larger networks. For elementary flux modes, this
problem is solved by the requirement that they cannot be
further decomposed, while extreme fluxes are bound to
the generating vectors of the flux cone, as explained
below.

We start with defining a flux mode M. It is the set of
flux vectors that represent direct routes through the net-
work between external metabolites. In mathematical
terms, it is defined as the set

M= {vER="1>0}, (3.13)

where v* is an r-dimensional vector (unequal to the null
vector) fulfilling two conditions:

1) the steady-state condition Nv = 0, that is, Eq. (3.6),
and

2) sign restriction, that is, the flux directions in v* fulfill
the prescribed irreversibility relations. v\ denotes the
subvector of v* that contains only nonnegative fluxes.

(a) 4 (b) Y (c) 4
Vi Vi I Vi
k 1 |
v/ k=0
, ’ =
; , 1 2
S * e 1
4 Fhi . .k] =1
’ ,‘ r
[ . 0
i’ p” . 2
Vi ) Vi Vs
£
v v Vo
Figure 3.1  Flux cone: schematic representation of the subspace of feasible steady states within the space spanned by all positive-valued
vectors for rates of irreversible reactions, v;, i = 1,...,r. Only three dimensions are shown. Feasible solutions are linear combinations of basis

vectors of matrix K (see text). (a) lllustrative representation of the flux cone for a higher dimensional system (with r — Rank(N) = 4). The basis
vectors of K are rays starting at the origin. The line connecting the four rays indicates possible limits for real flux distributions set by constraints.
The little asterisk indicates one special feasible solution for the fluxes. (b) The flux cone for an unbranched reaction chain of arbitrary length,
such as the network N2 in Table 3.1, is just a ray since K is represented by a single basis vector containing only 1s. (c) The flux cone for network
N3 in Table 3.1 is the plane spanned by the basis vectorsk; = (1 1 0) andk,=(1 0 1)".
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A flux mode M comprising v is called reversible if the
set M' comprising —v is also a flux mode.

A flux mode is an elementary flux mode if it uses a
minimal set of reactions and cannot be further decom-
posed, that is, the vector v cannot be represented as non-
negative linear combination of two vectors that fulfill
conditions (1) and (2) but contain more zero entries than
v. An elementary flux mode is a minimal set of enzymes
that could operate at steady state, with all the irreversible
reactions used in the appropriate direction. The number
of elementary flux modes is at least as high as the number
of basis vectors of the null space. The set of elementary

flux modes is uniquely defined. Pfeiffer et al. [6] devel-
oped a software (“Metatool”) to calculate the elementary
flux modes for metabolic networks.

A flux mode is an extreme pathway if

1) all reactions are nonnegative, that is, v = v''';
2) it belongs to the edges of the flux cone, which also
means that it represents a basis vector of K.

To achieve the first, reversible reactions are broken
down into their forward and backward components and
exchange fluxes have to be defined in the appropriate
direction. This way, the set of extreme pathways is a

Example 3.3

(A) Vi Va Vs
Sy «——* S, «——> S, «—5;

Iw

S,

(B8) vy

the flux modes for case (A) and case (B) are

1 1 0
1T =1 0 -1 1 0 -1
N= ( ) v =
0 1 - 0 1 0 -1
0 1 1
1 1 -1 0
1 0 0 1
VB=
1 0 0 1
0 1 -1 -1

The possible routes are illustrated in Figure 3.2.

(@ v v. 1%
1 2 3
S, §,«—*> 5, +—> 3,

Iw

Ss

Figure 3.2

The systems (A) and (B) differ by the fact that reaction 2 is either reversible or irreversible.

Sp«—» S, —» 5, «——» 5,

The elementary flux modes connect the external metabolites Sg and S3, Sg and S4, or 53 and 54. The stoichiometric matrix and

Va Vs
(3.14)

2

S

-1 -1 0
-1
and
-1 1
0 - -1
(3.15)
—_— — — —_— — || — | — —
| | !
— — — — —— —_—— —p
| t t

Schematic representation of elementary flux modes for the reaction network depicted in Eq. (3.14).




subset of the set of elementary flux modes and the
extreme pathways are systemically independent.
Elementary flux modes and extreme pathways can be
used to understand the range of metabolic pathways in a
network, to test a set of enzymes for production of a
desired product and detect nonredundant pathways, to
reconstruct metabolism from annotated genome sequences
and analyze the effect of enzyme deficiency, to reduce drug
effects, and to identify drug targets. A specific application,
the flux balance analysis will be explained in Section 3.2.1.

3.1.5
Conservation Relations — Null Space of N”

If a chemical entity is neither added to nor removed from
the reaction system (neither produced nor degraded), its
total concentration remains constant. This also holds if
the substance interacts with other compounds by forming
complexes.

For the mathematical derivation of the conservation
relations [3], we consider a matrix G fulfilling

GN = 0. (3.16)

Due to Eq. (3.5), it follows
GS =GNv=0. (3.17)

Integrating this equation leads directly to the conserva-
tion relations

GS = constant. (3.18)

The number of independent rows of G is equal to
n — Rank(N), where u is the number of metabolites in the
system. G' is the kernel matrix of N*; hence, it has simi-
lar properties to K. Matrix G can also be found using the
Gauss algorithm. It is not unique, but every linear combi-
nation of its rows is again a valid solution (equivalent to a
premultiplication of G with a regular matrix of appropri-
ate size, i.e,, PG = G'). There exists a simplest representa-
tion G=(Go Ligankv) ). Finding this representation
may be helpful for a simple statement of conservation
relations, but this may necessitate renumbering and reor-
dering of metabolite concentrations (see below).

Importantly, conservation relations can be used to sim-
plify the system of differential equations S = Nv describ-
ing the dynamics of our reaction system. The idea is to
eliminate linear dependent differential equations and to
replace them by appropriate algebraic equations. Below
the procedure is explained systematically [2].

First we have to reorder the rows in the stoichiomet-
ric matrix N as well as in the concentration vector S
such that a set of independent rows is on top and the
dependent rows are at the bottom. Then the matrix N
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Example 3.4

Consider a set of two reactions comprising a kinase and a
phosphatase reaction

N

ATP ADP
Vo

(3.19)

The metabolite concentration vector reads S=(ATP ADP)T,
. . L -1 1 -
and the stoichiometric matrix is N=( 1_1) yielding

G=(11). From the condition GS=constant, it follows that
ATP+ADP=constant. Thus, we have a conservation of ade-
nine nucleotides in this system. The actual values of ATP+
ADP must be determined from the initial conditions.

is split into the independent part Njudep and the depen-
dent part N' and a link matrix L is introduced in the
following way:

Nin I n
N = ( N‘fep) = LNindcp = ( ﬂaLl:(N))Nlndcp‘ (322)

Irankyy is the identity matrix of size Rank(N). The

Example 3.5

For the following model of the upper part of glycolysis

v v, v
Glucose > Gluc-6P «—> Fruc-6P—— Fruc-1,6P,
) a1p app 52 (S o e ADP (S (3.20)
(Ss) (Se) (Ss) (Se)

the stoichiometric matrix N (note the transpose!} and a
possible representation of the conservation matrix G are
given by

-1 1
N=] 0 -1 10

2
G= (o ) (3.21)
1

The interpretation of the second and third rows of G is
straightforward, showing the conservation of adenine
nucleotides (g,, ADP + ATP = constant) and the conserva-
tion of sugars (gs), respectively. The interpretation of the
first row is less intuitive. If we construct the linear combina-
tion g;=-g;+3-9,+2:g5=(0 1 1 2 3 2), we
find the conservation of phosphate groups.

0 0 =1 1 =11

—_ 0 =
—_ =
- o o
o = o
o = =
—
|
o
o wu a
[ropii iy
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(a) (© @ Vs g Multiple
Vi VV 1 optima
- 81\\:3 Constraint: 0<v;=v, +v3<1
Objective: V2 + v3 —» max
1 v,
V. & R
®) 4 () ® % Single
v optimum
1 | Constraint: 0S Vi =Va+v3 <1
) ky = [f’} Objective: ~ 2v2 + vz = max
kl = [l I
0 1 Vo
(g) (h) v,
-,
— 1 Single
/ Vs Constraints: 0<vp=vy +v3 <1 optimum
va 0.2< vy
Objective:  2vy+vy - max |0

Figure 3.3

1 Vs

Constraint-based flux balance analysis. (a) Simple branched network. (b) The kernel vectors k, and k; span a plane of admissible

steady-state fluxes in the flux space, that is, a two-dimensional flux cone. All solutions must lie on this plane. (c-h) Different examples for
constraints, objectives, and resulting optimal fluxes. (c and d) The constraint of an upper and a lower bound for v, and the objective of
maximizing v; (here equivalently to maximizing v, + v3) yield infinitely many optimal solutions lying on the line v; + v3 = 1. (e and f) If the
objective is instead 2v, + v3 — max, we obtain a single optimal solution at v; = 1, v3 = 0. (g and h) The stronger constraint 0.2 < v3 shifts the

solution to v; = 0.8, v; = 0.2.

(or increase) in free energy between two compounds in a
network is independent of the reaction path that is taken
to get from one compound to the other one. According
to the second law of thermodynamics, the Gibbs free
energy must decrease in any occurring reaction. For a
forward reaction, the difference of chemical potentials
(Equation 3.33) must be negative and the reaction affinity
must be positive. In general, for a reaction j, we obtain
the condition

Zﬂiﬂqv}' <0.

Therefore, a given flux pattern v = (v,...,v,)" is only
feasible if condition (3.35) can be satisfied by some vector
(,ul,...,,u,,)T of chemical potentials. This condition can
be tested using the stoichiometric matrix [24].

Flux balance analysis does not require that condition
(3.35) is fulfilled and can therefore lead to incorrect flux
signs. This problem can be avoided by predefining some
of the flux directions, which will restrict the solution
space in advance. Energy balance analysis [25,26], in con-
trast, ensures thermodynamically feasible fluxes by a joint
optimization of the fluxes v; and the chemical potential
differences A,G;. Besides the conditions (3.31), it imposes
the additional requirements (3.34) and (3.35), which leads
to an optimization problem with nonlinear constraints.

(3.35)

The chemical potentials are related not only to the flux
directions, but also to the substance concentrations: for
an ideal mixture (with vanishing mixing enthalpy), the
chemical potential of substance i at pressure p and tem-
perature T reads

wip, T)=u(p, T)+ RT In S;, (3.36)
where S; denotes the concentration of metabolite i in
mM. If the standard chemical potentials ! are known
(e.g., calculated by the group contribution method [27,28]),
Eq. (3.36) translates to constraints between flux directions
and substance concentrations. These constraints can be
used to determine ranges of possible substance concentra-
tions or to check whether measured concentrations are in
agreement with the assumed fluxes [29,30].
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Applications and Tests of the Flux
Optimization Paradigm

Constraint-based methods such as flux balance analysis
allow us to predict the metabolic fluxes and the biomass
production (corresponding to the maximal growth rate)
under different external conditions, for example,



availability of nutrients. The predictions can be used to
simulate dynamically the growth of cell populations and
the consumption of nutrients [19]. By comparing the pre-
dictions of FBA (biomass production or metabolic fluxes)
with experimental data, one can check the assumed net-
work structure for errors (e.g., missing reactions) and test
Boolean models of gene regulation [31]. For instance, a
low predicted growth rate would indicate that the orga-
nism is not viable. By testing the networks for deletion
mutants, essential genes can be predicted [32]. The accu-
racy of such predictions (92% for a Escherichia coli
model [16]) can be used as a quality score to check the
consistency of the model structure and to point to miss-
ing reactions.

This approach implies that flux patterns in wild-type
and mutant cells, under different external conditions, are
optimized for the same general objective function. How-
ever, a study by Schuetz et al [33] indicates that cells may
optimize different objectives depending on the experimen-
tal conditions: metabolic fluxes in the central metabolism
of E. coli cells were compared with predictions based on
11 alternative (linear and nonlinear) objective functions.
Under glucose limitation in continuous cultures, cells
seemed to maximize their yield of ATP or biomass per
glucose consumed. Unlimited growth on glucose in respir-
ing batch cultures, on the other hand, was best described
by assuming a maximization of ATP production divided
by the sum of squared reaction fluxes. This modified
objective can be interpreted as a compromise between
large ATP production and small enzymatic costs.

Such considerations of minimal effort had been formu-
lated before in the principle of minimal fluxes [34]. Large
reaction velocities require large amounts of enzymes,
which put a burden on the cell. If the cost of enzyme
production plays a role, cells will benefit from flux pat-
terns that require less enzyme production, so pathways
that do not contribute to biomass production (or what-
ever quantity is maximized) should be shut off to save
energy and material. The principle of minimal fluxes
assumes that the flux pattern has to meet some func-
tional requirement — for example, to yield a prescribed
rate of biomass production — while the magnitudes of
individual reaction fluxes are minimized.

Even if we accept the assumption of optimality in gen-
eral, constraint-based methods (i) do not explain by
which biological mechanisms changes in flux distribu-
tions are actually achieved (e.g., inherent dynamics of the
metabolic network, transcriptional regulation), (ii) do not
cover the trade-off between cost and benefit of enzyme
production, (iii) rely, instead, on ad-hoc assumptions, for
example, about maximal fluxes, and (iv) assume a steady
state and do not account for dynamic objectives such as
fast adaptation to changes of supply and demand.
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3.2 Constraint-Based Flux Optimization

We will further address the issue of optimality of bio-
logical systems and the application to detect organization
principles in Chapter 11.

3.25
Extensions of Flux Balance Analysis

Metabolic networks are embedded in a highly regulated
cellular environment. A number of studies and
approaches extended flux balance analysis to address spe-
cific biological observations, to integrate molecular and
cellular information, and to accommodate further general
principles. They are briefly summarized here.

3.2.,5.1 Minimization of Metabolic Adjustments
Minimization of metabolic adjustments (MoMA) is a flux-
based analysis technique similar to FBA [35]. It is based on
the same stoichiometric constraints, but the demand of
optimal growth flux for mutants is relaxed. Instead,
MoMA provides an approximate solution for a suboptimal
growth flux state, which is nearest in flux distribution to
the unperturbed state. It is based on the assumption that in
case of a knockout of an enzyme-coding gene metabolic
fluxes undergo a minimal redistribution with respect to the
flux configuration of the wild type.

The mathematical formulation of these requirements
leads to a quadratic programming problem:

Nv=20

||\e'W —vdHZ — min

Constraint :

3.37
Objective : (3.37)

with v,, presenting the fluxes of the wild type and vq4 the
fluxes for the gene deletion mutant. Figure 3.4 shows a
comparison of FBA and MoMA for an illustrative example.

FBA of mutant
optimal

FBA of wild type
v,,, optimal

-~

Obijective
function

/

MoMA of mutant
vy, sub-optimal

Vi

Figure 3.4  The principle of MoMA in comparison with FBA. The
coordinates represent two selected fluxes, the outer black line the
feasible state space for the wild type and the inner black line the
feasible state space for the knockout mutant. The red line shows the
objective function. FBA for the wild type yields the solution indicated
by the red dot, while FBA for the mutant would result in the solution
at the blue dot. MoMA requests that the distance between wild-type
FBA solution and the newly attained state is minimal. This is given by
the flux distribution marked by the green dot.



34

3 Structural Modeling and Analysis of Biochemical Networks

3.2.5.2 Flux Variability Analysis

Flux balance analysis often provides not a unique solution
but the objective may be achieved by a whole range of
alternate optimal solutions. Flux variability analysis
(FVA) provides the ranges of possible flux through each
individual reaction that is compatible with the steady-
state and optimality conditions for the system as a
whole [36]. A potential interpretation of the result is that
a reaction with a small range of possible fluxes is more
important for the functioning of the metabolism than
reactions with a wide range of allowed flux solutions.
FastFVA is an implementation based on an enhanced
algorithm providing solutions significantly faster [37].
Figure 3.5 provides an illustration.

3.2.5.3 Dynamic FBA

Dynamic FBA is an extension of FBA for situations where
changes in the metabolic network are relevant and an
attempt to adapt the model to these changes over
time [38]. This is achieved by a relaxation of the strict
assumptions underlying steady-state analysis. The prob-
lem can be formulated either as a dynamic optimization
problem starting at a given set of initial conditions for the
metabolite concentrations or as a static optimization for a
set of time intervals. In the second case, the time course
is obtained by re-running FBA repeatedly with changing
conditions. Since initial metabolite concentrations are
given, the update rules also allow to calculate metabolite
time profiles in a linearized fashion, that is, Si(¢ + AT) =
Si(t) + NvAT for time steps of duration AT.

(a) 2 V. Va (b) 1 -1
—+35, —* S5, —» ~N=lo
Vi g, Vg 0

3.2.5.4 Regulatory FBA

Metabolic networks are subject to external and internal
changes and their dynamics are influenced both by the
available amount of nutrients and by the expression of
genes coding for the metabolic enzymes. To accommo-
date the transcriptional regulation of enzymes in the FBA
framework, regulatory events may impose temporary,
adjustable constraints on the solution space, such as

vi(t)=0, when ¢ <t<t,, (3.38)

instead of the constant constraints formulated in Eq.
(3.29) [39]. The regulatory constraints change the shape
of the accessible solution space. Consider, for example,
the network N3 given in Table 3.1 and illustrated in
Figure 3.3. If we assume a knockout of the gene coding
for the enzyme of the second reaction and, hence, set
v2(t)=0 for a certain period, only solution k; =
(1 0 1 )T would remain. This is equivalent to say that
v; = v3 or that the entire flux goes through only one of
the branches.

For more complex networks with mutual influence of
genes on each other, the transcriptional regulatory
structure can be described with Boolean logic (Section
7.1), assigning a value of 1 to an expressed gene and a
value of 0 to a nonexpressed gene. The relation
between genes and their expression dynamics is then
described with Boolean rules, that is, combinations of
operators such as AND, OR, or NOT. A schematic of
the two interconnected networks is represented in
Figure 3.6. This approach has been used to study

Multiple
\:ttima

1 Vo
(c) y 1 (d) (f)
2
1 Constraints: 0<v, < 1.5, 0<v,,v, <1 Y
: 0 ] S
! k=1 Objective: Z = v, —> max -
k=1 u : 1.0 I I I
of I | FVA: 05<v, <1, 05<v, <1 0.5
0 II". 00
— 12345 k

Figure 3.5

Flux variability analysis. For the example network in (a) with the given stoichiometry in (b), we find two representations of the

kernel vector K represented in (c). The optimization problem formulated in (d) results in multiple solutions where the objective function Z is
maximal; fluxes v, and v, can still vary between 0.5 and 1; however, their sum must equal 1.5, that is, the maximal input flux v,. (e) shows the
multiple optima in a phase plane spanned by the fluxes v, and vy. (f) shows the variability of fluxes in conditions that maximize the abjective

function under the given constraints.
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Figure 3.6  Schematic representation of an integrated metabolic and regulatory network. TF: transcription factors; Met: metabolites. Genes
code for transcription factors and metabolic enzymes, which in turn catalyze the metabolic reactions. The purpose of the metabolic network is
to produce biomass from the nutrients.

whether microorganisms such as E. coli can live (ie.,
produce sufficient biomass) when living on exhaustible
carbon sources and in which order the carbon sources
are consumed. Extended analyses integrated large-scale

metabolic models with regulatory models for gene
expression [40] and for signaling [41] in E. coli to
study gene expression variability and response to stim-
uli within the FBA framework.

Exercises

1) A canonical view of the upper part of glycolysis
starts with glucose and comprises the following
reactions (in brackets: possible abbreviations): The
enzyme hexokinase (HK, E;) phosphorylates glu-
cose (Gluc, S;) to glucose-6-phosphate (G6P, S,)
under consumption of ATP (S5) and production of
ADP (Sg). The enzyme phosphoglucoisomerase
(PGI, E,) converts glucose-6-phosphate to fructose-
6-phosphate (F6P, S3). The enzyme phosphofructo-
kinase (PFK, E;) phosphorylates F6P a second time
to yield fructose-1,6-bisphosphate (F1,6,BP, S,). The
enzyme fructose bisphosphatase catalyzes the
reverse reaction (E,).

a) Sketch the reaction network and formulate a set
of differential equations (without specifying the
kinetics of the individual reactions).

b) Formulate the stoichiometric matrix N. What is
the rank of N?

¢) Calculate steady-state fluxes (matrix K) and con-
servation relations (matrix G).

d) Compare your results with Example 3.5.

2) a) Write down the sets of differential equations for
the networks N1-N6 given in Table 3.1 without
specifying their kinetics.

b) Determine the rank of the stoichiometric matri-
ces, independent steady-state fluxes, and conser-
vation relations.

Do all systems have a (nontrivial) steady state?

3) Inspect networks N3 and N4 in Table 3.1. Can you
find elementary flux modes? Use an available tool
(e.g., Metatool) to check.
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4) Consider the branch point in Figure 3.2a, with
reactions A =X, B— X, and X = C. The concen-
trations of A, B, and C are fixed and the
reactions are irreversible. (a) Assume upper
bounds v; <1, v, <2 and the fitness function
flv) =v5. Write down the corresponding linear
programming problem and compute the result-
ing flux distribution. (b) Assume, in addition, an
upper bound v;<1. Draw the allowed region in
flux space and determine the optimal flux
distribution.
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Show that a circular conversion flux A =B - C— A
is thermodynamically unfeasible. Consider the fol-
lowing reaction scheme
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Ad—bBuCHD
3
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feasible.
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Kinetic Models of Biochemical

Networks: Introduction

4.1
Reaction Kinetics and Thermodynamics

Summary

Kinetic modeling of metabolic reactions has a long tradi-
tion and forms the basis of many complex models for
metabolic and regulatory networks. In this chapter, we
will make you familiar with the basic concept of kinetic
models for specific reactions. We introduce the mass
action rate law, Michaelis—Menten kinetics, and different
extended, applied, or contemporary modeling approaches.
The role of the major parameters, K, and V.. is
explained. K, and V,,,, are also related to the parameters
of single reaction steps. We will show how you can derive
and apply more advanced kinetic expressions. The effect
of modifiers — activators and inhibitors - is shown for
different kinetic mechanisms. Thermodynamic laws deter-
mine and limit the dynamic behavior and the steady state
of kinetic systems; therefore, thermodynamic foundations
and constraints are briefly introduced.
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Kinetic Modeling of Enzymatic Reactions

Deterministic kinetic modeling of individual biochemical
reactions has a long history. The Michaelis—Menten
model for the rate of an irreversible one-substrate
reaction is an integral part of biochemistry and has
recently celebrated its centenary. The K, value is a major
characteristic of the interaction between enzyme and sub-
strate. Biochemical reactions are catalyzed by enzymes,
that is, specific proteins or ribonucleic acids, which often
function in complex with cofactors. They have a catalytic
center, are usually highly specific, and remain unchanged
by the reaction. One enzyme molecule can catalyze

4.1 Reaction Kinetics and Thermodynamics

* Kinetic Modeling of Enzymatic Reactions

* The Law of Mass Action

* Reaction Thermodynamics

* Michaelis—-Menten Kinetics

* Regulation of Enzyme Activity by Effectors

* Generalized Mass Action Kinetics

* Approximate Kinetic Formats

* Convenience Kinetics and Modular Rate Laws

4.2 Metabolic Control Analysis

* The Coefficients of Control Analysis

* The Theorems of Metabolic Control Theory
* Matrix Expressions for Control Coefficients

* Upper Glycolysis as Realistic Model Example
* Time-Dependent Response Coefficients
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thousands of reactions per second (this so-called turn-
over number ranges from 10% to 107 s7!). Enzyme cataly-
sis leads to a rate acceleration of about 10° up to
10'?-fold compared to the noncatalyzed, spontaneous
reaction.

The basic quantities are the concentration S of a sub-
stance S, that is, the number n of molecules (or, alterna-
tively, moles) of this substance per volume V, and the rate
v of a reaction, that is, the change of concentration S per
time t. This type of modeling is macroscopic and phe-
nomenological, compared to the microscopic approach,
where single molecules and their interactions are consid-
ered. Chemical and biochemical kinetics rely on the
assumption that the reaction rate v at a certain point in
time and space can be expressed as a unique function of

Systems Biology: A Textbook, Second Edition. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, and Axel Kowald.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.



40

4 Kinetic Models of Biochemical Networks: Introduction

the concentrations of all substances at this point in time
and space. Classical enzyme kinetics assumes for sake of
simplicity a spatial homogeneity (the “well-stirred” test
tube) and no direct dependency of the rate on time:

v(t) = v(S(1)).

In more advanced modeling approaches paving the way
for whole cell modeling, spatial inhomogeneities are
taken into account. Spatial modeling pays tribute to the

(4.1)

fact that many components are membrane bound and
that cellular structures hinder the free movement of mol-
ecules. But, in most cases one can assume that diffusion
is rapid enough to allow for an even distribution of all
substances in space.

4.1.2
The Law of Mass Action

Biochemical kinetics is based on the mass action law,
introduced by Guldberg and Waage in the nineteenth
century [1-3]. It states that the reaction rate is propor-
tional to the probability of a collision of the reactants.
This probability is in turn proportional to the concentra-
tion of reactants to the power of the molecularity, which
is the number in which the molecule species enter the
reaction. For a simple reaction such as

S} +S; == 2P, (4.2)
the reaction rate reads
v=vp—v_ = kyS; - Sy — k_P?, (4.3)

where v is the net rate, v, and v_ are the rates of the
forward and backward reactions, respectively, and k, and
k_ are the kinetic or rate constants, that is, the respective
proportionality factors.

The molecularity is 1 for S, and S, and 2 for P. If we
measure the concentration in moles per liter (mol-17"
or M) and the time in seconds (s), then the rate has the
unit M- s™'. Accordingly, the rate constants for bimole-
cular reactions have the unit M7$~!. Rate constants for
monomolecular reactions have the dimension s~

The general mass action rate law for a reaction trans-
forming m; substrates with concentrations §; into m;
products with concentrations P; reads

N i

y= v+—v_=k+HS?‘—k_HPF’,

i=1 =1

(4.4)

where ; and #; denote the respective molecularities of S;
and P; in this reaction.

The equilibrium constant K., (we will also use the
simpler symbol g) characterizes the ratio of substrate and
product concentrations in equilibrium (Seq and Peq), that

is, the state where the thermodynamic affinity vanishes
and where the forward and backward rates become equal.
The rate constants are related to Kq in the following
way:
ke TT4P;
Keq — R+ — }:1 J.€q

. 4.5
k- Si‘cq ( }

i=1
The relation between the thermodynamic and the kinetic
description of biochemical reactions will be outlined in
Section 4.1.3.

The equilibrium constant for the reaction given in
Eq. (4.2) is Keq = P2,/(S1eq - S2.q)- The dynamics of the
concentrations far from equilibrium is described by the
ODEs

d d
—31—&

d
a@ Sy =—v and EP = 2v.

(4.6)

The time course of Sy, S,, and P is obtained by integra-
tion of these ODEs (see Section 15.2).
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Biochemical reactions in isolation or as part of a larger

reaction network are governed by the laws of
Example 4.1
The kinetics of a simple decay like
S (4.7)

is described by v = kS and dS/dt = —kS. Integration of this
ODE from time t = 0 with the initial concentration Sy to an
arbitrary time t with concentration S(t), fssu dS/S =~ [, kdt,
yields the temporal expression 5(t) = Sy e (Figure 4.1).

1.
S o8}
E
S 06¢
E
S 0.4f
o
5
o 0.2

0. ) L 1

0 1 2 3 4
Time [s]
Figure 4.1  Exponential decay of a compound as described in

Eq. (4.7). The initial concentration is Sp = 1 mM. The dynamics
are shown for three different values of k: k=15 (blue),

k=2-s"(red),and k = 3 - s' (green).




thermodynamics. This means that they cannot create or
destroy energy, they can only convert it or store it in
chemical bonds or release it from there. An important
purpose of metabolism is to extract energy from
nutrients, which is necessary for the synthesis of mole-
cules, growth, and proliferation. We distinguish between
energy-supplying reactions, energy-demanding reactions,
and energetically neutral reactions. The principles of
reversible and irreversible thermodynamics and their
application to chemical reactions allow understanding of
energy circulation in the cell.

A biochemical process is characterized by the direction
of the reaction, by whether it occurs spontaneously or
not, and by the position of the equilibrium. The first law
of thermodynamics, that is, the law of energy conserva-
tion, tells us that the total energy of a closed system
remains constant during any process. The second law of
thermodynamics states that a process occurs spontane-
ously only if it increases the total entropy of the system.
Unfortunately, entropy is usually not directly measurable.
A more suitable measure is the Gibbs free energy G,
which is the energy capable of carrying out work under
isotherm—isobar conditions, that is, at constant tempera-
ture and constant pressure. The change of the Gibbs free
energy is given as

AG = AH — TAS, (4.8)

where AH is the change in enthalpy, AS is the change in
entropy, and 7 is the absolute temperature in Kelvin. AG
is a measure for the driving force, the spontaneity of a
chemical reaction. The reaction proceeds spontaneous
under release of energy, if AG < 0 (exergonic process). If
AG > 0, then the reaction is energetically not favorable
and will not occur spontaneously (endergonic process).
AG =0 implies that the system has reached its equili-
brium. Endergonic reactions may proceed if they obtain
energy from a strictly exergonic reaction by energetic
coupling. In tables, Gibbs free energy is usually given for
standard conditions (AG"), that is, for a concentration
of the reaction partners of 1M, a temperature of
T =298K, and, for gaseous reactions, a pressure of
p=98.1kPa= latm. The unit is kjmol '. Gibbs free
energy differences satisfy a set of relations as follows. The
Gibbs free energy difference for a reaction can be calcu-
lated from the balance of free energies of formation of its
products and substrates:

AG=ZGP—ZGS.

The enzyme cannot change the Gibbs free energies of
the substrates and products of a reaction, neither their
difference, but it changes the way the reaction proceeds
microscopically, the so-called reaction path, thereby

(4.9)
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lowering the activation energy for the reaction. The tran-
sition state theory explains this as follows. During the
course of a reaction, the metabolites must pass one or
more transition states of maximal free energy, in which
bonds are solved or newly formed. The transition state is
unstable; the respective molecule configuration is called
an activated complex. It has a lifetime of around one
molecule vibration, 107'*~107"%s, and it can hardly be
experimentally verified. The difference AG™ of Gibbs
free energy between the reactants and the activated com-
plex determines the dynamics of a reaction: the higher
this difference, the lower the probability that the mole-
cules may pass this barrier and the lower the rate of the
reaction. The value of AG” depends on the type of
altered bonds, on steric, electronic, or hydrophobic
demands, and on temperature.

Figure 4.2 presents a simplified view of the reaction
course of the noncatalyzed reaction and with an enzyme.
The substrate and the product are situated in local
minima of the free energy; the active complex is assigned
to the local maximum. The Gibbs free energy difference
AG is proportional to the logarithm of the equilibrium
constant K¢q of the respective reaction:

AG = —RT In K o, (4.10)
where R is the gas constant, 8.314 Jmol™" K™!. The value
of AG” corresponds to the kinetic constant k. of the
forward reaction (Eqgs. (4.3)—-(4.5)) by AG™ = —RT Ink,,
while AG” + AG is related to the rate constant k_ of the
backward reaction.

The interaction of the reactants with an enzyme may
alter the reaction path and, thereby, lead to lower values

of AG” as well as higher values of the kinetic constants.
However, the enzyme will not change the equilibrium

Activated complex

-~ o
>
o .
o without
c Enzyme
g with
o /
»
e
-‘E - . Ay - -
o Substrate AG I
Product
Reaction coordinate
Figure 4.2  Change of Gibbs free energy along the course of a

reaction. The substrate and the product are situated in local minima
of the free energy; the active complex is assigned to the local
maximum. The enzyme may change the reaction path and thereby
lower the barrier of Gibbs free energy.
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Table 4.1 Values of AG” and K., for some important reactions®.
Reaction AG” /(kJ mol™")
2H,+ 0, — 2H;0 —474
2H,0, = 2H,0+0, -99
PP;+H,0 — 2P, -33.49

ATP 4+ H,0 — ADP +P, ~30.56
Glucose-6-phosphate + H,0 — Glucose + P; -13.82
Glucose + P; — Glucose-6-phosphate + H,0 +13.82
Glucose-1-phosphate — Glucose-6-phosphate =712
Glucose-6-phosphate — Fructose-6-phosphate +1.67
Glucose +6 0; — 6 CO; + 6 H0 —2890

* Source: ZITAT: Lehninger, A.L. Biochemistry, 2nd edition, New York,
Worth, 1975, p. 397.

constant of the reaction. The Gibbs free energy may
assume several local minima and maxima along the path
of reaction. They are related to unstable intermediary
complexes. Values for the difference of free energy for
some biologically important reactions are given in
Table 4.1. Note that the free energy differences always
refer to specific standard concentrations.

A biochemical reaction is reversible if it may proceed in
both directions, leading to a positive or negative sign of
the rate v. The actual direction depends on the current
reactant concentrations. In theory, every reaction should
be reversible. In practice, we can consider many reactions
as irreversible, since (i) reactants in cellular environment
cannot assume any concentration, (ii) coupling of a
chemical conversion to ATP consumption leads to a
severe drop in free energy and therefore makes a reaction
reversal energetically unfavorable, and (iii) for compound
destruction, such as protein degradation, reversal by
chance is extremely unlikely.

The detailed consideration of enzyme mechanisms by
applying the mass action law for the single events has led

)

Concentration [mM]
o o o o
na B (o)) w

e

0 5 10 15
Time [s]

Figure 4.3

to a number of standard kinetic descriptions, which will
be explained in the following. For further information on
equilibrium thermodynamics in reaction systems also see
Section 15.6.
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Brown [4] proposed an enzymatic mechanism for invert-
ase, catalyzing the cleavage of saccharose to glucose and
fructose. This mechanism holds in general for all one-
substrate reactions without backward reaction and with-
out effectors, such as

k
E+S —— ES—2 ,E+P.
[

(4.11)

It comprises a reversible formation of an enzyme-sub-
strate complex ES from the free enzyme E and the sub-
strate S and an irreversible release of the product P. The
ODE system for the dynamics of this reaction reads

4 _KE.S+kLES, (4.12)
dt

% =kiE-S— (k_i + k»)ES, (4.13)
‘cll;f = —KE - S+ (k-1 + k)ES, (4.14)
dr

= I ES. 4.1
dt KalsS 1)

The reaction rate is equal to the negative decay rate of
the substrate as well as to the rate of product formation:

ds _dp
Cdt o dt

This ODE system (Eqgs. (4.12)—(4.16)) cannot be solved
analytically. Figure 4.3 shows numerical solutions for dif-
ferent parameter sets.

(4.16)

—

(=3

—
—_

Concentration [mM]
o o o o
=] B [=2] w0

e
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Time [s]

Temporal evolution of the equation system (4.12)-(4.15). Shown are S (red), E (green), ES (blue), and P (black). The initial

concentrations are in both panels 5(0) = £(0) = 1 mM and ES(0) = P(0) = 0 mM. Parameter values: ky = 1- M 's™!, k; = 1-s7', and either

ks=1-5"(a)orks =0.01-57" (b).



Different assumptions have been used to simplify this
system in a satisfactory way. Michaelis and Menten [5]
considered a quasi-equilibrium between the free enzyme
and the enzyme-substrate complex, meaning that the
reversible conversion of E and S to ES is much faster
than the decomposition of ES into E and P, or in terms
of the kinetic constants, that is,

ki, ko, > ko. (4.17)

This is the situation as shown in Figure 4.3b.

Briggs and Haldane [6] assumed that during the
course of reaction a state is reached where the concen-
tration of the ES complex remains constant, the so-
called quasi-steady state. This assumption is justified
only if the initial substrate concentration is much larger
than the enzyme concentration, S(t =0) > E, other-
wise such a state will never be reached. In mathematical
terms, we obtain

dES

dt

In the following, we derive an expression for the
reaction rate from the ODE system (4.12)—(4.15) and the

quasi-steady-state assumption for ES. First, adding
Egs. (4.13) and (4.14) results in

dES N dE
de  dt
This expression shows that enzyme is neither produced
nor consumed in this reaction; it may be free or part of
the complex, but its total concentration remains con-

stant. Introducing (4.19) into (4.13) under the steady-
state assumption (4.18) yields

=0. (4.18)

=0 or Ey =E+ES=constant. (4.19)

kl Et()lals -Et(}l.als
ES= = . 4.20
kiS+k_y+ ko S+([k_1+k2)/k1) ( )
For the reaction rate, this gives
kQEtolaIS (4.21)

VTS (ko + ko) JK)

In enzyme kinetics, it is convention to present Eq.
(4.21) in a simpler form, which is important in theory
and practice

VmaxS

Y= 4.22
S+ Kp, (4.22)
Equation (4.22) is the expression for Michaelis—Menten
kinetics. The parameters have the following meaning: the

maximal velocity,
Vmax b kZEtotals (423)

is the maximal rate that can be attained, when the
enzyme is completely saturated with substrate. The
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Michaelis constant,

k_1 4+ k»
ky

is equal to the substrate concentration that yields the half-
maximal reaction rate. For the quasi-equilibrium assump-
tion (Eq. (4.17)), it holds that K, =k_;/k;. The maxi-
mum velocity divided by the enzyme concentration (here
ks = Vimax/Eota) is often called the turnover number, kcy.
The meaning of the parameters is illustrated in the plot of
rate versus substrate concentration (Figure 4.4).

Km = (4.24)

4.1.4.1 How to Derive a Rate Equation

Below, we will present some enzyme kinetic standard
examples. Individual mechanisms for your specific
enzyme of interest may be more complicated or merely
differ from these standards. Therefore, we summarize
here the general way of deriving a rate equation.

1) Draw a wiring diagram of all steps to consider (e.g.,
Eq. (4.11)). It contains all substrates and products (S
and P) and # free or bound enzyme species (E and ES).

2) The right sides of the ODEs for the concentrations
changes sum up the rates of all steps leading to or away
from a certain substance (e.g., Eqs. (4.12)—(4.15)). The
rates follow mass action kinetics (Eq. (4.3)).

3) The sum of all enzyme-containing species is equal to
the total enzyme concentration Ejq (the right side of
all differential equations for enzyme species sums up
to zero). This constitutes one equation.

4) The assumption of quasi-steady state for n — 1 enzyme
species (i.e., setting the right sides of the respective
ODEs equal to zero) together with (3) result in »

" Michaelis—-Menten Kinetics

vma)( i — — — — ———————
=
2 Range of
@ y N
= Vv zero-order kinetics
S —max Range of
§ 2 “intermediary order kinetics”
[in

Range of “first-order kinetics”

|
|
1
K Substrate concentration S

Figure 44 Dependence of reaction rate v on substrate
concentration S in Michaelis-Menten kinetics. V., denotes the
maximal reaction rate that can be reached for large substrate
concentration. K, is the substrate concentration that results in half-
maximal reaction rate. For low substrate concentration, v increases
almost linearly with 5, while for high substrate concentrations v is
almost independent of S.
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Table 4.3 Types of inhibition for irreversible and reversible Michaelis-Menten kinetics®.

Name Implementation Equation - irreversible Equation - reversible case Characteristics
Competitive | binds only to free E; _ VimaxS _ V:\-.E,(S/Kms) = VI o(P/Kmp) Km changes, Vpay remains
inhibition P-release only from ES- Km i3+ 5 (5/Kens) + (P/Kmp) + i3 same.
complex kyq = kys = kg =0 S and | compete for the
binding place; high S may
out compete |.
Uncompetitive | binds only to the ES- _ VmaS V(5 Kms) = Vi (P/Kp) K and Vinac change, but
Inhibition complex; P-release only K +5§-i4 T+ ((S/Kms) + (P/Kmp)) - ia their ratio remains same.
from ES-complex k.3 = S may not out compete |
kis=ks=0
Noncompetitive | binds to E and ES; v= Vmax$ _ VA (57 Kms) = Vi (P/Kp) K remains, Viay
inhibition P-release only from ES (K +5)-i3 T+ (5/Kms) + (P/Kump)) - ia changes. S may not out
Kz =K ks =0 compete |
Mixed inhibition | binds to E and ES; _ VinaxS K and Vs change.
P-release only from ES " Km g+ S0z K3 > K| 4: competitive-

Ki3#Kia, ke =0

Partial Inhibition | may bind to E and ES;

_ VenaxS(1 + ((ke!)/ k2K 3))

noncompetitive inhibition
Kiz < Kia:
noncompetitive-
uncompetitive inhibition
K and Vo change if

P-release from ES and ESI
Ki3#Kya, ks#0

Km-iag+5S-i3

ks > ky: activation instead
of inhibition.

b

® The following abbreviations are used: Ki3 =42 Kie =% is = 1+ g5 ja = 1475

4.1.5.1 Substrate Inhibition

A common characteristic of enzymatic reaction is the
increase of the reaction rate with increasing substrate
concentration S up to the maximal velocity V.. But
in some cases, a decrease of the rate above a certain
value of § is recorded. A possible reason is the binding
of a further substrate molecule to the enzyme-sub-
strate complex yielding the complex ESS that cannot
form a product. This kind of inhibition is reversible if
the second substrate can be released. The rate equation
can be derived using the scheme of uncompetitive inhi-
bition by replacing the inhibitor by another substrate.
It reads

VITIZIX.S

v:szS:Km+S(1+(S/KlD‘

(4.33)

This expression has an optimum, that is, a maximal
value of v, at
Vmax

Sont = VKK with vypp = — .
& : "+ 2K /K

The dependence of v on S is shown in Figure 4.6. A
typical example for substrate inhibition is the binding of
two succinate molecules to malonate dehydrogenase,
which possesses two binding pockets for the carboxyl
group. This is schematically represented in Figure 4.6.

(4.34)

4.1.5.2 Binding of Ligands to Proteins
Every molecule that binds to a protein is a ligand, irre-
spective of whether it is subject of a reaction or not.
Below we consider binding to monomer and oligomer
proteins. In oligomers, there may be interactions between
the binding sites on the subunits.

Consider binding of one ligand (S) to a protein (E) with
only one binding site:

E+S———ES. (4.35)
The binding constant Ky is given by
ES
Kp=|—] . 4.36
= (7s). (30

The reciprocal of Ky is the dissociation constant Kp. The
fractional saturation Y of the protein is determined by the
number of subunits that have bound ligands, divided by
the total number of subunits. The fractional saturation
for one subunit is

_ES _ES _ Kg'S
_Et()tal_ES+E_KB'S+1‘

Y (4.37)
The plot of Y versus S at constant total enzyme concen-
tration is a hyperbola, like the plot of v versus S in the
Michaelis—Menten kinetics (Eq. (4.22)). At a process
where the binding of S to E is the first step followed by



(a)
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(b)

CO*-CH,

CO*-CH,

CO2--CH, =CH, -CO-

Figure 4.6

CO?--CH, =CH, -CO*

Substrate inhibition. (a) Plot of reaction rate v against substrate concentration S for an enzyme with substrate inhibition. The

upper curve shows Michaelis-Menten kinetics without inhibition, the lower curves show kinetics for the indicated values of binding constant K.
Parameter values: Vi, = 1, Ky = 1. (b) Visualization of a possible mechanism for substrate inhibition: The enzyme (gray item) has two binding
pockets to bind different parts of a substrate molecule (upper scheme). In case of high substrate concentration, two different molecules may
enter the binding pockets, thereby preventing the specific reaction (lower scheme).

product release and where the initial concentration of S is
much higher as the initial concentration of E, the rate is
proportional to the concentration of ES and it holds

v ES

= =Y.
Vmax  Etotal

(4.38)

If the protein has several binding sites, then interactions
may occur between these sites, that is, the affinity to
further ligands may change after binding of one or more
ligands. This phenomenon is called cooperativity. Positive
or negative cooperativity denote increase or decrease in
the affinity of the protein to a further ligand, respectively.
Homotropic or heterotropic cooperativity denotes that
the binding to a certain ligand influences the affinity of
the protein to a further ligand of the same or another
type, respectively.

4.1.5.3 Positive Homotropic Cooperativity and the
Hill Equation

Consider a dimeric protein with two identical binding

sites. The binding to the first ligand facilitates the binding

to the second ligand.

slow fast

Ey+S —5E,S, EyS+S———E»Sy,  (4.39)

where E is the monomer and E, is the dimer. The frac-
tional saturation is given by

_Egs+2~5232 _
2- £2,tota|

E;S+2-E3S,
T2 Ey+2-EyS+2ExSy

(4.40)

If the affinity to the second ligand is strongly increased by
binding to the first ligand, then E;S will react with S as
soon as it is formed and the concentration of E;S can be
neglected. In the case of complete cooperativity, that is,

every protein is either empty or fully bound, Eq. (4.39)
reduces to

E, + 25 — EsS,. (4.41)
The binding constant reads
E»Sy
Kg = 4.42
B _Ez i Sz ( )
and the fractional saturation is
2-EyS E»S Kg-S*
Y = 22 =22 B 7 (a43)
2-Eytota Ea+ExSy 1+4Kg-S
Generally, for a protein with # subunits it holds:
Vimax - Kg - §"
=Voux ¥ =———— 4.44
! 1+Kg- 5" (4.44)

This is the general form of the Hill equation. To derive it,
we assumed complete homotropic cooperativity. The plot
of the fractional saturation Y versus substrate concentra-
tion S is a sigmoid curve with the inflection point at 1/Kjp.
The quantity n (often “h” is used instead) is termed the
Hill coefficient.

The derivation of this expression was based on exper-
imental findings concerning the binding of oxygen to
hemoglobin (Hb) [13,14]. In 1904, Bohr et al. found that
the plot of the fractional saturation of Hb with oxygen
against the oxygen partial pressure had a sigmoid shape.
Hill (1909) explained this with interactions between the
binding sites located at the hem subunits. At this time, it
was already known that every subunit hem binds one
molecule of oxygen. Hill assumed complete cooperativity
and predicted an experimental Hill coefficient of 2.8.
Today it is known that hemoglobin has four binding sites,
but that the cooperativity is not complete. The sigmoid
binding characteristic has the advantage that Hb binds
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strongly to oxygen in the lung with a high oxygen partial
pressure while it can release O, easily in the body with
low oxygen partial pressure.

4.1.5.4 The Monod-Wyman-Changeux Model for
Sigmoid Kinetics

The Monod model [15] explains sigmoid enzyme kinetics
by taking into account the interaction of subunits of an
enzyme. We will show here the main characteristics and
assumptions of this kinetics. The full derivation is given
in the web material. It uses the following assumptions:
(i) the enzyme consists of n identical subunits, (ii) each
subunit can assume an active (R) or an inactive (T) con-
formation, (iii) all subunits change their conformations at
the same time (concerted change), and (iv) the equili-
brium between the R and the T conformation is given by
an allosteric constant

L=—.
Ry

(4.45)

The binding constants for the active and inactive confor-
mations are given by Ky and K, respectively. If substrate
molecules can only bind to the active form, that is, if
K1 =0, the rate can be expressed as

 ViaKzS 1
T (1+ KgS) [1+ {L/((1+ KeS))]]

: (4.46)

where the first factor (Vo KrS)/(1+ KgS) corresponds
to the Michaelis—Menten rate expression, while the sec-
ond factor [1+ (L/(1+ KRS}")]_1 is a regulatory factor.

For L =0, the plot v versus S is hyperbola as in
Michaelis—Menten kinetics. For L > 0, we obtain a sig-
moid curve shifted to the right. A typical value for the
allosteric constant is L= 10* (Figure 4.7).

08|
06 |

04

activation
104

02 inhibition

Figure 4.7  Model of Monod, Wyman, and Changeux: Dependence
of the reaction rate on substrate concentration for different values of
the allosteric constant L, according to Eq. (4.46). Parameters: V. = 1,
n =4, Kp = 2,Ky = 0. The value of L is indicated at the curves.
Obviously, increasing value of L causes stronger sigmoidity. The
influence of activators or inhibitors (compare Eq. (4.47)) is illustrated
with the dotted line for K/ = 2 and with the dashed line for KaA = 2
(L = 10* in both cases).

Up to now we considered in the model of Monod,
Wyman, and Changeux only homotropic and positive
effects. But this model is also well suited to explain the
dependence of the reaction rate on activators and inhibi-
tors. Activators A bind only to the active conformation
and inhibitors I bind only to the inactive conformation.
This shifts the equilibrium to the respective conforma-
tion. Effectively, the binding to effectors changes L:

L+ K
T (14 KA

where K; and K, denote binding constants. The interac-
tion with effectors is a heterotropic effect. An activator
weakens the sigmoidity, while an inhibitor strengthens it.

A typical example for an enzyme with sigmoid kinetics
that can be described with the Monod model is the
enzyme phosphofructokinase, which catalyzes the trans-
formation of fructose-6-phosphate and ATP to fructose-
1,6-bisphosphate. AMP, NH,, and K* are activators, ATP

is an inhibitor.

]

(4.47)

41,6
Generalized Mass Action Kinetics

Mass action kinetics (see Section 4.1.1) has experienced
refinements in different ways. The fact that experimental
results frequently do not show the linear dependence
of rate on concentrations as assumed in mass action
laws is acknowledged in power law kinetics used in the
S-systems approach. Here, the rate reads

. . g.i
Vi (i) /
0= ’
Vi =1 S?
where the concentrations S; and rates v; are normalized

to some standard value denoted by superscript 0, and g;;
is a real number instead of an integer as in Eq. (4.4). The

(4.48)

normalization yields dimensionless quantities. The power
law kinetics can be considered as a generalization of the
mass action rate law. The exponent g;; is equal to the
concentration elasticities, that is, the scaled derivatives of
rates with respect to substrate concentrations (see Sec-
tion 4.3, Eq. (4.107)). Substrates and effectors (their con-
centrations both denoted by §;) enter expression (4.48) in
the same formal way, but the respective exponents g;; will
be different. The exponents g;; will be positive for sub-
strates and activators, but should assume a negative value
for inhibitors.

4.1.7
Approximate Kinetic Formats

In metabolic modeling studies, approximate kinetic for-
mats are used (for a recent review see Ref. [16]). They



preassume that each reaction rate v; is proportional to the
enzyme concentration E;. The rates, enzyme concentra-
tions, and substrate concentrations are normalized with
respect to a references state, which is usually a steady
state. This leads to the general expression

vi _E (5 n)
=0 flgoe)
i E? g

]

(4.49)

where ¢, is the matrix of concentration elasticities as
explained in Section 4.3. One example is the so-called
lin-log kinetics

v E 0 S

EZE(I'FE( 'ln?)|
where 1 is the r X r identity matrix. Another example is
an approximation of the power-law kinetics

(4.50)

E
ln1=[nﬁ+efln— (4.51)

w0 s
Approximative kinetics simplify the determination of
model parameters and, especially, of concentration elas-
ticities, since Eq. (4.51) as set of linear equations in the
elasticity coefficients.

4.1.8
Convenience Kinetics and Modular Rate Laws

The convenience kinetics [17] has been introduced to
ease parameter estimation and to have a kinetic mecha-
nism, where all parameters are independent on each
other and not related via the Haldane relation (Eq.
(4.28)). It is a generalized form of Michaelis—Menten
kinetics that covers all possible stoichiometries, and
describes enzyme regulation by activators and inhibitors.
For a reaction with stoichiometry

A S1+naS+ s o ng Pt Pyt e

(4.52)

it reads

v= Etotal 'freg

kot T (Si/Km,s,)"™" = keae “T1; (Py/Kinp, )™
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4.1 Reaction Kinetics and Thermodynamics

In analogy to Michaelis—Menten kinetics, K, values
denote substrate concentrations, at which the reaction
rate is half-maximal if the reaction products are absent;
K, and K, values denote concentrations, at which the
inhibitor or activator has its half-maximal effect. In this
respect, many parameters in convenience kinetics are
comparable to the kinetic constants measured in enzyme
assays. This is important for parameter estimation (see
Section 4.2).

To facilitate thermodynamic independence of the
parameters, we introduce new system parameters that
can be varied independently, without violating any ther-
modynamic constraints (see Section 4.1.1). For each
reaction, we define the velocity constant Ky =
(kig’t" .kE:fk)l (geometric mean of the turnover rates in
both directions). Given the equilibrium and velocity con-
stants, the turnover rates can be written as
KO = Koy (Kog) ™2 k2% = Ky (K oq)'/*. The equilibrium
constants K4 can be expressed by independent parame-
ters such as the Gibbs free energies of formation: for each
substance i, we define the dimensionless energy constant
K¢ = exp(G;(0)/(RT)) with Boltzmann’s gas constant R
=8.314)mol "K' and absolute temperature 7. The
equilibrium constants then satisfy In Koq = =NT In K©.

In more general terms, modular rate laws are a family
of reversible rate laws for reactions with arbitrary stoichi-
ometries and various types of regulation, including mass-
action, Michaelis—Menten, and uni—uni reversible Hill
kinetics as special cases 20 385 728. There general form
reads

T

v= Etntal 'freg "N

, 4.54
D + Dyeg ( )

where f.., describes complete or partial regulation (e.g.,
by an inhibitor), T is the numerator (equivalently to the
one as used in equation (4.53)), while the components of
the denominator, D and D,.,, depend on reaction stoichi-
ometry, selected rate law, allosteric regulation, and on the
preferred model parameterization. Five versions of
denominator have been introduced:

Hi(]' + (Sf/Km.S,-) + ..

with enzyme concentration Ei, and turnover rates k'c‘:i
and k?:fk. The regulatory prefactor f, . is either 1 (in case
of no regulation) or a product of terms M /(K + M) or
1+ M/Ky for activators and K/(K|+ M) for inhibitors.
Activation constants K, and inhibition constants Kj are
measured in concentration units. M is the concentration

of the modifier.

o (Si/Kms)") + TL (1 + (P/Kimp,) + -

. , 4.53
-+ (Pj/Km.P_,-) H) -1 ( )

1) Power-law modular rate law: D=1 (such as mass
action kinetics)
2) Common modular rate law: as in Eq. (4.53)

3) Simultaneous  binding  modular rate law:

D=]‘[‘.(1+Kfl"

H_i P, i
":) Hf L+ K,p;
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4) Direct binding modular rate law:

s\ p "
D= 1+Hi(?i;‘) +1-[}'(K..:pl)

5) Force-dependent modular rate law:

s\ p "
DZ\/Hs(m) (i)

With a thermodynamically safe parameterization of
these rate laws, parameter sets obtained by model fitting,
sampling, or optimization are guaranteed to lead to con-
sistent chemical equilibrium states, as demonstrated
above for convenience kinetics.

4.2
Metabolic Control Analysis

Summary
Metabolic control analysis (MCA) is a powerful quantita-
tive and qualitative framework for studying the relation-
ship between steady-state properties of a network of
biochemical reaction and the properties of the individual
reactions. It investigates the sensitivity of steady-state
properties of the network to small parameter changes.
MCA is a useful tool for theoretical and experimental
analysis of control and regulation in cellular systems.
MCA was independently founded by two different
groups in the 1970s [18,19] and was further developed by
many different groups upon the application to different
metabolic systems. A milestone in its formalization was
provided in Ref. [20]. Originally intended for metabolic
networks, MCA has nowadays found applications also for
signaling pathways, gene expression models, and hierar-
chical networks [21-25].

—_—
0
~

Metabolic networks are very complex systems that
are highly regulated and exhibit a lot of interactions like
feedback inhibition or common substrates such as ATP
for different reactions. Many mechanisms and regulatory
properties of isolated enzymatic reactions are known. The
development of MCA was motivated by a series of ques-
tions like the following: Can one predict properties or
behavior of metabolic networks from the knowledge
about their parts, the isolated reactions? Which individ-
ual steps control a flux or a steady-state concentration? Is
there a rate-limiting step? Which effectors or modifica-
tions have the most prominent effect on the reaction
rate? In biotechnological production processes, it is of
interest which enzyme(s) should be activated in order to
increase the rate of synthesis of a desired metabolite.
There are also related problems in health care. Concern-
ing metabolic disorders involving overproduction of a
metabolite, which reactions should be modified in order
to downregulate this metabolite while perturbing the rest
of the metabolism as weakly as possible?

In metabolic networks, the steady-state variables, that
is, the fluxes and the metabolite concentrations, depend
on the value of parameters such as enzyme concentra-
tions, kinetic constants (like Michaelis constants and
maximal activities), and other model specific parameters.
The effect of perturbations, moreover, depends on
the place of the perturbation. As an illustration, in
Example 4.2, we discuss a linear metabolic pathway
whose enzymes are successively inhibited. We see in
Figure 4.8 that an inhibition of the first enzyme has a
different temporal effect than inhibition of the later
enzymes. Also the steady states (here the values reached
at time point 15) are different if different enzymes are hit.

= 1 =)
E E
5 0.99r g
E g
E 0.98 z
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Figure 4.8 The effect of inhibiting an enzyme in an unbranched metabolic pathway depends on the position of that enzyme in the pathway.
(a) Scheme of a linear metabolic pathway. Parameter values: see text. (b) Before perturbation, the system is at steady state. At time t = 1, one of
the enzymes as indicated by gray scale is mildly inhibited by reducing its value by 5% (from 1 to 0.95). The rate of reaction 4 is presented. (c)
Dynamics of metabolite concentrations upon different perturbations. Colors of time courses correspond to the colors of metabolites in (a).




Example 4.4

Typical values of elasticity coefficients will be explained for
an isolated reaction transforming substrate S into product
P. The reaction is catalyzed by enzyme E with the inhibitor
I, and the activator A as depicted below

(4.59)

Usually, the elasticity coefficients for metabolite concen-
trations are in the following range:

£§=§a—v>0 and s,‘;=fd—j:£0

In most cases, the rate increases with the concentration
of the substrate (compare, e.g., Eq. (4.58)) and decreases
with the concentration of the product. An exception from
€{ > 0 occurs in the case of substrate inhibition (Eq. (4.33)),
where the elasticity will become negative for S > Sypt. The
relation £} = 0 holds, if the reaction is irreversible or if the
product concentration is kept zero by external mecha-
nisms. The elasticity coefficients with respect to effectors |
or A should obey

(4.60)

Ad 1o
eh== ZJ; >0 and ¢ = (c; <0,

since this is essentially what the notions activator and
inhibitor mean.

For the most kinetic laws, the reaction rate v is propor-
tional to the enzyme concentration E. For example, £ is a
multiplicative factor in the mass action rate law as well as
in the maximal rate of the Michelis-Menten rate law. There-
fore, it holds that

(4.61)

dlnv _
dlnE "~

More complicated interactions between enzymes and
substrates like metabolic channeling (direct transfer of the
metabolite from one enzyme to the next without release to
the medium) may lead to exceptions from this rule.

(4.62)

o -
£ =

Such a parameter might be the enzyme concentration,
a kinetic constant, or the concentration of a specific
inhibitor or effector.

In a more compact form the flux control coefficient reads

Vi ()f},

C, = (4.65)
KT T ove
The respective nonnormalized flux control coefficient

is C; = dJ;/dvi. Equivalently, the concentration control
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coefficient of concentrations S?* with respect to v, reads

) OS5
i Vi 2 i

kzgf)vk'

(4.66)

4.2.1.3 Response Coefficients

The steady state is determined by the values of the
parameters. A third type of coefficients expresses the
direct dependence of steady-state variables on parame-
ters. The response coefficients are defined as

P OSF

. oJ; _
R P i and R =-2_—_—1
st dpﬂf

m )f; dpm m
where the first coefficient expresses the response of the
flux to a parameter perturbation, while the latter
describes the response of a steady-state concentration.

(4.67)

4.2.1.4 Matrix Representation of the Coefficients
Control, response, and elasticity coefficients are defined
with respect to all rates, steady-state concentrations,
fluxes, or parameters in the metabolic system and in the
respective model. They can be arranged in matrices:

c={c}.c = {cj}.R = {R,}.
= {ef},m={ah}. (4.68)

Matrix representation can also be chosen for all types
of nonnormalized coefficients. The arrangement in matri-
ces allows to applying matrix algebra in control analysis.
In particular, the matrices of normalized control coeffi-
cients can be calculated from the matrices of nonnormal-
ized control coefficient as follows:

{R} R =

= (dg)™" C’ -dgJ = (dgs®) - € - dg
={ng) ‘R - dgp =(ng”5)‘ ‘R’ dgp
e=(dgv)-&-dgs®  m=(dgv)" 7 dgp
(4.69)

The symbol “dg” stands for the diagonal matrix, that is,

for a system with three reactions it holds
Ji 0 0

dgJ=10 J» 0
0 0 J5

4.2.2

The Theorems of Metabolic Control Theory

Let us assume that we are interested in calculating the
control coefficients for a system under investigation. Usu-
ally, the steady-state fluxes or concentrations cannot be
expressed explicitly as function of the reaction rates.
Therefore, flux and concentration control coefficients
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cannot simply be determined by taking the respective
derivatives, as we did for the elasticity coefficients in
Example 4.3.

Fortunately, the work with control coefficients is
eased by of a set of theorems. The first type of theo-
rems, the summation theorems, makes a statement
about the total control over a flux or a steady-state
concentration. The second type of theorems, the con-
nectivity theorems, relates the control coefficients to the
elasticity coefficients. Both types of theorems together
with network information encoded in the stoichiometric
matrix contain enough information to calculate all con-
trol coefficients.

Here, we will first introduce the theorems. Then, we
will present a hypothetical perturbation experiment (as
introduced by Kacser & Burns) to illustrate the summa-
tion theorem. Finally, the theorems will be derived
mathematically.

4.2,2,1 The Summation Theorems

The summation theorems make a statement about the
total control over a certain steady-state flux or concentra-
tion. The flux control coefficients and concentration con-
trol coefficients fulfill, respectively,

icﬂ;ﬂ and icf;:._
k=1 k=1

for any flux /; and any steady-state concentration S:".
The quantity r is the number of reactions. The flux
control coefficients of a metabolic network for one
steady-state flux sum up to one. This means that all
enzymatic reactions can share the control over this flux.
The control coefficients of a metabolic network for one
steady-state concentration are balanced. This means
again that the enzymatic reactions can share the control
over this concentration, but some of them exert a nega-
tive control while others exert a positive control. Both
relations can also be expressed in matrix formulation.
We get

(4.70)

- 1=1 and C°-1=0. (4.71)

The symbols 1 and 0 denote column vectors with r
rows containing as entries only ones or zeros, respec-
tively. The summation theorems for the nonnormalized
control coefficients read

¢ K=K and C°-K=0, (4.72)

where K is the matrix satisfying N-K =0 (see Sec-
tion 4.2). A more intuitive derivation of the summation
theorems is given in the following example according to
Kacser and Burns [18].

Example 4.5

The summation theorem for flux control coefficients can be
derived using a thought experiment.

Consider the following unbranched pathway with fixed
concentrations of the external metabolites, S, and S5:

Sp L 5, s, s, (4.73)

What happens to steady-state fluxes and metabolite con-
centrations, if we perform an experimental manipulation of
all three reactions leading to the same fractional change «
of all three rates?

Vi V3 V3

The flux must increase to the same extent, §J/J = a, but,
since rates of producing and degrading reactions increase
to the same amount, the concentrations of the metabolites
remain constant 85, /S; = 85,/5, = 0.

The combined effect of all changes in local rates on the
system variables $°, 55, and J can be written as the sum of
all individual effects caused by the local rate changes. For
the flux holds

al J§V| J(SVQ 15\"3
Z_d1 2 =, 4.7
J (& v,+C2v2+C3v3 (4.75)
It follows
a=a(Cj+C+C) or 1=C+C+0
(4.76)

This is just a special case of Eq. (4.70). In the same way,
for the change of concentration S7°, we obtain

65?5 5\/1 (SVZ l%'/;

=Ly 2 2 4.77
Sis 1 vy 2 Va 3 a ( }
Finally, we get
0=Cy+C +C aswell as
(4.78)

0=Cy+C2+C3.

Although shown here only for a special case, these prop-
erties hold in general for systems without conservation
relations. The general derivation is given in Section 4.2.3.

4.2.2.2 The Connectivity Theorems
Flux control coefficients and elasticity coefficients are
related by the expression

r
Y
E weés = 0.
k=1

Note that the sum runs over all rates v; for any flux J;.
Considering the concentration S; of a specific metabolite

(4.79)



and a certain flux /;, each term contains the elasticity sgf
describing the direct influence of a change of S; on the
rates v and the control coefficient expressing the control
of v over J;.

The connectivity theorem between concentration con-
trol coefficients and elasticity coefficients reads

r
Sh o Vk —

> Chelt = —oy.

k=1

Again, the sum runs over all rates v, while S; and §;
are the concentrations of two fixed metabolites. The

symbol &, = { 10’ ;ff :?E is the so-called Kronecker

(4.80)

symbol.
In matrix formulation, the connectivity theorems read

Ce=0 and C*-e=-I, (4.81)

where I denotes the identity matrix of size nx n. For
nonnormalized coefficients, it holds

¢ 6.L=0 and €’ -6-L=-L, (4.82)

Example 4.6

To calculate the control coefficients, we study the following
reaction system:

Po s Lsp, (4.84)
The flux control coefficients obey the theorems
Cl+C =1 and Clei+Chel =0, (4.85)

which can be solved for the control coefficients to yield
2 A
£ —&
C{ =—5 _ and C = s,
2 1 2 1
& — & €5 — &
Since usually ] < 0 and & > 0 (see Example 4.4), both
control coefficients assume positive values ] >0 and
C; > 0. This means, that both reactions exert a positive
control over the steady-state flux, and acceleration of any
of them leads to increase of J, which is in accordance with
common intuition.
The concentration control coefficients fulfill

(4.86)

G+C =0 and Cey+Cel=-1, (4.87)
which yields
=1
5 _ 5 _
C‘I = m and CZ = m . (488]

With e} < 0 and €2 > 0, we get C; >0 and (5 < 0, that
is, increase of the first reaction causes a raise in the steady-
state concentration of S while acceleration of the second
reaction leads to the opposite effect.

4.2 Metabolic Control Analysis 55

where L is the link matrix that expresses the relation
between independent and dependent rows in the stoichi-
ometric matrix (Section 3.15, Eq. (3.22)). A comprehen-
sive representation of both summation and connectivity
theorems for nonnormalized coefficients is given by the
following equation:

(&) e(5 4)

The summation and connectivity theorem together
with the structural information of the stoichiometric
matrix are sufficient to calculate the control coefficients
for a metabolic network. This shall be illustrated for a
small network in the next example.

(4.83)

423
Matrix Expressions for Control Coefficients

After having introduced the theorems of MCA, we will
derive expressions for the control coefficients in matrix
form. These expressions are suited for calculating the
coefficients even for large-scale models. We start from
the steady-state condition

Nv(S%(p).p) = 0. (4.89)

Implicit differentiation with respect to the parameter vec-
tor p yields

0_vasss
ds dp

gv =0. (4.90)
Jdp

If we chose reaction specific parameters for perturbation,
the matrix of nonnormalized parameter elasticities con-
tains nonzero entries in the main diagonal and zeros else-
where (compare Eq. (4.64)).

'f)i 0 0
dp, P
av Va
= 0o — 4.91
dp op, (491)
0 0 ’?"r
dp,

Therefore, this matrix is regular and has an inverse. Fur-
thermore, we consider the Jacobian matrix
av

M=N__-=N&

5= (4.92)

The Jacobian M is a regular matrix if the system is
asymptotically stable and contains no conservation
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relations. The case with conservation relations is consid-
ered below. Here, we may premultiply Eq. (4.90) by the
inverse of M and rearrange to get

6 SSS

=-|N
dp
As indicated, 98*°/0p is the matrix of nonnormalized
response coefficients for concentrations. Postmultiplica-

tion by the inverse of the nonnormalized parameter elas-
ticity matrix gives

o588 /- -1
) -6
dp \0p

This is the matrix of nonnormalized concentration con-
trol coefficients. The right (middle) site contains no
parameters. This means, that the control coefficients do
not depend on the particular choice of parameters to
exert the perturbation as long as Eq. (4.64) is fulfilled.
The control coefficients are only dependent on the struc-
ture of the network represented by the stoichiometric
matrix N, and on the kinetics of the individual reactions,
represented by the nonnormalized elasticity matrix
€= 0v/0S.
The implicit differentiation of

J = v(5*(p), p).

with respect to the parameter vector p leads to

dv av\™! dv
- 55 (V%s) ”) op

(4.96)

-1 ‘
0—") N MmN DY RS a93)

as ap ap

- -1
ﬂ) N=C". (4.94)

a8

(4.95)

ad]) c‘)v+c‘)v65“
ap Op OS dp
=r.

This yields, after some rearrangement, an expression
for the nonnormalized flux control coefficients:

ay (ov\™' __av/ av\T . -
dp(dp) ~1 —(N.—) N=C. (497

Jds ds
The normalized control coefficients are (by use of
Eq. (4.69))

¢ -1
C =1-(dg)) (d"(NS;) N)(dg]) and

- -1
CS = —(dgs*)™! ((N g—;) N)(dg]).

These equations can easily be implemented for numeri-
cal calculation of control coefficients or used for analyti-
cal computation.

They are also suited for derivation of the theorems of
MCA. The summation theorems for the control

(4.98)

coefficients follow from Eq. (4.98) by postmultiplication
with the vector 1 (the row vector containing only 1s),
and consideration of the relations (dg])-1=] and
NJ = 0, as shown below:

d1=1-1-(dg) ( (N‘;;) )(dgl)l

. —1 '
1=1-(dg)" (dv (NE;;) N)]:l—o

The connectivity theorems result from postmulti-
plication of Eq. (4.98) with the elasticity matrix
e=(dg))™" - (Iv/DS) - dgS*, and using that multiplica-
tion of a matrix with its inverse yields the identity matrix
I of respective type.

If the reaction system involves conservation relations,
we eliminate dependent variables as explained in Section
1.2.4. In this case, the nonnormalized coefficients read

-1
(NR P S) Nindep and

-5 ov\ !
C =_L(NRdS) Nindep-

(4.99)

-] dv
=1-
C as

(4.99)

and the normalized control coefficients are obtained by
applying Eq. (4.69).

An example for calculation of flux control coefficients
can be found in the web material.

To investigate to implications of control distribution,
we will now analyze the control pattern in an unbranched
pathway:

Vi Va v,

Sp«—85,«—=85,...5,_1 5, (4.100)

with linear kinetics v; = k;Si—; — k_;S;, the equilibrium
constants ¢; = k;/k_;, and fixed concentrations of the
external metabolites, Sp and S,. In this case, one can
calculate an analytical expression for the steady-state flux,

SUH;—lq'j -5
Zf—l ki

as well as an analytical expression for the flux control
coefficients

-1
o (1H.) (S L
C: = (k”l_[‘q;’) (1:1 k;ﬂeq”) .

Let us consider two very general cases. First assume
that all reactions have the same individual kinetics, k; =
ki k_j=k_fori=1,...,r and that the equilibrium con-
stants, which are also equal, satisfy g = k;. /k_ > 1. In this
case, the ratio of two subsequent flux control coefficients

J = (4.101)

T 1
=19 m

(4.102)



Cl _Kin

I

Cﬁ+l ki

q,=q>1 (4.103)

Hence, the control coefficients of the preceding
reactions are larger than the control coefficients of the
succeeding reactions and flux control coefficients are
higher in the beginning of a chain than in the end. This
is in agreement with the frequent observation that flux
control is strongest in the upper part of an unbranched
reaction pathway.

Now assume that the individual rate constants might
be different, but that all equilibrium constants are equal
toone, g; = 1fori=1,...,r. This implies k; = k_;. Equa-
tion (4.102) simplifies to

-1
p_ 1 (1
Ci—ki (Zk;) .

=1

(4.104)
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Consider now the relaxation time 7; = 1/(k; + k_;) (see
Section 4.3) as a measure for the rate of an enzyme. The
flux control coefficient reads

J %
€)= ——
T1+12+ -+ 17,

(4.105)

This expression helps to elucidate two aspects of
metabolic control. First, all enzymes participate in the
control since all enzymes have a positive relaxation
time. There is no enzyme that has all control; that is,
determines the flux through the pathway alone. Sec-
ond, slow enzymes with a higher relaxation time exert
in general more control than fast enzymes with a short
relaxation time.

The predictive power of flux control coefficients for
directed changes of flux is illustrated in the following
example.

Example 4.7

Assume that we can manipulate the pathway shown in Figure 4.12 by changing the enzyme concentration in a predefined way.
We would like to explore the effect of the perturbation of the individual enzymes. For a linear pathway (see Eqs. (4.100)-(4.102))
consisting of four consecutive reactions, we calculate the flux control coefficients. Fori=1,..., 4, it shall hold that (i) all enzyme
concentrations are E; = 1, (ii) the rate constants are k; = 2. k_; = 1, and (iii) the concentrations of the external reactants are
So =S4 = 1. The resulting flux is J = 1 and the flux control coefficients are C’ = (0.533 0.267 0.133 0.067) according to
Eq. (4.98).

If we now perturb slightly the first enzyme, lets say perform a percentage change of its concentration, that is, £, — E; + 1%,
then Eq. (4.54) implies that the flux increases as J — J+ C] - 1%. In fact, the flux in the new steady state is J5~ 1916 = 1,00531.
Increasing E3, E3, or E4 by 1% leads to flux values of 1.00265, 1.00132, and 1.00066, respectively. A strong perturbation would
not yield similar effects. This is illustrated in Figure 4.10.

v, vy v

(a) Sp«*+S >S5, 5+ 5,
v, Vs Vs v,

(b) Sy« S, >S5, «*>5,«*5,
v v V3 Vy

(c) SUTSI‘Ihsz‘Ih a“ILS“

# of reaction

1 2 4
(d) Sp+—* S, +—+ S5, >S5, «—>5,

Figure 4.10  Effect of enzyme concentration change on steady-state flux and on flux control coefficients in an unbranched pathway
consisting of four reactions. In the reference state, all enzymes have the concentration 1 (in arbitrary units), the control distribution is the
same as in case (C), and the steady-state flux is J = 1. (a) Change of £y — 5E; while keeping the other enzyme concentrations constant
results in a remarkable drop of control of the first enzyme. The resulting flux is J5~*5 = 1.7741. (b) The change E, — 5E, corresponds to
JEa=5Es — 1 0563, There is only slight change of control distribution. (c) Equal enzyme concentrations with £; — 2E;,i = 1,....4 results in
JE=2E = 2 (d) Optimal distribution of enzyme concentration £, = 3.124,F, = 2.209, F3 = 1.562, £4 = 1.105 resulting in the maximal steady
state flux J™* = 2.2871.
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Example 4.8

Control analysis can be applied to both metabolic and signaling networks. The small network shown in Figure 4.12a could
represent both cases. It shows the production (and degradation) of compound S; that modifies the conversion of S, into S..
Such a reaction cycle between two components where both reactions are catalyzed by different enzymes occurs both in metabolic
networks (e.g., the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase, PFK, and the reverse
reaction catalyzed by fructose bisphosphatase, an important part of glycolysis, see Section 12.1) and in signaling pathways (e.g. the
activation of a small G-protein by exchange of GDP with GTP catalyzed by a guanine-nucleotide exchange factor, GEF, and reversely
the hydrolysis of GTP to GDP catalyzed by GTPase activating proteins, GAPs, see Section 12.2). In our case, S, catalyzes the formation
of the next compound S3, which is in turn degraded. The stoichiometric matrix for this network reads

1 -1 0o 0 0 O
0 o0 1 -1 0 0
0o 0o 0 0 1 -1
0 0 -1 1 0 O

Application of stoichiometric analysis (Chapter 3) reveals a conservation relation, that is, S; + 54 = constant, for all times (Sec-
tion 3.1.5) and three independent fluxes in steady state, that is, ky = (1 1 0 0 0 0), k,=(0 0 1 1 0 0), and
ks=(0 0 0 0 1 1)T. These independent fluxes are illustrated in Figure 4.12b by different colors. The time-dependent
response depends on the initial conditions for the system, that is, whether the system is in steady state when a parameter is
perturbed (Figure 4.12¢) at a state far away from equilibrium (Figure 4.12d). Looking at the case where we start at steady state,
middle panel, we see that a perturbing 55(0) has initially the largest effect on S5(t) as indicated by a response coefficient of 1. But this
effect declines over time since systems dynamics would lead the system back to its original steady state. Increasing 54(0) would,
however, increase in the long run due to an increase of the conserved moiety of S, and S,. The impact of parameter values is zero at
time point t=0, but then increases for producing reactions such as k; and ks and decreases for degrading reactions such as k; and
ke. When looking at the response of S4 (lower panel), we find that increasing 53(0) has only temporarily a diminishing effect on S4(t),
but not with respect to the new steady state. Parameters ks and kg have no effect on S,(t).
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Figure 4.12  |llustration of time-dependent flux response. (a) Example network, (b) Independent steady-state fluxes for the production
and degradation of S,, for the interconversion of S, and Sy, and for the production and degradation of S3 are shown by green, red, and blue
arrows, respectively. (c) Response analysis for the network at steady state: Top panel: constant concentrations of the substrates, Middle
panel: temporal behavior of all response coefficients for S;, and Lower panel: temporal behavior of all response coefficients for S,. (d)
Response analysis for the system starting at the initial conditions 5,(0) = 53(0) = 53(0) = 0; 5,(0) = 1. Panels as in C. (e) Color code for the
parameters of the system as used in the middle and lower panels.

Parameter values: ky = 1:k; = 2 k3 = 3:kq = ks = kg = 0.5.




