

Tao Te Programming

Patrick Burns

Copyright 2012 by Patrick Burns

ISBN 978-1-291-13045-4

Contents

1

8

9

Program

Program Well

Think Chess

Carve Reality

Don’t Solve the Problem
Enjoy Confusion
Procrastinate

Verbalize and Nounalize

10 Pay Attention to Attention

11 Be Accident Prone

5

15

3

C

0

S

29

35

&

=

6

12 Conquer Time

13 Learn the Local Jargon
14 Accept Numerical Reality
15 Be Stateless

16 Travel in Space

17 Use Your Frustration
18 Be a Hacker
19 Don’t Crash the Ambulance

20 Do Not Plagiarize

21 Decontaminate

22 Be Miserly

23 Curse Knowledge

24 Rise to the Occasion
25 Be Poetic
26 Be Lazy

27 Be Impatient

CONTENTS

43

45

47

=

ot

2

o

65

CONTENTS

28 Have Hubris
29 Be Consistent
30 Relish Magic

31 Tell a Good Story

32 Make Bricks Not Monoliths

33 Write Opaque Code

34 Write Invisible Cod

35 Engage Eyes

36 Grow a Cathedral
37 Become a Ghost

38 Do Not Be Helpful

39 Do Nothing Well

40 Find Your Sticki
41 Give Up Control
42 Be Quiet

43 Give Them Their Own

89

91

97

109

111

115

119

8 CONTENTS

44 Don’t Borrow, Steal 133
45 Always Softcode 135
46 Topple Fences 137
47 Be Claustrophilic 139
48 Be Wary 141
49 Lose Every Battle 143
50 Avoid the Plague 145
51 Comment Quietly 151
52 Beware Longevity 153
53 Beware Easy 155
54 Do Not Repeat Repeat Repeat 157

55 Climb Al the Soluti 159
56 Hinder Your Users 163
57 Develop a Sense of Kludge 165
58 Understand Bugs 167

59 Spot Bugs 171

CONTENTS

60 Know Why It Works

61 Think Safety

62 Respect Bug Time

63 Dance the Debug 2-Step
64 Clean Up After the Flood
65 Play

66 Sidestep Show Stoppers

67 Do a Premortem

68 Eat Your Own Cooking

69 Bandage Sparingly

70 Purge

71 Don’t Oversharpen
72 Think Backwards
73 King Your Users
74 Shake Vigorously

75 Prove Yourself Wrong

175

177

181

183

191

193

197

199

201

203

205

211

10 CONTENTS

76 Sling Garbage 219
77 Tattle on Yourself 223
78 Be a Polyglot 225
79 Avoid Perfeet 227
80 Beget Quality 229

81 Follow The Way 231

Reader’s Guide

This is a book about what goes on in the minds
of programmers. Most programming books are
about the mechanics of programming. These are
essential, yet they can leave novices confused
and bored. Tao Te Programming tries to get at
the spirit of programming, to expose the ways
of thinking that make programming challenging
and fulfilling rather than too hard and grinding.

Good programming is often about effective
compromise. You can go too far in a good direc-
tion. That is why many chapters have opponents
— an indication of forces you need to try to bal-
ance. Chapters can also have allies that point in
a similar direction.

You can read the chapters in order. But if
there is much in the book, then that something
1s unlikely to appear via a linear path. Bouncing
around chapters is more in the book’s spirit.

11

12 CONTENTS

Artwork

The artwork was done with some simple func-
tions in R using its random number generation.

Quotes

Unattributed quotes are from Tao Te Ching.

There are also snippets of creation myths scat-
tered through the book. When you program, you
create a world — just as Everything-Maker made
a world. Ignore the stories if you like.

Chapter 1

Program

Computer programming is fun.
— Jon Bentley

We used to live with a cat named Esther. She
taught us a proverb we hadn’t known before:

Go for the hand and not the string.

She, for one, believed in direct action.

A graphical user interface is a substitute for
programming, sort of. If you are in a restaurant
in a foreign country, then pointing to pictures on
a card will get you something to eat. You’ll sur-
vive. But learning the language will get you far-
ther.

The main reason people don’t want to pro-
gram is because it is hard. Yes, it’s hard. But not
programming may be harder still.

The easy path looks hard.
The hard path looks easy.

13

14

CHAPTER 1. PROGRAM

Chapter 2

Program Well

Cooks do what they do for survival. Chefs do
what they do for joy. A chef works harder than a

cook but is happier.
Do you want to be a cook or a chef?

Becoming a chef is a quest.

15

16 CHAPTER 2. PROGRAM WELL

Chapter 3
Think Chess

You wouldn’t think you’ve learned chess once
you know how all the pieces move.

You don’t know chess until you can think like
a chess player.

This principle is even more true for program-
ming. The important part of becoming a pro-
grammer is learning to think like a programmer.
You don’t need to know the details of a program-
ming language by heart, you can just look that
stuff up.

The treasure is in the structure, not the nails.

Feel Chess

Part of learning to think like a programmer is
learning to feel like a programmer. Using and
creating software are emotional experiences.

17

18 CHAPTER 3. THINK CHESS

Much as we’d like to think that our rational
thinking is the important part, the reality is that
emotions dominate.

Being a good programmer is as much about
emotional strength as intellectual strength.

Your first brush with programming was most
likely a negative experience. Don’t let that de-
fine your relationship to it.

Take Time

You didn’t learn to ride a bicycle or a skateboard
in one day. You’ll not learn to program in one
day. It takes time. Relax.

We may say most aptly that the Analytic Engine
weaves algebraical patterns just as the Jacquard-loom
weaves flowers and leaves.

— Ada Lovelace

Chapter 4

Carve Reality

There is no programming without abstraction.

Algebra is an example of abstraction. The
symbol x stands not for a specific number but
for some number. x is some special part of the
numbers.

Words are abstractions. We carve out a piece
of reality, separate it from the rest, and name it.

The name that is spoken is not the immortal name

When we speak, we string abstractions together
to create a sentence or a paragraph that does what
we want. Sometimes we don’t have a proper ab-
straction — we have to make up a new word.
New words are born as slang; some words live
past adolescence.

Programming is the same process as speaking
a natural language. The “words” are different,
the syntax is different, the process is the same.
If you can talk, you can program.

19

20 CHAPTER 4. CARVE REALITY

A difference is that slang is created much more
often in programming.

Repetition is the Cue

Wherever there is repetition, there is an opportu-
nity for abstraction.

If you repeatedly sum up numbers and divide
by how many numbers there are (we call that
the mean), then you should make an abstraction.
Create a routine for that and call it mean.

A programmer’s task is to:
e spot repetitions

e package each into the most appropriate ab-
straction

Sometimes it is easy to see the abstraction that
will work best. Sometimes not.

Compression

You can think of programming as an exercise in
compression.

When data are compressed, a code is created
so that the actual data can be written more com-
pactly. What’s done once has to stay, but re-
peated parts can be shrunk. Programming is sim-
ilar.

21

Carve and compact.
Ally

e Chapter 9: Verbalize and Nounalize

e Chapter 54: Do Not Repeat Repeat Repeat

22 CHAPTER 4. CARVE REALITY

Chapter 5

Solve the Problem

Here are four steps for general problem solv-
ing (though of course we have programming in
mind).

1. List the starting ingredients
2. State the desired results

3. Break the journey from step 1 to step 2 into
subproblems

4. Put the subproblem solutions together

This is a recursive algorithm — we do the same
four steps on each of the subproblems, and on
their subproblems.

I’'m guessing that this is how almost all prob-
lems are solved — mostly subconsciously.

23

24 CHAPTER 5. SOLVE THE PROBLEM

Breaking Up

The hard part is step 3 (but sometimes step 2 is
murky). This is another case of abstraction, of
carving up reality. There may be multiple possi-
ble combinations of subproblems — your task is
to create a reasonable combination.

Avoid feeling that you must solve the whole
thing in one go. That’s the recipe for being over-
whelmed and stuck.

Our natural inclination is to go from begin-
ning to end when breaking up a problem. If that
is not bearing fruit, try working backwards from
the end.

The more you practice breaking a problem
into subproblems, the better you get at it. This is
important enough to practice deliberately.

This section should be surrounded by flashing
lights. Breaking a problem into pieces seems to
be the central block with programming for most
people.

Great acts are done by a series of small deeds

Surprise is Good

The act of breaking the problem apart can high-
light connections.

25
If It’s Not Working

Two things to try if you are not getting your prob-
lem solved:

e walk

e sleep

Humans evolved as nomads, our brains work best
when we are walking.

Sleep allows us to lay down memories, sort
possibilities, and have a brain ready for active
duty.

Opponent
e Chapter 6: Don’t Solve the Problem

e Chapter 55: Climb Above the Solution
e Chapter 41: Give Up Control

26 CHAPTER 5. SOLVE THE PROBLEM

Chapter 6

Don’t Solve the Problem

We always want to jump in and attack problems
directly.

However, the real problem is often not what
we first think. This is especially true when we’re
solving someone else’s problem. It is ever so
common for someone to ask for some specific
technical thing which turns out not to address
their actual concern, or to be a poor approach
to it.

Before you dig into a problem, make sure you
know what the problem is. I count three possible
outcomes:

e the real problem is easier than the original
— you have saved time and trauma

e the real problem is harder than the origi-
nal — but you’ve avoided working on the
wrong one

27

28 CHAPTER 6. DON’T SOLVE

e the original problem is the real problem —
but now you can tackle it with confidence

Refuse the Part

If you are cast as the programmer who will solve
the problem, you don’t have to accept the role.
Sometimes the best solution is no programming
at all. Cast yourself as the non-programmer who
solved the problem.

“Can you create a program for me to improve
this calculation?”

“I could, but I won’t. You need to do some-
thing else entirely.”

The sage stays behind in order to be ahead

Surprise is Bad

Learning that you’ve just spent a lot of time solv-
ing the wrong thing is disheartening.

Opponent
e Chapter 5: Solve the Problem

Ally
e Chapter 55: Climb Above the Solution

Chapter 7

Enjoy Confusion

If you are confused, then you know something
now that you didn’t before.

Our instinct is to think of confusion as a neg-
ative state. We want to jump back to certainty as
quickly as possible — and we don’t care which
way we jump.

Better to savor confusion. Only in confusion
can our wrong assumptions dissolve away.

Darkness within darkness, the gateway

Surprise is Good

If you’re surprised, a door has been opened to a
larger world.

29

30 CHAPTER 7. ENJOY CONFUSION

Speaking in Signs

The Navajo tell of the start of this world —
there were three previous worlds. People were
driven from each of the other worlds because
they quarrelled so much.

Four mysterious beings approached the peo-
ple. They tried to instruct the people through
signs but without speaking. The gods tried for
four days without success. On the last day Black
Body, the god of fire, stayed behind and spoke
to the people in their own language.

Ally
e Chapter 17: Use Your Frustration
e Chapter 10: Pay Attention to Attention

Chapter 8

Procrastinate

Procrastination gets very bad press. Pretty much
everyone seriously bullies it.

Not me. Put off a step you find hard to do.
Work on the easy things first.

You will be working on the hard step subcon-
sciously. When you return to it, then probably
one of two things will happen:

e You now see how to do it

e You now see that it is the wrong thing to do
— that the motto “if it’s hard, it’s wrong”
applies

You may not have got that far if you had stayed

and beat your head against the hard step. Plus
the easy stuff is done.

Can you wait until the mud in the stream settles?

31

32 CHAPTER 8. PROCRASTINATE

There are times when procrastination is abso-
lutely, positively the wrong thing to do — see
the Show Stoppers chapter.

Staircase Syndrome

When [worked in an office, I had a recurring
experience. As I walked down the stairs leav-
ing work, I would suddenly realize how to solve
some problem that I'd been working on that day.
The consistency of the phenomenon meant it was
not coincidental.

My unconscious mind had been working on
the problem. It had solved the problem. But
there had to be space in my conscious mind to
let the solution come to the fore.

The two steps to get your unconscious mind
to do your work:

e Start the unconscious mind by consciously
working on the problem

e Relax so the solution can float to conscious-
ness

Sleep can be a good time for this: think hard
about a problem just before you go to sleep; your
mind is naturally empty when you wake up.

Opponent

e Chapter 66: Sidestep Show Stoppers

Ally

e Chapter 26: Be Lazy

33

CHAPTER 8. PROCRASTINATE

34

Chapter 9

Verbalize and Nounalize

Use the concepts of nouns and verbs to create
abstractions.

Nouns are stuff, data. Many times it is fairly
unambiguous how to split the stuff into separate
objects. (But little tweaks to data structures can
be massively simplifying.)

The system is going to perform actions on
these objects — these actions are the verbs. Cre-
ate a set of verbs and nouns to make the whole
system as simple as possible. Perhaps you might
think of the system as a network where the nouns
are the points and the verbs are connections be-
tween the nouns.

Make that picture simple, intuitive, pretty.

Good nouns make good verbs.

35

36 CHAPTER 9. VERBALIZE, NOUNALIZE

Subset

Suppose you have a subset from some given uni-
verse. Two ways of representing that subset are:

e (variable length) list of items in the subset

e (fixed length) vector indicating which items
in the universe are in the subset

These both contain the same information. They
will not be equally useful for a particular situ-
ation. One may be substantially better than the
other. Which is better depends on how the infor-
mation needs to be used.

37

If the items need to be in order, then the fixed
length approach will be better if the subset is not
too small relative to the size of the universe. If
the subset is small relative to the universe, then
sorting will be easier than running through the
whole universe.

If the order of the items matters, then the fixed
length object can be modified to contain that in-
formation, but the list of items is most likely to
be the better choice.

Choose the noun depending on the verb.

Cloud

Benjamin Whorf reported that in Hopi things that
have duration shorter than a cloud, like lightning
and meteor are verbs. Whatever lasts longer is a
noun.

Ally
e Chapter 4: Carve Reality
e Chapter 30: Relish Magic

38 CHAPTER 9. VERBALIZE, NOUNALIZE

Chapter 10

Pay Attention to Attention

People have four basic levels of attention:

e adrenaline-fueled fight or flight (panic)
e alert
e half asleep

e completely asleep

Your Attention

When you first start learning a new program-
ming language, you may easily flip between panic
and inattention. Staying properly alert might be
like walking a razor’s edge. With persistence
you can transform that razor’s edge into a wide
path.

39

40 CHAPTER 10. PAY ATTENTION
Your Users’ Attention

You want to do all you can to keep your users
out of panic mode.

Write your code assuming that your users are
inattentive. This means all the consistency you
can muster, and unambiguous names.

Delicately, like frying a small fish

Transformer

I was walking with someone along a neighbor-
hood street. A bunch of crows started raising
quite a noise — clearly something was up in the
crow world. Then there was a very loud pop be-
hind us. We turned and saw a crow falling from
a smoking transformer.

Did it panic and land on the transformer? Did
it not know the danger? Was it a dare? Was it
suicide? What were the others saying?

Ally
e Chapter 7: Enjoy Confusion
e Chapter 17: Use Your Frustration
e Chapter 29: Be Consistent
e Chapter 31: Tell a Good Story

Chapter 11

Be Accident Prone

The fraction of good things I’ve done that didn’t
arrive by accident is frighteningly small.

If you make a mistake, wonder how you can
benefit from it:

e How can this be made into an even better
mistake?

e How could this have been right?

e How can such mistakes be blocked?

Heuristic Algorithms

Evolutionary algorithms and relatives use ran-
domness to do optimization. They typically use
no information about the problem being solved
other than the result given the inputs. Random-
ness provides, eventually, better solutions. On
some problems they work remarkably well.

41

42 CHAPTER 11. BE ACCIDENT PRONE

You can be your own random heuristic opti-
mizer. You just need the courage to use your
mistakes.

Bose-Einstein Mistake

Apparently the collaboration between Bose and
Einstein was precipitated by a trivial error (by
Bose) that allowed him to see a deeper truth.

Opponent
e Chapter 48: Be Wary

Ally
e Chapter 49: Lose Every Battle

Chapter 12

Conquer Time

You can let time just flow past you, or you can
collect it in buckets.

Version control keeps track of the changes to
files. Sounds simple — it is. But it is very useful.

e you can confidently experiment with code,
knowing that you can put it back to its cur-
rent state

e you can return to a previous version if the
new version has a problem

e you can see if a particular command would
have been correct in a previous version

Version control is useful for documentation and
test suites as well as code. In fact it can be useful
for projects that have nothing at all to do with
programming.

43

44 CHAPTER 12. CONQUER TIME

Version control gives you a history of when
and why things were changed. Of course you
have to state why when you “check in”” a change.
Make the statement explicit, you’ll thank your-
self later.

You don’t want to throw different types of
changes into one revision. Better is to do a re-
vision for each type of change. If you are fix-
ing two unrelated bugs and improving the layout,
then do three different revisions.

Surprise is Bad

The surprise that your new version doesn’t work
is extremely unpleasant if you can’t rewind to
the version that does work.

Chapter 13

Learn the Local Jargon

When you come to a new language, it is benefi-
cial to learn the jargon specific to that language.
Many words have very specific meanings.

For example C and C++ have “arrays”, so
does R. But the meaning of “array” in R is differ-
ent than that in C and C++. R has the same con-
cept as “array” in C, but uses a different word.

If you know a language’s jargon, then:

e you can communicate with the other people
using the language

e you will be less confused about the language

e you will better pick up the nuances of the
language

A little time invested studying the vocabulary
pays big dividends.

45

46 CHAPTER 13. LOCAL JARGON
Alpha versus Beta

You almost surely know that a beta version of
software is a test version that may or may not be
ready for prime time. It has come to my attention
that the meaning of “alpha version” is not so well
known. Is an alpha version better or worse than
a beta version?

It could be better: the alpha dog is better than
the beta dog.

It could be worse: alpha comes before beta.

The programming definition is that an alpha
version is the first thing out of the box. Often
an alpha version is little more than a proof of
concept. I’'ve seen alpha versions that weren’t
even that. (These have ranged from no reason-
able concept to merely no proof.)

Once the code 1s close to release-quality, it
is designated beta and opened up to testing by a
wider audience. What would logically be called
the gamma version is just called the release.

Surprise is Bad

You don’t want to be surprised by the meaning
of words.

Ally
e Chapter 78: Be a Polyglot

Chapter 14

Accept Numerical Reality

Every day around the world people find things
like:

0.1 + 0.1 + 0.1 ==0.3

to be false and think they are seeing a bug. They
are not.

While the above equation is logically true, it
depends on the numbers being exact. Comput-
ers can deal with (smallish) integers exactly, but
they can not represent arbitrary numbers exactly.

Percentages

Here’s what’s going on. Suppose we have the
counts: 23, 47, 13 and we want to turn those
into percentages of total count. If we round the
percentages to one decimal place, we have:

27.7 56.6 15.7

47

48 CHAPTER 14. NUMERICAL REALITY

These sum to 100%.
Now suppose we round to even percent:

28 57 16

These sum to 101%.

There is no error in our calculation in the sense
of a bug. There is error in our calculation in the
sense of numerical error.

Our restriction to use only integer percent-
ages limits our ability to produce exact results.
Programs use floating point numbers which have
a similar sort of restriction.

10.0 times 0.1 is hardly ever 1.0.
— Kernighan and Plauger

Here be bugs. Naive users think there are bugs
when conceptually equal values are not equal.
The real bugs are actually when programs as-
sume conceptually equal values are equal.

Do not expect exact equality with floating
point calculations. Use a suitable tolerance in-
stead.

To clarify: it is possible to do calculations that
are arbitrarily close to exact, but they are only
practical in specific circumstances.

Vocabulary

If you are dealing with numerical algorithms,
then you may need to learn some words, such

49

2 <C

as “overflow”, “underflow” and my personal fa-
vorite “negative zero”. (Since floating point num-
bers are really ranges rather than points, some
pedants think a minus sign on zero can mean
something.)

Reality

Novices assume their ideal of numbers is imple-
mented in the computer. The numbers they get
are usually close enough to maintain that illu-
sion.

Such problems are not restricted to novices
and numbers. There can be a gap between the
ideal of a concept and the implementation of that
concept.

If reality is:
implementation != concept
then avoid the mental image:

implementation == concept

50 CHAPTER 14. NUMERICAL REALITY

Chapter 15

Be Stateless

A piece of code can do one or both of:

e rcturn a value (or values)

e create one or more side effects

If you have a mean function, it most likely re-
turns a number (which is the mean value of the
numbers in the input).

A print function likely has the side effect of
printing something somewhere. A plot func-
tion most likely has the side effect of creating a
graphic of something somewhere. Another com-
mon side effect is for some object to be changed.

Return values are passed from one piece of
code to another piece of code. A side effect is
something actually changing.

If there were no side effects, then we humans
would not be interested. Values might be passed
around the code, but we’d never see anything

51

52 CHAPTER 15. BE STATELESS

happen. However, we want to limit how and
when side effects occur. If side effects happen
willy-nilly, the system will be too complex to
understand.

Most likely our mean function returns one nu-
meric value with no side effects if the input is
suitable. If the input is not suitable, it will prob-
ably have the side effect of throwing an error;
or perhaps it will throw a warning (a side effect)
and return something, a missing value possibly.

It is possible (in many languages) for mean to
return a value but also to have the side effect of
changing the input data. That is highly unlikely
to be good. Best to avoid modifications if possi-
ble.

Why Reboot?

There’s the story of the programmers whose car

quit. Their way to try to get it going again was to

all get out of the car and then get back in again.
Why does that work with computers?

Reboots fix problems of state. The state of a
computer system is the result of side effects.

My computer has the state that it knows what
is controlling the location of the cursor. I know
that as my mouse. Another state is the shape of
the cursor, which is determined by a property of
whatever the cursor is over.

53

If a state somehow gets corrupted, then states
that depend on that state will be confused and
possibly become corrupted as well. States sel-
dom heal themselves.

State

If possible, avoid state.
If not, make the state as simple as possible.

Global variables are a form of state — one that
can often be avoided.

54

CHAPTER 15. BE STATELESS

Image
not
avallable

