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PREFACE

This book grew out of a course that we taught together at Stanford
for about 10 years. This was a large, mixed course. There were under-
graduates and graduates. There were participants from philosophy,
statistics, and a number of other disciplines across the academic
spectrum. As the course evolved over time, we came to believe that
the story we are telling would be of interest to a larger audience. Our
course had as a prerequisite exposure to one course in probability
or statistics. Our book retains this level. But for the reader who may
have had such a course a long time ago, we have included an appendix
designed as a probability refresher.

This is a history book, a probability book, and a philosophy book.
We give the history of what we see as great ideas in the development
of probability, but we also pursue the philosophical import of these
ideas. One reader of an earlier version of this manuscript complained
that at the end of the book, he still did not know our philosophical
views about chance. We were, perhaps, too evenhanded. This prob-
lem has now been fixed. You will see that we are thorough Bayesians,
followers of Bayes, Laplace, Ramsey, and deFinetti. Bayesianism is
sometimes thought to be opposed to frequencies. We insist that our
view does not deny the importance of frequencies or the usefulness
of talking about objective chances. Rather, it unifies these consider-
ations within the framework of rational degrees of belief.

At the beginning of this book we are thinking along with the pio-
neers, and the tools involved are simple. By the end, we are up to the
present, and some technicalities have to be at arm’s length. We try
to ease the flow of exposition by putting some details in appendices,
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x PREFACE

which you can consult as you wish. We also try to provide ample re-
sources for the reader who finds something interesting enough to dig
deeper. There is a select annotated bibliography at the end. There are
more detailed references in the footnotes.
Persi Diaconis
Brian Skyrms
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Gerolamo Cardano

CHAPTER 1

MEASUREMENT

One way to understand the roots of a subject is to examine how its
originators thought about it. Some basic philosophical issues are
already evident at the very beginning. The first great idea is simply
that chance can be measured. It emerged during the sixteenth and
seventeenth centuries, and it is something of a mystery why it took
so long. The Greeks had a goddess of chance, Tyche. Democritus
and his followers postulated a physical chance affecting all the atoms
that made up the universe. This is the “swerve” of atoms in Lucretius’
De Rerum Natura. Games of chance, using knucklebones or dice, were
known to Egyptians and Babylonians and were popular in Rome.
Soldiers cast lots for Christ’s cloak. Greek Skeptics of the later Acad-
emy postulated probability (eikos) as the guide to life.! Nevertheless,
it appears that there was no quantitative theory of chance in these
times.?
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2 CHAPTER 1

Figure 1.1. Determination of the lawful rood

How do you measure anything? Consider length. You find a stan-
dard of equal length, apply it repeatedly, and count. The standard
might be your foot, as you pace off a distance. Different feet may
not lead to the same result. One refinement, proposed in 1522 for
determining a lawful rood (rod), was to line up the feet of 16 people
as they emerged from church, as shown in figure 1.1.* As the illus-
tration shows, the various folks have very different foot lengths,
but an implicit averaging effect was accepted by a group—even
though the explicit notion of an average seems to not have existed
at the time.

It is worth mentioning a certain philosophical objection at this
point. There is a kind of circularity involved in the procedure. We are
defining length, but we are already assuming that our standard re-
mains the same length as we step off the distance.

No sensible person would let this objection stop her from stepping
off distance. That is how we start. Eventually we refine our notion of
length. Your foot may change length; so may the rod; so may the stan-
dard meter stick, at a fine-enough precision. Using physics, we refine
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MEASUREMENT 3

the measurement of length.’ So the circularity is real, but it indicates
a path for refinement rather than a fatal objection.”

So it is with chance. To measure probability, we first find—or
make—equally probable cases. Then we count them. The probability
of an event A, denoted by P(A), is then

P(A) = no. of cases in which A occurs

total no. of cases

Note that it follows that

1. Probability is never negative,
2. If A occurs in all cases, P(A)=1,
3. If A and B never occur in the same case,

P(A or B)=P(A)+P(B).

In particular, the probability of an event not occurring is 1 less the
probability of its occurring:

P(not A)=1-P(A).

It is surprising how much can be done by ingenious application
of this simple idea. Consider the birthday problem. What is the
probability that at least two people in a room share the same birth-
day, neglecting leap years, assuming birthdates are equiprobable and
birthdays of individuals in the room are independent (no twins)? If
you have not seen it before, the results are a bit surprising,

The probability of a shared birthday in the group is 1 minus the
probability that they are all different. The probability that the second

364

person has a different birthday from the first is (32). If they are dif-

365

ferent, the probability that the third is different from them is (%},

and so on, for all in the room. So the probability of a shared birthday
among N people is
1_(364 363 365—N+1J

365 365 365

* What are the paths open for refinement of the notion of equiprobable? They will unfold as
we move through the book.
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4 CHAPTER 1

If you are interested in an even-money bet, this formula can be used
to find a value of N such that the product is close to 1. If there are 23
people in the room, the probability of a shared birthday is slightly
greater than L. If there are 50 people, it is close to 97%.

There are many variations on the birthday problem. These are used
for thinking about surprising coincidences. For instance, it is over-
whelmingly likely that there are two people in the United States who
share a birthday, whose fathers share the same birthday, whose fathers’
fathers share this birthday, and so on, four generations back. Useful
approximations for working with these variations may be found in an
appendix to this chapter. These approximations are, in turn, used to
prove de Finetti’s representation theorem in an appendix at the end
of this book. The point for now is that the basic “equally likely cases”
structure has real breadth and strength.

BEGINNINGS

Nothing provides us better candidates for equiprobable cases than vig-
orous throws of symmetric dice or draws from a well-shuffled deck of
cards. This is where the measurement of probability began. We cannot
say who was there first, but the idea was clearly there in the sixteenth-
century work on gambling by the algebraist, physician, and astrolo-
ger Gerolamo Cardano.® Cardano, who sometimes made a living at
gambling, was quite sensitive to the equiprobability assumption. He
knew about shaved dice and dirty deals: “. . . the die may be dishon-
est either because it has been rounded off, or because it is too narrow
(a fault which is easily visible), or because it has been extended in one
direction by pressure on the opposite faces. . . . There are even worse
ways of being cheated at cards.”

In the early seventeenth century Galileo composed a short note on
dice to answer a question posed to him (by his patron, the Grand
Duke of Tuscany). The Duke believed that counting possible cases
seemed to give the wrong answer. Three dice are thrown. Count-
ing combinations of numbers, 10 and 11 can be made in 6 ways, as
can 9 and 12. “ . . yet it is known that long observation has made

125-80708_Diaconis_TenGreatldeas_3P.indd 4 @

6/26/19 1:06 PM

®



MEASUREMENT 5

dice-players consider 10 and 11 to be more advantageous than 9 and
12.”* How can this be?

Galileo replies that his patron is counting the wrong thing. He
counts three 3s as one possibility for making a 9 and two 3s and a 4
as one possibility for making a 10. Galileo points out the latter covers
three possibilities, depending on which die exhibits the 4:

<4, 3,3>,<3, 4, 3> <3, 3, 4>

For the former, there is only <3, 3, 3>. Galileo has a complete grasp
of permutations and combinations and does not seem to regard it as
anything new.

In constructing equiprobable cases, both Galileo and Cardano ap-
pear to make implicit use of independence. They suppose that for each
die, all 6 faces are equally probable and that for throws of 3 dice, all
216 possible outcomes are also equally probable. When we treated the
birthday problem earlier, we assumed that different people had inde-
pendent chances for their birthdays.

With this basic machinery well understood, Pascal and Fermat in
their famous correspondence attacked more subtle problems with a
different conceptual flavor.

PASCAL AND FERMAT (1654)

The first substantial work in the mathematics of probability appears
to be the correspondence between Pascal and Fermat, which began
in 1654. We include a discussion for three reasons: (1) It zs the first; (2)
it shows how seemingly complex problems can be reduced to straight-
forward calculations with equally likely cases; and (3) it introduces
the crucial notion of expectation—a mainstay of the subject.

*One strange aspect of the statement of the problem is the comment about long observation.
The observation would have had to be long indeed. From Galileo’s calculations, the chance
of a9 is 2=, about 0.116; the chance of a 10 is 2Z, abour 0.125. The difference between these
is 0.009, or about k5. As an exercise, you could calculate how many observations would

be required.
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8 CHAPTER 1

the 8 equiprobable cases, player 2 will win the game only if he wins
all 3 rounds. His expectation is } of the stakes, while player 1 has an
expectation of Z on the stakes. It is fair, then, to divide the stakes in
this proportion.

Expectation, computed by counting equiprobable cases, solves the
problem. But there may be a large number of equiprobable cases to
count. Consider Tartaglia’s example. Six points win, and one player
has no points and the other, 1 point. Then play must be complete after
10 more rounds. It would be tedious to write out the 1024 possible
outcomes. But Pascal had a better way of counting.

To count the cases in which the first player wins, one adds the num-
ber of cases in which she gets 6 wins in 10 trials [called 10 choose 6]+
the number where she gets 7 wins in 10 trials [10 choose 7] + - - - +the
number where she gets 10 wins in 10 trials [10 choose 10]. These
numbers are conveniently to be found on the tenth row of Pascal’s
arithmetical triangle (or Tartaglia’s triangle, or Omar Khayyam’s tri-
angle), which we show in figure 1.2. The row tells us the number
of ways we can choose from a group of 10 objects. Reading from
the left, there are 1 way of choosing nothing, 10 ways of choosing 1
object, 45 ways of choosing 2 objects, 120 ways of choosing 3, and so
on, to only 1 way of choosing 10.

We want the number of ways of getting 6 wins in 10 trials+the
number of ways to get 7 wins in 10 trials + - - - + the number where
she gets 10 wins in 10 trials. From row 10 we get

210+120+45+10+1=386
for a probability of winning of

386 (about 38%).
1024

Thus a fair division of the stakes gives player 1 (who had no points)

2 of the stakes and player 2 the rest.

After Pascal and Fermat, the basic elements of measuring prob-
ability by counting equiprobable cases, calculating by combinatorial

principles, and using expected value are all on the table.
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MEASUREMENT 9

HUYGENS (1657)

The ideas in the Pascal-Fermat correspondence were taken up and de-
veloped by the great Dutch scientist Christiaan Huygens" after he heard
about the correspondence on a visit to Paris. He then worked them
out by himself and wrote the first book on the subject in 1656. It was
translated into English by John Arbuthnot in 1692 as Of the Laws of
Chance.*

Huygens begins his book with a fundamental principle:

Postulat

As a Foundation to the following Proposition, I shall take Leave
to lay down this Self-evident Truth: That any one Chance or Ex-
pectation to win any thing is worth just such a Sum, as wou'd
procure in the same Chance and Expectation at a fair Lay. As
for Example, if any one shou'd put 3 Shillings in one Hand,
without letting me know which, and 7 in the other, and give
me Choice of either of them; I say, it is the same thing as if he
shou'd give me 5 Shillings; because with 5 Shillings I can, at a
fair Lay, procure the same even Chance or Expectation to win
3 or 7 Shillings.

Huygens assumes that he could, in effect, flip a fair coin to choose
which hand to pick.* Then (3)3+(3)7=5. He then says that the value

* A point made much later by Howard Raiffa against the so-called Ellsberg paradox, which
we will visit in our chapter on psychology of chance (chapter 3).
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10 CHAPTER 1

of the wager is the same as the value of 5 for sure. Thus he makes
explicit (a special case of ) the principle that is implicit in Pascal and
Fermat: expectation is the correct measure of value.

He then goes on to justify this measure by a fairness argument. Sup-
pose I bet 10 shillings with someone on the flip of a fair coin. This
is fair by reasons of symmetry. Now suppose we modify this by an
agreement that whoever wins shall give 3 to the loser. This preserves
symmetry, so the modified arrangement is also fair. But now the loser
nets 3 and the winner retains 7. Any such agreement preserves fair-
ness, including where the winner gives the loser 5, and each has 5 for
sure. Huygens then shows how the argument generalizes to arbitrary
finite numbers of outcomes and arbitrary rational-valued probabilities
of outcomes. It will be a recurring theme that an equality is justified
by a symmetry.

NEWTONIAN CONSIDERATIONS

In the preface to the translation of Huygens, Arbuthnot, who was a
follower of Newton,"” makes the following noteworthy remark (L.
Todhunter, A History of the Mathematical Theory of Probability (Cam-
bridge: Macmillan, 1865); reprinted by Chelsea (New York, 1965),
p. 51):

It is impossible for a Die, with such determin'd force and direc-
tion, not to fall on such determin'd side, only I don’t know the
force and direction which makes it fall on such determind side,
and therefore I call it Chance, which is nothing but the want of art.

Arbuthnot thus introduces the fundamental question of the proper
conception of chance in a deterministic setting. His answer is that
chance is an artifact of our ignorance.

Consider tossing a coin just once. The thumb hits the coin; the coin
spins upward and is caught in the hand. It is clear that if the thumb
hits the coin in the same place with the same force, the coin will land
with the same side up. Coin tossing is physics, not random! To dem-
onstrate this, we had the physics department build us a coin-tossing
machine. The coin starts out on a spring, the spring is released, the
coin spins upward and lands in a cup, as shown in figure 1.3. Because
the forces are controlled, the coin always lands with the same side up.
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MEASUREMENT 11

Figure 1.3. A deterministic coin-tossing machine

This is viscerally quite disturbing (even to the two of us). Magicians
and crooked gamblers (including one of your authors) have the same
ability.

How then is the probabilistic treatment of coin flips so widespread
and so successful? The basic answer is due to Poincaré. If the coin is
flipped vigorously, with sufficient vertical and angular velocity, there is
sensitive dependence on initial conditions. Then a little uncertainty
as to initial conditions is amplified to a large uncertainty about the
outcome, where equiprobability of outcomes is not such a bad assump-
tion. But the provisos are important. See appendix 2 for a little more
on this. We will return to the question in more detail in our chapter
on physical chance (chapter 9).

BERNOULLI 1713

In 1713 Jacob Bernoulli’s Ars Conjectandi™ was published, 8 years after
his death. Bernoulli made explicit the practice of his predecessors. The
first part is a reprint, with commentary, of Huygens. The probability
of an event is now explicitly defined as the ratio of the number of
(equiprobable) cases in which the event happens to the total number
of (equiprobable) cases. The probability of being dealt a club from a
deck of cards is 4. He also defines the conditional probability of a sec-
ond event (B) conditional on a first (A) as the ratio of the number of
cases both happen to the number of cases the first happens:

no. of cases in which A and B occur

Probability (B conditional on A) =
A ) no. of cases in which A occurs
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12 CHAPTER 1

The probability of being dealt a queen given that one is dealt a
club is .

On the basis of these definitions, he shows that the probabilities of
mutually exclusive events add and that probabilities satisfy the mul-
tiplicative law, P(A and B)=P(A)P(B conditional on A). These simple
rules form the heart of all calculations of probability.

But Bernoulli’s major contribution was to establish a rigorous con-
nection between probability and frequency that had heretofore only
been conjectured. He called this his golden theorem.

As an illustration he considers an urn containing 3000 white peb-
bles and 2000 black pebbles and postulates independent draws with
replacement of the pebble drawn. He asks whether one can find a
number of draws so that it becomes “morally certain” that the ratio
of white pebbles to black ones becomes approximately 3:2. He then
chooses a high probability as moral certainty and establishes a num-
ber of draws sufficient to provide a positive answer. Then he shows
the weak law of large numbers:

Given any interval around the probability (here ) as small as
you please and any approximation to certainty, 1—e, as close
as you please, there is a number of trials, N, such that in N tri-
als the probability that the relative frequency of draws of white
falls within the specified interval is at least 1—e.

This is a story to which we will return in our chapter on frequency
(chapter 4).

SUMMING UP

Probability, like length, can be measured by dividing things into
equally likely cases, counting the number of successful cases and divid-
ing by the total number of cases. This definition satisfies the following:

1. Probability is a number between 0 and 1.

2. If A never occurs, P(A)=0. If A occurs in all cases, P(A)=1.

3. If A and B never occur in the same case, then P(A or
B)=P(A)+P(B).
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MEASUREMENT 15

Fermat sees clearly that the analysis is the same at any point in the
game. Suppose that after the round in question, there will be n+1
rounds remaining; give the stakes at this point value 1. Then the
value of taking the play is  for winning now and (%)(l—(%)n) for
failing on this throw but possibly eventually winning. The value of
taking 1 of the stakes and proceeding with the rest of the game for
the diminished stakes is 1 for the cash in hand plus 1— (%)", the prob-
ability of eventually, winning times £ of the the diminished stakes.
Pascal immediately agrees with Fermat’s analysis.

THE PROBLEM OF POINTS

There is another aspect of Pascal’s discussion that is of interest. He
starts with the example of a game where two players play for 3 points,
where each has staked 32 pistoles (“Pascal and Fermat on Probabil-
ity,” tr. by Vera Sanford in A Sourcebook in Mathematics, ed. David
Eugene Smith (New York: McGraw Hill, 1929), 546-65. Dover reprint
in 1969 available online at https:/www.york.ac.uk/depts/maths/histstat
/pascal.pdf):

Let us suppose that the first of them has two (points) and the
other one. They now play one throw of which the chances are
such that if the first wins, he will win the entire wager that is at
stake, that is to say 64 pistoles. If the other wins, they will be two
to two and in consequence, if they wish to separate, it follows
that each will take back his wager that is to say 32 pistoles.

Consider then, Monsieur, that if the first wins, 64 will be-
long to him. If he loses, 32 will belong to him. Then if they do
not wish to play this point, and separate without doing it, the
first should say “I am sure of 32 pistoles, for even a loss gives
them to me. As for the 32 others, perhaps I will have them and
perhaps you will have them, the risk is equal. Therefore let us
divide the 32 pistoles in half, and give me the 32 of which I am
certain besides.” He will then have 48 pistoles and the other
will have 16.

This is not just a calculation of expected value but also a justifica-
tion of the fairness of using it, in terms that are hard for anyone to
reject. What you have for sure is yours. For what is uncertain, equal
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16 CHAPTER 1

probabilities match equal division. It is a definitive answer to Fra Pa-
cioli’s line of thought.
Pascal goes on to show how this reasoning can be further iterated:

Now let us suppose that the first has fwo points and the other
none, and that they are beginning to play for a point. The
chances are such that if the first wins, he will win all of the
wager, 64 pistoles. If the other wins, behold they have come
back to the preceding case in which the first has two points and
the other one.

But we have already shown that in this case 48 pistoles will
belong to the one who has fwo points. Therefore if they do not
wish to play this point, he should say, “If I win, I shall gain all,
that is 64. If I lose, 48 will legitimately belong to me. Therefore
give me the 48 that are certain to be mine, even if I lose, and let
us divide the other 16 in half because there is as much chance
that you will gain them as that I will.” Thus he will have 48 and 8,
which is 56 pistoles.

Let us now suppose that the first has but oze point and the
other none. You see, Monsieur, that if they begin a new throw,
the chances are such that if the first wins, he will have fwo points
to none, and dividing by the preceding case, 56 will belong to
him. If he loses, they will [be] point for point, and 32 pistoles will
belong to him. He should therefore say, “If you do not wish to
play, give me the 32 pistoles of which I am certain, and let us di-
vide the rest of the 56 in half. From 56 take 32, and 24 remains.
Then divide 24 in half, you take 12 and I take 12 which with 32
will make 44.

This gives us a recursive procedure for fair division. Pascal then proj-
ects to games with larger numbers of points, and comes to a general
solution of the problem.

APPENDIX 2. PHYSICS OF COIN TOSSING

Drawing balls from an urn, flipping coins, rolling dice, and shuffling
cards are basic probability models. How are they connected to their

125-80708_Diaconis_TenGreatldeas_3P.indd 16 @ 6/26/19 1:06 PM



MEASUREMENT 17

parallels in the real world? Going further afield, these basic models
are often used to calculate chances in much more complicated setups;
Bernoulli considered the successive scores of two tennis players. Gilo-
vitch, Tversky, and Valone® considered the successive hits and misses
of basketball players. Shouldn’t physics and psychology come into
these analyses?

Each of the foregoing examples has its own literature. To give a fla-
vor of this, we consider a single flip of a coin. Afterward, pointers to
the analysis of other examples will be given.

Let’s take a brief look at a simple version of the physics.'® When the
coin leaves the hand, it has an initial velocity upward v (feet/second)
and a rate of spin @ (revolutions/second). If » and @ are known,
Newton tells us how much time the coin will take before landing
and thus heads or tails are determined. The phase space of a coin in
this model is thus as shown in figure 1.4.

A single flip corresponds to a point in this plane. Consider the point
in figure 1.4. The velocity is large (so the coin goes up rapidly), but
the rate of spin is low. Thus the coin goes up like a pizza tossed in the
air, hardly turning. Similarly, a point with # small and @ large may
be turning like crazy but never goes high enough to turn over once.
From these considerations, it follows that there is a region of initial
conditions, close to the two axes, where the coin never turns.

v

Figure 1.4. The vo-plane with a single flip
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18 CHAPTER 1
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Figure 1.5. The hyperbolas separating heads from tails in part of phase space. Initial condi-
tions leading to heads are hatched, tails are left white, and @is measured ins™'.

There is an adjoining region where the coin turns once, then a re-
gion for two turns, and so on. The full picture is shown in figure 1.5.

Inspection of the picture (and some easy mathematics) shows that
regions far from 0 get closer together. So small changes in initial con-
ditions make for the difference between heads or tails.

To go further, one must know the answer to the following ques-
tion: When real people flip real coins, where are the points on the
picture? We have carried out experiments and a normal flip takes about
L second and turns at about 40 revolutions/second. Look at figure 1.5.
In the units of the picture, velocity is about 4, very close to zero. The
rate of spin, @, is 40 units up, however, way off the picture. The math
behind the picture says how close the regions are. This coupled with
experimental work shows that coin tossing is fair to two decimal
places but not to three.

The preceding analysis is in a simple model, which assumes that
the coin flips about an axis through the coin. In fact, real coins are
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MEASUREMENT 19

more complicated. They precess in amazing ways. A full analysis, with
many details, caveats, and full references is in “Dynamical Bias in the
Coin Toss,”” which concludes that vigorous tosses of ordinary coins
are slightly biased. The chance of the coin landing the same way it
started is about 0.51.

Where does all this analysis leave us? The standard model is a very
good approximation. It would take about 250,000 flips to detect the
difference between 0.50 and 0.51 (in the sense of giving second-digit
accurately). We wish some of the other instances of the standard
model were as solidly useful. Similar statements hold for Galileo’s dice,
but roulette or shuffling cards is another story!™

If an honest analysis of a simple coin flip leads us into such compli-
cations, how much more would be required for an analysis of chances
in games of skill or for the application of probability to medicine and
law, as envisioned by Leibniz and Bernoulli? Bernoulli appreciated the
point (Jacob Bernoulli, The Art of Conjecturing, tr. with an introduc-
tion and notes by Edith Dudley Sylla (Baltimore: Johns Hopkins Uni-
versity Press, 2006), 327):

But what mortal, I ask, may determine, for example, the num-
ber of diseases, as if they were just as many cases, which may
invade at any age the innumerable parts of the human body
and which imply our death? And who can determine how much
more easily one disease may kill than another—the plague com-
pared to dropsy, dropsy compared to fever? Who, then, can
form conjectures on the future state of life and death on this
basis? Likewise who will count the innumerable cases of the
changes to which the air is subject every day and on this basis
conjecture its future constitution after a month, not to say after
a year?

Again, who has a sufficient perspective on the nature of the
human mind or on the wonderful structure of the body so
that they would dare to determine the cases in which this or that
player may win or lose in games that depend in whole or in part
on the shrewdness or the agility of the players? In these and
similar situations, since they may depend on causes that are en-
tirely hidden and that would forever mock our diligence by an
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Frank Plumpton Ramsey

CHAPTER 2

JUDGMENT

Our second great idea is that judgments can be measured and that
coherent judgments are probabilities. (What exactly is meant by co-
herence will be made clear.) In the classic gambling games of chapter 1,
our judgments were informed by symmetry. Symmetrical cases were
judged equiprobable. In this chapter we will see how degrees of belief
implicit in judgments about all sorts of cases can also be measured.
When they are so measured, coherent judgments turn out to have the
same mathematical structure as that discovered by Cardano and
Galileo by counting equiprobable outcomes in gambling.

How can we measure the probability that there will be a financial
crisis in the next year, that the patient will survive if given this treat-
ment, or that the defendant is guilty? How can we measure the prob-
ability that this candidate will win the election, that there will be a
depression, or that reckless politics will precipitate a war? Here we
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JUDGMENT 23

do not have a nice set of intuitively equiprobable cases that allowed
us to calculate by counting with supposedly perfectly fair dice. But,
in fact, the law, politics and medicine were areas where Leibniz and
Bernoulli envisioned the most important application of the calculus
of probabilities. These probabilities can be no better than our degrees
of belief based on the best available evidence.! That does not mean that
they cannot be measured.

Below, we will be talking about assessing probabilities by betting.
There are a number of real world instances in which you can do just
that. Perhaps the simplest are prediction markets. These are Web sites
in which you can bet for or against well-specified events, things like
who will win a football game, or a horse race, or the next election.
Prediction markets are not a new invention; in the sixteenth century
there were markets for betting on who would be elected Pope.” In a
typical prediction market, contracts are scaled between 0 and 100. At
any time you can see offers to buy and to sell, say at 56.8 and 57.2. If
you wish to buy a contract, you can buy instantly at the posted price
of 57.2 or post an offer to buy, say, at 57.0, and wait to see whether
anyone is willing to sell at that price. If you buy a contract on Clinton
winning at 57, that means that for $57, you get a contract that pays
$100 if she wins. Of course, the prices fluctuate.

It is very natural to take the current market price as the market’s
probability. The expected value of a bet that pays oft $100 if C; $0 oth-
erwise is $57, if the probability of C is 0.57. If the market prices do
not obey the mathematics of probability, then—as we shall see—the
market can be arbitraged. We think that your prices (I'll buy in for a
small amount if the price is below x and sell if the price is above y),
are good indications of your probability.

There is a healthy emerging literature on prediction markets. Buy-
ing stocks, bonds, and insurance are closely related activities. In all of
these, the principles we lay out next can be useful.?

We divide the body of this chapter in two—between a naive and
a sophisticated approach. The initial treatment will assume, like the
early gamblers, that for the problems at issue, money is the relevant
measure of value. That allows a straightforward way to measure judg-
mental probability and to infer the mathematical structure of such
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24 CHAPTER 2

judgments provided that they are coherent. The second half of the
chapter lifts this assumption and gives a more general analysis. This
completion of the great idea measures both probability and utility at
the same time. The leading ideas of the theory were given in the 1920s
by a young genius, Frank Plumpton Ramsey, and fully developed in
the 1950s by Leonard Jimmie Savage.*

PART I: GAMBLING AND JUDGMENTAL
PROBABILITIES

To measure judgmental probabilities, we invert the approach of Pascal
and Fermat and follow Huygens. Instead of measuring probabilities to
compute expected value, we use expected value to measure probabili-
ties. We measure the expected value imputed to an event by measuring
the price that an individual will pay for a wager on that event. Your
judgmental probabilities are then the quantities which, when used in a
weighted average, give that expected value.

In particular,

The probability of A is just the expected value of a wager that pays off
1if A and 0 if not.

If you pay a price equal to P(A) for such a wager, you believe
that you have traded equals for equals. For a lesser price you would
prefer to buy the wager; for a greater price you would prefer not
to buy it. So the balance point, where you are indifferent between
buying the wager or not, measures your judgmental probability
for A.

It is farfetched idealization to assume that people can effortlessly
and reliably make such fine discriminations. But taking the first steps
of the approximation is perhaps all we need to do for many decisions.
How far can we go? There is no clear answer. We proceed to explore
the theory that results from the full idealization.

COHERENT JUDGMENTS

Do judgmental probabilities, in general, have the mathematical
structure gotten in chapter 1 by counting? Bruno de Finetti showed
that if an individual’s betting behavior is coberent, her judgmental
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JUDGMENT 25

probability, so defined, does indeed have the mathematical structure
of a probability. The basic argument can be given very simply.*

Here is our idealized model—not meant to be all of real life but never-
theless meant to be instructive. An individual acts like a bookie—or
perhaps like a derivatives trader—and buys and sells bets. She judges
a bet as fair if her expected value for it is zero, favorable if her expected
value is positive and disadvantageous if her expected value is negative.
She buys fair or favorable bets and sells fair or disadvantageous bets,
doing business with all comers. A Dutch book can be made against her
if there is some finite set of transactions acceptable to her such that
she suffers a net loss in every possible situation. We will say that she is
coberent if she is not susceptible to a Dutch book.

An Example: Suppose you ask me for my judgmental probability that
Senator Foghorn will win a second term. After some thought, I say
0.6. Then you ask me for my probability that Bobbie Blowhard will
be elected instead. I quickly say 0.1. Then I am asked for the probabil-
ity that either Foghorn or Blowhard will win, and I say 0.9. If I stick
to these judgmental probabilities I am incoherent. You can make a
Dutch book against me by buying from me a bet that pays off 1 if
Foghorn wins for 0.6 and a bet that pays off 1 if Blowhard wins for
0.1 and then turning around and selling me a bet that pays 1 if either
wins for 0.9. You are covered no matter who wins and pocket the
profit of 0.2.

If you are kind enough to point this out to me instead of exploiting
my incoherence, I may well reconsider my probability judgments. We
all make careless judgments that are full of incoherence. Sometimes
it doesn’t matter much. But what if the stakes were high enough to
be important? To take an extreme case, suppose you are a hedge-fund
manager and there are other hedge-fund managers in the market. If
you were made aware of your incoherence, wouldn’t you tend to do
a little rethinking?

Aiming for coherence has its roots in a desire for consistency.
It applies to logic as well. One of the wisest men we know put it this
way: “We all believe inconsistent things. The purpose of rational

* At this point the argument proceeds as if we could just use money as a measure of value.
This assumption will be lifted in the second half of this chapter.
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26 CHAPTER 2

discussion aims at this: If someone says “You accept A and B, but by
a chain of reasoning, each step of which you accept, it can be shown
that A implies not B,’ you would think that something is wrong and
want to correct it.”

It is similar with judgments of uncertainty. Of course, there is no
bookie, and no one is betting. Still coherence, like consistency, seems
like a worthwhile standard.

De Finett: showed that coberence is equivalent to one’s judgments hav-
ing the mathematical structure of probability.

COHERENT JUDGMENTS ARE PROBABILITIES

To say one’s judgments have this mathematical structure is just to
say that they behave as proportions. They are proportions of partial
belief. Proportions have a minimum of 0. A tautology, which is true
throughout the whole space of possibilities, has proportion equal to 1.
Proportions of a combination of mutually exclusive parts—of jointly
inconsistent propositions—add. If there are 20% red beans and 35%
white beans in a bag then there are 55% beans that are red or white.
As we will see presently, that is all we need for the mathematical struc-
ture of probability applied to a finite space of possibilities.’

I. Coherence implies probability.
1. Minimum of zero.

Suppose you give some proposition, p, a probability less than 0.
Then you will give a bet where you lose 1 if p, nothing otherwise a
positive expected value.

You will then suffer a net loss no matter what happens. If p
doesn’t happen, you gain nothing from the bet and lose what you
paid for it. If p does happen, you have a double loss. You lose what
you paid for the bet and you lose the bet as well.

2. Tautology gets probability of 1.

Suppose that you give a tautological proposition, one that
is true in any case, a probability different than 1. It is either greater
than or less than 1. If it is greater than 1, you would pay more
than 1 for a bet that pays off 1 if p, nothing otherwise. When bets
are settled you would win only 1, for a net loss. If you were to
give the tautology probability less than 1, you would sell a bet
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Nominated Elected B, B, B,+B, B, Total
T 1 O U R O
T O e R
F T -1 1 0 0 0
F F -1 1 0 0 0

Stage 2: To turn it into a full Dutch book, we hedge. We do this by
making an additional even money bet, B4, according to which we
pay Fred 75 if she is nominated and he pays us 75 if she isn’t. He
considers this as fair. His net loss is now 75 no matter what. Fred is
subject to a Dutch book. If you want to see the general case worked
out, it is in an appendix to this chapter.

P Q B, B, B, + B, B, B, Total

T4 N

L T s T I

FooT g 0 o | -k &

FooF 5 0 o | - %
COHERENT UPDATING

So far we have coherence of conditional and unconditional bets at a
given time. What about change in probabilities when we get new
evidence? Is there a sense of coherent belief change that applies?
Suppose that the evidence is some proposition, e, which you learn with
certainty. Then the standard rule for changing one’s judgmental prob-
abilities is to take as one’s new probabilities the old probabilities con-
ditional on e. This is known as conditioning on the evidence. Is there
a coherence argument for this rule? We want to emphasize that we
have shifted from asking about coherence of degrees of belief to ask-
ing about coherence of rules for changing degrees of beliefs.

Such an argument is implicit in de Finetti’s discussion, and it was
made explicit by the philosopher David Lewis.” Conditioning on the
evidence, Bayesian updating, is the unique coherent rule for updat-
ing probabilities in such a situation. Any other rule leaves one open
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30 CHAPTER 2

to a Dutch book against the rule—a Dutch book across time, a dia-
chronic Dutch book. Here are a model and a precise version of the
argument.

The Model

The epistemologist (scientist, statistician) acts as bookie. She has
a principled way of updating on the evidence, but we don’t presup-
pose what it is. Today she posts her probabilities and does business.
Tomorrow she makes an observation (with a finite number of possible
outcomes, each with positive prior probability.) She updates her prob-
abilities according to her updating rule, a function that maps possible
observational outcomes to revised probabilities. Her updating rule is
public knowledge. The day after tomorrow—after her observation—
she posts revised fair prices and does business.

A bettor’s strategy consists of (1) a finite number of transactions
today that the epistemologist considers fair according to her probabil-
ities, and (2) a function taking possible observations to sets of finite
transactions the day after tomorrow at the prices the epistemologist
then considers fair according to her updating rule.

COHERENT BELIEF CHANGE IMPLIES CONDITIONING
ON THE EVIDENCE

Let P(A|e) be P(A and e)/P(e) and P,(A) be the probability that the bookie’s
nonstandard updating rule—the rule at variance with conditioning
on the evidence—gives A if ¢ is observed. Suppose P(A |e) > P,(A)* and
let the discrepancy, 6, be P(A|e)—P,(A). Here is the bettor’s strategy
that makes a Dutch book.

Today: Offer to sell the bookie at her fair price:

1. [$1 if A and e, 0 otherwise].
2. [$P(A|e) if not e, 0 otherwisel.
3. [$dif e, 0 otherwise].

Tomorrow: If e was observed, offer to buy [$1 if A, 0 otherwise] from
the bookie at its current fair price: P,(A)=P(A|e)— 0.

Then, in every possible situation, the bookie loses $P(e).”

We could, of course, take a little of our sure winnings and divide
them up to sweeten each transaction. Then the bookie finds every
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