o :

AT _ l |

e l B

L-é +» Text Data
Management

4 and Analysis

" A Practical Introduction
to Information Retrieval
and Text Mining

o
® /| ChengXiang Zhai
* " Sean Massung

Text Data Management
and Analysis

A Practical Introduction to Information
Retrieval and Text Mining

ChengXiang Zhai

University of Illinois at Urbana-Champaign

Sean Massung

University of Illinois at Urbana-Champaign

ACM Books #12

& &t

ty

Copyright © 2016 by the Association for Computing Machinery
and Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan & Claypool is aware
of a claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

Text Data Management and Analysis
ChengXiang Zhai and Sean Massung
books.acm.org

www.morganclaypoolpublishers.com

ISBN: 978-1-97000-119-8 hardcover
ISBN: 978-1-97000-116-7 paperback
ISBN: 978-1-97000-117-4 ebook
ISBN: 978-1-97000-118-1 ePub

Series ISSN: 2374-6769 print 2374-6777 electronic

DOlIs:

10.1145/2915031 Book 10.1145/2915031.2915044 Chapter 12
10.1145/2915031.2915032 Preface 10.1145/2915031.2915045 Chapter 13
10.1145/2915031.2915033 Chapter 1 10.1145/2915031.2915046 Chapter 14

10.1145/2915031.2915034 Chapter 2 10.1145/2915031.2915047 Chapter 15
10.1145/2915031.2915035 Chapter 3 10.1145/2915031.2915048 Chapter 16
10.1145/2915031.2915036 Chapter 4 10.1145/2915031.2915049 Chapter 17
10.1145/2915031.2915037 Chapter 5 10.1145/2915031.2915050 Chapter 18
10.1145/2915031.2915038 Chapter 6 10.1145/2915031.2915051 Chapter 19
10.1145/2915031.2915039 Chapter 7 10.1145/2915031.2915052 Chapter 20
10.1145/2915031.2915040 Chapter 8 10.1145/2915031.2915053 Appendices
10.1145/2915031.2915041 Chapter 9 10.1145/2915031.2915054 References
10.1145/2915031.2915042 Chapter 10 10.1145/2915031.2915055 Index
10.1145/2915031.2915043 Chapter 11

A publication in the ACM Books series, #12

Editor in Chief: M. Tamer Ozsu, University of Waterloo
Area Editor: Edward A. Fox, Virginia Tech

First Edition

10987654321

Contents

Preface xv

Acknowledgments xviii

PART I OVERVIEW AND BACKGROUND 1

Chapter 1 Introduction 3

1.1 Functions of Text Information Systems 7

1.2 Conceptual Framework for Text Information Systems 10
1.3 Organization of the Book 13

1.4 How to Use thiS Bﬂﬂk 15

Bibliographic Notes and Further Reading 18

Chapter 2 Background 21

2.1 Basics of Probability and Statistics 21
2.2 Information Theory 31
2.3 Machine Learning 34

Bibliographic Notes and Further Reading 36
Exercises 37

Chapter 3 Text Data Understanding 39

3.1 History and State of the Art in NLP 42

3.2 NLP and Text Information Systems 43

3.3 Text Representation 46

3.4 Statistical Language Models 50
Bibliographic Notes and Further Reading 54
E Kf![C]. ses l'] J']

Contents

Chapter 4 MEkTA: A Unified Toolkit for Text Data Management and Analysis 57
4.1 Design Philosophy 58
4.2 Setting up META 59
4.3 Architecture 60
4.5 Related Toolkits 64
Exercises 65
PART Il TEXT DATA ACCESS 71
Chapter 5 Overview of Text Data Access 73
5.1 Access Mode: Pull vs. Push 73
5.2 Multimode Interactive Access 76
5.3 Text Retrieval 78
5.4 Text Retrieval vs. Database Retrieval 80
5.5 Document Selection vs. Document Ranking 82
Bibliographic Notes and Further Reading 84
Exercises 85
Chapter 6 Retrieval Models 87
6.1 OQverview 87
6.3 Vector Space Retrieval Models 90
6.4 ilisti iev 11
Bibliographic Notes and Further Reading 128
.
Chapter 7 Feedback 133
Feedback in the Vector Space Model 135
Feedback in Language Models 138
Bibliographic Notes and Further Reading 144
Exercises 144
Chapter 8 Search Engine Implementation 147

8.1 Tokenizer 148
8.2 Indexer 150
8.3 Scorer 153

Contents

8.4 Feedback Implementation 157
8.5 Compression 158

8.6 Caching 162
Bibliographic Notes and Further Reading 165

Exercises 165
Chapter 9 Search Engine Evaluation 167
9.1 Introduction 167
9.2 Evaluation of Set Retrieval 170
9.3 Evaluation of a Ranked List 174
9.4 Evaluation with Multi-level Judgements 180
Bibliographic Notes and Further Reading 187
Exercises 188
Chapter 10 Web Search 191
10.1 Web Crawling 192
10.2 Web Indexing 194
10.3 Link Analysis 200
10.4 Learning to Rank 208
10.5 The Future of Web Search 212
Bibliographic Notes and Further Reading 216
Exercises 216
Chapter 11 Recommender Systems 221
11.1 Content-based Recommendation 222
11.2. Collaborative Filtering 229
11.3 Evaluation of Recommender Systems 233
Bibliographic Notes and Further Reading 235
Exercises 235
PART Ill TEXT DATA ANALYSIS 239
Chapter 12 Overview of Text Data Analysis 241

12.1 Motivation: Applications of Text Data Analysis 242
12,2 Text vs. Non-text Data: Humans as Subjective Sensors 244

12.3 Landscape of text mining tasks 246

xi

xii Contents

Chapter 13 Word Association Mining 251
13.1 General idea of word association mining 252
13.2 Discovery of paradigmatic relations 255
13.3 Discovery of Syntagmatic Relations 260
13.4 Evaluation of Word Association Mining 271

Bibliographic Notes and Further Reading 273
Exercises 273

Chapter 14 Text Clustering 275

14.1 Overview of Clustering Techniques 277

14.2 Document Clustering 279

14.3 Term Clustering 284

14.4 Evaluation of Text Clustering 294
Bibliographic Notes and Further Reading 296
Exercises 296

Chapter 15 Text Categorization 299

15.1 Introduction 299

15.2 Overview of Text Categorization Methods 300

15.3 Text Categorization Problem 302

15.4 Features for Text Categorization 304

15.5 Classification Algorithms 307

15.6 Evaluation of Text Categorization 313
Bibliographic Notes and Further Reading 315
Exercises 315

Chapter 16 Text Summarization 317

16.1 Overview of Text Summarization Techniques 318

16.2 . : ..

16.3 Al . .

16.4 Evaluation of Text Summarization 324

16.5 Applications of Text Summarization 325
Bibliographic Notes and Further Reading 327
Exercises 327

Chapter 17 Topic Analysis 329

17.1 Topics as Terms 332
17.2. Topics as Word Distributions 335

Contents

17.3 Mining One Topic from Text 340

17.4 Probabilistic Latent Semantic Analysis 368
17.5__Extension of PLSA and Latent Dirichlet Allocation 377
17.6 Evaluating Topic Analysis 383

17.7 Summary of Topic Models 384

Bibliographic Notes and Further Reading 385
Exercises 386

xiii

Chapter 18 Opinion Mining and Sentiment Analysis 389
18.1 Sentiment Classification 393
18.2 Ordinal Regression 396
18.3 Latent Aspect Rating Analysis 400
18.4 Evaluation of Opinion Mining and Sentiment Analysis 409
Bibliographic Notes and Further Reading 410
Exercises 410
Chapter 19 Joint Analysis of Text and Structured Data 413
19.1 Introduction 413
19.2 Contextual Text Mining 417
19.3 Contextual Probabilistic Latent Semantic Analysis 419
19.4 Topic Analysis with Social Networks as Context 428
19.5 Topic Analysis with Time Series Context 433
19.6 Summary 439
Bibliographic Notes and Further Reading 440
.
PART IV UNIFIED TEXT DATA MANAGEMENT ANALYSIS SYSTEM 443
Chapter 20 Toward A Unified System for Text Management and Analysis 445
20.1 Text Analysis Operators 4438
20.2 System Architecture 452
20.3 META as a Unified System 453
Appendix A Bayesian Statistics 457

. ial Esti . 11 istributi -

A2
A.3

Pseudo Counts, Smoothing, and Setting Hyperparameters 459
Generalizing to a Multinomial Distribution 460

xiv Contents

Appendix B

Appendix C

The Dirichlet Distributi
A.5 Bayesian Estimate of Multinomial Parameters 463
A6 Conclusion 464

Expectation- Maximization 465

B.1 A Simple Mixture Unigram Language Model 466
; ikelihood Estimati
B.3 Incomplete vs. Complete Data 467
L of Likelihood
B.5 The General Procedure of EM 469

KL-divergence and Dirichlet Prior Smoothing 473

C.1 Using KL-divergence for Retrieval 473
C.2 Using Dirichlet Prior Smoothing 475
C.3 Computing the Query Model p(w | ﬁQ) 475

References 477
Index 489
Authors’ Biographies 509

Preface

The growth of “big data” created unprecedented opportunities to leverage compu-
tational and statistical approaches to turn raw data into actionable knowledge that
can support various application tasks. This is especially true for the optimization of
decision making in virtually all application domains such as health and medicine,
security and safety, learning and education, scientific discovery, and business in-
telligence. Just as a microscope enables us to see things in the “micro world” and a
telescope allows us to see things far away, one can imagine a “big data scope” would
enable us to extend our perception ability to “see” useful hidden information and
knowledge buried in the data, which can help make predictions and improve the op-
timality of a chosen decision. This book covers general computational techniques
for managing and analyzing large amounts of text data that can help users manage
and make use of text data in all kinds of applications.

Text data include all data in the form of natural language text (e.g., English text
or Chinese text): all the web pages, social media data such as tweets, news, scien-
tific literature, emails, government documents, and many other kinds of enterprise
data. Text data play an essential role in our lives. Since we communicate using nat-
ural languages, we produce and consume a large amount of text data every day on
all kinds of topics. The explosive growth of text data makes it impossible, or at least
very difficult, for people to consume all the relevant text data in a timely manner.
Thus, there is an urgent need for developing intelligent information retrieval sys-
tems to help people manage the text data and get access to the needed relevant
information quickly and accurately at any time. This need is a major reason be-
hind the recent growth of the web search engine industry. Due to the fact that text
data are produced by humans for communication purposes, they are generally rich
in semantic content and often contain valuable knowledge, information, opinions,
and preferences of people. Thus, as a special kind of “big data,” text data offer a
great opportunity to discover various kinds of knowledge useful for many applica-
tions, especially knowledge about human opinions and preferences, which is often

xvi

Preface

directly expressed in text data. For example, it is now the norm for people to tap into
opinionated text data such as product reviews, forum discussions, and social media
text to obtain opinions. Once again, due to the overwhelming amount of informa-
tion, people need intelligent software tools to help discover relevant knowledge for
optimizing decisions or helping them complete their tasks more efficiently. While
the technology for supporting text mining is not yet as mature as search engines
for supporting text access, significant progress has been made in this area in re-
cent years, and specialized text mining tools have now been widely used in many
application domains. The subtitle of this book suggests that we cover two major
topics, information retrieval and text mining. These two topics roughly correspond
to the techniques needed to build the two types of application systems discussed
above (i.e., search engines and text analytics systems), although the separation of
the two is mostly artificial and only meant to help provide a high-level structure for
the book, and a sophisticated application system likely would use many techniques
from both topic areas.

In contrast to structured data, which conform to well-defined schemas and are
thus relatively easy for computers to handle, text has less explicit structure so
the development of intelligent software tools discussed above requires computer
processing to understand the content encoded in text. The current technology of
natural language processing hasnotyet reached a point to enable a computer to pre-
cisely understand natural language text (a main reason why humans often should
be involved in the loop), but a wide range of statistical and heuristic approaches
to management and analysis of text data have been developed over the past few
decades. They are usually very robust and can be applied to analyze and manage
text data in any natural language, and about any topic. This book intends to provide
a systematic introduction to many of these approaches, with an emphasis on cov-
ering the most useful knowledge and skills required to build a variety of practically
useful text information systems.

This book is primarily based on the materials that the authors have used for
teaching a course on the topic of text data management and analysis (i.e., CS410
Text Information Systems) at the University of Illinois at Urbana-Champaign, as
well as the two Massive Open Online Courses (MOOCs) on “Text Retrieval and
Search Engines” and “Text Mining and Analytics” taught by the first author on
Coursera in 2015. Most of the materials in the book directly match those of these
two MOOCs with also similar structures of topics. As such, the book can be used as
a main reference book for any of these two MOOCs.

Information Retrieval (IR) is a relatively mature field and there are no short-
age of good textbooks on IR; for example, the most recent ones include Modern
Information Retrieval: The Concepts and Technology behind Search by Baeza-Yates

Preface xvii

and Ribeiro-Neto [2011], Information Retrieval: Implementing and Evaluating Search
Engines by Biittcher et al. [2010], Search Engines: Information Retrieval in Practice
by Croft et al. [2009], and Introduction to Information Retrieval by Manning et al.
[2008]. Compared with these existing books on information retrieval, our book has
a broader coverage of topics as it attempts to cover topics in both information re-
trieval and text mining, and attempts to paint a general roadmap for building a text
information system that can support both text information access and text analy-
sis. For example, it includes a detailed introduction to word association mining,
probabilistic topic modeling, and joint analysis of text and non-text data, which
are not available in any existing information retrieval books. In contrast with IR,
Text Mining (TM) is far from mature and is actually still in its infancy. Indeed, how
to define TM precisely remains an open question. As such, it appears that there is
not yet a textbook on TM. As a textbook on TM, our book provides a basic introduc-
tion to the major representative techniques for TM. By introducing TM and IR in a
unified framework, we want to emphasize the importance of integration of IR and
TM in any practical text information system since IR plays two important roles in
any TM application. The first is to enable fast reduction of the data size by filtering
out a large amount of non-relevant text data to obtain a small set of most relevant
data to a particular application problem. The second is to support an analyst to
verify and interpret any patterns discovered from text data where an analyst would
need to use search and browsing functions to reach and examine the most relevant
support data to the pattern.

Another feature that sets this book apart is the availability of a companion
toolkit for information retrieval and text mining, i.e., the META toolkit (available at
https://meta-toolkit.org/), which contains implementations of many techniques
discussed in the book. Many exercises in the book are also designed based on this
toolkit to help readers acquire practical skills of experimenting with the learned
techniques from the book and applying them to solve real-world application prob-
lems.

This book consists of four parts. Part I provides an overview of the content
covered in the book and some background knowledge needed to understand the
chapters later. Parts II and III contain the major content of the book and cover a
wide range of techniques in IR (called Text Data Access techniques) and techniques
in TM (called Text Data Analysis techniques), respectively. Part IV summarizes the
book with a unified framework for text management and analysis where many
techniques of IR and TM can be combined to provide more advanced support for
text data access and analysis with humans in the loop to control the workflow.

The required background knowledge to understand the content in this book is
minimal since the book is intended to be mostly self-contained. However, readers

xviii

Preface

are expected to have basic knowledge about computer science, particularly data
structures and programming languages and be comfortable with some basic con-
cepts in probability and statistics such as conditional probability and parameter
estimation. Readers who do not have this background may still be able to follow
the basic ideas of most of the algorithms discussed in the book; they can also ac-
quire the needed background by carefully studying Chapter 2 of the book and, if
necessary, reading some of the references mentioned in the Bibliographical Notes
section of that chapter to have a solid understanding of all the major concepts men-
tioned therein. META can be used by anyone to easily experiment with algorithms
and build applications, but modifying it or extending it would require at least some
basic knowledge of C++ programming.

The book can be used as a textbook for an upper-level undergraduate course on
information retrieval and text mining or a reference book for a graduate course to
cover practical aspects of information retrieval and text mining. It should also be
useful to practitioners in industry to help them acquire a wide range of practical
techniques for managing and analyzing text data that they can use immediately to
build various interesting real-world applications.

Acknowledgments

This book is the result of many people’s help. First and foremost, we want to express
our sincere thanks to Edward A. Fox for his invitation to write this book for the
ACM Book Series in the area of Information Retrieval and Digital Libraries, of
which he is the Area Editor. We are also grateful to Tamer Ozsu, Editor-in-Chief of
ACM Books, for his support and useful comments on the book proposal. Without
their encouragement and support this book would have not been possible. Next,
we are deeply indebted to Edward A. Fox, Donna Harman, Bing Liu, and Jimmy
Lin for thoroughly reviewing the initial draft of the book and providing very useful
feedback and constructive suggestions. While we were not able to fully implement
all their suggestions, all their reviews were extremely helpful and led to significant
improvement of the quality of the book in many ways; naturally, any remaining
errors in the book are solely the responsibility of the authors.

Throughout the process of writing the book, we received strong support and
great help from Diane Cerra, Executive Editor at Morgan & Claypool Publishers,
whose regular reminders and always timely support are key factors that prevented
us from having the risk of taking “forever” to finish the book; for this, we are truly
grateful to her. In addition, we would like to thank Sara Kreisman for copyediting
and Paul C. Anagnostopoulos and his production team at Windfall Software (Ted

Acknowledgments xix

Laux, Laurel Muller, MaryEllen Oliver, and Jacqui Scarlott) for their great help with
indexing, illustrations, art proofreading, and composition, which ensured a fast
and smooth production of the book.

The content of the book and our understanding of the topics covered in the book
have benefited from many discussions and interactions with a large number of
people in both the research community and industry. Due to space limitations,
we can only mention some of them here (and have to apologize to many whose
names are not mentioned): James Allan, Charu Aggarwal, Ricardo Baeza-Yates,
Nicholas J. Belkin, Andrei Broder, Jamie Callan, Jaime Carbonell, Kevin C. Chang,
Yi Chang, Charlie Clarke, Fabio Crestani, W. Bruce Croft, Maarten de Rijke, Arjen
de Vries, Daniel Diermeier, AnHai Doan, Susan Dumais, David A. Evans, Edward A.
Fox, Ophir Frieder, Norbert Fuhr, Evgeniy Gabrilovich, C. Lee Giles, David Gross-
man, Jiawei Han, Donna Harman, Marti Hearst, Jimmy Huang, Rong Jin, Thorsten
Joachims, Paul Kantor, David Karger, Diane Kelly, Ravi Kumar, Oren Kurland, John
Lafferty, Victor Lavrenko, Lillian Lee, David Lewis, Jimmy Lin, Bing Liu, Wei-Ying
Ma, Christopher Manning, Gary Marchionini, Andrew McCallum, Alistair Moffat,
Jian-Yun Nie, Douglas Oard, Dragomir R. Radev, Prabhakar Raghavan, Stephen
Robertson, Roni Rosenfeld, Dan Roth, Mark Sanderson, Bruce Schatz, Fabrizio Se-
bastiani, Amit Singhal, Keith van Rijsbergen, Luo Si, Noah Smith, Padhraic Smyth,
Andrew Tomkins, Ellen Voorhees, and Yiming Yang, Yi Zhang, Justin Zobel. We
want to thank all of them for their indirect contributions to this book. Some ma-
terials in the book, especially those in Chapter 19, are based on the research work
done by many Ph.D. graduates of the Text Information Management and Analysis
(TIMAN) group at the University of Illinois at Urbana-Champaign, under the super-
vision by the first author. We are grateful to all of them, including Tao Tao, Hui Fang,
Xuehua Shen, Azadeh Shakery, Jing Jiang, Qiaozhu Mei, Xuanhui Wang, Bin Tan,
Xu Ling, Younhee Ko, Alexander Kotov, Yue Lu, Maryam Karimzadehgan, Yuanhua
Lv, Duo Zhang, V.G.Vinod Vydiswaran, Hyun Duk Kim, Kavita Ganesan, Parikshit
Sondhi, Huizhong Duan, Yanen Li, Hongning Wang, Mingjie Qian, and Dae Hoon
Park. The authors’ own work included in the book has been supported by multiple
funding sources, including NSF, NIH, NASA, IARPA, Air Force, ONR, DHS, Alfred P.
Sloan Foundation, and many companies including Microsoft, Google, IBM, Yahoo!,
LinkedIn, Intel, HP, and TCL. We are thankful to all of them.

The two Massive Open Online Courses (MOOCSs) offered by the first author for
the University of Illinois at Urbana-Champaign (UIUC) in 2015 on Coursera (i.e.,
Text Retrieval and Search Engines and Text Mining and Analytics) provided a direct
basis for this book in the sense that many parts of the book are based primarily
on the transcribed notes of the lectures in these two MOOCs. We thus would like

XX

Preface

to thank all the people who have helped with these two MOQOCs, especially TAs
Hussein Hazimeh and Alex Morales, and UIUC instruction support staff Jason
Mock, Shannon Bicknell, Katie Woodruff, and Edward Noel Dignan, and the Head
of Computer Science Department, Rob Rutenbar, whose encouragement, support,
and help are all essential for these two MOOCs to happen. The first author also
wants to thank UIUC for allowing him to use the sabbatical leave in Fall 2015 to
work on this book. Special thanks are due to Chase Geigle, co-founder of META. In
addition to all the above, the second author would like to thank Chase Geigle, Jason
Cho, and Urvashi Khandelwal (among many others) for insightful discussion and
encouragement.

Finally, we would like to thank all our family members, particularly our wives,
Mei and Kai, for their love and support. The first author wants to further thank
his brother Chengxing for the constant intellectual stimulation in their regular
research discussions and his parents for cultivating his passion for learning and
sharing knowledge with others.

ChengXiang Zhai
Sean Massung
June 2016

OVERVIEW AND
BACKGROUND

Copyrighted material

Introduction

In the last two decades, we have experienced an explosive growth of online infor-
mation. According to a study done at University of California Berkeley back in 2003:
“, . . theworld produces between 1 and 2 exabytes (1018 petabytes) of unique infor-
mation per year, which is roughly 250 megabytes for every man, woman, and child
on earth. Printed documents of all kinds comprise only .03% of the total.” [Lyman
et al. 2003]

A large amount of online information is textual information (i.e., in natural lan-
guage text). For example, according to the Berkeley study cited above: “Newspapers
represent 25 terabytes annually, magazines represent 10 terabytes . . . office docu-
ments represent 195 terabytes. It is estimated that 610 billion emails are sent each
year representing 11,000 terabytes.” Of course, there are also blog articles, forum
posts, tweets, scientific literature, government documents, etc. Roe [2012] updates
the email count from 610 billion emails in 2003 to 107 trillion emails sent in 2010.
According to a recent IDC report report [Gantz & Reinsel 2012], from 2005 to 2020,
the digital universe will grow by a factor of 300, from 130 exabytes to 40,000 ex-
abytes, or 40 trillion gigabytes.

While, in general, all kinds of online information are useful, textual information
plays an especially important role and is arguably the most useful kind of informa-
tion for the following reasons.

Text (natural language) is the most natural way of encoding human knowledge.
As a result, most human knowledge is encoded in the form of text data. For
example, scientific knowledge almost exclusively exists in scientific literature,
while technical manuals contain detailed explanations of how to operate
devices.

Text is by far the most common type of information encountered by people.
Indeed, most of the information a person produces and consumes daily is in
text form.

4 Chapter1 Introduction

Text is the most expressive form of information in the sense that it can be
used to describe other media such as video or images. Indeed, image search
engines such as those supported by Google and Bing often rely on matching
companion text of images to retrieve “matching” images to a user’s keyword

query.

The explosive growth of online text information has created a strong demand
for intelligent software tools to provide the following two related services to help
people manage and exploit big text data.

Text Retrieval. The growth of text data makes it impossible for people to con-
sume the data in a timely manner. Since text data encode much of our accu-
mulated knowledge, they generally cannot be discarded, leading to, e.g., the
accumulation of a large amount of literature data which is now beyond any
individual’s capacity to even skim over. The rapid growth of online text infor-
mation also means that no one can possibly digest all the new information
created on a daily basis. Thus, there is an urgent need for developing intel-
ligent text retrieval systems to help people get access to the needed relevant
information quickly and accurately, leading to the recent growth of the web
search industry. Indeed, web search engines like Google and Bing are now an
essential part of our daily life, serving millions of queries daily. In general,
search engines are useful anywhere there is a relatively large amount of text
data (e.g., desktop search, enterprise search or literature search in a specific
domain such as PubMed).

Text Mining. Due to the fact that text data are produced by humans for commu-
nication purposes, they are generally rich in semantic content and often con-
tain valuable knowledge, information, opinions, and preferences of people.
As such, they offer great opportunity for discovering various kinds of knowl-
edge useful for many applications, especially knowledge about human opin-
ions and preferences, which is often directly expressed in text data. For exam-
ple, it is now the norm for people to tap into opinionated text data such as
product reviews, forum discussions, and social media text to obtain opinions
about topics interesting to them and optimize various decision-making tasks
such as purchasing a product or choosing a service. Once again, due to the
overwhelming amount of information, people need intelligent software tools
to help discover relevant knowledge to optimize decisions or help them com-
plete their tasks more efficiently. While the technology for supporting text
mining is not yet as mature as search engines for supporting text access, sig-

Chapter 1 Introduction 5

nificant progress has been made in this area in recent years, and specialized
text mining tools have now been widely used in many application domains.

In contrast to structured data, which conform to well-defined schemas and are
thus relatively easy for computers to handle, text has less explicit structure, so
the development of intelligent software tools discussed above requires computer
processing to understand the content encoded in text. The current technology of
natural language processing has notyet reached a point to enable a computer to pre-
cisely understand natural language text (a main reason why humans often should
be involved in the loop), but a wide range of statistical and heuristic approaches
to management and analysis of text data have been developed over the past few
decades. They are usually very robust and can be applied to analyze and manage
text data in any natural language, and about any topic. This book intends to provide
a systematic introduction to many of these approaches, with an emphasis on cov-
ering the most useful knowledge and skills required to build a variety of practically
useful text information systems.

The two services discussed above (i.e., text retrieval and text mining) concep-
tually correspond to the two natural steps in the process of analyzing any “big
text data” as shown in Figure 1.1. While the raw text data may be large, a specific
application often requires only a small amount of most relevant text data, thus
conceptually, the very first step in any application should be to identify the relevant
text data to a particular application or decision-making problem and avoid the un-
necessary processing of large amounts of non-relevant text data. This first step of
converting the raw big text data into much smaller, but highly relevant text data is
often accomplished by techniques of text retrieval with help from users (e.g., users
may use multiple queries to collect all the relevant text data for a decision problem).
In this first step, the main goal is to connect users (or applications) with the most
relevant text data.

Text retrieval Text mining

Knowledge —— Many applications!

Figure 1.1 Text retrieval and text mining are two main techniques for analyzing big text data.

6 Chapter1 Introduction

Once we obtain a small set of most relevant text data, we would need to further
analyze the text data to help users digest the content and knowledge in the text
data. This is the text mining step where the goal is to further discover knowledge
and patterns from text data so as to support a user’s task. Furthermore, due to the
need for assessing trustworthiness of any discovered knowledge, users generally
have a need to go back to the original raw text data to obtain appropriate context
for interpreting the discovered knowledge and verify the trustworthiness of the
knowledge, hence a search engine system, which is primarily useful for text access,
also has to be available in any text-based decision-support system for supporting
knowledge provenance. The two steps are thus conceptually interleaved, and a
full-fledged intelligent text information system must integrate both in a unified
framework.

It is worth pointing out that put in the context of “big data,” text data is very dif-
ferent from other kinds of data because it is generally produced directly by humans
and often also meant to be consumed by humans as well. In contrast, other data
tend to be machine-generated data (e.g., data collected by using all kinds of physi-
cal sensors). Since humans can understand text data far better than computers can,
involvement of humans in the process of mining and analyzing text data is abso-
lutely crucial (much more necessary than in other big data applications), and how
to optimally divide the work between humans and machines so as to optimize the
collaboration between humans and machines and maximize their “combined in-
telligence” with minimum human effort is a general challenge in all applications of
text data management and analysis. The two steps discussed above can be regarded
as two different ways for a text information system to assist humans: information
retrieval systems assist users in finding from a large collection of text data the most
relevant text data that are actually needed for solving a specific application prob-
lem, thus effectively turning big raw text data into much smaller relevant text data
that can be more easily processed by humans, while text mining application sys-
tems can assist users in analyzing patterns in text data to extract and discover useful
actionable knowledge directly useful for task completion or decision making, thus
providing more direct task support for users.

With this view, we partition the techniques covered in the book into two parts to
match the two steps shown in Figure 1.1, which are then followed by one chapter to
discuss how all the techniques may be integrated in a unified text information sys-
tem. The book attempts to provide a complete coverage of all the major concepts,
techniques, and ideas in information retrieval and text data mining from a prac-
tical viewpoint. It includes many hands-on exercises designed with a companion
software toolkit META to help readers learn how to apply techniques of information

1.1

Figure 1.2

1.1 Functions of Text Information Systems 7

retrieval and text mining to real-world text data and learn how to experiment with
and improve some of the algorithms for interesting application tasks. This book
can be used as a textbook for computer science undergraduates and graduates, li-
brary and information scientists, or as a reference book for practitioners working
on relevant application problems in analyzing and managing text data.

Functions of Text Information Systems

From a user’s perspective, a text information system (TIS) can offer three distinct,
but related capabilities, as illustrated in Figure 1.2.

Information Access. This capability gives a user access to the useful informa-
tion when the user needs it. With this capability, a TIS can connect the right
information with the right user at the right time. For example, a search en-
gine enables a user to access text information through querying, whereas a
recommender system can push relevant information to a user as new informa-
tion items become available. Since the main purpose of Information Access
is to connect a user with relevant information, a TIS offering this capability

Select
information

Create
knowledge

Add

structure/annotations

Information access, knowledge acquisition, and text organization are three major
capabilities of a text information system with text organization playing a supporting
role for information access and knowledge acquisition. Knowledge acquisition is also
often referred to as text mining.

8 Chapter1 Introduction

generally only does minimum analysis of text data sufficient for matching
relevant information with a user’s information need, and the original infor-
mation items (e.g., web pages) are often delivered to the user in their original
form, though summaries of the delivered items are often provided. From the
perspective of text analysis, a user would generally need to read the informa-
tion items to further digest and exploit the delivered information.

Knowledge Acquisition (Text Analysis). This capabilityenablesausertoacquire
useful knowledge encoded in the text data that is not easy for a user to obtain
without synthesizing and analyzing a relatively large portion of the data. In
this case, a TIS can analyze a large amount of text data to discover interesting
patterns buried in text. A TIS with the capability of knowledge acquisition
can be referred to as an analysis engine. For example, while a search engine
can return relevant reviews of a product to a user, an analysis engine would
enable a user to obtain directly the major positive or negative opinions about
the product and to compare opinions about multiple similar products. A
TIS offering the capability of knowledge acquisition generally would have to
analyze text data in more detail and synthesize information from multiple
text documents, discover interesting patterns, and create new information or
knowledge.

Text Organization. This capability enables a TIS to annotate a collection of text
documents with meaningful (topical) structures so that scattered informa-
tion can be connected and a user can navigate in the information space by
following the structures. While such structures may be regarded as “knowl-
edge” acquired from the text data, and thus can be directly useful to users,
in general, they are often only useful for facilitating either information ac-
cess or knowledge acquisition, or both. In this sense, the capability of text
organization plays a supporting role in a TIS to make information access and
knowledge acquisition more effective. For example, the added structures can
allow a user to search with constraints on structures or browse by following
structures. The structures can also be leveraged to perform detailed analysis
with consideration of constraints on structures.

Information access can be further classified into two modes: pull and push. In
the pull mode, the user takes initiative to “pull” the useful information out from
the system; in this case, the system plays a passive role and waits for a user to
make a request, towhich the system would then respond with relevant information.
This mode of information access is often very useful when a user has an ad hoc

1.1 Functions of Text Information Systems 9

information need, i.e., a temporary information need (e.g., an immediate need for
opinions about a product). For example, a search engine like Google generally
serves a user in pull mode. In the push mode, the system takes initiative to “push”
(recommend) to the user an information item that the system believes is useful to
the user. The push mode often works well when the user has a relatively stable
information need (e.g., hobby of a person); in such a case, a system can know
“in advance” a user’s preferences and interests, making it feasible to recommend
information to a user without having the user to take the initiative. We cover both
modes of information access in this book.

The pull mode further consists of two complementary ways for a user to obtain
relevant information: querying and browsing. In the case of querying, the user
specifies the information need with a (keyword) query, and the system would take
the query as input and return documents that are estimated to be relevant to the
query. In the case of browsing, the user simply navigates along structures that
link information items together and progressively reaches relevant information.
Since querying can also be regarded as a way to navigate, in one step, into a set
of relevant documents, it’s clear that browsing and querying can be interleaved
naturally. Indeed, a user of a web search engine often interleaves querying and
browsing.

Knowledge acquisition from text data is often achieved through the process of
text mining, which can be defined as mining text data to discover useful knowl-
edge. Both the data mining community and the natural language processing
(NLP) community have developed methods for text mining, although the two
communities tend to adopt slightly different perspective on the problem. From
a data mining perspective, we may view text mining as mining a special kind
of data, i.e., text. Following the general goals of data mining, the goal of text
mining would naturally be regarded as to discover and extract interesting pat-
terns in text data, which can include latent topics, topical trends, or outliers.
From an NLP perspective, text mining can be regarded as to partially under-
stand natural language text, convert text into some form of knowledge represen-
tation and make limited inferences based on the extracted knowledge. Thus a
key task is to perform information extraction, which often aims to identify and ex-
tract mentions of various entities (e.g., people, organization, and location) and
their relations (e.g., who met with whom). In practice, of course, any text min-
ing applications would likely involve both pattern discovery (i.e., data mining
view) and information extraction (i.e., NLP view), with information extraction
serving as enriching the semantic representation of text, which enables pattern

10 Chapter 1 Introduction

1.2

finding algorithms to generate semantically more meaningful patterns than di-
rectly working on word or string-level representations of text. Due to our em-
phasis on covering general and robust techniques that can work for all kinds
of text data without much manual effort, we mostly adopt the data mining view
in this book since information extraction techniques tend to be more language-
specific and generally require much manual effort. However, it is important to
stress that information extraction is an essential component in any text infor-
mation system that attempts to support deeper knowledge discovery or semantic
analysis.

Applications of text mining can be classified as either direct applications, where
the discovered knowledge would be directly consumed by users, or indirect appli-
cations, where the discovered knowledge isn’t necessarily directly useful to a user,
but can indirectly help a user through better support of information access. Knowl-
edge acquisition can also be further classified based on what knowledge is to be
discovered. However, due to the wide range of variations of the “knowledge,” it is
impossible to use a small number of categories to cover all the variations. Neverthe-
less, we can still identify a few common categories which we cover in this book. For
example, one type of knowledge that a TIS can discover is a set of topics or subtopics
buried in text data, which can serve as a concise summary of the major content in
the text data. Another type of knowledge that can be acquired from opinionated
text is the overall sentiment polarity of opinions about a topic.

Conceptual Framework for Text Information Systems
Conceptually, a text information system may consist of several modules, as illus-
trated in Figure 1.3.

First, there is a need for a module of content analysis based on natural language
processing techniques. This module allows a TIS to transform raw text data into
more meaningful representations that can be more effectively matched with a
user’s query in the case of a search engine, and more effectively processed in general
in text analysis. Current NLP techniques mostly rely on statistical machine learning
enhanced with limited linguistic knowledge with variable depth of understanding
of text data; shallow techniques are robust, but deeper semantic analysis is only
feasible for very limited domains. Some TIS capabilities (e.g., summarization) tend
to require deeper NLP than others (e.g., search). Most text information systems use
very shallow NLP, where text would simply be represented as a “bag of words,” where
words are basic units for representation and the order of words is ignored (although
the counts of words are retained). However, a more sophisticated representation is

1.2 Conceptual Framework for Text Information Systems 11

Retrieval Mining

Filtering | «—, // Clustering

J Information
Ao
Categorization Topic analysis

‘ Natural language content analysis |

Information
access

Knowledge
acquisition

Figure 1.3 Conceptual framework of text information systems.

also possible, which may be based on recognized entities and relations or other
techniques for more in-depth understanding of text.

With content analysis as the basis, there are multiple components in a TIS that
are useful for users in different ways. The following are some commonly seen
functions for managing and analyzing text information.

Search. Take a user’s query and return relevant documents. The search com-
ponent in a TIS is generally called a search engine. Web search engines are
among the most useful search engines that enable users to effectively and
efficiently deal with a huge amount of text data.

Filtering/Recommendation. Monitor an incoming stream, decide which items
are relevant (or non-relevant) to a user’s interest, and then recommend rele-
vant items to the user (or filter out non-relevant items). Depending on whether
the system focuses on recognizing relevant items or non-relevant items, this
component in a TIS may be called a recommender system (whose goal is to
recommend relevant items to users) or a filtering system (whose goal is tofilter
out non-relevant items to allow a user to keep only the relevant items). Liter-
ature recommender and spam email filter are examples of a recommender
system and a filtering system, respectively.

12 Chapter 1 Introduction

Categorization. Classify a text object into one or several of the predefined cat-
egories where the categories can vary depending on applications. The cat-
egorization component in a TIS can annotate text objects with all kinds of
meaningful categories, thus enriching the representation text data, which
further enables more effective and deeper text analysis. The categories can
also be used for organizing text data and facilitating text access. Subject cate-
gorizers that classify a text article into one or multiple subject categories and
sentiment taggers that classify a sentence into positive, negative, or neutral in
sentiment polarity are both specific examples of a text categorization system.

Summarization. Take one or multiple text documents, and generate a concise
summary of the essential content. A summary reduces human effort in digest-
ing text information and may also improve the efficiency in text mining. The
summarization component of a TIS is called a summarizer. News summarizer
and opinion summarizer are both examples of a summarizer.

Topic Analysis. Take a set of documents and extract and analyze topics in them.
Topics directly facilitate digestion of text data by users and support browsing
of text data. When combined with the companion non-textual data such as
time, location, authors, and other meta data, topic analysis can generate
many interesting patterns such as temporal trends of topics, spatiotemporal
distributions of topics, and topic profiles of authors.

Information Extraction. Extract entities, relations of entities or other “knowl-
edge nuggets” from text. The information extraction component of a TIS en-
ables construction of entity-relation graphs. Such a knowledge graph is useful
in multiple ways, including support of navigation (along edges and paths of
the graph) and further application of graph mining algorithms to discover
interesting entity-relation patterns.

Clustering. Discover groups of similar text objects (e.g., terms, sentences, doc-
uments, . . .). The clustering component of a TIS plays an important role in
helping users explore an information space. It uses empirical data to create
meaningful structures that can be useful for browsing text objects and ob-
taining a quick understanding of a large text data set. It is also useful for
discovering outliers by identifying the items that do not form natural clusters
with other items.

Visualization. Visually display patterns in text data. The visualization compo-
nent is important for engaging humans in the process of discovering inter-
esting patterns. Since humans are very good at recognizing visual patterns,

1.3

1.3 Organization of the Book 13

visualization of the results generated from various text mining algorithms is
generally desirable.

This list also serves as an outline of the major topics to be covered later in
this book. Specifically, search and filtering are covered first in Part II about text
data access, whereas categorization, clustering, topic analysis, and summarization
are covered later in Part III about text data analysis. Information extraction is not
covered in this book since we want to focus on general approaches that can be
readily applied to text data in any natural language, but information extraction
often requires language-specific techniques. Visualization is also not covered due
to the intended focus on algorithms in this book. However, it must be stressed that
both information extraction and visualization are very important topics relevant
to text data analysis and management. Readers interested in these techniques can
find some useful references in the Bibliographic Notes at the end of this chapter.

Organization of the Book
The book is organized into four parts, as shown in Figure 1.4.

Part I. Overview and Background. This part consists of the first four chapters
and provides an overview of the book and background knowledge, including
basic concepts needed for understanding the content of the book that some
readers may not be familiar with, and an introduction to the MeTA toolkit
used for exercises in the book. This part also gives a brief overview of natu-
ral language processing techniques needed for understanding text data and
obtaining informative representation of text needed in all text data analysis
applications.

Part I1. Text Data Access. This part consists of Chapters 5-11, covering the ma-
jortechniques for supporting text data access. This part provides a systematic
discussion of the basic information retrieval techniques, including the for-
mulation of retrieval tasks as a problem of ranking documents for a query
(Chapter 5), retrieval models that form the foundation of the design of rank-
ing functions in a search engine (Chapter 6), feedback techniques (Chapter 7),
implementation of retrieval systems (Chapter 8), and evaluation of retrieval
systems (Chapter 9). It then covers web search engines, the most important
application of information retrieval so far (Chapter 10), where techniques for
analyzing links in text data for improving ranking of text objects are intro-
duced and application of supervised machine learning to combine multiple

14 Chapter 1 Introduction

Chapter 1

Chapter 2

-

Chapter 3

Chapter 6

Chapter 4 Chapter 12

» Chapter 13

Chapter 9 ‘ | Chapter 8 | ‘ Chapter 7

Chapter 14 ‘ | Chapter 17

| T

‘ Chapter 10 | | Chapter 11 |

Chapter 15

‘ Chaptr:er 18 ‘

‘ Chapter 16 ‘
\ ﬂ//// ! ‘
Chapter 20 [# Chapter 19

Figure 1.4 Dependency relations among the chapters.

features for ranking is briefly discussed. The last chapter in this part (Chap-
ter 11) covers recommender systems which provide a “push” mode of informa-
tion access, as opposed to the “pull” mode of information access supported
by a typical search engine (i.e., querying by users).

Part II1. Text Data Analysis. This part consists of Chapters 12-19, covering a

variety of techniques for analyzing text data to facilitate user digestion of text
data and discover useful topical or other semantic patterns in text data. Chap-
ter 12 gives an overview of text analysis from the perspective of data mining,
where we may view text data as data generated by humans as “subjective sen-
sors” of the world; this view allows us to look at the text analysis problem in the
more general context of data analysis and mining in general, and facilitates
the discussion of joint analysis of text and non-text data. This is followed by
multiple chapters covering a number of the most useful general techniques
for analyzing text data without or with only minimum human effort. Specif-
ically, Chapter 13 discusses techniques for discovering two fundamental se-

1.4

1.4 How to Use this Book 15

mantic relations between lexical units in text data, i.e., paradigmatic relations
and syntagmatic relations, which can be regarded as an example of discov-
ering knowledge about the natural language used to generate the text data
(i.e., linguistic knowledge). Chapter 14 and Chapter 15 cover, respectively, two
closely related techniques to generate and associate meaningful structures
or annotations with otherwise unorganized text data, i.e., text clustering and
text categorization. Chapter 16 discusses text summarization useful for facil-
itating human digestion of text information. Chapter 17 provides a detailed
discussion of an important family of probabilistic approaches to discovery
and analysis of topical patterns in text data (i.e., topic models). Chapter 18
discusses techniques for analyzing sentiment and opinions expressed in text
data, which are key to discovery of knowledge about preferences, opinions,
and behavior of people based on analyzing the text data produced by them.
Finally, Chapter 19 discusses joint analysis of text and non-text data, which is
often needed in many applications since it is in general beneficial to use as
much data as possible for gaining knowledge and intelligence through (big)
data analysis.

Part IV. Unified Text Management and Analysis System. This last part consists
of Chapter 20 where we attempt to discuss how all the techniques discussed
in this book can be conceptually integrated in an operator-based unified
framework, and thus potentially implemented in a general unified system
for text management and analysis that can be useful for supporting a wide
range of different applications. This part also serves as a roadmap for further
extension of MeTA to provide effective and general high-level support for
various applications and provides guidance on how META may be integrated
with many other related existing toolkits, including particularly search engine
systems, database systems, natural language processing toolkits, machine
learning toolkits, and data mining toolkits.

Due to our attempt to treat all the topics from a practical perspective, most
of the discussions of the concepts and techniques in the book are informal and
intuitive. To satisfy the needs of some readers that might be interested in deeper
understanding of some topics, the book also includes an appendix with notes to
provide a more detailed and rigorous explanation of a few important topics.

How to Use this Book

Due to the extremely broad scope of the topics that we would like to cover, we have
to make many tradeoffs between breadth and depth in coverage. When making

16 Chapter 1 Introduction

such a tradeoff, we have chosen to emphasize the coverage of the basic concepts
and practical techniques of text data mining at the cost of not being able to cover
many advanced techniques in detail, and provide some references at the end of
many chapters to help readers learn more about those advanced techniques if
they wish to. Our hope is that with the foundation received from reading this
book, you will be able to learn about more advanced techniques by yourself or via
another resource. We have also chosen to cover more general techniques for text
management and analysis and favor techniques that can be applicable to any text in
any natural language. Most techniques we discuss can be implemented without any
human effort or only requiring minimal human effort; this is in contrast to some
more detailed analysis of text data, particularly using natural language processing
techniques. Such “deep analysis” techniques are obviously very important and are
indeed necessary for some applications where we would like to go in-depth to
understand text in detail. However, at this point, these techniques are often not
scalable and they tend to require a large amount of human effort. In practice, it
would be beneficial to combine both kinds of techniques.
We envision three main (and potentially overlapping) categories of readers.

Students. This book is specifically designed to give you hands-on experience
in working with real text mining tools and applications. If used individually,
we suggest first reading through Chapters 1-4 in order to get a good under-
standing of the prerequisite knowledge in this book. Chapters 1, 2, and 3 will
familiarize you with the concepts and vocabulary necessary to understand the
future chapters. Chapter 4 introduces you to the companion toolkit META,
which is used in exercises in each chapter. We hope the exercises and chapter
descriptions provide inspiration to work on your own text mining project. The
provided code in META should give a large head start and allow you to focus
more on your contribution.

Ifused in class, there are several logical flows that an instructor may choose
to take. As prerequisite knowledge, we assume some basic knowledge in
probability and statistics as well as programming in a language such as C++
or Java. META is written in modern C++, although some exercises may be
accomplished only by modifying config files.

Instructors. We have gathered a logical and cohesive collection of topics that
may be combined together for various course curricula. For example, Part 1
and Part 2 of the book may be used as an undergraduate introduction to Infor-
mation Retrieval with a focus on how search engines work. Exercises assume
basic programming experience and a little mathematical background in prob-
ability and statistics. A different undergraduate course may choose to survey

1.4 How to Use this Book 17

the entire book as an Introduction to Text Data Mining, while skipping some
chaptersin Part 2 that are more specific to search engine implementation and
applications specific to the Web. Another choice would be using all parts as a
supplemental graduate textbook, where there is still some emphasis on prac-
tical programming knowledge that can be combined with reading referenced
papers in each chapter. Exercises for graduate students could be implement-
ing some methods they read in the references into MeTA.

The exercises at the end of each chapter give students experience working
with a powerful—yet easily understandable—text retrieval and mining toolkit
in addition to written questions. In a programming-focused class, using the
META exercises is strongly encouraged. Programming assignments can be cre-
ated from selecting a subset of exercises in each chapter. Due to the modular
nature of the toolkit, additional programming experiments may be created by
extending the existing system or implementing other well-known algorithms
that do not come with MeTA by default. Finally, students may use compo-
nents of MeTA they learned through the exercises to complete a larger final
programming project. Using different corpora with the toolkit can yield dif-
ferent project challenges, e.g., review summary vs. sentiment analysis.

Practitioners. Most readers in industry would most likely use this book as a
reference, although we also hope that it may serve as some inspiration in
your own work. As with the student user suggestion, we think you would get
the most of this book by first reading the initial three chapters. Then, you may
choose a chapter relevant to your current interests and delve deeper or refresh
your knowledge.

Since many applications in META can be used simply via config files, we
anticipate it as a quick way to get a handle on your dataset and provide some
baseline results without any programming required.

The exercises at the end of each chapter can be thought of as default
implementations for a particular task at hand. You may choose to include
META in your work since it uses a permissive free software license. In fact, it is
dual-licensed under MIT and University of Illinois/NCSA licenses. Of course,
we still encourage and invite you to share any modifications, extensions, and
improvements with MeTA that are not proprietary for the benefit of all the
readers.

No matter what your goal, we hope that you find this book useful and educa-
tional. We also appreciate your comments and suggestions for improvement of the
book. Thanks for reading!

18 Chapter 1 Introduction

Bibliographic Notes and Further Reading

There are already multiple excellent text books in information retrieval (IR). Due
to the long history of research in information retrieval and the fact that much
foudational work has been done in 1960s, even some very old books such as van
Rijsbergen [1979] and Salton and McGill [1983] and Salton [1989] remain very
useful today. Another useful early book is Frakes and Baeza-Yates [1992]. More
recent ones include Grossman and Frieder [2004], Witten et al. [1999], and Belew
[2008]. The most recent ones are Manning et al. [2008], Croft et al. [2009], Biittcher
etal.[2010], and Baeza-Yates and Ribeiro-Neto [2011]. Compared with these books,
this book has a broader view of the topic of information retrieval and attempts to
cover both text retrieval and text mining. While some existing books on IR have
also touched some topics such as text categorization and text clustering, which we
classify as text mining topics, no previous book has included an in-depth discussion
of topic mining and analysis, an important family of techniques very useful for
text mining. Recommender systems also seem to be missing in the existing books
on IR, which we include as an alternative way to support users for text access
complementary with search engines. More importantly, this book treats all these
topics in a more systematic way than existing books by framing them in a unified
coherent conceptual framework for managing and analyzing big text data; the book
also attempts to minimize the gap between abstract explanation of algorithms
and practical applications by providing a companion toolkit for many exercises.
Readers who want to know more about the history of IR research and the major
early milestones should take a look at the collection of readings in Sparck Jones
and Willett [1997].

The topic of text mining has also been covered in multiple books (e.g., Feldman
and Sanger [2007]). A major difference between this book and those is our empha-
sis on the integration of text mining and information retrieval with a belief that
any text data application system must involve humans in the loop and search en-
gines are essential components of any text mining systems to support two essential
functions: (1) help convert a large raw text data set into a much smaller, but more
relevant text data set which can be efficiently anlayzed by using a text mining al-
gorithm (i.e., data reduction) and (2) help users verify the source text articles from
which knowledge is discovered by a text mining algorithm (i.e., knowledge prove-
nance). As a result, this book provides a more complete coverage of techniques
required for developing big text data applications.

The focus of this book is on covering algorithms that are general and robust,
which can be readily applied to any text data in any natural language, often with
no or minimum human effort. An evitable cost of this focus is its lack of coverage

Bibliographic Notes and Further Reading 19

of some key techniques important for text mining, notably the information extrac-
tion (IE) techniques which are essential for text mining. We decided not to cover IE
because the IE techniques tend to be language-specific and require non-trivial man-
ual work by humans. Another reason is that many IE techniques rely on supervised
machine learning approaches, which are well covered in many existing machine
learning books (see, e.g., Bishop 2006, Mitchell 1997). Readers who are interested
in knowing more about IE can start with the survey book [Sarawagi 2008] and review
articles [Jiang 2012].

From an application perspective, another important topic missing in this book
is information visualization, which is due to our focus on the coverage of models
and algorithms. However, since every application system must have a user-friendly
interface to allow users to optimally interact with a system, those readers who are
interested in developing text data application systems will surely find it useful to
learn more about user interface design. An excellent reference to start with is Hearst
[2009], which also has a detailed coverage of information visualization.

Finally, due to our emphasis on breadth, the book does not cover any compo-
nent algorithm in depth. To know more about some of the topics, readers can
further read books in natural language processing (e.g., Jurafsky and Martin 2009,
Manning and Schiitze 1999), advanced books on IR (e.g., Baeza-Yates and Ribeiro-
Neto [2011]), and books on machine learning (e.g., Bishop [2006]). You may find
more specific recommendations of readings relevant to a particular topic in the
Bibliographic Notes at the end of each chapter that covers the corresponding topic.

Copyrighted material

2.1

Background

This chapter contains background information that is necessary to know in order
to get the most out of the rest of this book; readers who are already familiar with
these basic concepts may safely skip the entire chapter or some of the sections.
We first focus on some basic probability and statistics concepts required for most
algorithms and models in this book. Next, we continue our mathematical back-
ground with an overview of some concepts in information theory that are often
used in many text mining applications. The last section introduces the basic idea
and problem setup of machine learning, particularly supervised machine learning,
which is useful for classification, categorization, or text-based prediction in the text
domain. In general, machine learning is very useful for many information retrieval
and data mining tasks.

Basics of Probability and Statistics

As we will see later in this chapter and in many other chapters, probabilistic or
statistical models play a very important role in text mining algorithms. This section
gives every reader a sufficient background and vocabulary to understand these
probabilistic and statistical approaches covered in the later chapters of the book.

A probability distribution is a way to assign likelihood to an event in some
probability space 2. As an example, let our probability space be a six-sided die.
Each side has a different color. Thus, Q2 = {red, orange, yellow, green, blue, purple}
and an event is the act of rolling the die and observing a color.

We can quantify the uncertainty of rolling the die by declaring a probability
distribution over all possible events. Assuming we have a fair die, the probability
of rolling any specific color is %, or about 16%. We can represent our probability
distribution as a collection of probabilities such as

p_f1 11111
“le'6’6’6'6'6]"’

22 Chapter 2 Background

where the first index corresponds to p(red) = %, the second index corresponds to
p(orange) = é, and so on. But what if we had an unfair die? We could use a different
probability distribution #’ to model events concerning it:

p_[11 1 1 1 1
337127127127 12|

In this case, red and orange are assumed to be rolled more often than the
other colors. Be careful to note the difference between the sample space 2 and
the defined probability model # used to quantify its uncertainty. In our text mining
tasks, we usually try to estimate ¢ given some knowledge about €2. The different
methods to estimate ¢ will determine how accurate or useful the probabilistic
model is.

Consider the following notation:

x~0.

We read this as x is drawn from theta, or the random variable x is drawn from the
probability distribution 6. The random variable x takes on each value from Q with
a certain probability defined by 6. For example, if we had x ~ ¢’, then there is a %
chance that x is either red or orange.

In our text application tasks, we usually have €2 as V, the vocabulary of some text
corpus. For example, the vocabulary could be

V ={a,and,apple, ..., zap,zirconium, zoo}

and we could model the text data with a probability distribution 6. Thus, if we have
some word w we can write p(w | #) (read as the probability of w given 8). If w is the
word data, we might have p(w = data | #) = 0.003 or equivalently py(w = data) =
0.003.

In our examples, we have only considered discrete probability distributions.
That is, our models only assign probabilities for a finite (discrete) set of outcomes.
In reality, there are also continuous probability distributions, where there are an
infinite number of “events” that are not countable. For example, the normal (or
Gaussian) distribution is a continuous probability distribution that assigns real-
valued probabilities according to some parameters. We will discuss continuous
distributions as necessary in later chapters. For now, though, it’s sufficient to un-
derstand that we can use a discrete probability distribution to model the probability
of observing a single word in a vocabulary V.

211

2.1 Basics of Probability and Statistics 23

The Kolmogorovaxioms describe facts about probability distributions in general
(both discrete and continuous). We discuss them now, since they are a good sanity
check when designing your own models. A valid probability distribution 6 with
probability space €2 must satisfy the following three axioms.

e Each event has a probability between zero and one:
0<pyplwe) <1 (2.1)

e An event not in Q has probability zero, and the probability of any event
occurring from £ is one:

pe(@)=0,0' ¢Q and py(RR)=1. (2.2)
e The probability of all (disjoint) events sums to one:

Z po(w) = 1. (2.3)
weQ
Note that, strictly speaking, an event is defined as a subset of the probability
space €2, and we say that an event happens if and only if the outcome from a random
experiment (i.e., randomly drawing an outcome from) is in the corresponding
subset of outcomes defined by the event. Thus, it is easy to understand that the
special event corresponding to the empty subset is an impossible event with a
probability of zero, whereas the special event corresponding to the complete set
Q itself always happens and so has a probability of 1.0. As a special case, we can
consider an event space with only those events that each have precisely one element
of outcome, which is exactly what we assumed when talking about a distribution
over all the words. Here each word corresponds to the event defined by the subset
with the word as the only element; clearly, such an event happens if and only if the
outcome is the corresponding word.

Joint and Conditional Probabilities

For this section, let's modify our original die rolling example. We will keep the
original distribution as 6., indicating the color probabilities:

Let’salso assume thateach coloris represented by a particular shape. This makes
our die look like

24 Chapter 2 Background

N0 0 0 A}

where the colors of the shapes are, red, orange, yellow, blue, green, and purple,
respectively.

We can now create another distribution for the shape f;. Let each index in fg
represent p(square), p(circle), p(triangle), respectively. That gives

111
=33k
Then we can let x- ~ 6 represent the color random variable and let x5 ~ 65 repre-
sent the shape random variable. We now have two variables to work with.

A joint probability measures the likelihood that two events occur simultane-
ously. For example, what is the probability that x = red and x¢ = circle? Since there
are no red circles, this has probability zero. How about p(x. = green, xy = circle)?
This notation signifies the joint probability of the two random variables. In this
case, the joint probability is é because there is only one green circle.

Consider a modified die:

{ 8§ SOX X ¥V

where we changed the color of the blue circle (the fourth element in the set) to
green. Thus, we now have two green circles instead of one green and one blue.

What would p(x- = green, xs = circle) be? Since two out of the six elements satisfy
2 _
2=
fair die with 5 green circles and 7 other combinations of shape and color, then

both these criteria, the answer is % As another example, if we had a 12-sided
p(xc = green, xg = circle) = 1—52

A conditional probability measures the likelihood that one event occurs given
that another event has already occurred. Let's use the original die with six unique
colors. Say we know that a square was rolled. With that information, what is the
probability that the color is red? How about purple? We can write this as p(xc =
red | xg = square). Since we know there are two squares, of which one is red, p(red |
square) = 1.

We can write the conditional probabilities for two random variables X and ¥
based on their joint probability with the following equation:

pX=x,Y=y)

(X=x|Y=y)=
pX=xIT=y p(¥ =)

(2.4)

2.1.2

2.1 Basics of Probability and Statistics 25

The numerator p(X = x, ¥ =) is the probability of exactly the configuration
we're looking for (i.e., both x and y have been observed), which is normalized by
p(Y = y), the probability that the condition is true (i.e., y has been observed). Using
this knowledge, we can calculate p(x. = green | x5 = circle):

p(xc = green, xg = circle) 1/6 1

X = green | xg = circle) = = =,
rlc=g I xs) p(xg = circle) 1/2 3

One other important concept to mention is independence. In the previous ex-
amples, the two random variables were dependent, meaning the value of one
will influence the value of the other. Consider another situation where we have
1, ¢3 ~ Oc. That is, we draw two colors from the color distribution. Does the knowl-
edge of ¢; inform the probability of ¢,? No, since each draw is done “independently”
of the other. In the case where two random variables X and Y are independent,
p(X,Y)= p(X)p(Y). Can you see why this is the case?

Both conditional and joint probabilities can be used to answer interesting ques-
tions about text. For example, given a document, what is the probability of observ-
ing the word information and retrieval in the same sentence? What is the probability
of observing retrieval if we know information has occurred?

Bayes' Rule
Bayes’ rule may be derived using the definition of conditional probability:
pX,Y)

p(Y, X)
(X|Y)=——— and Y| X)=—.
Pl p(Y) P p(X)

Therefore, setting the two joint probabilities equal,
pX | Y)p(Y)=p(X,Y)=pk | X)p(X).

We can simplify them as

p(x | v) = PXIPE) (2.5)

pY)

The above formula is known as Bayes’ rule, named after the Reverend Thomas Bayes
(1701-1761). This rule has widespread applications. In this book, you will see heavy
use of this formula in the text categorization chapter as well as the topic analysis
chapter, among others. We will leave it up to the individual chapters to explain their
use of thisrule in theirimplementation. Essentially, though, Bayes’ rule can be used
to make inference about a hypothesis based on the observed evidence related to the
hypothesis.

26 Chapter 2 Background

2.1.3

Specifically, we may view random variable X as denoting our hypothesis, and ¥
as denoting the observed evidence. p(X) can thus be interpreted as our prior belief
about which hypothesis is true; it is “prior” because it is our belief before we have
any knowledge about evidence Y. In contrast, p(X | Y) encodes our posterior belief
about the hypothesis since it is our belief after knowing evidence Y. Bayes’ rule is
seen to connect the prior belief and posterior belief, and provide a way to update
the prior belief p(X) based on the likelihood of the observed evidence ¥ and obtain
the posterior belief p(X | ¥). It is clear that if X and Y are independent, then no
updating will happen as in this case, p(X | ¥) = p(X).

Coin Flips and the Binomial Distribution

In most discussions on probability, a good example to investigate is flipping a
coin. For example, we may be interested in modeling the presence or absence of a
particular word in a text document, which can be easily mapped to a coin flipping
problem. There are two possible outcomes in coin flipping: heads or tails. The
probability of heads is denoted as ¢, which means the probability of tails is 1 — 6.
To model the probability of success (in our case, “heads”), we can use the
Bernoulli distribution. The Bernoulli distribution gives the probability of success
for a single event—flipping the coin once. If we want to model n throws and find the
probability of k successes, we instead use the binomial distribution. The binomial
distribution is a discrete distribution since k& is an integer. We can write it as

p(k heads) = (Z)@*u — gk, (2.6)

We can also write it as follows:

G n—k

p(k heads) = me (1—e)"". (2.7)
But why is it this formula? Well, let’s break it apart. If we have n total binary
trials, and want to see k heads, that means we must have flipped k heads and n — k
tails. The probability of observing each of the k heads is 6, while the probability
of observing each of the remaining n — k tails is 1 — 6. Since we assume all these
flips are independent, we simply multiply all the outcomes together. Since we don’t
care about the order of the outcomes, we additionally multiply by the number of

possible ways to choose k items from a set of n items.
What if we do care about the order of the outcomes? For example, what is the
probability of observing the particular sequence of outcomes (i, ¢, h, i, t) where h
and t denote heads and tails, respectively? Well, it is easy to see that the probability

2.1.4

2.1 Basics of Probability and Statistics 27

of observing this sequence is simply the product of observing each event, i.e.,
B x(1—6)x80x8x(1—0)=8031-06)2with no adjustment for different orders
of observing three heads and two tails.

The more commonly used multinomial distribution in text analysis, which mod-
els the probability of seeing a word in a particular scenario (e.g., in a document), is
very similar to this Bernoulli distribution, just with more than two outcomes.

Maximum Likelihood Parameter Estimation

Now that we have a model for our coin flipping, how can we estimate its parameters
given some observed data? For example, maybe we observe the data D that we
discussed above where n = 5:

D={h,t h, h,t}.

Now we would like to figure out what ¢ is based on the observed data. Using
maximum likelihood estimation (MLE), we choose the 4 that has the highest like-
lihood given our data, i.e., choose the 6 such that the probability of observed data
is maximized.

To compute the MLE, we would first write down the likelihood function, i.e.,
p(D | 8), which is 63(1 — 6)? as we explained earlier. The problem is thus reduced
to find the # that maximizes the function f(8) =#3(1 — §)2. Equivalently, we can
attempt to maximize the log-likelihood: log f(#) = 3log # + 2 log(1 — 8), since log-
arithm transformation preserves the order of values. Using knowledge of calculus,
we know that a necessary condition for a function to achieve a maximum value at a
¢ value is that the derivative at the same ¢ value is zero. Thus, we just need to solve
the following equation:

dlog f0) _3 2 _
de 81—

and we easily find that the solution is 6 = 3/5.
More generally, let H be the number of heads and 7 be the number of tails. The
MLE of the probability of heads is given by:

Oy = arg mﬁax p(D|89)
= arg mﬁax 8”(1 - 9)T

H
H+T'

28 Chapter 2 Background

2.1.5

The notation arg max represents the argument (i.e., 6 in this case) that makes
the likelihood function (i.e., p(D | 6)) reach its maximum. Thus, the value of an
arg max expression stays the same if we perform any monotonic transformation of
the function inside arg max. This is why we could use the logarithm transformation
in the example above, which made it easier to compute the derivative.

The solution to MLE shown above should be intuitive: the ¢ that maximizes our
data likelihood is just the ratio of heads. It is a general characteristic of the MLE
that the estimated probability is the normalized counts of the corresponding events
denoted by the probability. As an example, the MLE of a multinomial distribution
(which will be further discussed in detail later in the book) gives each possible
outcome a probability proportional to the observed counts of the outcome. Note
that a consequence of this is that all unobserved outcomes would have a zero
probability according to MLE. This is often not reasonable especially when the data
sample is small, a problem that motivates Bayesian parameter estimation which we
discuss below.

Bayesian Parameter Estimation

One potential problem of MLE is that it is often inaccurate when the size of the
data sample is small since it always attempts to fit the data as well as possible.
Consider an extreme example of observing just two data points of flipping a coin
which happen to be all heads. The MLE would say that the probability of heads is
1.0 while the probability of tails is 0. Such an estimate is intuitively inaccurate even
though it maximizes the probability of the observed two data points.

This problem of “overfitting” can be addressed and alleviated by considering the
uncertainty on the parameter and using Bayesian parameter estimation instead of
MLE. In Bayesian parameter estimation, we consider a distribution over all the
possible values for the parameter; that is, we treat the parameter itself as a random
variable.

Specifically, we may use p(#) to represent a distribution over all possible values
for 8, which encodes our prior belief about what value is the true value of ¢, while
the data D provide evidence for or against that belief. The prior belief p(6) can
then be updated based on the observed evidence. We’ll use Bayes’ rule to rewrite
p(@ | D), or our belief of the parameters given data, as

p(@ | D)= LL19PO) (2.8)

p(D)

where p(D) can be calculated by summing over all configurations of 6. For a
continuous distribution, that would be

2.1 Basics of Probability and Statistics 29

p(D) = ﬁ p@)p(D | 6")d6’ (2.9)

which means the probability for a particular 6 is

p@| D)= pD16)p®) (2.10)

~ fy p@)p(D | 6)d6"

We have special names for these quantities:

® p(B | D): the posterior probability of 6

e p(@): the prior probability of 6

e p(D | 0): the likelihood of D

e [, p(0")p(D|6)ds': the marginal likelihood of D

The last one is called the marginal likelihood because the integration “marginal-
izes out” (removes) the parameter 6 from the equation. Since the likelihood of the
data remains constant, observing the constraint that p(¢ | D) must sum to one over
all possible values of 8, we usually just say

p@ | D) x p@)p(D|0).

That is, the posterior is proportional to the prior times the likelihood.

The posterior distribution of the parameter # fully characterizes the uncertainty
of the parameter value and can be used to infer any quantity that depends on the
parameter value, including computing a point estimate of the parameter (i.e., a
single value of the parameter). There are multiple ways to compute a point estimate
based on a posterior distribution. One possibility is to compute the mean of the
posterior distribution, which is given by the weighted sum of probabilities and the
parameter values. For a discrete distribution,

E[X]= Z xp(x) (2.11)

X

while in a continuous distribution,
E[X]= f xf(x)dx (2.12)
o

Sometimes, we are interested in using the mode of the posterior distribution
as our estimate of the parameter, which is called Maximum a Posteriori (MAP)
estimate, given by:

Opap = arg m{flx p@| D) =arg m(ja'x p(D|8)p@). (2.13)

30 Chapter2 Background

2.1.6

Here it is easy to see that the MAP estimate would deviate from the MLE with
consideration of maximizing the probability of the parameter according to our
prior belief encoded as p(#). It is through the use of appropriate prior that we
can address the overfitting problem of MLE since our prior can strongly prefer an
estimate where neither heads, nor tails should have a zero probability.

For a continuation and more in-depth discussion of this material, consult Ap-
pendix A.

Probabilistic Models and Their Applications

With the statistical foundation from the previous sections, we can now start to see
how we might apply a probabilistic model to text analysis.

In general, in text processing, we would be interested in a probabilistic model
for text data, which defines distributions over sequences of words. Such a model is
often called statistical language model, or a generative model for text data (i.e., a
probabilistic model that can be used for sampling sequences of words).

As we started to explain previously, we usually treat the sample space 2 as V, the
set of all observed words in our corpus. That is, we define probability distributions
over words from our dataset, which are essentially multinomial distributions if
we do not consider the order of words. While there are many more sophisticated
models for text data (see, e.g., Jelinek [1997]), this simplest model (often called
unigram language model) is already very useful for a number of tasks in text data
management and analysis due to the fact that the words in our vocabulary are very
well designed meaningful basic units for human communications.

For now, we can discuss the general framework in which statistical models
are “learned.” Learning a model means estimating its parameters. In the case
of a distribution over words, we have one parameter for each element in V. The
workflow looks like the following.

1. Define the model.

2. Learn its parameters.

3. Apply the model.

The first step has already been addressed. In our example, we wish to capture the
probabilities of individual words occurring in our corpus. In the second step, we
need to figure out actually how to set the probabilities for each word. One obvious

way would be to calculate the probability of each individual word in the corpus
itself. That is, the count of a unique word w; divided by the total number of words

2.2

2.2 Information Theory 31

in the corpus could be the value of p(w; | #). This can be shown to be the solution of
the MLE of the model. More sophisticated models and their parameter estimation
will be discussed later in the book. Finally, once we have 6 defined, what can we
actually do with it? One use case would be analyzing the probability of a specific
subset of words in the corpus, and another could be observing unseen data and
calculating the probability of seeing the words in the new text. It is often possible
to design the model such that the model parameters would encode the knowledge
we hope to discover from text data. In such a case, the estimated model parameters
can be directly used as the output (result) of text mining.

Please keep in mind that probabilistic models are a general tool and don’t only
have to be used for text analysis—that’s just our main application!

Information Theory

Information theory deals with uncertainty and the transfer or storage of quantified
information in the form of bits. It is applied in many fields, such as electrical engi-
neering, computer science, mathematics, physics, and linguistics. A few concepts
from information theory are very useful in text data management and analysis,
which we introduce here briefly. The most important concept of information theory
is entropy, which is a building block for many other measures.

The problem can be formally defined as the quantified uncertainty in predicting
the value of a random variable. In the common example of a coin, the two values
would be 1 or 0 (depicting heads or tails) and the random variable representing
these outcomes is X. In other words,

1 if heads
0 if tails.

The more random this random variable is, the more difficult the prediction of heads
or tails will be. How does one quantitatively measure the randomness of a random
variable like X? This is precisely what entropy does.

Roughly, the entropy of a random variable X, H(X), is a measure of expected
number of bits needed to represent the outcome of an event x ~ X. If the outcome
is known (completely certain), we don’t need to represent any information and
H(X) = 0. If the outcome is unknown, we would like to represent the outcome in
bits as efficiently as possible. That means using fewer bits for common occurrences
and more bits when the event is less likely. Entropy gives us the expected number

32 Chapter 2 Background

of bits for any x ~ X using the formula

H(X)=—) p(x)log, p(x). (2.14)
xeX

In the cases where we have log, 0, we generally just define this to be 0 since log, 0
is undefined. We will get different H (X) for different random variables X.

The exact theory and reasoning behind this formula are beyond the scope of this
book, but it suffices to say that H(X) = 0 means there is no randomness, H(X) =1
means there is complete randomness in that all events are equally likely. Thus, the
amount of randomness varies from 0 to 1. For our coin example where the sample
space is two events (heads or tails), the entropy function looks like

H(X) = —p(X = 0)log, p(X =0) — p(X = 1) log, p(X =1).

For a fair coin, we would have p(X =1) = p(X =0) = % To calculate H(X), we’'d
have the calculation

1 1 1 1
H(X)=—=1og, - — = log, — =1,
(X) > gzz 5 gzz

whereas for a completely biased coinwith p(X =1) =1, p(X = 0) = 0we would have
H(X)=—-0log,0—1log,1=0.

For this example, we had only two possible outcomes (i.e., a binary random
variable). As we can see from the formula, this idea of entropy easily generalizes
to random variables with more than two outcomes; in those cases, the sum is over
more than two elements.

If we plot H(X) for our coin example against the probability of heads p(X = 1),
we receive a plot like the one shown in Figure 2.1. At the two ends of the x-axis,
the probability of X =1 is either very small or very large. In both these cases, the
entropy function has alow value because the outcome is not very random. The most
random is when p(X =1) = % In that case, H(X) = 1, the maximum value. Since
the two probabilities are symmetric, we get a symmetric inverted U-shape as the
plot of H(X) as p(X = 1) varies.

It's a good exercise to consider when a particular random variable (not just the
coin example) has a maximum or minimal value. In particular, let’s think about
some special cases. For example, we might have a random variable ¥ that always
takes a value of 1. Or, there’s a random variable Z that is equally likely to take a
value of 1, 2, or 3. In these cases, H(Y) < H(Z) since the outcome of Y is much

Figure 2.1

2.2 Information Theory 33

1.0

0.8

0.4

0.2

T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P(X=1)

Entropy as a measure of randomness of a random variable.

easier to predict than the outcome of Z. This is precisely what entropy captures.
You can calculate H(Y) and H(Z) to confirm this answer.

For our applications, it may be useful to consider the entropy of a word w in
some context. Here, high-entropy words would be harder to predict. Let W be the
random variable that denotes whether a word occurs in a document in our corpus.
Say W =1 if the word occurs and W = 0 otherwise. How do you think H(W,;,)
compares to H(W,gmpueer)? The entropy of the word the is close to zero since it
occurs everywhere. It’s not surprising to see this word in a document, thus it is easy
to predict that W,;, = 1. This case is just like the biased coin that always lands one
way. The word computer, on the other hand, is a less common word and is harder
to predict whether it occurs or not, so the entropy will be higher.

When we attempt to quantify uncertainties of conditional probabilities, we can
also define conditional entropy H (X | ¥), which indicates the expected uncertainty
of X given that we observe Y, where the expectation is taken under the distribution
of all possible values of Y. Intuitively, if X is completely determined by Y, then
H(X | Y)=0since once we know Y, there would be no uncertainty in X, whereas if
X and Y are independent, then H(X | Y) would be the same as the original entropy
of X, i.e., H(X |Y)= H(X) since knowing ¥ does not help at all in resolving the
uncertainty of X.

34 Chapter2 Background

2.3

Another useful concept is mutual information defined on two random variables,
I (X; Y), which is defined as the reduction of entropy of X due to knowledge about
another random variable Y, i.e.,

I(X;Y)=H(X)— H(X|Y). (2.15)
It can be shown that mutual information can be equivalently written as
[(X:Y)=H(Y) — H(Y | X). (2.16)

It is easy to see that /(X; ¥) tends to be large if X and ¥ are correlated, whereas
I1(X;Y)would be small if X and Y are not so related; indeed, in the extreme case
when X and ¥ are completely independent, there would be no reduction of entropy,
andthus H(X)=H(X | Y),and [(X;Y) = 0. However, if X is completely determined
by ¥, then H(X | Y) =0, thus /(X; ¥Y) = H(X). Intuitively, mutual information can
measure the correlation of two random variables. Clearly as a correlation measure
on X and ¥, mutual information is symmetric.

Applications of these basic concepts, including entropy, conditional entropy,
and mutual information will be further discussed later in this book.

Machine Learning

Machine learning is a very important technique for solving many problems, and has
very broad applications. In text data management and analysis, it has also many
uses. Any in-depth treatment of this topic would clearly be beyond the scope of
this book, but here we introduce some basic concepts in machine learning that are
needed to better understand the content later in the book.

Machine learning techniques can often be classified into two types: supervised
learning and unsupervised learning. In supervised learning, a computer would
learn how to compute a function y = f(x) based on a set of examples of the input
value x (called training data) and the corresponding expected output value y. It is
called “supervised” because typically the y values must be provided by humans for
each x, and thus the computer receives a form of supervision from the humans.
Once the function is learned, the computer would be able to take unseen values of
x and compute the function f(x).

When y takes a value from a finite set of values, which can be called labels, a
function f(-) can serve as a classifier in that it can be used to map an instance x
to the “right” label (or multiple correct labels when appropriate). Thus, the prob-
lem can be called a classification problem. The simplest case of the classification
problem is when we have just two labels (known as binary classification). When y

2.3 Machine Learning 35

takes a real value, the problem is often called a regression problem. Both forms
of the problem can also be called prediction when our goal is mainly to infer the
unknown y for a given x; the term “prediction” is especially meaningful when y is
some property of a future event.

In text-based applications, both forms may occur, although the classification
problem is far more common, in which case the problem is also called text catego-
rization or text classification. We dedicate a chapter to this topic later in the book
(Chapter 15). The regression problem may occur when we use text data to predict
another non-text variable such as sentiment rating or stock prices; both cases are
also discussed later.

In classification as well as regression, the (input) data instance x is often repre-
sented as a feature vector where each feature provides a potential clue about which
v value is most likely the value of f(x). What the computer learns from the training
data is an optimal way to combine these features with weights on them to indi-
cate their importance and their influence on the final function value y. “Optimal”
here simply means that the prediction error on the training data is minimum, i.e.,
the predicted y values are maximally consistent with the true y values in the train-
ing data.

More formally, let our collection of objects be X such that x; € X is a feature
vector that represents object i. A feature is an attribute of an object that describes
it in some way. For example, if the objects are news articles, one feature could be
whether the word good occurred in the article. All these different features are part
of a document’s feature vector, which is used to represent the document. In our
cases, the feature vector will usually have to do with the words that appear in the
document.

We also have Y, which is the set of possible labels for each object. Thus, y; may
be sports in our news article classification setup and y; could be politics.

A classifier is a function f(-) that takes a feature vector as input and outputs a
predicted label y € Y. Thus, we could have f(x;) = sports, meaning y = sports. If the
true y is also sports, the classifier was correct in its prediction.

Notice how we can only evaluate a classification algorithm if we know the true
labels of the data. In fact, we will have to use the true labels in order to learn a good
function f () to take unseen feature vectors and classify them. For this reason, when
studying machine learning algorithms, we often split our corpus X into two parts:
training data and testing data. The training portion is used to build the classifier,
and the testing portion is used to evaluate the performance (e.g., determine how
many correct labels were predicted). In applications, the training data are generally

36 Chapter 2 Background

all the labelled examples that we can generate, and the test cases are the data points,
to which we would like to apply our machine learning program.

But what does the function f(:) actually do? Consider a very simple example
that determines whether a news article has positive or negative sentiment, i.e.,
Y = {positive, negative}:

positive if x's count for the term good is greater than 1

r&= negative otherwise.

Of course, this example is overly simplified, but it does demonstrate the basic
idea of a classifier: it takes a feature vector as input and outputs a class label. Based
on the training data, the classifier may have determined that positive sentiment ar-
ticles contain the term good more than once; therefore, this knowledge is encoded
in the function. In Chapter 15, we will investigate some specific algorithms for cre-
ating the function f(-) based on the training data. Other topics such as feedback
for information retrieval (Chapter 7) and sentiment analysis (Chapter 18) make use
of classifiers, or resemble them. For this reason, it’s good to know what machine
learning is and what kinds of problems it can solve.

In contrast to supervised learning, in unsupervised learning we only have the
data instances X without knowing Y. In such a case, obviously we cannot really know
how to compute y based on an x. However, we may still learn latent properties or
structures of X. Since there is no human effort involved, such an approach is called
unsupervised. For example, the computer can learn that some data instances are
very similar, and the whole dataset can be represented by three major clusters of
data instances such that in each cluster, the data instances are all very similar.
This is essentially the clustering technique that we will discuss in Chapter 14.
Another form of unsupervised learning is to design probabilistic models to model
the data (called “generative models”) where we can embed interesting parameters
that denote knowledge that we would like to discover from the data. By fitting the
model to our data, we can estimate the parameter values that can best explain the
data, and treat the obtained parameter values as the knowledge discovered from
the data. Applications of such an approach in analyzing latent topics in text are
discussed in detail in Chapter 17.

Bibliographic Notes and Further Reading

Detailed discussion of the basic concepts in probability and statistics can be found
in many textbooks such as Hodges and Lehmann [1970]. An excellent introduction
to the maximum likelihood estimation can be found in Myung [2003]. An accessi-

Exercises 37

ble comprehensive introduction to Bayesian statistics is given in the book Bayesian
Data Analysis [Gelman et al. 1995]. Cover and Thomas [1991] provide a comprehen-
sive introduction to information theory. There are many books on machine learning
where a more rigorous introduction to the basic concepts in machine learning as
well as many specific machine learning approaches can be found (e.g., Bishop 2006,
Mitchell 1997).

Exercises
2.1. Whatcanyou say about p(X | Y) if we know X and ¥ are independent random
variables? Prove it.

2.2. In an Information Retrieval course, there are 78 computer science majors,
21 electrical and computer engineering majors, and 10 library and information
science majors. Two students are randomly selected from the course. What is the
probability that they are from the same department? What is the probability that
they are from different departments?

2.3. Use Bayes’ rule to solve the following problem. One third of the time, Milo
takes the bus to work and the other times he takes the train. The bus is less reliable,
so he gets to work on time only 50% of the time. If taking the train, he is on time 90%
of the time. Given that he was on time on a particular day, what is the probability
that Milo took the bus?

2.4. In a game based on a deck of 52 cards, a single card is drawn. Depending on
the type of card, a certain value is either won or lost. If the card is one of the four
aces, $10 is won. If the card is one of the four kings, $5 is won. If the card is one of
the eleven diamonds that is not a king or ace, $2 is won. Otherwise, $1 is lost. What
are the expected winnings or losings after drawing a single card? (Would you play?)

2.5. Consider the game outlined in the previous question. Imagine that two
aces were drawn, leaving 50 cards remaining. What is the expected value of the
next draw?

2.6. In the information theory section, we defined three random variables X, ¥,
and Z when discussing entropy. We compared H(Y) with H(Z). How does H(X)
compare to the other two entropies?

2.7. In the information theory section, we compared the entropy of the word the
to that of the word unicorn. In general, what types of words have a high entropy and
what types of words have a low entropy? As an example, consider a corpus of ten

38 Chapter 2 Background

documents where the occurs in all documents, unicorn appears in five documents,
and Mercury appears in one document. What would be the entropy value of each?

2.8. Brainstorm some different features that may be good for the sentiment clas-
sification task outlined in this chapter. What are the strengths and weaknesses of
such features?

2.9. Consider the following scenario. You are writing facial recognition software
that determines whether there is a face in a given image. You have a collection of
100, 000 images with the correct answer and need to determine if there are faces
in new, unseen images.
Answer the following questions.
(a) Is this supervised learning or unsupervised learning?
(b) What are the labels or values we are predicting?
(c) Is this binary classification or multiclass classification? (Or neither?)
(d) Is this a regression problem?
(e) What are the features that could be used?

2.10. Consider the following scenario. You are writing essay grading software that
takes in a student essay and produces a score from 0-100%. To design this system,
you are given essays from the past year which have been graded by humans. Your
task is to use the system with the current year's essays as input.

Answer the same questions as in Exercise 2.9.

2.11. Consider the following scenario. You are writing a tool that determines
whether a given web page is one of

= personal home page,
= links to a personal home page, or
= neither of the above.

To help you in your task, you are given 5, 000, 000 pages that are already labeled.
Answer the same questions as in Exercise 2.9.

Text Data Understanding

In this chapter, we introduce basic concepts in text data understanding through
natural language processing (NLP). NLP is concerned with developing computa-
tional techniques to enable a computer to understand the meaning of natural
language text. NLP is a foundation of text information systems because how ef-
fective a TIS is in helping users access and analyze text data is largely determined
by how well the system can understand the content of text data. Content analysis
is thus logically the first step in text data analysis and management.

While a human can instantly understand a sentence in their native language,
it is quite challenging for a computer to make sense of one. In general, this may
involve the following tasks.

Lexical analysis. The purpose of lexical analysis is to figure out what the basic
meaningful units in a language are (e.g., words in English) and determine
the meaning of each word. In English, it is rather easy to determine the
boundaries of words since they are separated by spaces, but it is non-trivial to
find word boundaries in some other languages such as Chinese where there
is no clear delimiter to separate words.

Syntactic analysis. The purpose of syntactic analysis is to determine how words
are related with each other in a sentence, thus revealing the syntactic structure
of a sentence.

Semantic analysis. The purpose of semantic analysis is to determine the mean-
ing of a sentence. This typically involves the computation of meaning of a
whole sentence or a larger unit based on the meanings of words and their
syntactic structure.

Pragmaticanalysis. The purpose of pragmatic analysis is to determine meaning
in context, e.g., to infer the speech acts of language. Natural language is
used by humans to communicate with each other. A deeper understanding

40 Chapter 3 Text Data Understanding

of natural language than semantic analysis is thus to further understand the
purpose in communication.

Discourse analysis. Discourse analysis is needed when a large chunk of text
with multiple sentences is to be analyzed; in such a case, the connections
between these sentences must be considered and the analysis of an individual
sentence must be placed in the appropriate context involving other sentences.

In Figure 3.1, we show what is involved in understanding a very simple English
sentence “A dog is chasing a boy on the playground.” The lexical analysis in this case
involves determining the syntactic categories (parts of speech) of all the words (for
example, dog is a noun and chasing is a verb). Syntactic analysis is to determine that
a and boy form a noun phrase. So do the and playground, and on the playground is a
prepositional phrase. Semantic analysis is to map noun phrases to entities and verb
phrases to relations so as to obtain a formal representation of the meaning of the
sentence. For example, the noun phrase a hoy can be mapped to a semantic entity
denoting a boy (i.e., bl), and @ dog to an entity denoting a dog (i.e., d1). The verb
phrase can be mapped to a relation predicate chasing(dl,bl,p1) as shown in
the figure. Note that with this level of understanding, one may also infer additional
information based on any relevant common sense knowledge. For example, if we
assume that if someone is being chased, he or she may be scared, we could infer
that the boy being chased (b1) may be scared. Finally, pragmatic analysis might
further reveal that the person who said this sentence might intend to request an
action, such as reminding the owner of the dog to take the dog back.

While it is possible to derive a clear semantic representation for a simple sen-
tence like the one shown in Figure 3.1, it is in general very challenging to do this
kind of analysis for unrestricted natural language text. The main reason for this
difficulty is because natural language is designed to make human communication
efficient; this is in contrast with a programming language which is designed to
facilitate computer understanding. Specifically, there are two reasons why NLP is
very difficult. (1) We omit a lot of “common sense” knowledge in natural language
communication because we assume the hearer or reader possesses such knowledge
(thus there’s no need to explicitly communicate it). (2) We keep a lot of ambiguities,
which we assume the hearer/reader knows how to resolve (thus there’s no need to
waste words to clarify them). As a result, natural language text is full of ambiguity,
and resolving ambiguity would generally involve reasoning with a large amount of
common-sense knowledge, which is a general difficult challenge in artificial intel-

Chapter 3 Text Data Understanding 41

Det Noun Aux Verb Det Noun Prep Det Noun analysis
\/ \/ \/ \/ (part-of-speech
tagging)
Noun phrase Complexverb Noun phrase Noun phrase

Semantic analysis Verb phrase Prep phrase

Dog (d1). Syntactic analysis
Boy (b1). Verb phrase parslng)
Playground (p1).

Chasing (d1, b1, p1).

Sentence
+

Scared(x) if Chasmg X%).

A person saying this may be
W, reminding another person
Scared(bl) to get the dog back.
Inference Pragmatic analysis
(speech act)

Figure 3.1 An example of tasks in natural language understanding.

ligence. In this sense, NLP is “AI complete”, i.e., as difficult as any other difficult
problems in artificial intelligence.

The following are a few examples of specific challenges in natural language
understanding.

Word-level ambiguity. A word may have multiple syntactic categories and mul-
tiple senses. For example, design can be a noun or a verb (ambiguous POS);
root has multiple meanings even as a noun (ambiguous sense).

Syntactic ambiguity. A phrase or a sentence may have multiple syntactic struc-
tures. For example, natural language processing can have two different inter-
pretations: “processing of natural language” vs. “natural processing of lan-
guage” (ambiguous modification). Another example: A man saw a boy with
a telescope has two distinct syntactic structures, leading to a different result
regarding who had the telescope (ambiguous prepositional phrase (PP) at-
tachment).

Anaphora resolution. What exactly a pronoun refers to may be unclear. For
example, in John persuaded Bill to buy a TV for himself, does himself refer to
John or Bill?

42 Chapter 3 Text Data Understanding

3.1

Presupposition. He has quit smoking implies that he smoked before; making
such inferences in a general way is difficult.

History and State of the Artin NLP

Research in NLP dated back to at least the 1950s when researchers were very
optimistic about having computers that understood human language, particularly
for the purpose of machine translation. Soon however, it was clear, as stated in
Bar-Hillel’s report in 1960, that fully-automatic high-quality translation could not
be accomplished without knowledge. That is, a dictionary is insufficient; instead,
we would need an encyclopedia.

Realizing that machine translation may be too ambitious, researchers tackled
less ambitious applications of NLP in the late 1960s and 1970s with some success,
though the techniques developed failed to scale up, thus only having limited ap-
plication impact. For example, people looked at speech recognition applications
where the goal is to transcribe a speech. Such a task requires only limited under-
standing of natural language, thus more realistic; for example, figuring out the
exact syntactic structure is probably not very crucial for speech recognition. Two
interesting projects that demonstrated clear ability of computer understanding of
natural language are worth mentioning. One is the Eliza project where shallow
rules are used to enable a computer to play the role of a therapist to engage a nat-
ural language dialogue with a human. The other is the block world project which
demonstrated feasibility of deep semantic understanding of natural language when
the language is limited to a toy domain with only blocks as objects.

In the 1970s-1980s, attention was paid to process real-world natural-language
text data, particularly story understanding. Many formalisms for knowledge rep-
resentation and heuristic inference rules were developed. However, the general
conclusion was that even simple stories are quite challenging to understand by
a computer, confirming the need for large-scale knowledge representation and in-
ferences under uncertainty.

After the 1980s, researchers started moving away from the traditional symbolic
(logic-based) approaches to natural language processing, which mostly had proven
to be not robust for real applications, and paying more attention to statistical
approaches, which enjoyed more success, initially in speech recognition, but later
also in virtually all other NLP tasks. In contrast to symbolic approaches, statistical
approaches tend to be more robust because they have less reliance on human-
generated rules; instead, they often take advantage of regularities and patterns in

3.2

3.2 NLP and Text Information Systems 43

empirical uses of language, and rely solely on labeled training data by humans and
application of machine learning techniques.

While linguistic knowledge is always useful, today, the most advanced natural
language processing techniques tend to rely on heavy use of statistical machine
learning techniques with linguistic knowledge only playing a somewhat secondary
role. These statistical NLP techniques are successful for some of the NLP tasks. Part
of speech tagging is a relatively easy task, and state-of-the-art POS taggers may have
a very high accuracy (above 97% on news data). Parsing is more difficult, though
partial parsing can probably be done with reasonably high accuracy (e.g., above
90% for recognizing noun phrases)?.

However, full structure parsing remains very difficult, mainly because of ambi-
guities. Semantic analysis is even more difficult, only successful for some aspects
of analysis, notably information extraction (recognizing named entities such as
names of people and organization, and relations between entities such as who
works in which organization), word sense disambiguation (distinguishing different
senses of a word in different contexts of usage), and sentiment analysis (recogniz-
ing positive opinions about a product in a product review). Inferences and speech
act analysis are generally only feasible in very limited domains.

In summary, only “shallow” analysis of natural language processing can be done
for arbitrary text and in a robust manner; “deep” analysis tends not to scale up well
or be robust enough for analyzing unrestricted text. In many cases, a significant
amount of training data (created by human labeling) must be available in order to
achieve reasonable accuracy.

NLP and Text Information Systems

Because of the required robustness and efficiency in TIS applications, in general,
robust shallow NLP techniques tend to be more useful than fragile deep analysis
techniques, which may hurt application performance due to inevitable analysis
errors caused by the general difficulty of NLP. The limited value of deep NLP for
some TIS tasks is further due to various ways to bypass the more difficult task of
preciselyunderstanding the meaning of natural language text and directly optimize
the task performance. Thus, while improved NLP techniques should in general
enable improved TIS task performance, lack of NLP capability isn’t necessarily a
major barrier for some application tasks, notably text retrieval, which is a relatively

1. These performance numbers were based on a specific data set, so they may not generalize well
even within the same domain.

44 Chapter 3 Text Data Understanding

Figure 3.2

“Easier” and
Tasks Dependency on NLP more “workarounds”

Classification/
retrieval

Summarization/
extraction/
topic mining

Translation/
dialogue

Question
answering

“Easy” vs. “difficult” NLP applications.

easy task as compared with a more difficult task such as machine translation where
deep understanding of natural language is clearly required.

Figure 3.2 shows a number of TIS tasks that require somewhat different levels
of NLP. At one end of the spectrum, tasks such as retrieval and classification are
relatively easy, and in most of the cases, they don't require deep NLP; indeed,
looking at the keywords mentioned in text is often sufficient to determine whethera
document is relevant to a query or about a certain topic. At the other end, however,
tasks such as machine translation and question answering would require much
more precise understanding; for example, a wrong parse of a sentence generally
would lead to awrong translation unless the target language has a similar ambiguity
structure, and similarly, a wrong understanding of the question would lead to
WIong answers.

When it comes to a specific application task, it is often possible to bypass the
difficulty in accurately understanding natural language and go directly to solve the
application problem. A well-known example is the Eliza system,? which is supposed
to play the role of a therapist and make a dialogue with a human user [Weizenbaum
1966]. The following is a sample dialogue.

Person: Men are all alike.

2. http://www.cs.nott.ac.uk/~ pszgxk/courses/g5aiai/002history/eliza.htm

3.2 NLP and Text Information Systems 45

ELIZA: In what way?

Person: They're always bugging us about something or other.

ELIZA: Can you think of a specific example?

Person: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here?

Person: He says I'm depressed much of the time.

ELIZA: Iam sorry to hear that you are depressed.

Person: It's true. I am unhappy.

ELIZA: Do you think coming here will help you not to be unhappy?

Person: I need some help, that much seems certain.

ELIZA: What would it mean to you if you got some help?

Person: Perhaps I could learn to get along with my mother.

ELIZA: Tell me more about your family

On the surface, the dialogue appears to be quite natural, and indeed, such a
dialogue might be useful to engage a depressed patient in a conversation. However,

the system does not really understand the language, and solely relies on heuristic
rules like the following to keep the dialogue going:

Iremember X — Do you often think of X?

always — Can you think of a specific example?

Such rules enable the system to directly perform the task, i.e., making a conver-
sation, without necessarily trying to understand the real meaning of words and
determining the meaning of the entire sentence.

Such a pattern-based way of solving a problem has turned out to be quite pow-
erful. Indeed, modern machine learning approaches to natural language under-
standing are essentially based on this and in many ways are similar to the Eliza
system, but with two important differences. The first is that the rules in a machine
learning system would not be exact or strict; instead, they tend to be stochastic, and
the probabilities of choosing which rule would be empirically set based on a train-
ing data set where the expected behavior of a function to be computed is known.
Second, instead of having human to supply rules, the “soft” rules may be learned

46 Chapter 3 Text Data Understanding

3.3

automatically from the training data with only minimum help from users who can,
e.g., specify the elements in a rule.

Even difficult tasks like machine translation can be done by such statistical
approaches. The most useful NLP techniques for building a TIS are statistical ap-
proaches which tend to be much more robust than symbolic approaches. Statistical
language models are especially useful because they can quantify the uncertainties
associated with the use of natural language in a principled way.

Text Representation

Techniques from NLP allow us to design many different types of informative fea-
tures for text objects. Let's take a look at the example sentence A dog is chasing a boy
on the playground in Figure 3.3. We can represent this sentence in many different
ways. First, we can always represent such a sentence as a string of characters. This
is true for every language. This is perhaps the most general way of representing text
since we can always use this approach to represent any text data. Unfortunately,
the downside to this representation is that it can’t allow us to perform semantic
analysis, which is often needed for many applications of text mining. We’re not
even recognizing words, which are the basic units of meaning for any language. (Of
course, there are some situations where characters are useful, but that is not the
general case.)

The next version of text representation is performing word segmentation to
obtain a sequence of words. In the example sentence, we get features like dog and
chasing. With this level of representation, we suddenly have much more freedom.
By identifying words, we can (for example), easily discover the most frequent words
in this document or the whole collection. These words can then be used to form
topics. Therefore, representing text data as a sequence of words opens up a lot of
interesting analysis possibilities.

However, this level of representation is slightly less general than a string of char-
acters. In some languages, such as Chinese, it's actually not that easy to identify all
the word boundaries since in such a language text is a sequence of characters with
no spaces in between words. To solve this problem, we have to rely on some special
techniques to identify words and perform more advanced segmentation that isn’t
only based on whitespace (which isn’t always 100% accurate). So, the sequence of
words representation is not as robust as the string of characters representation. In
English, it’s very easy to obtain this level of representation so we can use this all
the time.

If we go further in natural language processing, we can add part-of-speech (POS)
tags to the words. This allows us to count, for example, the most frequent nouns; or,

Figure 3.3

3.3 Text Representation 47

we could determine what kind of nouns are associated with what kind of verbs. This
opens up more interesting opportunities for further analysis. Note in Figure 3.3
that we use a plus sign on the additional features because by representing text as
a sequence of part of speech tags, we don’t necessarily replace the original word
sequence. Instead, we add this as an additional way of representing text data.

Representing text as both words and POS tags enriches the representation of
text data, enabling a deeper, more principled analysis. If we go further, then we’ll
be parsing the sentence to obtain a syntactic structure, Again, this further opens up
more interesting analysis of, for example, the writing styles or grammatical error
correction.

If we go further still into semantic analysis, then we might be able to recognize
dog as an animal. We also can recognize boy as a person, and playground as a
location and analyze their relations. One deduction could be that the dog was
chasing the boy, and the boy is on the playground. This will add more entities and
relations, through entity-relation recognition. Now, we can count the most frequent
person that appears in this whole collection of news articles. Or, whenever you see
a mention of this person you also tend to see mentions of another person or object.
These types of repeated pattens can potentially make very good features.

A dog is chasing a boy on the playground String of characters

A dog is chasing a boy on the playground Sequenceofwords

Det Noun Aux Verb Det Noun Prep Det Noun +POS tags
S~ — ~ —
Noun phrase Complex verb Noun phrase Noun phrase

T
Verb phrase Prep phrase + Syntactic structures
-

Verb phrase

Sentence

CHASE on the playground| + Entities and relations

Animal Person Location

\ Dog(d1). Boy(b1). Playground(p1). Chasing(d1,b1,p1) ‘ + Logic predicates

v l Speech act = REQUEST ‘ + Speech acts v

Closer to knowledge

Deeper NLP: requires more human effort; less accurate representation

Ilustration of different levels of text representation.

48 Chapter 3 Text Data Understanding

Such a high-level representation is even less robust than the sequence of words
or POS tags. It's not always easy to identify all the entities with the right types and
we might make mistakes. Relations are even harder to find; again, we might make
mistakes. The level of representation is less robust, yet it’s very useful. If we move
further to a logic representation, then we have predicates and inference rules. With
inference rules we can infer interesting derived facts from the text. As one would
imagine, we can’t do that all the time for all kinds of sentences since it may take
significant computation time or a large amount of training data.

Finally, speech acts would add yet another level of representation of the intent
of this sentence. In this example, it might be a request. Knowing that would allow
us to analyze even more interesting things about the observer or the author of this
sentence. What's the intention of saying that? What scenarios or what kinds of
actions will occur?

Figure 3.3 shows that if we move downwards, we generally see more sophisti-
cated NLP techniques. Unfortunately, such techniques would require more human
effort as well, and they are generally less robust since they attempt to solve a much
more difficult problem. If we analyze our text at levels that represent deeper analy-
sis of language, then we have to tolerate potential errors. That also means it’s still
necessary to combine such deep analysis with shallow analysis based on (for exam-
ple) sequences of words. On the right side, there is an arrow that points down to
indicate that as we go down, our representation of text is closer to the knowledge
representation in our mind. That's the purpose of text mining!

Clearly, there is a tradeoff here between doing deeper analysis that might have
errors but would give us direct knowledge that can be extracted from text and doing
shadow analysis that is more robust but wouldn’t give us the necessary deeper
representation of knowledge.

Text data are generated by humans and are meant to be consumed by humans.
As aresult, in text data analysis and text mining, humans play a very important role.
They are always in the loop, meaning that we should optimize for a collaboration
between humans and computers. In that sense, it’s okay that computers may not
be able to have a completely accurate representation of text data. Patterns that
are extracted from text data can be interpreted by humans, and then humans can
guide the computers to do more accurate analysis by annotating more data, guiding
machine learning programs to make them work more effectively.

Different text representation tends to enable different analyses, as shown in
Figure 3.4. In particular, we can gradually add more and more deeper analysis
results to represent text data that would open up more interesting representation
opportunities and analysis capabilities. The table summarizes what we have just

3.3 Text Representation 49

Text Rep Generality Enabled Analysis Examples of Application
String s String processing Compression
Words — Word relation analysis; Thesaurus discovery; topic-
topic analysis; sentiment and opinion-related
analysis applications
+ Syntactic — Syntactic graph analysis Stylistic analysis; structure-
structures based feature extraction
+ Entities & - Knowledge graph analysis; Discovery of knowledge and
relations information network opinions about specific
analysis entities
+ Logic u Integrative analysis of Knowledge assistant for
predicates scattered knowledge; biologists

logic inference

Figure 3.4 Text representation and enabled analysis.

seen; the first column shows the type of text representation while the second
visualizes the generality of such a representation. By generality, we mean whether
we can do this kind of representation accurately for all the text data (very general) or
only some of them (not very general). The third column shows the enabled analysis
techniques and the final column shows some examples of applications that can be
achieved with a particular level of representation.

As a sequence of characters, text can only be processed by string processing
algorithms. They are very robust and general. In a compression application, we
don’t need to know word boundaries (although knowing word boundaries might
actually help). Sequences of words (as opposed to characters) offer a very important
level of representation; it's quite general and relatively robust, indicating that it
supports many analysis techniques such as word relation analysis, topic analysis,
and sentiment analysis. As you may expect, many applications can be enabled by
these kinds of analysis. For example, thesaurus discovery has to do with discovering
related words, and topic- and opinion-related applications can also be based on
word-level representation. People might be interested in knowing major topics
covered in the collection of text, where a topic is represented as a distribution over
words.

Moving down, we'll see we can gradually add additional representations. By
adding syntactic structures, we can enable syntactic graph analysis; we can use
graph mining algorithms to analyze these syntactic graphs. For example, stylistic

50 Chapter 3 TextData Understanding

3.4

analysis generally requires syntactical structure representation. We can also gener-
ate structure-based features that might help us classify the text objects into differ-
ent categories by looking at their different syntactic structures. If you want to clas-
sify articles into different categories corresponding to different authors, then you
generally need to look at syntactic structures. When we add entities and relations,
then we can enable other techniques such as knowledge graphs or information net-
works. Using these more advanced feature representations allows applications that
deal with entities.

Finally, when we add logical predicates, we can integrate analysis of scattered
knowledge. For example, we can add an ontology on top of extracted information
from text to make inferences. A good example of an application enabled by this
level of representation is a knowledge assistant for biologists. This system is able
to manage all the relevant knowledge from literature about a research problem such
as understanding gene functions. The computer can make inferences about some
of the hypotheses that a biologist might be interested in. For example, it could
determine whether a gene has a certain function by reading literature to extract
relevant facts. It could use a logic system to track answers to researchers’ questions
about what genes are related to what functions. In order to support this level of
application, we need to go as far as logical representation.

This book covers techniques mainly focused on word-based representation.
These techniques are general and robust and widely used in various applications.
In fact, in virtually all text mining applications, you need this level of represen-
tation. Still, other levels can be combined in order to support more linguistically
sophisticated applications as needed.

Statistical Language Models

A statistical language model (or just language model for short) is a probability
distribution over word sequences. It thus gives any sequence of words a potentially
different probability. For example, a language model may give the following three-
word sequences different probabilities:

p(Today is Wednesday) = 0.001
p(Today Wednesday is) = 0.000000001
p(The equation has a solution) = 0.000001

Clearly, a language model can be context-dependent. In the language model
shown above, the sequence The equation has a solution has a smaller probability
than Today is Wednesday. This may be a reasonable language model for describ-

3.4 Statistical Language Models 51

ing general conversations, but it may be inaccurate for describing conversations
happening at a mathematics conference, where the sequence The equation has a
solution may occur more frequently than Today is Wednesday.

Given a language model, we can sample word sequences according to the distri-
bution to obtain a text sample. In this sense, we may use such a model to “generate”
text. Thus, a language model is also often called a generative model for text.

Why is a language model useful? A general answer is that it provides a principled
way to quantify the uncertainties associated with the use of natural language.
More specifically, it allows us to answer many interesting questions related to text
analysis and information retrieval. The following are some examples of questions
that a language model can help answer.

e Given that we see John and feels, how likely will we see happy as opposed to
habit as the next word? Answering this question can help speech recognition
as happy and habit have very similar acoustic signals, but a language model
can easily suggest that John feels happy is far more likely than john feels habit.

s Given that we observe baseball three times and game once in a news article,
how likely is it about the topic “sports”? This will obviously directly help text
categorization and information retrieval tasks.

* Given that a user is interested in sports news, how likely would it be for the
user to use baseball in a query? This is directly related to information retrieval.

If we enumerate all the possible sequences of words and give a probability to
each sequence, the model would be too complex to estimate because the number
of parameters is potentially infinite since we have a potentially infinite number
of word sequences. That is, we would never have enough data to estimate these
parameters. Thus, we have to make assumptions to simplify the model.

The simplest language model is the unigram language model in which we
assume that a word sequence results from generating each word independently.
Thus, the probability of a sequence of words would be equal to the product of the
probability of each word. Formally, let V be the set of words in the vocabulary, and

wy, ..., w, aword sequence, where w; € V is a word. We have
n
plwy, ..., w,) = 1_[plw;). (3.1)
i=1

Given a unigram language model 8, we have as many parameters as the words
in the vocabulary, and they satisfy the constraint }_, _, p(w) = 1. Such a model
essentially specifies a multinomial distribution over all the words.

52 Chapter 3 Text Data Understanding

p(w|6h) p(w|62)
text 0.2 food 0.25
mining 0.1 nutrition 0.1
association 0.01 healthy 0.05
clustering 0.02 diet 0.02
food 0.00001 text 0.00001

Figure 3.5 Two examples of unigram language models, representing two different topics.

Given a language model ¢, in general, the probabilities of generating two dif-
ferent documents D, and D, would be different, i.e., p(Dy | €) # p(D, |). What
kind of documents would have higher probabilities? Intuitively it would be those
documents that contain many occurrences of the high probability words accord-
ing to p(w | #). In this sense, the high probability words of # can indicate the topic
captured by 4.

For example, the two unigram language models illustrated in Figure 3.5 suggest
a topic about “text mining” and a topic about “health”, respectively. Intuitively, if
D is a text mining paper, we would expect p(D | 6;) > p(D | 6,), while if D" is a blog
article discussing diet control, we would expect the opposite: p(D' | 6;) < p(D’|8,).
We can also expect p(D | 6;) > p(D' | 6y) and p(D | 8,) < p(D"| 6,).

Now suppose we have observed a document D (e.g., a short abstract of a text
mining paper) which is assumed to be generated using a unigram language model
#, and we would like to infer the underlying model @ (i.e., estimate the probabilities
of each word w, p(w | #)) based on the observed D. This is a standard problem
in statistics called parameter estimation and can be solved using many different
methods.

One popular method is the maximum likelihood (ML) estimator, which seeks a
model that would give the observed data the highest likelihood (i.e., best explain
the data):

6 = arg max, p(D | 0). (3.2)

It is easy to show that the ML estimate of a unigram language model gives each
word a probability equal to its relative frequency in D. That is,
c(w, D)
|DI

pw|)= , (3.3)

3.4 Statistical Language Models 53

where c(w, D) isthe count of word w in D and | D|is the length of D, or total number
of words in D.

Such an estimate is optimal in the sense that it would maximize the probability
of the observed data, but whether it is really optimal for an application is still
questionable. For example, if our goal is to estimate the language model in the mind
of an author of a research article, and we use the maximum likelihood estimator
to estimate the model based only on the abstract of a paper, then it is clearly non-
optimal since the estimated model would assign zero probability to any unseen
words in the abstract, which would make the whole article have a zero probability
unless it only uses words in the abstract. Note that, in general, the maximum
likelihood estimate would assign zero probability to any unseen token or event in
the observed data; this is so because assigning a non-zero probability to such a
token or event would take away probability mass that could have been assigned
to an observed word (since all probabilities must sum to 1), thus reducing the
likelihood of the observed data. We will discuss various techniques for improving
the maximum likelihood estimator later by using techniques called smoothing.

Although extremely simple, a unigram language model is already very useful
for text analysis. For example, Figure 3.6 shows three different unigram language
models estimated on three different text data samples, i.e., a general English text
database, a computer science research article database, and a text mining research
paper. In general, the words with the highest probabilities in all the three models
are those functional words in English because such words are frequently used
in any text. After going further down on the list of words, one would see more
content-carrying and topical words. Such content words would differ dramatically
depending on the data to be used for the estimation, and thus can be used to
discriminate the topics in different text samples.

Unigram language models can also be used to perform semantic analysis of word
relations. For example, we can use them to find what words are semantically asso-
ciated with a word like computer. The main idea for doing this is to see what other
words tend to co-occur with the word computer. Specifically, we can first obtain a
sample of documents (or sentences) where computer is mentioned. We can then
estimate a language model based on this sample to obtain p(w | computer). This
model tells us which words occur frequently in the context of “computer.” However,
the most frequent words according to this model would likely be functional words
in English or words that are simply common in the data, but have no strong asso-
ciation with computer. To filter out such common words, we need a model for such
words which can then tell us what words should be filtered. It is easy to see that the
general English language model (i.e., a background language model) would serve

54 Chapter 3 Text Data Understanding

Figure 3.6

General Computer Text mining
background science paper
English text papers

the 0.03 the 0.032 the 0.031

a0.02 a0.019 e

is 0.015 i50.014 text 0.04

we 0.01 we 0.011 mining 0.035
e e association 0.03
food 0.003 computer 0.004 clustering 0.005

computer 0.00001 software 0.0001 computer 0.0009

text 0.000006

text 0.00006 food 0.000001

Background LM: p(w|B) Collection LM: p(w|C) Document LM: p(w|D)

Three different language models representing three different topics.

the purpose well. So we can use the background language model to normalize the
model p(w | computer) and obtain a probability ratio for each word. Words with
high ratio values can then be assumed to be semantically associated with computer
since they tend to occur frequently in its context, but not frequently in general. This
is illustrated in Figure 3.7.

More applications of language models in text information systems will be fur-
ther discussed as their specific applications appear in later chapters. For example,
we can represent both documents and queries as being generated from some lan-
guage model. Given this background however, the reader should have sufficient
information to understand the future chapters dealing with this powerful statisti-
cal tool.

Bibliographic Notes and Further Reading

There are many textbooks on NLP, including, Speech and Language Processing
[Jurafsky and Martin 2009], Foundations of Statistical NLP [Manning and Schiitze
1999], and Natural Language Understanding [Allen 1995]. An in-depth coverage of
statistical language models can be found in the book Statistical Methods for Speech
Recognition [Jelinek 1997]. Rosenfeld [2000] provides a concise yet comprehensive

Figure 3.7

All documents
containing word
“computer”

Background LM: p(w|B)

General

background
English text

Topic LM: p(w|“computer”)

the 0.032
a0.019

is 0.014

we 0.008
computer 0.004
software 0.0001

text 0.00006

the 0.03
a0.02

is 0.015
we 0.01

computer 0.00001

N

7

Exercises

Normalized topic LM:
p(w|“computer”)/p(w|B)

computer 400
software 150
program 104

text 3.0
the 1.1
a0.99

is 0.9
we 0.8

55

Using topic language models and a background language model to find semantically

related words.

review of statistical language models. Zhai [2008] contains a detailed discussion

of the use of statistical language models for information retrieval, some of which

will be covered in later chapters of this book. An important topic in NLP that we

have not covered much in this chapter is information extraction. A comprehensive

introduction to this topic can be found in Sarawagi [2008], and a useful survey can

be found in Jiang [2012]. For a discussion of this topic in the context of information
retrieval, see the book Moens [2006].

Exercises

3.1. In what way is NLP related to text mining?

3.2. Does poor NLP performance mean poor retrieval performance? Explain.

3.3. Givenacollection of documents for a specific topic, how can we use maximum

likelihood estimation to create a topic unigram language model?

3.4. How might the size of a document collection affect the quality of a language

model?

3.5. Why might maximum likelihood estimation not be the best guess of parame-

ters for a topic language model?

56 Chapter 3 Text Data Understanding

3.6. Suppose we appended a duplicate copy of the topic collection to itself and
re-estimated a maximum likelihood language model. Would 6 change?

3.7. A unigram language model as defined in this chapter can take a sequence of
words as input and output its probability. Explain how this calculation has strong
independence assumptions.

3.8. Given a unigram language model # estimated from this book, and two doc-
uments d; = information retrieval and d, = retrieval information, then is
p(dy | 0) > p(dy | 0)? Explain.

3.9. An n-gram language model records sequences of n words. How does the num-
ber of possible parameters change if we decided to use a 2-gram (bigram) language
model instead of a unigram language model? How about a 3-gram (trigram) model?
Give your answer in terms of V, the unigram vocabulary size.

3.10. Using your favorite programming language, estimate a unigram language
model using maximum likelihood. Do this by reading a single text file and delim-
iting words by whitespace.

3.11. Sort the words by their probabilities from the previous exercise. If you used
a different text file, how would your sorted list be different? How would it be the
same?

META: A Unified Toolkit
for Text Data
Management and
Analysis

This chapter introduces the accompanying software META, a free and open-source
toolkit that can be used to analyze text data. Throughout this book, we give hands-
on exercises with META to practice concepts and explore different text mining
algorithms.

Most of the algorithms and methods discussed in this book can be found in
some form in the META toolkit. If META doesn’t include a technique discussed in
this book, it’s likely that a chapter exercise is to implement this feature yourself! De-
spite being a powerful toolkit, META’s simplicity makes feature additions relatively
straightforward, usually through extending a short class hierarchy.

Configuration files are an integral part of META's forward-facing infrastructure.
They are designed such that exploratory analysis usually requires no programming
effort from the user. By default, META is packaged with various executables that can
be used to solve a particular task. For example, for a classification experiment the
user would run the following command in their terminal®:

./classify config.toml

This is standard procedure for using the default executables; they take only one
configuration file parameter. The configuration file format is explained in detail
later in this chapter, but essentially it allows the user to select a dataset, a way

1. Running the default classification experiment requires a dataset to operate on. The 20news-
groups dataset is specified in the default META config file and can be downloaded here: https://
meta-toolkit.org/data/20newsgroups.tar.gz. Place it in the meta/data/ directory.

58 Chapter4 META: A Unified Toolkit for Text Data Management and Analysis

4.1

to tokenize the dataset, and a particular classification algorithm to run (for this
example).

If more advanced functionality is desired, programming in C++ is required to
make calls to META’s API (applications programming interface). Both configuration
file and API usage are documented on META’s website, https://meta-toolkit.org as
well as in this chapter. Additionally, a forum for MeTA exists (https://forum.meta-
toolkit.org), containing discussion surrounding the toolkit. It includes user support
topics, community-written documentation, and developer discussions.

The sections that follow delve into a little more detail about particular aspects
of META so the reader will be comfortable working with it in future chapters.

Design Philosophy

META's goal is to improve upon and complement the current body of open source
machine learning and information retrieval software. The existing environment of
this open source software tends to be quite fragmented.

There is rarely a single location for a wide variety of algorithms; a good example
of this is the LIBLINEAR [Fan et al. 2008] software package for SVMs. While this
is the most cited of the open source implementations of linear SVMs, it focuses
solely on kernel-less methods. If presented with a nonlinear classification problem,
one would be forced to find a different software package that supports kernels
(such as the same authors’ LIBSVM package [Chang and Lin 2011]). This places an
undue burden on the researchers and students—not only are they required to have
a detailed understanding of the research problem at hand, but they are now forced
to understand this fragmented nature of the open-source software community,
find the appropriate tools in this mishmash of implementations, and compile and
configure the appropriate tool.

Even when this is all done, there is the problem of data formatting—it is unlikely
that the tools have standardized upon a single input format, so a certain amount of
data preprocessing is now required. This all detracts from the actual task at hand,
which has a marked impact on the speed of discovery and education.

META addresses these issues. In particular, it provides a unifying framework
for text indexing and analysis methods, allowing users to quickly run controlled
experiments. It modularizes the feature generation, instance representation, data
storage formats, and algorithm implementations; this allows for researchers and
students to make seamless transitions along any of these dimensions with minimal
effort.

4.2

4.2 Setting up META 59

META’s modularity supports exploration, encourages contributions, and in-
creases visibility to its inner workings. These facts make it a perfect companion
toolkit for this book. As mentioned at the beginning of the chapter, readers will
follow exercises that add real functionality to the toolkit. After reading this book
and learning about text data management and analysis, it is envisioned readers
continue to modify META to suit their text information needs, building upon their
newfound knowledge.

Finally, since META will always be free and open-source, readers as a community
can jointly contribute to its functionality, benefiting all those involved.

Setting up META
All future sections in this book will assume the reader has META downloaded and
installed. Here, we’ll show how to set up META.

META has both a website with tutorials and an online repository on GitHub.
To actually download the toolkit, users will check it out with the version control
software git in their command line terminal after installing any necessary prereq-
uisites.

The META website contains instructions for downloading and setting up the
software for a particular system configuration. At the time of writing this book, both
Linux and Mac OS are supported. Visit https://meta-toolkit.org/setup-guide.html
and follow the instructions for the desired platform. We will assume the reader has
performed the steps listed in the setup guide and has a working version of MeTA for
all exercises and demonstrations in this book.

There are two steps that are not mentioned in the setup guide. The first is to
make sure the reader has the version of META that was current when this book was
published. To ensure that the commands and examples sync up with the software
the reader has downloaded, we will ensure that META is checked out with version
2.2.0. Run the following command inside the meta/ directory:

git reset —--hard v2.2.0

The second step is to make sure that any necessary model files are also down-
loaded. These are available on the META releases page: https://github.com/meta-
toolkit/meta/releases/tag/v2.2.0. By default, the model files should be placed in the
meta/build/ directory, but you can place them anywhere as long as the paths in
the config file are updated.

60 Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

Once these steps are complete, the reader should be able to complete any exer-
cise or run any demo. If any additional files or information are needed, it will be
provided in the accompanying section.

Architecture

4-3 All processed data in META is stored in an index. There are two index types:
forward_index and inverted_index. The former is keyed by document IDs, and
the latter is keyed by term IDs.

forward_index is used for applications such as topic modeling and most clas-
sification tasks.

inverted_index is used to create search engines, or do classification with k-
nearest-neighbor or similar algorithms.

Since each META application takes an index as input, all processed data is
interchangeable between all the components. This also gives a great advantage to
classification: META supports out-of-core classification by default! If a dataset is
small enough (like most other toolkits assume), a cache can be used such as no_
evict_cache to keep it all in memory without sacrificing any speed. (Index usage
is explained in much more detail in the search engine exercises.)

There are four corpus input formats.

line_corpus. each dataset consists of one to three files:
corpusname.dat. each document appears on one line

corpusname.dat.labels. optionalfilethatincludes the classorlabel of
the document on each line, again corresponding to the order in cor-
pusname .dat. These are the labels that are used for the classification
tasks.

file_corpus. each documentisitsown file, and the name of the file becomes
the name of the document. There is also a corpusname-full-corpus.txt
which contains (on each line) a required class label for each document fol-
lowed by the path to the file on disk. If there are no class labels, a placeholder
label should be required, e.g., “[none]”.

gz_corpus. similartoline_corpus, buteach ofits files and metadata files are
compressed using gzip compression:
corpusname.dat.gz. compressed version of corpusname.dat

corpusname.dat.labels.gz. compressed version of corpusname.
dat.labels

4.4 Tokenization with META 61

libsvm_corpus. If only being used for classification, META can also take
LIBSVM-formatted input to create a forward_index. There are many ma-
chine learning datasets available in this format on the LIBSVM site.

For more information on corpus storage and configuration settings, we suggest
the reader consult https://meta-toolkit.org/overview-tutorial.html.

Tokenization with META

4] 4 The first step in creating an index over any sort of text data is the “tokenization”
process. At a high level, this simply means converting individual text documents
into sparse vectors of counts of terms—these sparse vectors are then typically
consumed by an indexer to output an inverted_index over your corpus.

META structures this text analysis process into several layers in order to give the
user as much power and control over the way the text is analyzed as possible.

An analyzer, in most cases, will take a “filter chain” that is used to generate the
final tokens for its tokenization process: the filter chains are always defined as a
specific tokenizer class followed by a sequence of zero or more filter classes, each
of which reads from the previous class’s output. For example, here is a simple filter
chain that lowercases all tokens and only keeps tokens with a certain length range:

icu_tokenizer — lowercase_filter — length_filter

Tokenizers always come first. They define how to split a document’s string
content into tokens. Some examples are as follows.

icu_tokenizer. converts documents into streams of tokens by following the
Unicode standards for sentence and word segmentation.

character_tokenizer. convertsdocumentsintostreams ofsingle characters.

Filters come next, and can be chained together. They define ways that text can
be modified or transformed. Here are some examples of filters.

length_filter. this filter accepts tokens that are within a certain length and
rejects those that are not.

icu_filter. appliesanICU (International Components for Unicode)? translit-
eration to each token in the sequence. For example, an accented character like
i is instead written as i.

2. http://www.csie.ntu.edu.tw/ " ¢jlin/libsvmtools/datasets

3. http://site.icu-project.org/; note that different versions of ICU will tokenize text in slightly
different ways!

62 Chapter4 META: A Unified Toolkit for Text Data Management and Analysis

list_filter. this filter either accepts or rejects tokens based on a list. For
example, one could use a stop word list and reject stop words.

porter2_stemmer. this filter transforms each token according to the Porter2

English Stemmer rules.*

Analyzers operate on the output from the filter chain and produce token counts
from documents. Here are some examples of analyzers.

ngram_word_analyzer. Collects and counts sequences of n words (tokens)
that have been filtered by the filter chain.

ngram_pos_analyzer. Same asngram_word_analyzer, but operates on part-
of-speech tags from META’s CRF implementation.

tree_analyzer. Collects and counts occurrences of parse tree features.
libsvm_analyzer. Convertsa LIBSVM line_corpus into META format.
META defines a sane default filter chain that users are encouraged to use for

general text analysis in the absence of any specific requirements. To use it, one
should specify the following in the configuration file:

[[analyzers]]
method = "ngram-word"
ngram = 1

filter = "default-chain"

This configures the text analysis process to consider unigrams of words gener-
ated by running each document through the default filter chain. This filter chain
should work well for most languages, as all of its operations (including but not lim-
ited to tokenization and sentence boundary detection) are defined in terms of the
Unicode standard wherever possible.

To consider both unigrams and bigrams, the configuration file should look like

the following:

[[analyzers]]

method = "ngram-word"
ngram = 1
filter = "default-chain"

[[analyzers]]

4. http://snowball.tartarus.org/algorithms/english/stemmer.html

4.4 Tokenization with META 63

method = "ngram-word"
ngram = 2
filter = "default-chain"

Each [[analyzers]] block defines a single analyzer and its corresponding fil-
ter chain: as many can be used as desired—the tokens generated by each analyzer
specified will be counted and placed in a single sparse vector of counts. This is
useful for combining multiple different kinds of features together into your doc-
ument representation. For example, the following configuration would combine
unigram words, bigram part-of-speech tags, tree skeleton features, and subtree
features.

[[analyzers]]

method = "ngram-word"
ngram = 1

filter = "default-chain"

[[analyzers]]

method = "ngram-pos"

ngram = 2

filter = [{type = "icu-tokenizer"}, {type = "ptb-normalizer"}]
crf-prefix = "path/to/crf/model"

[[analyzers]]

method = "tree"

filter = [{type = "icu-tokenizer"}, {type = "ptb-normalizer"}]
features = ["skel", "subtree"]

tagger = "path/to/greedy-tagger/model"

parser = "path/to/sr-parser/model"

If an application requires specific text analysis operations, one can specify di-
rectly what the filter chain should look like by modifying the configuration file.
Instead of filter being a string parameter as above, we will change filter to look very
much like the [[analyzers]] blocks: each analyzer will have a series of [[ana-
lyzers.filter]] blocks, each of which defines a step in the filter chain. All filter
chains must start with a tokenizer. Here is an example filter chain for unigram
words like the one at the beginning of this section:

[[analyzers]]

method = "ngram-word"

ngram = 1
[[analyzers.filter]]
type = "icu-tokenizer"

64 Chapter4 META: A Unified Toolkit for Text Data Management and Analysis

4.5

[[analyzers.filter]]
type = "lowercase"

[[analyzers.filter]]
type = "length"

min = 2

max = 35

META provides many different classes to support building filter chains. Please
look at the API documentation® for more information. In particular, the analyz-
ers::tokenizers namespace and the analyzers: :filters namespace should
give a good idea of the capabilities. The static public attribute id for a given class
is the string needed for the “type” in the configuration file.

Related Toolkits

Existing toolkits supporting text management and analysis tend to fall into two
categories. The first is search engine toolkits, which are especially suitable for
building a search engine application, but tend to have limited support for text
analysis/mining functions. Examples include the following.

Lucene. https://lucene.apache.org/

Terrier. http://terrier.org/

Indri/Lemur. http://www.lemurproject.org/

The second is text mining or general data mining and machine learning toolkits,
which tend to selectively support some text analysis functions, but generally do not
support search capability. Examples include the following.

Weka. http://www.cs.waikato.ac.nz/ml/weka/

LIBSVM. https://www.csie.ntu.edu.tw/¢jlin/libsvm/

Stanford NLP. http://nlp.stanford.edu/software/corenlp.shtml

Hlinois NLP Curator. http://cogcomp.cs.illinois.edu/page/software_view/
Curator

Scikit Learn. http://scikit-learn.org/stable/

NLTK. http://www.nltk.org/

5. Visit https://meta-toolkit.org/doxygen/namespaces.html

Exercises 65

However, there is a lack of seamless integration of search engine capabilities
with various text analysis functions, which is necessary for building a unified system
for supporting text management and analysis. A main design philosophy of META,
which also differentiates META from the existing toolkits, is its emphasis on the
tight integration of search capabilities (indeed, text access capabilities in general)
with text analysis functions, enabling it to provide full support for building a power-
ful text analysis application. To facilitate education and research, MeTA is designed
with an emphasis on modularity and extensibility achieved through object-oriented
design. META can be used together with existing toolkits in multiple ways. For ex-
ample, for very large-scale text applications, an existing search engine toolkit can
be used to support search, while META can be used to further support analysis of
the found search results or any subset of text data that are obtained from the orig-
inal large data set. NLP toolkits can be used to preprocess text data and generate
annotated text data for modules in META to use as input. META can also be used
to generate a text representation that would be fed into a different data mining or
machine learning toolkit.

Exercises

In its simplest form, text data could be a single document in .txt format. This
exercise will get you familiar with various techniques that are used to analyze
text. We’ll use the novel A Tale of Two Cities by Charles Dickens as example text.
The book is called two-cities.txt, and is located at http://sifaka.cs.uiuc.edu/ir/
textdatabook/two-cities.txt. You can also use any of your own plaintext files that
have multiple English sentences.

Like all future exercises, we will assume that the reader followed the META setup
guide and successfully compiled the executables. In this exercise, we’ll only be
using the profile program. Running . /profile frominside the build/ directory
will print out the following usage information:

Usage: ./profile config.toml file.txt [OPTION]

where [OPTION] is one or more of:
-—stem perform stemming on each word
--stop remove stop words
-—pos annotate words with POS tags
--pos-replace replace words with their POS tags
—--parse create grammatical parse trees from file content
--freq-unigram sort and count unigram words
--freq-bigram sort and count bigram words
--freq-trigram sort and count trigram words
--all run all options

66 Chapter4 META: A Unified Toolkit for Text Data Management and Analysis

If running ./profile prints out this information, then everything has been
set up correctly. We’ll look into what each of these options mean in the following
exercises.

4.1. Stop Word Removal. Consider the following words: I, the, of, my, it, to, from.
If it was known that a document contained these words, would there be any idea
what the document was about? Probably not. These types of words are called stop
words. Specifically, they are very high frequency words that do not contain content
information. They are used because they’re grammatically required, such as when
connecting sentences.

Since these words do not contain any topical information, they are often removed
as a preprocessing step in text analysis. Not only are these (usually) useless words
ignored, but having less data can mean that algorithms run faster!

./profile config.toml two-cities.txt —--stop

Now, use the profile program to remove stop words from the document two-
cities.txt.Canyoustill get an idea of what the book is about without these words
present?

4.2. Stemming. Stemming is the process of reducing a word to a base form.
This is especially useful for search engines. If a user wants to find books about
running, documents containing the word run or runs would not match. If we apply
a stemming algorithm to a word, it is more likely that other forms of the word will
match it in an information retrieval task.

The most popular stemming algorithm is the Porter2 English Stemmer, devel-
oped by Martin Porter. It is a slightly improved version from the original Porter
Stemmer from 1980. Some examples are:

{run, runs, running} — run
{argue, argued, argues, arguing} — argu
{lies, lying, lie} — lie
META uses the Porter2 stemmer by default. You can read more about the Porter2
stemmer here: http://snowball.tartarus.org/algorithms/english/stemmer.html. An
online demo of the stemmer is also available if you’d like to play around with it:
http://web.engr.illinois.edu/~massung1/p2s_demo.html.

Now that you have an idea of what stemming is, run the stemmer on A Tale of
Two Cities.

./profile config.toml two-cities.txt --stem

Exercises 67

Like stop word removal, stemming tries to keep the basic meaning behind the
original text. Can you still make sense of it after it’s stemmed?

4.3. Part-of-Speech Tagging. When learning English, students often encounter
different grammatical labels for words, such as noun, adjective, verb, etc. In linguis-
tics and computer science, there is a much larger dichotomy of these labels called
part of speech (POS) tags. Each word can be assigned a tag based on surrounding
words. Consider the following sentence: All hotel rooms are pretty much the same,
although the room number might change. Here's a part-of-speech tagged version:

Allpr hotelyy roomsyys areygp prettypy muchgy thepyr same,,
although,;y thepy roomy, numbery, mighty,, change,p.

Above, VBP and V B are different types of verbs, NN and NNS are singular
and plural nouns, and DT means determiner. This is just a subset of about 80
commonly used tags. Not every word has a unique part of speech tag. For instance,
flies and like can have multiple tags depending on the context:

Timeyy fliesygz like;y anpy arrowyy ..
FfllitNN ﬂieSNNS likevﬂp apT bananaNN._

Such situations can make POS-tagging challenging. Nevertheless, human agree-
ment on POS tag labeling is about 97%, which is the ceiling for automatic taggers.

POS tags can be used in text analysis as an alternate (or additional) represen-
tation to words. Using these tags captures a slightly more grammatical sense of a
document or corpus. The profile program has two options for POS tagging. The
first annotates each word like the examples above, and the second replaces each
word with its POS tag.

./profile config.toml two-cities.txt —--pos
./profile config.toml two-cities.txt —-pos-replace

Note that POS tagging the book may take up to one minute to complete. Does
it look like META’s POS tagger is accurate? Can you find any mistakes? When
replacing the words with their tags, is it possible to determine what the original
sentence was? Experiment with the book or any other text file.

4.4. Parsing. Grammatical parse trees represent deeper syntactic knowledge
from text sentences. They represent sentence phrase hierarchy as a tree structure.
Consider the example in Figure 4.1.

The parse tree is rooted with S, denoting Sentence; the sentence is composed
of a noun phrase (NP) followed by a verb phrase (VP) and period. The leaves of the

68

Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

Figure 4.1

S
] T
NP VP L]
| /\
PRP VBP NP ®
| /N
They have 7] 1 NNS
many theoretical ideas

An example of a parse tree.

tree are the words in the sentence, and the preterminals (the direct parents of the
leaves) are part-of-speech tags.

Some common features from a parse tree are production rules such as § —
N P V P, tree depth, and structural tree features. Syntactic categories (node labels)
alone can also be used.

The following command runs the parser on each sentence in the input file:

./profile config.toml two-cities.txt --parse

Like POS-tagging, the parsing may also take a minute or two to complete.

4.5. Frequency Analysis. Perhapsthe most common text-processing technique is
frequency counting. This simply counts how many times each unique word appears
in a document (or corpus). Viewing a descending list of words sorted by frequency
can give you an idea of what the document is about. Intuitively, similar documents
should have some of the same high-frequency words . . . notincluding stop words.

Instead of single words, we can also look at strings of n words, called n-grams.
Consider this sentence: I took a vacation to go to a beach.

= 1-grams (unigrams):
{I:1, took:1, a:2, vacation:1, to:2, go:1, beach:1}

= 2-grams (bigrams):
{I took :1, tooka:1, avacation:1, vacationto:1,

togo:1, goto:1, toa:1, abeach:1)}

Exercises 69

= 3-grams (trigrams):
{Itooka:1, took avacation:1, avacationto:1, ...}

As we will see in this text, the unigram words document representation is of
utmost importance for text representation. This vector of counts representation
does have a downside though: we lost the order of the words. This representation
is also known as “bag-of-words,” since we only know the counts of each word, and
no longer know the context or position. This unigram counting scheme can be used
with POS tags or any other type of token derived from a document.

Use the following three commands to do an n-gram frequency analysis on a
document, forn €[1, 3].

./profile config.toml two-cities.txt —-freq-unigram
./profile config.toml two-cities.txt ——freq-bigram
./profile config.toml two-cities.txt —--freq-trigram

This will give the output file two-cities.freq.1.txt for the option ——freq-
unigramand so on.

What makes the output reasonably clear? Think back to stop words and stem-
ming. Removing stop words gets rid of the noisy high-frequency words that don’t
give any information about the content of the document. Stemming will aggre-
gate inflected words into a single count. This means the partial vector {run: 4,
running : 2, runs : 3} would instead be represented as {run: 9}. Not only does this
make it easier for humans to interpret the frequency analysis, but it can improve
text mining algorithms, too!

4.6. Zipf’s Law. In English, the top four most frequent words are about 10-15%
of all word occurrences. The top 50 words are 35-40% of word occurrences. In fact,
there is a similar trend in any human language. Think back to the stop words. These
are the most frequent words, and make up a majority of text. At the same time, many
words may only appear once in a given document.

We can plot the rank of a word on the x axis, and the frequency count on the y
axis. Such a graph can give us an idea of the word distribution in a given document
or collection. In Figure 4.2, we counted unigram words from another Dickens book,
Oliver Twist. The plot on the left is a normal x ~ y plot and the one on the right is
alog x ~ log vy plot.

70 Chapter4 META: A Unified Toolkit for Text Data Management and Analysis

Figure 4.2

Word ranks in Oliver Twist Word ranks in Oliver Twist
. 10 10,000 *
L] -
= .
5 2 1,000
e g
£ 6 5
=y
E‘ 2 1007
[
5 4 =
g o
E L, 2 104
Le] L)
1] -
=} L —
= o4 14 -
T T T I T T T T T T T
0 2 4 6 8 10 1 10 100 1,000 10,000
Word frequency rank (thousands) Word frequency rank

Ilustration of Zipf’s law.

Zipf's law describes the shape of these plots. What do you think Zipf’s law states?
The shape of these plots allows us to apply certain techniques to take advantage of

the word distribution in natural language.

TEXT DATA ACCESS

Copyrighted material

5.1

Overview of Text
Data Access

Text data access is the foundation for text analysis. Text access technology plays two
important roles in text management and analysis applications. First, it enables re-
trieval of the most relevant text data to a particular analysis problem, thus avoiding
unnecessary overhead from processing a large amount of non-relevant data. Sec-
ond, it enables interpretation of any analysis results or discovered knowledge in
appropriate context and provides data provenance (origin).

The general goal of text data access is to connect users with the right information
at the right time. This connection can be done in two ways: pull, where the users
take the initiative to fetch relevant information out from the system, and push,
where the system takes the initiative to offer relevant information to users. In this
chapter, we will give a high-level overview of these two modes of text data access.
Then, we will formalize and motivate the problem of text retrieval. In the following
chapters, we will cover specific techniques for supporting text access in both push
and pull modes.

Access Mode: Pull vs. Push

Because text data are created for consumption by humans, humans play an impor-
tant role in text data analysis and management applications. Specifically, humans
can help select the most relevant data to a particular application problem, which
is beneficial since it enables us to avoid processing the huge amount of raw text
data (which would be inefficient) and focus on analyzing the most relevant part.
Selecting relevant text data from a large collection is the basic task of text access.
This selection is generally based on a specification of the information need of an
analyst (a user), and can be done in two modes: pull and push. Figure 5.1 describes
how these modes fit together along with querying and browsing.

74 Chapter 5 Overview of Text Data Access

TIS access
modes

N

Pull mode Push mode
(short-term) (long-term)

N

Querying Browsing

Figure5.1 The dichotomy of text information access modes.

In pull mode, the user initiates the access process to find the relevant text data,
typically by using a search engine. This mode of text access is essential when a user
has an ad hoc information need, i.e., a temporary information need that might
disappear once the need is satisfied. In such a case, the user can use a query to
find relevant information with a search engine. For example, a user may have a
need to buy a product and thus be interested in retrieving all the relevant opinions
about candidate products; after the user has purchased the product, the user would
generally no longer need such information. Another example is that during the
process of analyzing social media data to understand opinions about an emerging
event, the analyst may also decide to explore information about a particular entity
related to the event (e.g., a person), which can also trigger a search activity.

While querying is the most common way of accessing text data in the pull mode,
browsingis another complementary way of accessing text data in the pull mode, and
can be very useful when a user does not know how to formulate an effective query,
or finds it inconvenient to enter a keyword query (e.g., through a smartphone), or
simply wants to explore a topic with no fixed goal. Indeed, when searching the Web,
users tend to mix querying and browsing (e.g., while traversing through hyperlinks).

In general, we may regard querying and browsing as two complementary ways
of finding relevant information in the information space. Their relation can be
understood by making an analogy between information seeking and sightseeing
in a physical world. When a tourist knows the exact address of an attraction, the
tourist can simply take a taxi directly to the attraction; this is similar to when a
user knows exactly what he or she is looking for and can formulate a query with the

5.2 Multimode Interactive Access 77

engine interface to enable a user to browse the information space flexibly. With this
interface, a user can do any of the following at any moment.

Querying (long-range jump). When a user submits a new query through the
search box the search results from a search engine will be shown in the right
pane. At the same time, the relevant part of a topic map is also shown on the
left pane to facilitate browsing should the user want to.

Navigating on the map (short-range walk). The left pane in our interface is to
let a user navigate on the map. When a user clicks on a map node, this pane
will be refreshed and a local view with the clicked node as the current focus
will be displayed. In the local view, we show the parents, the children, and
the horizontal neighbors of the current node in focus (labelled as “center” in
the interface). A user can thus zoom into a child node, zoom out to a parent
node, or navigate into a horizontal neighbor node. The number attached to
a node is a score for the node that we use for ranking the nodes. Such a map
enables the user to “walk” in the information space to browse into relevant
documents without needing to reformulate queries.

Viewing a topic region. The user may double-click on a topic node on the map
to view the documents covered in the topic region. The search result pane
would be updated with new results corresponding to the documents in the
selected topic region. From a user’s perspective, the result pane always shows
the documents in the current region that the user is focused on (either search
results of the query or the documents corresponding to a current node on the
map when browsing).

Viewing a document. Within the result pane, a user can select any document
to view as in a standard search interface.

In Figure 5.3, we further show an example trace of browsing in which the user
started with a query dining table, zoomed into asian dining table, zoomed out back to
dining table, browsed horizontally first to dining chair and then to dining furniture,
and finally zoomed out to the general topic furniture where the user would have
many options to explore different kinds of furniture. If this user feels that a “long-
jump” is needed, he or she can use a new query to achieve it. Since the map can be
hidden and only brought to display when the user needs it, such an interface is avery
natural extension of the current search interface from a user’s perspective. Thus,
we can see how one text access system can combine multiple modes of information
access to suit a user’s current needs.

Image
not
avallable

5.3 Text Retrieval 79

and would like to find the relevant information immediately. The system to support
TR is a text retrieval system, or a search engine.

Although TR is sometimes used interchangeably with the more general term “in-
formation retrieval” (IR), the latter also includes retrieval of other types of informa-
tion such as images or videos. It is worth noting, though, that retrieval techniques
for other non-textual data are less mature and, as a result, retrieval of other types
of information tends to rely on using text retrieval techniques to match a keyword
query with companion text data with a non-textual data element. For example, the
current image search engines on the Web are essentially a TR system where each
image is represented by a text document consisting of any associated text data with
the image (e.g., title, caption, or simply textual context of the image such as the
news article content where an image is included).

In industry, the problem of TR is generally referred to as the search problem,
and the techniques for text retrieval are often called search technology or search
engine technology.

The task of TR can be easy or hard, depending on specific queries and specific
collections. For example, during a web search, finding homepages is generally easy,
but finding out people’s opinions about some topic (e.g., U.S. foreign policy) would
be much harder. There are several reasons why TR is difficult:

e aquery is usually quite short and incomplete (no formal language like SQL);

¢ the information need may be difficult to describe precisely, especially when
the user isn’t familiar with the topic, and

e precise understanding of the document content is difficult. In general, since
what counts as the correct answer is subjective, even when human experts
judge the relevance of documents, they may disagree with each other.

Due to the lack of clear semantic structures and difficulty in natural language
understanding, it is often challenging to accurately retrieve relevant information to
a user’s query. Indeed, even though the current web search engines may appear to
be sufficient sometimes, it may still be difficult for a user to quickly locate and har-
vest all the relevant information for a task. In general, the current search engines
work very well for navigational queries and simple, popular informational queries,
but in the case where a user has a complex information need such as analyzing
opinions about products to buy, or researching medical information about some
symptoms, they often work poorly. Moreover, the current search engines generally
provide little or no support to help users digest and exploit the retrieved informa-
tion. As a result, even if a search engine can retrieve the most relevant information,

Index

Absolute discounting, 130
Abstractive text summarization, 318, 321—
324
Access modes, 73-76
Accuracy in search engine evaluation, 168
Ad hoc information needs, 8-9
Ad hoc retrieval, 75-76
Add-1 smoothing, 130, 464
Adjacency matrices, 207-208
Advertising, opinion mining for, 393
Agglomerative clustering, 277, 280-282, 290
Aggregating
opinions, 393
scores, 234
All-vs-all (AVA) method, 313
Ambiguity
full structure parsing, 43
LARA, 406
NLP, 40-41, 44
one-vs-all method, 313
text retrieval vs. database retrieval, 80
topics, 335, 337
Analyzers in META toolkit, 61-64, 453
analyzers::filters namespace, 64
analyzers: :tokenizers namespace, 64
Anaphora resolution in natural language
processing, 41
Anchor text in web searches, 201
Architecture
GFS, 194-195
META toolkit, 60-61
unified systems, 452-453

Art retrieval models, 111
Aspect opinion analysis, 325-326
Associations, word. See Word association
mining
Authority pages in web searches, 202, 207
Automatic evaluation in text clustering, 294
AVA (all-vs-all) method, 313
Average-link document clustering, 282
Average precision
ranked lists evaluation, 175, 177-180
search engine evaluation, 184
Axiomatic thinking, 88

Background models
mining topics from text, 345-351
mixture model estimation, 351-353
PLSA, 370-372
Background words
mixture models, 141, 351-353
PLSA, 368-369, 372
Bag-of-words
frequency analysis, 69
paradigmatic relations, 256
text information systems, 10
text representation, 88-90
vector space model, 93, 109
web searches, 215
Bar-Hillel report, 42
Baseline accuracy in text categorization, 314
Bayes, Thomas, 25
Bayes’ rule
EM algorithm, 361-363, 373-374

490

Index

Bayes' rule (continued)
formula, 25-26
LDA, 383
Bayesian inference
EM algorithm, 361-362
PLSA, 379, 382
Bayesian parameter estimation
formula, 458
overfitting problem, 28-30
unigram language model, 341, 359
Bayesian smoothing, 125
Bayesian statistics
binomial estimation and beta distribu-
tion, 457-459
Dirichlet distribution, 461-463
LDA, 382
multinomial distribution, 460-461
multinomial parameters, 463-464
Naive Bayes algorithm, 309-312
pseudo counts, smoothing, and setting
hyperparameters, 459-460
Berkeley study, 3
Bernoulli distribution, 26
Beta distribution, 457-459
Beta-gamma threshold learning, 227-228
Bias, clustering, 276
Big text data, 5-6
Bigram language model
abstractive summarization, 323
Brown clustering, 290
Bigrams
frequency analysis, 68
sentiment classification, 394-395
text categorization, 305
words tokenizers, 149
Binary classification
content-based recommendation, 223
text categorization, 303
Binary hidden variables in EM algorithm,
362-364, 366, 368, 167
Binary logistic regression, 397
Binomial distribution, 26-27
Binomial estimation, 457-459
Bit vector representation, 93-97

Bitwise compression, 159-160
Blind feedback, 133, 135
Block compression, 161-162
Block world project, 42
BM25 model
description, 88
document clustering, 279
document length normalization, 108-109
link analysis, 201
Okapi, 89, 108
popularity, 90
probabilistic retrieval models, 111
BM25-F model, 109
BM25 score
paradigmatic relations, 258-261
syntagmatic relations, 270
web search ranking, 210
BM25 TF transformation
description, 104-105
paradigmatic relations, 258-259
BM25+ model, 88, 110
Breadth-first crawler searches, 193
Breakeven point precision, 189
Brown clustering, 278, 288-291
Browsing
multimode interactive access, 76-78
pull access mode, 73-75
support for, 445
text information systems, 9
web searches, 214
word associations, 252
Business intelligence
opinion mining, 393
text data analysis, 243

C++ language, 16, 58
Caching
DBLRU, 164-165
LRU, 163-164
META toolkit, 60
search engine implementation, 148,
162-165
Categories
categorical distributions, 460-461

sentiment classification, 394, 396-397
text information systems, 11-12
Causal topic mining, 433-437
Centroid vectors, 136-137
Centroids in document clustering, 282-284
CG (cumulative gain) in NDCG, 181-182
character_tokenizer tokenizer, 61
Citations, 202
Classes
Brown clustering, 289
categories, 11-12
sentiment, 393-396
Classification
machine learning, 34-36
NLP, 43-44
Classifiers in text categorization, 302-303
classify command, 57
Cleaning HTML files, 218-219
Clickthroughs
probabilistic retrieval model, 111-113
web searches, 201
Clustering bias, 276
Clusters and clustering
joint analysis, 416
sentiment classification, 395
text, See Text clustering
Coherence in text clustering, 294-295
Coin flips, binomial distribution for, 26-27
Cold start problem, 230
Collaborative filtering, 221, 229-233
Collapsed Gibbs sampling, 383
Collect function, 197
Collection language model
KL-divergence, 474
smoothing methods, 121-126
Common form of retrieval models, 88-90
Common sense knowledge in NLP, 40
Common words
background language model, 346-347,
350-351
feedback, 141, 143
filtering, 54
mixture models, 352-353, 355-356
unigram language model, 345-346

Index 491

vector space retrieval models, 99, 109
Compact clusters, 281
Compare operator, 450, 452
Complete data for EM algorithm, 467-468
Complete-link document clustering, 281~
282
Component models
background language models, 345,
347-350
CPLSA, 421
description, 143
EM algorithm, 359
mixture models, 355-356, 358-359
PLSA, 370-373
Compression
bitwise, 159-160
block, 161-162
overview, 158-159
search engines, 148
text representation, 48-49
Compression ratio, 160-161
Concepts in vector space model, 92
Conceptual framework in text information
systems, 10-13
Conditional entropy
information theory, 33
syntagmatic relations, 261-264, 270
Conditional probabilities
Bayes' rule, 25-26
overview, 23-25
Configuration files, 57-58
Confusion matrices, 314-315
Constraints in PLSA, 373
Content analysis modules, 10-11
Content-based filtering, 221-229
Content in opinion mining, 390-392
Context
Brown clustering, 290
non-text data, 249
opinion mining, 390-392
paradigmatic relations, 253-258
social networks as, 428-433
syntagmatic relations, 261-262
text mining, 417-419

492

Index

Context (continued)
time series, 433-439
Context variables in topic analysis, 330
Contextual Probabilistic Latent Semantic
Analysis (CPLSA), 419-428
Continuous distributions
Bayesian parameter estimation, 28
description, 22
Co-occurrences in mutual information,
267-268
Corpus input formats in META toolkit,
60-61
corpusname.dat file, 60
corpusname.dat.gz file, 60
corpusname.dat.labels file, 60
corpusname.dat.labels.gz file, 60
Correlations
mutual information, 270
syntagmatic relations, 253-254
text-based forecasting, 248
time series context, 437
Cosine similarity
document clustering, 279-280
extractive summarization, 321
text summarization, 325
vector measurement, 222, 232
Coverage
CPLSA, 420-422, 425-426
LDA, 380-381
topic analysis, 332-333
CPLSA (Contextual Probabilistic Latent
Semantic Analysis), 419-428
Cranfield evaluation methodology, 168-170
Crawlers
domains, 218
dynamic content, 217
languages for, 216-217
web searches, 192-194
Cross validation in text categorization, 314
Cumulative gain (CG) in NDCG, 181-182
Current technology, 5

Data-driven social science research, opinion
mining for, 393

Data mining
joint analysis, 413-415
probabilistic retrieval model algorithms,
117
text data analysis, 245-246
Data types in text analysis, 449-450
Data-User-Service Triangle, 213-214
Database retrieval, 80-82
DBLRU (Double Barrel Least-Recently Used)
caches, 164-165
DCG (discounted cumulative gain), 182~
183
Decision boundaries for linear classifiers,
311-312
Decision modules in content-based
filtering, 225
Decision support, opinion mining for, 393
Deep analysis in natural language
processing, 43-45
Delta bitwise compression, 160
Dendrograms, 280-281
Denial of service from crawlers, 193
Dependency parsers, 323
Dependent random variables, 25
Design philosophy, META, 58-59
Development sets for text categorization,
314
Dirichlet distribution, 461-463
Dirichlet prior smoothing
KL-divergence, 475
probabilistic retrieval models, 125-127
Disaster response, 243-244
Discounted cumulative gain (DCG), 182-183
Discourse analysis in NLP, 40
Discrete distributions
Bayesian parameter estimation, 29
description, 22
Discriminative classifiers, 302
Distances in clusters, 281
Distinguishing categories, 301-302
Divergence-from-randomness models, 87,
111
Divisive clustering, 277
Document-at-a-time ranking, 155

Document clustering, 277
agglomerative hierarchical, 280-282
K-means, 282-284
overview, 279-280

Document frequency
bag-of-words representation, 89
vector space model, 99-100

Document IDs
compression, 158-159
inverted indexes, 152
tokenizers, 149

Document language model, 118-123

Document length
bag-of-words representation, 89
vector space model, 105-108

Documents
filters, 155-156
ranking vs. selecting, 82-84
tokenizing, 148-150
vectors, 92-96
views in multimode interactive access, 77

Domains, crawling, 218

Dot products
document length normalization, 109
linear classifiers, 311
paradigmatic relations, 257-258
vector space model, 93-95, 98

Double Barrel Least-Recently Used (DBLRU)

caches, 164-165
Dynamic coefficient interpolation in
smoothing methods, 125
Dynamically generated content and
crawlers, 217

E step in EM algorithm, 362-368, 373-377,
465, 469
E-discovery (electronic discovery), 326
Edit features in text categorization, 306
Effectiveness in search engine evaluation,
168
Efficiency
database data retrieval, 81-82
search engine evaluation, 168
Electronic discovery (E-discovery), 326

Index 493

Eliza project, 42, 44-45
EM algorithm. See Expectation-
maximization (EM) algorithm
Email counts, 3
Emotion analysis, 394
Empirically defined problems, 82
Enron email dataset, 326
Entity-relation re-creation, 47
Entropy
information theory, 31-33
KL-divergence, 139, 474
mutual information, 264-265
PMI, 288
skewed distributions, 158
syntagmatic relations, 261-264, 270
Evaluation, search engine. See Search
engine evaluation
Events
CPLSA, 426-427
probability, 21-23
Exhaustivity in sentiment classification, 396
Expectation-maximization (EM) algorithm
CPLSA, 422
general procedure, 469-471
incomplete vs. complete data, 467-468
K-means, 282-283
KL-divergence, 476
lower bound of likelihood, 468-469
MAP estimate, 378-379
mining topies from text, 359-368
mixture unigram language model, 466
MLE, 466-467
network supervised topic models, 431
overview, 465-466
PLSA, 373-377
Expected overlap of words in paradigmatic
relations, 257-258
Expected value in Beta distribution, 458
Exploration-exploitation tradeoff in
content-based filtering, 227
Extractive summarization, 318-321

F measure
ranked lists evaluation, 179

494

Index

F measure (continued)
set retrieval evaluation, 172-173
F-test for time series context, 437
F, score
text categorization, 314
text summarization, 324
Fault tolerance in Google File System,
195
Feature generation for tokenizers, 150
Features for text categorization, 304-307
Feedback
content-based filtering, 225
KL-divergence, 475-476
language models, 138-144
overview, 133-135
search engines, 147, 157-158
vector space model, 135-138
web searches, 201
Feedback documents in unigram language
model, 466
Feelings. See Sentiment analysis
fetch_docs function, 154
file_corpus input format, 60
Files in Google File System, 194-195
Filter chains for tokenization, 61-64
Filters
content-based, 221-229
documents, 155-156
recommender systems. See Recom-
mender systems
text information systems, 11
unigram language models, 54
Focused crawling, 193
forward_index indexes, 60-61
Forward indexes
description, 153
k-nearest neighbors algorithm, 308
Frame of reference encoding, 162
Frequency and frequency counts
bag-of-words representation, 89-90
MapReduce, 197
META analyses, 68-70
term, 97-98
vector space model, 99-100

Frequency transformation in paradigmatic
relations, 258-259
Full structure parsing, 43

G-means algorithm, 294
Gain in search engine evaluation, 181-183
Gamma bitwise compression, 160
Gamma function, 457
Gaussian distribution, 22, 404-405
General EM algorithm, 431
Generation-based text summarization, 318
Generative classifiers, 309
Generative models
background language model, 346-347,
349
CPLSA, 419, 421
description, 30, 36, 50
LARA, 403, 405-406
LDA, 381
log-likelihood functions, 343-344, 384
mining topics from text, 347
n-gram models, 289
network supervised topic models, 428-
430
PLSA, 370-371, 380
topics, 338-340
unigram language model, 341
Geographical networks, 428
Geometric mean average precision (gMAP),
179
GFS (Google File System), 194-195
Gibbs sampling, 383
Google File System (GFS), 194-195
Google PageRank, 202-206
Grammar learning, 252
Grammatical parse trees, 305-307
Granger test, 434, 437
Graph mining, 49
gz_corpus input format, 60

Hidden variables
EM algorithm, 362-364, 366, 368, 373~
376, 465, 467
LARA, 403

Hierarchical clustering, 280-282
High-level syntactic features, 305-306
Hill-climbing algorithm, EM, 360, 366-367,
465

HITS algorithm, 206-208
HTML files, cleaning, 218-219
Hub pages in web searches, 202, 207-208
Humans

joint analysis, 413-415

NLP, 48

opinion mining. See Opinion mining

as subjective sensors, 244-246

unified systems, 445-448
Hyperparameters

Beta distribution, 458-460

Dirichlet distribution, 461, 463

ICU (International Components for
Unicode), 61
Icu_filter filter, 61
Icu_tokenizer tokenizer, 61
IDF (inverse document frequency)
Dirichlet prior smoothing, 126
paradigmatic relations, 258-260
query likelihood retrieval model, 122
vector space model, 99-101
[llinois NLP Curator toolkit, 64
Impact
CPLSA, 426-427
time series context, 437
Implicit feedback, 134-135
Incomplete data in EM algorithm, 467-468
Incremental crawling, 193
Independent random variables, 25
Index sharding, 156-157
Indexes
compressed, 158-162
forward, 153, 308
k-nearest neighbors algorithm, 308
MapReduce, 198-199
META toolkit, 60-61, 453-455
search engine implementation, 150-153
search engines, 147, 150-153
text categorization, 314

Index 495

web searches, 194-200
Indirect citations in web searches, 202
Indirect opinions, 391-392
Indri/Lemur search engine toolkit, 64
Inferences
NLP, 41
probabilistic, 88
real world properties, 248
Inferred opinions, 391-392
Information access in text information
systems, 7
Information extraction
NLP, 43
text information systems, 9, 12
Information retrieval (IR) systems, 6
evaluation metrics, 324-325
implementation. See Search engine
implementation
text data access, 79
Information theory, 31-34
Initial values in EM algorithm, 466
Initialization modules in content-based
filtering, 224-225
Inlink counts in PageRank, 203
Instance-based classifiers, 302
Instructor reader category, 16-17
Integer compression, 158-162
Integration of information access in web
searches, 213
Integrity in text data access, 81
Interactive access, multimode, 76-78
Interactive task support in web searches,
216
International Components for Unicode
(Icu), 61
Interpolation for smoothing methods,
125-126
Interpret operator, 450-452
Intersection operator, 449-450
Intrusion detection, 271-273
Inverse document frequency (IDF)
Dirichlet prior smoothing, 126
paradigmatic relations, 258-260
query likelihood retrieval model, 122

496

Index

Inverse document frequency (IDF)
(continued)
vector space model, 99-101
Inverse user frequency (IUF), 232
inverted_index indexes, 60
Inverted index chunks, 156-157
Inverted indexes
compression, 158
k-nearest neighbors algorithm, 308
MapReduce, 198-199
search engines, 150-153
IR (information retrieval) systems, 6
evaluation metrics, 324-325
implementation. See Search engine
implementation
text data access, 79
Iterative algorithms for PageRank, 205-206
Iterative Causal Topic Modeling, 434-435
IUF (inverse user frequency), 232

Jaccard similarity, 280
Jelinek-Mercer smoothing, 123-126
Joint analysis of text and structured data,
413
contextual text mining, 417-419
CPLSA, 419-428
introduction, 413-415
social networks as context, 428-433
time series context, 433-439
Joint distributions for mutual information,
266-268
Joint probabilities, 23-25

K-means document clustering, 282-284
K-nearest neighbors (k-NN) algorithm,
307-309

Kernel trick for linear classifiers, 312
Key-value pairs in MapReduce, 195-198
KL-divergence

Dirichlet prior smoothing, 475

EM algorithm, 468

feedback, 139-140

mutual information, 266

query model, 475-476

retrieval, 473-474

Knowledge acquisition in text information
systems, 8-9

Knowledge discovery in text summarization,
326

Knowledge Graph, 215

Knowledge provenance in unified systems,
447

Known item searches in ranked lists
evaluation, 179

Kolmogorov axioms, 22-23

Kullback-Leibler divergence retrieval
model. See KL-divergence

Lagrange Multiplier approach
EM algorithm, 467, 470
unigram language model, 344
Language models
feedback in, 138-144
in probabilistic retrieval model, 87, 111,
117
Latent Aspect Rating Analysis (LARA),
400-409
Latent Dirichlet Allocation (LDA), 377~
383
Latent Rating Regression, 402-405
Lazy learners in text categorization, 302
Learners
search engines, 147
text categorization, 302
Learning modules in content-based
filtering, 224-225
Least-Recently Used (LRU) caches, 163-164
length_filter filter, 61
Length normalization
document length, 105-108
query likelihood retrieval model, 122
Lexical analysis in NLP, 39-40
Lexicons for inverted indexes, 150-152
LIBLINEAR algorithm, 58
libsvm_analyzer analyzer, 62
libsvm_corpus file, 61
LIBSVM package, 58, 64
Lifelong learning in web searches, 213

Likelihood and likelihood function
background language model, 349-351
EM algorithm, 362-363, 367-368, 376

465-469
LARA, 405
LDA, 378, 381-382
marginal, 28
mixture model behavior, 354-357
MLE, 27
network supervised topic models, 428-
431
PLSA, 372-374
unigram language model, 342-344
line_corpus input format, 60
Linear classifiers in text categorization,
311-313
Linear interpolation in Jelinek-Mercer
smoothing, 124
Linearly separable data points in linear
classifiers, 312

Link analysis
HITS, 206-208
overview, 200-202
PageRank, 202-206

list_filter filter, 62

Local maxima, 360, 363, 367-368, 465

Log-likelihood function
EM algorithm, 365-366, 466-467
feedback, 142-143
unigram language model, 343-344

Logarithm transformation, 103-104

Logarithms in probabilistic retrieval model,

118,122
Logic-based approach in NLP, 42
Logical predicates in NLP, 49-50
Logistic regression in sentiment classifica-
tion, 396-400

Long-range jumps in multimode interactive
access, 77

Long-term needs in push access mode, 75

Low-level lexical features in text categoriza-
tion, 305

Lower bound of likelihood in EM algorithm,
468-469

Index 497

LRU (Least-Recently Used) caches, 163-164
Lucene search engine toolkit, 64

M step
EM algorithm, 361-368, 373-377, 465,
469-470
MAP estimate, 379
network supervised topic models, 431
Machine-generated data, 6
Machine learning
overview, 34-36
sentiment classification methods, 396
statistical, 10
text categorization, 301
web search algorithms, 201
web search ranking, 208-212
Machine translation, 42, 44-45
Magazine output, 3
Manual evaluation for text clustering, 294
map function, 195-198
MAP (Maximum a Posteriori) estimate
Bayesian parameter estimation, 29
LARA, 404-405
PLSA, 378-379
word association mining, 271-273
MAP (mean average precision), 178-180
Map Reduce paradigm, 157
MapReduce framework, 194-200
Maps in multimode interactive access,
76-77
Marginal probabilities
Bayesian parameter estimation, 29
mutual information, 267
Market research, opinion mining for, 393
Massung, Sean, biography, 490
Matrices
adjacency, 207-208
PageRank, 204-208
text categorization, 314-315
transition, 204
Matrix multiplication in PageRank, 205
Maximal marginal relevance (MMR)
reranking
extractive summarization, 320-321

498

Index

Maximal marginal relevance (MMR)
reranking (continued)
topic analysis, 333
Maximization algorithm for document
clustering, 282
Maximum a Posteriori (MAP) estimate
Bayesian parameter estimation, 29
LARA, 404-405
PLSA, 378-379
word association mining, 271-273
Maximum likelihood estimation (MLE)
background language model, 346, 350
Brown clustering, 289
Dirichlet prior smoothing, 125-126
EM algorithm, 359-368, 466-467
feedback, 141-143
generative models, 339
Jelinek-Mercer smoothing, 124
KL-divergence, 475-476
LARA, 404
LDA, 382
mixture model behavior, 354-359
mixture model estimation, 352-353
multinomial distribution, 463
mutual information, 268-269
overview, 27-28
PLSA, 372-373, 378
query likelihood retrieval model, 118-119
term clustering, 286
unigram language models, 52-53, 341~
345
web search ranking, 210
Mean average precision (MAP), 178-180
Mean reciprocal rank (MRR), 180
Measurements in search engine evaluation,
168
Memory-based approach in collaborative
filtering, 230
META toolkit
architecture, 60-61
classification algorithms, 307
design philosophy, 58-59
exercises, 65-70
overview, 57-58
related toolkits, 64-65

setting up, 59-60
text categorization, 314-315
tokenization, 61-64
as unified system, 453-455
Metadata
classification algorithms, 307
contextual text mining, 417
networks from, 428
text data analysis, 249
topic analysis, 330
Mining
contextual, 417-419
demand for, 4-5
graph, 49
joint analysis, 413-419
opinion. See Opinion mining; Sentiment
analysis
probabilistic retrieval model, 117
tasks, 246-250
toolkits, 64
topic analysis, 330-331
word association. See Word association
mining
Mining topics from text, 340
background language model, 345-351
expectation-maximization, 359-368
joint analysis, 416
mixture model behavior, 353-359
mixture model estimation, 351-353
unigram language model, 341-345
Mixture models
behavior, 353-359
EM algorithm, 466
estimation, 351-353
feedback, 140-142, 157
mining topics from text, 346-351
MLE. See Maximum likelihood estimation
(MLE)
MMR (maximal marginal relevance)
reranking
extractive summarization, 320-321
topic analysis, 333
Model-based clustering algorithms, 276-
277
Model files for META toolkit, 59

Modification in NLP, 41
Modules in content-based filtering, 224-226
MRR (mean reciprocal rank), 180
Multiclass classification
linear classifiers, 313
text categorization, 303
Multi-level judgments in search engine
evaluation, 180-183
Multimode interactive access, 76-78
Multinomial distributions
Bayesian estimate, 463-464
generalized, 460-461
LDA, 380
Multinomial parameters in Bayesian
estimate, 463-464
Multiple-level sentiment analysis, 397-398
Multiple occurrences in vector space model,
103-104
Multiple queries in ranked lists evaluation,
178-180
Multivariate Gaussian distribution, 404-405
Mutual information
information theory, 33-34
syntagmatic relations, 264-271
text clustering, 278

n-fold cross validation, 314
n-gram language models
abstractive summarization, 322-323
frequency analysis, 68-69
sentiment classification, 394-395
term clustering, 288-291
vector space model, 109
Naive Bayes algorithm, 309-312
Named entity recognition, 323
Natural language, mining knowledge about,
247
Natural language generation in text
summarization, 323-324
Natural language processing (NLP)
history and state of the art, 42-43
pipeline, 306-307
sentiment classification, 395
statistical language models, 50-54
tasks, 39-41

Index 499

text information systems, 43-45
text representation, 46-50
Navigating maps in multimode interactive
access, 77
Navigational queries, 200
NDCG (normalized discounted cumulative
gain), 181-183
NDCG@k score, 189
Nearest-centroid classifiers, 309
Negative feedback documents, 136-138
Negative feelings, 390-394
NetPLSA model, 430-433
Network supervised topic models, 428-433
Neural language model, 291-294
News summaries, 317
Newspaper output, 3
ngram_pos_analyzer analyzer, 62
ngram_word_analyzer analyzer, 62
NLP. See Natural language processing (NLP)
NLTK toolkit, 64
no_evict_cache caches, 60
Nodes in word associations, 252
Non-text data
context, 249
predictive analysis, 249
vs. text, 244-246
Normalization
document length, 105-108
PageRank, 206
query likelihood retrieval model, 122
term clustering, 286
topic analysis, 333
Normalized discounted cumulative gain
(NDCG@G), 181-183
Normalized ratings in collaborative
filtering, 230-231
Normalized similarity algorithm, 279

Objective statements vs. subjective, 389-390

Observed world, mining knowledge about,
247-248

Observers, mining knowledge about, 248

Office documents, 3

Okapi BM25 model, 89, 108

One-vs-all (OVA) method, 313

500

Index

Operators in text analysis systems, 448-452
Opinion analysis in text summarization,
325-326
Opinion holders, 390-392
Opinion mining
evaluation, 409-410
LARA, 400-409
overview, 389-392
sentiment classification. See Sentiment
analysis
Opinion summarization, 318
Optimization in web searches, 191
Ordinal regression, 394, 396-400
Organization in text information systems, 8
OVA (one-vs-all) method, 313
Over-constrained queries, 84
Overfitting problem
Bayesian parameter estimation, 28, 30
sentiment classification, 395
vector space model, 138
Overlap of words in paradigmatic relations,
257-258

p-values in search engine evaluation,
185-186
PageRank technique, 202-206
Paradigmatic relations
Brown clustering, 290
discovering, 252-260
overview, 251-252
Parallel crawling, 193
Parallel indexing and searching, 192
Parameters
background language model, 350-351
Bayesian parameter estimation, 28-30,
341, 359, 458, 463-464
Beta distribution, 458-460
Dirichlet distribution, 461-463
EM algorithm, 363, 465
feedback, 142-144
LARA, 404-405
LDA, 380-381
mixture model estimation, 352
MLE. See Maximum likelihood
estimation (MLE)

network supervised topic models, 429
PLSA, 372-373, 379-380
probabilistic models, 30-31
ranking, 209-211
statistical language models, 51-52
topic analysis, 338-339
unigram language models, 52
Parsing
META toolkit, 67-68
NLP, 43
web content, 216
Part-of-speech (POS) tags
META toolkit, 67
NLP, 47
sentiment classification, 395
Partitioning
Brown clustering, 289
extractive summarization, 319-320
text data, 417-419
Patterns
contextual text mining, 417-419
CPLSA, 425-426
joint analysis, 417
NLP, 45
sentiment classification, 395
Pdf (probability density function)
Beta distribution, 457
Dirichlet distribution, 461
multinomial distribution, 461
Pearson correlation
collaborative filtering, 222, 231-232
time series context, 437
Perceptron classifiers, 312-313
Personalization in web searches, 212, 215
Personalized PageRank, 206
Perspective in text data analysis, 246-247
Pivoted length normalization, 89, 107-108
PL.2 model, 90
PLSA (probabilistic latent semantic
analysis)
CPLSA, 419-428
extension, 377-383
overview, 368-377
Pointwise Mutual Information (PMI), 278,
287-288

Polarity analysis in sentiment classification,
394
Policy design, opinion mining for, 393
Pooling in search engine evaluation, 186~
187
Porter2 English Stemmer, 66-67
porter2_stemmer filter, 62
POS (part-of-speech) tags
META toolkit, 67
NLP, 47
sentiment classification, 395
Positive feelings, 390-394
Posterior distribution, 28
Posterior probability in Bayesian parameter
estimation, 29
Postings files for inverted indexes, 150-152
Power iteration for PageRank, 205
Practitioners reader category, 17
Pragmatic analysis in NLP, 39-40
Precision
search engine evaluation, 184
set retrieval evaluation, 170-178
Precision-recall curves in ranked lists
evaluation, 174-176
Predictive analysis for non-text data, 249
Predictors features in joint analysis, 413-
416
Presupposition in NLP, 41
Prior probability in Bayesian parameter
estimation, 29
Probabilistic inference, 88
Probabilistic latent semantic analysis
(PLSA)
CPLSA, 419-428
extension, 377-383
overview, 368-377
Probabilistic retrieval models
description, 87-88
overview, 110-112
query likelihood retrieval model, 114-118
Probability and statistics
abstractive summarization, 322
background language model, 346-349
basics, 21-23
Bayes’ rule, 25-26

Index 501

Bayesian parameter estimation, 28-30
binomial distribution, 26-27
EM algorithm, 362-366
jointand conditional probabilities, 23-25
KL-divergence, 474
LARA, 403
maximum likelihood parameter
estimation, 27-28
mixture model behavior, 354-358
mutual information, 266-270
Naive Bayes algorithm, 310
PageRank, 202-206
paradigmatic relations, 257-258
PLSA, 368-377, 380
probabilistic models and applications,
30-31
syntagmatic relations, 262-263
term clustering, 286-289
topics, 336-339
unigram language model, 342-344
web search ranking, 209-211
Probability density function (pdf)
Beta distribution, 457
Dirichlet distribution, 461
multinomial distribution, 461
Probability distributions
overview, 21-23
statistical language models, 50-54
Probability ranking principle, 84
Probability space, 21-23
Producer-initiated recommendations, 75
Product reviews in opinion mining, 391-392
profile command, 65-66
Properties
inferring knowledge about, 248
text categorization for, 300
Proximity heuristics for inverted indexes,
151
Pseudo counts
Bayesian statistics, 459-460
LDA, 381
multinomial distribution, 463
PLSA, 379, 381
smoothing techniques, 128, 286
Pseudo data in LDA, 378

