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PREFACE

This book is a collection of articles covering all major
aspects of mathematics. It is written for people who
have a keen interest in science and mathematics but
who may not have the technical knowledge required
to study mathematical texts and journals. The articles
are aqccessible to anyone who has studied
mathematics at secondary school.

Mathematics can be enormously infteresting and
inspiring, but its beauty and utility are often hidden.
Many of us did not enjoy mathematics at school and
have negatfive memories of slogging away, trying to
solve pointless and abstruse problems. Yet we realise
that mathematics is essential for modern society and
plays a key role in our economic welfare, health and
recreation.

Mathematics can be demanding on the reader
because it requires active mental effort. Recognising
this, the present book is modular in format. Each
arficle can be read as a self-contained unit. | have
resisted the temptation to organise the articles into
themes, presenting them instead in roughly the order
in which they were written. Each article tells its own
story, whether it is a biography of some famous
mathematician, a major problem (solved or



unsolved), an application of maths to technology or
a cultural connection to music or the visual arts.

| have attempted to maintain a reasonably uniform
mathematical level throughout the book. You may
have forgotten the details of what you learned at
school, but what remains should be sufficient to
enable you to understand the articles. If you find a
particular arficle abstruse or difficult to understand,
just skip to the next one, which will be easier. You can
always return later if you wish.

The byline of my blog, thatsmaths.com, is ‘Beautiful,
Useful and Fun'. | have tried to bring out these three
aspects of mathematics in the articles. Beauty can
be subjective, but, as you learn more, you cannot fail
to be impressed by the majesty and splendour of the
intellectual creations of some of the world’'s most
brilliant minds. The usefulness of maths is shown by its
many applications to modern technology, and its
growing role in medicine, biology and the social
sciences. The fun aspect will be seen in the field
known as recreational mathematics, aspects of
maths that no longer attract active professional
research but that still hold fascination.

About half the articles have appeared in The Irish
Times over the past four years. The remainder are
newly written pieces and postings from thatsmaths.co
m. If you have a general interest in scientific matters
and wish to be inspired by the beauty and power of
mathematics, this book should serve you well.



INTRODUCTION

BEAUTIFUL, USEFUL AND FUN: THAT'S MATHS

Type a word info Google: a billion links come back in
a flash. Tap a destination into your satnav: distances,
times and highlights of the route appear. Get cash
from an ATM, safe from prying eyes. Choose a tune
fromm among thousands squeezed onto a tiny chip.
How are these miracles of modern technology
possible? What is the common basis underpinning
them? The answer is mathematics.

Maths now reaches into every corner of our lives. Our
technological world would be impossible without it.
Electronic devices like smartphones and iPods, which
we use daily, depend on the application of maths, as
do computers, communications and the infernet.
International tfrade and the financial markets rely
critically on secure communications, using encryption
methods that spring directly from number theory,
once thought to be a field of pure mathematics
without ‘useful’ applications.

We are living longer and healthier lives, partly due to
the application of maths to medical imaging,
automatic diagnosis and modelling the
cardiovascular system. The pharmaceuticals that



cure us and control disease are made possible
through applied mathematics. Agricultural
production is more efficient thanks to maths; forensic
medicine and crime detection depend on it. Control
and operation of air transport would be impossible
without maths. Sporting records are broken by
studying and modelling performance and designing
equipment mathematically. Maths is everywhere.

THE LANGUAGE OF NATURE

Galileo is credited with quantifying the study of the
physical world, and his philosophy is encapsulated in
the oft-quoted aphorism, ‘The Book of Nature is
written in the language of mathematics.” This
development flourished with Isaac Newton, who
unified terrestrial and celestial mechanics in a grand
theory of universal gravitation, showing that the
behaviour of a projectile like a cannonball and the
trajectory of the moon are governed by the same
dynamics.

Mechanics and astronomy were the first subjects to
be ‘mathematicised’, but over the past century the
influence of quantitative methods has spread to
many other fields. Statistical analysis now pervades
the social sciences. Computers enable us to simulate
complex systems and predict their behaviour.
Modern weather forecasting is an enormous
arithmetical calculation, underpinned by
mathematical and physical principles. With  the
recent untangling of the human genome,



mathematical biology is a hot topic.

The mathematics that we learned at school was
developed centuries ago, so it is easy to get the idea
that maths is static, frozen in the seventeenth century
or fossilised since ancient Greece. In fact, the vast
bulk of mathematics has emerged in the past
hundred years, and the subject continues to blossom.
It is a vibrant and dynamic field of study. The future
health of our technological society depends on this
continuing development.

While a deep wunderstanding of advanced
mathematics requires intensive study over a long
period, we can appreciate some of the beauty of
maths without detailed technical knowledge, just as
we can enjoy music without being performers or
composers. It is a goal of this book to assist readers in
this appreciation. It is hoped that, through this
collection of articles, you may come to readlise that
mathematics is beautiful, useful and fun.

THE TWO CULTURES

‘Of course I've heard of Beethoven, but who is this
guy Gausse’

The ‘Two Cultures’, infroduced by the British scientist
and novelist C. P. Snow in an influential Rede Lecture
in 1959, are still relevant today.

Ludwig van Beethoven and Carl Friedrich Gauss were
at the height of their creativity in the early nineteenth



century. Beethoven’s music, often of great subtlety
and intricacy, is accessible even to those of us with
limited knowledge and understanding of it. Gauss,
the master of mathematicians, produced results of
singular genius, great utility and deep aesthetic
appeal. But, although the brilliance and beauty of his
work is recognised and admired by experts, it is
hidden frorm most of us, requiring much background
knowledge and technical facility for a frue
appreciation of it.

There is a stark confrast here. There are many
parallels between music and mathematics: both are
concerned with structure, symmetry and pattern; but
while music is accessible to all, maths presents
greater obstacles. Perhaps it's a left versus right brain
issue. Music gets info the soul on a high-speed
emotional autobahn, while maths has to follow a
rational, step-by-step route. Music has instant appeal;
maths takes time.

It is regrettable that public attitudes to mathematics
are predominantly unsympathetic. The beauty of
maths can be difficult to appreciate, and its
significance in our lives is offen underestimated. But
mathematics is an essential thread in the fabric of
modern society. We all benefit from the power of
maths to model our world and facilitate
technological advances. It is arguable that the work
of Gauss has a greater impact on our daily lives than
the magnificent creations of Beethoven.

In addition to utility and aesthetic appeal, maths has



great recreational value, with many surprising and
paradoxical results that are a source of amusement
and delight. The goal of this book is to elucidate the
beauty, ufility and fun of mathematics by examining
some of its many uses in modern society and to
ilustrate how it benefits our lives in so many ways.



YOU CAN DO MATHS

Can we all do mathse Yes, we can! Everyone thinks
mathematically all the time, even if they are not aware of
it. We use simple arithmetfic every day when we buy a
newspaper, a cinema ticket or a pint of beer. But we also
do more high-level mathematical reasoning all the fime,
unaware of the complexity of our thinking.

The central concerns of mathematics are not numbers,
but patterns, structures, symmetries and connections.
Take, for example, the Sudoku puzzles that appear daily in
newspapers. The objective is to complete a 9 x 9 grid,
starting from a few given numbers or clues, while ensuring
that each row, each column and each 3 x 3 block
contains all the digits from 1 to 2 once and only once. But
the numerical values of the digits are irelevant; what is
important is that there are nine distinct symbols. They
could be nine letters or nine shapes. It's the pattern that
maftters.

One lIrish daily paper publishes these puzzles with the
subscript ‘There's no maths involved, simply use reasoning
and logic!” It seems that even the idea that something
might be tainted by mathematics is enough to scare off
potential solvers! Could you imagine the promotion of an
exhibifion in the National Gallery with the slogan ‘No art



involved, just painting and sculpfure’? If you can do
Sudoku, you can do maths!

Whether you are discussing climate averages, studying
graphs of house prices, worrying about inflation rates or
working out the odds on the horses, you are thinking in
mathematical mode. On a daily basis, you seek the best
deal, the shortest route, the highest interest rate or the
fastest way to get the job done with least effort. The
principle of least action encapsulates the fundamental
laws of nature in a simple rule. You are using similar
reasoning in everyday life. Maximising, minimising,
optimising: that's maths.

Maps and charts are ubiquitous in mathematics. They
provide a means of representing complex reality in a
simple, symbolic way. Subway maps are drastically
simplified and deliberately distorted to emphasise what
matters for travellers: continuity and connectivity. When
you use a map of the London Underground, you are
doing topology: that's maths.

Crossing a road, you observe oncoming traffic, estimate
its speed and fime to arrive, reckon the time needed to
cross, compare the two and decide whether to walk or to
wait. Estimating, reckoning, comparing: that's maths.
Driving demands even more mathematical reasoning.
You must constantly gauge closing speeds, accelerations,
distances and fimes. Driverless cars are on the way: they
use advanced mathematical algorithms and intensive
computation. You can do that yourself in a flash.

Suppose you have the misfortune to fall ill. The doctor
spells it out: the most effective tfreatment has severe side-
effects; the alternative therapy is gentler but less
efficacious; doing nothing has grave implications. A



difficult choice must be made. You weigh up the risks and
consequences of each course of action, rank them and
choose the least-worst option. Weighing, balancing,
ranking: that’'s maths.

Professional athletes can run 100 metres in ten seconds
thanks to sustained, intensive fraining. Composers create
symphonies after years of diligent study and practice. And
professional mathematicians derive profound results
through arduous application to their trade. You cannot
solve technically intricate mathematical problems or
prove arcane and absfruse theorems, but you can use
logic and reasoning, and think like a mathematician. It is
just a matter of degree.



INSTANT INFORMATION

Type a word into Google and a billion links appear in a
flash. How is this done? How do computer search engines
work, and why are they so good?¢ PageRank (the name is
a trademark of Google) is a method of measuring the
popularity or importance of web pages. PageRank is a
mathematical algorithm, or systematic procedure, at the
heart of Google's search software. Named after Larry
Page, a co-founder with Sergey Brin of Google, the
PageRank of a web page estimates the probability that a
person surfing at random will arrive at that page. Gary
Trudeau, of Doonesbury fame, has described it as ‘the
Swiss Army knife of information retrieval’.

At school we solve simple problems like this: 6 apples and
3 pears cost €6; 3 apples and 4 pears cost €5; how much
for an apple?¢ This seems remote from practical use, and
students may be forgiven for regarding it as pointless. Yet
it is a simple example of simultaneous equations, a
classical problem in linear algebra, which is at the heart of
many modern technological developments. One of the
most exciting recent applications is PageRank.

The PageRank computations form an enormous linear
algebra problem, like the apples and pears problem but



with billions of different kinds of fruit. The array of numbers
that arises is called the ‘Google matrix’ and the task is to
find a special string of numbers related to it, called the
‘dominant  eigenvector’. The solution can be
implemented using a beautifully simple but subfle
mathematical method that gives the PageRank scores of
all the pages on the web.

The web can be represented as a huge network, with
web pages indicated by dots and links drawn as lines
joining the dots. Brin and Page used hyperlinks between
web documents as the basis of PageRank. A link to a
page is regarded as an indicator of popularity and
importance, with the value of this link increasing with the
popularity of the page linking to it. The key idea is that a
web page is important if other important pages link to it.

Thus, PageRank is a popularity contest: it assigns a score
to each page according to the number of links to that
page and the score of each page linking to it. So it is
recursive: the PageRank score depends on PageRank
scores of other pages, so it must be calculated by an
iterative process, cycling repeatedly through all the
pages. At the beginning, all pages are given equadl
scores. After a few cycles, the scores converge rapidly fo
fixed values, which are the final PageRank values.

Google's computers or ‘googlebots’ are ceaselessly
crawling the web and calculating the scores for billions of
pages. Special programs called spiders are constantly
updating indexes of page contents and links. When you
enter a search word, these indexes are used to find the
most relevant websites. Since these may number in the
billions, they are ranked based on popularity and content,
It is this ranking that uses ingenious mathematical



technigues.

Efforts to manipulate or distort PageRank are becoming
ever more subtle, and there is an ongoing cat-and-mouse
game between search engine designers and spammers.
Google penalises web operators who use schemes
designed to artificially inflate their ranking. Thus, PageRank
is just one of many factors that determine the search result
you see on your screen. Still, it is a key factor, so those
techniques you learned in school to find the price of
apples and pears have a real-world application of great
significance and value.

(The answer to the puzzle: apples cost 60 cents and pears
cost 80 cents.)



NAPIER'S NIFTY RULES

Spherical trigonometry is not in vogue. A century ago, a
Tripos student at Cambridge might resolve half a dozen
spherical triangles before breakfast. Today, even the
basics of the subject are unknown to many students of
mathematics. That is a pity, because there are many
elegant and surprising results in spherical trigonometry. For
example, two spherical friangles that are similar — having
corresponding angles equal — have the same area. This
conftrasts sharply with the situation for plane geometry.

There is no denying the crucial importance of spherical
trigonometry in astronomy and in the geosciences. A
good memory is required to master all the fundamental
results: the sine law, the cosine law for angles, the cosine
law for sides, Gauss's formulae and many more. But we
can get a long way with a few simple and easily
remembered rules formulated by the inventor of
logarithms.

The equation for a great circle involves the intersection of
a plane and a sphere, an easy problem in three-
dimensional Cartesian geometry. It is

tan ¢ = tan € sin (A - 1)



where A and ¢ are longitude and latitude and the great
circle crosses the equator through A0 at an angle €. A
more direct approach of showing this is possible: the
formula for a great circle turns out to be one of Napier's
Rules.

These rules are easy to state. Every spherical triangle has
three angles and three sides. The sides are also expressed
as angles, the angles they subtend at the centre of the
sphere. For a sphere of unit radius, these angles (in
radians) equal the lengths of the sides. Napier's Rules
apply to right-angled triangles. Omitting the right angle,
we write the remaining five angles in order on a pie
diagram, but replace the three angles not adjacent to
the right angle by their complements (their values
subtracted from 90 degrees). If we select any three
angles, we will always have a middle one and either two
angles adjacent to it or two angles opposite to itf. Then
Napier's Rules are:

SIne of mlddle=Product of tAngents of Adjacent angles
angle

SIne of mlddle=Product of cOsines of Opposite angles
angle

With five choices for the middle angle and adjacent and
opposite cases for each, there are ten rules in all. As a
mnemonic, note the correspondences of the first vowels in
key words, indicated in bold.

Napier's Rules apply only to right triangles, but we can
often handle a general spherical triangle by dividing or
extending it. Suppose we want to find out the great circle
distance from Paris to Cairo, and we know the latitude
and longitude of each city. The meridians from the North



Pole to these cities, together with the great circle
between them, form a spherical triangle for which we
know two sides and the included angle. We can apply
the cosine law for sides to get the great circle distance.
But what if we have forgotten the cosine law? We can
drop a perpendicular from Paris to the meridian through
Cairo and apply Napier’s Rules twice to find the inter-city
distance (it furns out fo be about 3,200 km).

John Napier (1550-1617), formulator of the rules, is best
remembered as the inventor of logarithms. Also out of
vogue today, his tables of logs enabled Johannes Kepler
to analyse Tycho Brahe's observations and deduce the
orbits of the planets. Napier also popularised the use of
decimal fractions in arithmetic. But his work in
mathematics was essentially recreational, for Napier was
foremost a theologian. An ardent, even fanatical,
Protestant, he regarded his commentary on the Book of
Revelation as his best work. In A Plaine Discovery of the
Whole Revelation of St John, he predicted that the
apocalypse and the end of the world would occur in
1700.

Napier's book on logarithms contained his ‘Rules of
Circular Parts’ of right spherical friangles. As we have
seen, they are easily remembered and simple to apply. If
you are ever marooned on a desert island and know the
location, you can use them to work out how far you wiill
have to swim home. | hope you make it.
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SPROUTOLOGY

Sprouts is a simple and delightfully subfle pencil and
paper game for two players. The game is set up by
marking a number of spots on a page. Each player makes
a move by drawing a curve that joins two spots, or that
loops from a spot back to itself, without crossing any lines
drawn earlier, and then marking a new spot on the curve.
A maximum of three lines may link fo a spot, and any spot
with three lines is considered dead, since it plays no further
role in the game. Sooner or later, no further moves are
possible and the player who draws the last line wins the
game.

Sprouts was devised by two Cambridge mathematicians,
John Horton Conway and Michael Stewart Paterson, in
1967. It has an addictive appeal, and it immediately
became a craze, being played in mathematics
departments around the world. Despite the simple rules,
the analysis of the game presents some challenges, and
no general winning strategy is known. It is fairly easy to
show that if there are n spots to start, the game will have
at least 2n moves, and must end in at most 3n-1. Thus,
with 8 spots to start, there will be between 16 and 23
Moves.



The mathematics of Sprouts, which we might call
sproutology, involves topology, a form of geometry that
considers continuity and connectedness but disregards
distances and shapes. Topology is often called rubber-
sheet geometry since a figure drawn on an elastic sheet
retains its topological properties when the sheet is
stretched but not torn. Sprouts is topological, since the
precise positions of the spofts is unimportant; it is only the
pattern of connections between them that counts. The
game exploits the Jordan curve theorem, which states
that simple closed curves divide the plane into two
regions. This apparently obvious result is actually quite
difficult to prove.

The one-spot game of Sprouts is trivial: the first player must
join the spot to itself and draw another spot; the second
player then joins the two spots, winning the game. Games
with a small number of starting spots have been fully
investigated, and a pattern is evident: if the remainder
when n is divided by 6 is 3, 4 or 5, the first player can force
a win (assuming perfect play); otherwise, the second
player has a winning strategy. This ‘Sprouts conjecture’
remains unproven.

For up to seven spots to start, Sprouts can be checked by
hand, but for larger numbers of spots it rapidly becomes
too complex and a computer analysis is required.
Recently, Julien Lemoine and Simon Viennot analysed
games with up to 47 spots, and their findings support the
Sprouts conjecture. Of course, the existence of a winning
strategy does not guarantee a win. Despite its elementary
rules, Sprouts is surprisingly subtle, and prowess comes only
with practice. You should start with a small number of
spots, between five and 10, and gradually build up skill.
But beware the addictive appeal of the game: you may



well become a sproutaholic.

A sample game of Sprouts in which the second player wins after
four moves.



WHY DON'T CLLOUDS
FALL DOWN?

A stone memorial was unveiled in 1995 in the tiny Sligo
townland of Skreen to honour a great nineteenth-century
mathematician and physicist who hailed from there.
George Gabriel Stokes was born in Skreen in 1819, the
youngest of seven children of Reverend Gabriel Stokes,
Rector of the Church of Ireland.

George showed clear signs of briliance from an early
age, excelling at mathematics. After education in Skreen,
Dublin and Bristol, he matriculated to Pembroke College,
Cambridge, graduating in 1841 as Senior Wrangler; that s,
gaining first place in the entire University of Cambridge in
Part Il of the Mathematical Tripos, the final mathematics
examinations. Just eight years later he was appointed
Lucasian Professor of Mathematics, a position that he held
for over fifty years. This prestigious chair had earlier been
held by Isaac Newton and more recently by Stephen
Hawking.

Stokes's scientific interests were very broad, and he
corresponded on a wide range of subjects with another
giant of Victorian science, Belfast-born Lord Kelvin. A



particular focus of his work was wave phenomena in
various media. Some of his best-known research was on
the theory of light waves. In this work, he obtained some
major advances in the mathematical theory of diffraction
and elucidated the phenomenon of fluorescence, the
emission of light by a substance that has absorbed
electromagnetic radiation. We benefit from this work
through fluorescent lamps; these use electricity to excite
mercury atoms, which then cause a phosphor coating to
fluoresce, producing visible light.

Stokes investigated the internal friction of fluids, explaining
how small droplets are suspended in the air and giving an
answer to the age-old question asked by children: Why
don't clouds fall down?¢ His description of fluid viscosity
was incorporated into the equations of fluid motion, now
called the Navier-Stokes equations. These equations are
of fundamental importance in all studies of fluid motion
and are central to the study of turbulence, for modelling
the oceans and for weather prediction and climate
modelling.

In 1859 Stokes married Mary Susanna, daughter of Thomas
Romney Robinson, Astronomer at Armagh Observatory.
Robinson had an interest in the atmosphere and had
invented the spinning cup anemometer for measuring
wind speed. This interest must have influenced Stokes,
who later developed an instrument called the Campbell-
Stokes sunshine recorder.

In 1851, Stokes was elected a Fellow of the Royal Society.
For thirty years he was secretary of the society and later
served as its president. He was also an MP for a time,
representing the University of Cambridge. But he never
forgot his origins in Skreen, and returned to Sligo regularly



for summer vacations. And in one of his heavily
mathematical papers he wrote of 'the surf which breaks
upon the western coasts as a result of storms out in the
Atlantic’, recalling the majestic rollers thundering in as he
strolled as a boy along Dunmoran Strand near Skreen.,

Stokes won many honours during his life, and his name is
preserved in a large number of scientific contexts,
including Stokes' Law (in fluid dynamics), Stokes’ Theorem
(in vector calculus), the Stokes shift (fluorescence), the
Stokes phenomenon (in asymptotics) and many more.



PACKING ORANGES AND
STACKING
CANNONBALLS

Packing problems are concerned with storing objects as
densely as possible in a container. Usually the goods and
the container are of fixed shape and size. Many packing
problems arise in the context of industrial packaging,
storage and transport, in biological systems, in crystal
structures and in carbon nanotubes, tiny molecular-scale

pipes.

Packing problems illustrate the interplay between pure
and applied mathematics. They arise in  practical
sifuations but are then generalised and studied in an
abstract mathematical context. The general results then
find application in new practical situations. A specific
example of this interplay is the sphere-packing problem.

In 1600, the adventurer Walter Raleigh asked his
mathematical adviser Thomas Harriot about the most
efficient way of stacking cannonballs on a ship's deck.
Harriot wrote to the famous astronomer Johannes Kepler,
who formulated a conjecture that a so-called ‘face-



centred cubic’ was the optimal arrangement.

Let's start with a simpler problem: How much of a table-
top can you cover with non-overlapping €1 coins?
Circular discs can be arranged quite densely in a plane. If
they are set in a square formation, they cover about 79%
of the surface. But a hexagonal arrangement, like a
honeycomb, with each coin touching six others, covers
over 90%; that's pretty good. Joseph-Louis Lagrange
showed in 1773 that no regular arrangement of discs does
better than this. But what about iregular arrangements? It
took until 1940 to rule them out.

In three dimensions, we could start with a layer of spheres
arranged in a hexagonal pattern like the coins, and then
build up successive layers, placing spheres in the gaps left
in the layer below. This is how grocers instinctively pile
oranges, and gunners stack cannonballs. The geometry is
a bit trickier than in two dimensions, but it is not too
difficult to show that this arrangement gives a packing
density of about 74%. The great Gauss showed that this is
the best that can be done for a regular or lattice
arrangement of spheres.

But again we ask: what about iregular arrangements? Is it
not possible to find some exotic method of packing the
spheres more denselye Kepler's Conjecture says ‘No’, and
the problem has interested many great mathematicians in
the intervening four hundred years. In 1900 David Hilbert
listed 23 key problems for twentieth-century
mathematicians, and the sphere-packing puzzle was part
of his 18th problem.

In 1998 Thomas Hales announced a proof of Kepler's
Conjecture. He broke the problem into a large number of
special cases and attacked each one separately. But



there were some 100,000 cases, each requiring heavy
calculation, far beyond human capacity, so his proof
depended in an essential way upon using a computer.
After detailed review, Hales' work was finally published in
2005 in a 120-page paper in Annals of Mathematics. Thus,
Kepler's Conjecture has become Hales' Theorem! Most
mathematicians accept that the matter is resolved, but
there remains some discomfort about reliance on
computers to establish mathematical fruth.

Why should we concern ourselves with a problem for
which grocers and cannoneers knew the solution long
agoe Well, in higher dimensions the corresponding
problem has more infriguing aspects. It is a key result in
data communication: to minimise transmission errors, we
design codes that are based on maximising the packing
density of hyper-spheres in high-dimensional spaces. So
the apparently abstruse conjecture of Kepler has some
eminently practical implications for our ftechnological
world.



MODELLING EPIDEMICS

The film Contagion painted a terrifying picture of the
breakdown of society following a viral pandemic. The
movie identified a key parameter, the basic reproduction
number R-nought (Rp). This number measures how many
new people catch the virus from each infected person,
and is crucial in determining how fast an infection
spreads.

In March 2003, an epidemic of severe acute respiratory
syndrome (SARS) spread rapidly across the globe. The
World Health Organisation issued a global alert after SARS
had been detected in several countries. Since the spread
of infections is greatly facilitated by international air travel,
controls on movement can certainly be effective: with
appropriate travel restrictions, the SARS epidemic was
brought under control within a few months.

Epidemiological analysis and mathematical models are
now essential tools in understanding and responding to
infectious diseases such as SARS. Models range from
simple systems of a few variables and equations to highly
complex simulations with many millions of variables. A
broad range of mathematics, both conventional
techniques and methods emerging from current research,



are involved. These include dynamical systems theory,
statistics, network theory and computational science.

Public health authorities are faced with crucial questions:
How many people will become infected? How many do
we need fto vaccinate to prevent an epidemic? How
should we design programmes for prevention, control and
treatment of outbreakse The models allow us to quantify
mortality rates, incubation periods, levels of threat and the
timescale of epidemics. They can also predict the
effectiveness of vaccination programmes and control
policies, such as travel restrictions.

Parameters like transmission rates and basic reproduction
numbers cannot be accurately estimated for a new
infection until an outbreak actually occurs. But models
can be used to study ‘what if’ scenarios to estimate the
likely consequences of future epidemics or pandemics.

In a paper published in 1927, 'A Confribution to the
Mathematical Theory of Epidemics’, two scientists in
Edinburgh, Wililam Kermack and Anderson McKendrick,
described a simple model with three variables, and three
‘ordinary differenfial equations’ that describe how
infection levels change with time, which was successful in
predicting the behaviour of some epidemics. Their model
divided the population into three groups: susceptible,
infected and recovered people, denoted S, | and R
respectively. This SIR model simulates the growth and
decline of an epidemic and can be used to predict level
of infection, tfimescale and the total percentage of the
population afflicted by the infection.

However, many important factors are omitted from the
simple SIR model. The swine flu epidemic in Britain
reached a peak in July 2002 and then declined rapidly



and unexpectedly. The key factor not included in the
model was the effect on the transmission rate of the
school holidays, with contacts between children greatly
reduced. The growth of the outbreak was interrupted, but
an even larger peak was reached in October, after
school had resumed. When these social mixing patterns
were included, the model produced two peaks, in
agreement with the observed development.

The stafistician George Box, a pioneer in time series
analysis, design of experiments and Bayesian inference,
once remarked: ‘All models are wrong, but some are
useful.” All models of epidemics have limitations, and
those using them must bear these in mind. Given the
vagaries of human behaviour, prediction of the exact
development of an infectious outbreak is never possible.
Nevertheless, models provide valuable insights not
available through any other means.

Future influenza pandemics are a matter of ‘when’ rather
than ‘if’. In planning for these, mathematical models will
play an indispensable role.



A FALLING SLINKY

If you drop a slinky from a hanging position, something
very surprising happens. The bottom remains completely
motionless until the top, collapsing downwards, coil upon
coil, crashes into it.

How can this be so2 We all know that anything with mass
is subject to gravity, and this is certainly true of the lower
coils of the slinky. But there's another force acting on
them, the tension due to the stretching of the slinky. When
hanging in an equiliorium position, these two forces,
gravity and tension, balance exactly, so there is no
movement,

When we let go of the top, the tension in the uppermost
coils is relaxed and, since there is nothing to balance
gravity, they start to fall. But this relaxation has to be
transmitted or communicated down the slinky before
gravity can pull the bottom downwards. This fransmission
takes time: the time for the ‘message’ to travel the length
of the slinky depends on the ratio of the mass to the
stiffness.

A slinky has large mass and small stiffness, so this time is
relatively long, typically about half a second. But a freely
falling object falls five metres in the first second. Moreover,



the top coils of the slinky initially accelerate downwards
even faster than in free fall, because the downward
tension augments gravity. Thus, the slinky reaches a
crunch point, where the top crashes into the bottom,
before the signal of the release can reach it. You might
say that the bottom doesn’t know what hit it!

It is worthwhile playing with a real slinky fto study this
curious behaviour. If you put the slinky on a table, stretch
it, hold one end steady and jerk the other end, you will
see the signal propagating along the spring. But the best
way to view the falling slinky is in slow motion.

There are several videos on YouTube illustrating falling
slinkies, for example http://www.youtube.com/watch2v=u
iyMUHUCFo4,



R ‘MERSENNERY’
QUEST

Prime numbers are of cenfral importance in pure
mathematics and also in a wide range of applications,
most notably cryptography. The security of modern
communication systems depends on ftheir properties.
Recall that a prime number is one that cannot be evenly
divided by a smaller number. Thus, 2, 3 and 5 are primes,
but 4 and 6 are not, since 4 =2 x 2 and 6 = 2 x 3. Primes
are the atoms of the number system: every whole number
is a product of primes.

The search for patterns in the distribution of primes has
occupied mathematicians for centuries. They appear to
be randomly strewn among the whole numbers, but there
are tantalising indications of structure. Often, a hint of a
pattern emerges, only to evaporate upon further study.
Thus, 31 is prime, as are 331, 3331, 33331 and the next
three members of this sequence. But 333,333,331 s
divisible by 17, and the pattern is broken.

In elementary algebra, we learn to solve quadratic
equations. This corresponds to finding the zeros of a simple
polynomial equation. The zeros of a more complicated



function, called the zeta function, are intimately
connected with the distribution of the prime numbers, but
the location of all these zeros is enormously difficult. They
are believed to satisfy a pattern first proposed in 1859 by
Bernhard Riemann, but this has never been proved. The
Riemann Hypothesis is widely regarded as the most
important unsolved problem in mathematics. A proof
would have farreaching implications and whoever
proves it will win lasting fame. They will also collect a $1
million prize from the Clay Mathematics Institute.

The frantic dash to find ever-larger prime numbers has
been dominated in recent years by the Great Internet
Mersenne Prime Search (GIMPS), a voluntary collaborative
project involving a large number of personal computers.
The record for the largest prime is broken on a regular
basis. Almost all the recent examples have been found by
GIMPS, and are numbers of a particular form called
Mersenne primes, which are one less than a power of 2. As
of June 2016, the largest known prime is obtained by
multiplying 2 by itself 74,207,281 times and subtracting 1.
With more than 22 milion digits, it would fill many
thousands of printed pages.

Mersenne numbers take their name from a seventeenth-
century friar called Marin Mersenne. Born in France in
1588, Mersenne was a strong apologist for Galileo, whose
scientific  ideas  challenged religious  orthodoxy.
Mersenne's main scientific work was in acoustics, but he is
remembered today for his association with the Mersenne
primes. He had contact with many mathematical
luminaries, and provided a vital communication channel,
corresponding  with  mathematicians, including René
Descartes and Etienne Pascal, in many countries.
Mersenne was, in essence, a one-man internet hub.



GIMPS has found the ten largest known prime numbers,
and regularly smashes its own record. The project uses a
search algorithm called the Lucas-Lehmer primality test,
which is particularly suitable for finding Mersenne primes
and is very efficient on binary computers. The test was
originally developed by Edouard Lucas in the nineteenth
century, and improved by Dermrrick Henry Lehmer in the
1930s.

For discovering a prime with more than 10 million decimal
digits, GIMPS won a $100,000 prize and a Cooperative
Computing Award from the Electronic Frontier Foundation
(EFF). A prize of $150,000 is on offer from EFF for the first
prime number found with at least 100 milion decimal
digits, and a further $250,000 for one with at least a billion
digits. What are you waiting for¢



SHACKLETON'S
SPECTACULAR BOAT
JOURNEY

A little mathematics goes a long, long way. Elementary
geometry brought a small team of heroes 800 sea miles
across the treacherous Southern Ocean, and resulted in
28 lives being saved.

For eight months, Ernest Shackleton's expedition ship
Endurance had been carried along, ice-bound, until it
was finally crushed and sank in October 1915, This put an
end fo the plans of the Irish-born explorer and his team of
28 men to cross the Antarctic confinent. They salvaged
three boats and made their way to Elephant Island, at the
tip of the Antarctic Peninsula.

With five companions, Shackleton set out in one of the
boats, a whaler called the James Caird, setting a course
for South Georgia, some 800 nautical miles distant. With
unceasing gales, the sea was tempestuous. Navigation
depended on sightings taken with a sextant during rare
appearances of the sun. Heavy rollers tossed the boat
about, making it difficult to sight the horizon. The process



was described by navigator Frank Worsley as ‘a merry jest
of guesswork’.

The strategy was to reach the latitude of South Georgia
and let the westerly winds and currents carry the boat to
the island. Latitude is measured by ‘shooting the sun' with
a sextant. The horizon and the lower limb of the sun are
aligned in a split mirror, viewed through a telescope. The
altitude of the sun can then be read from an indicator on
the sextant arc. The geometry is straightforward: looking
at the diagram below, we can see that the latitude 06 is
given by 8 = 90° + o — a where a is the sun's altitude read
from the sextant and o is the latitude of the sun. This last
depends on the date and fime, and is given in the
Nautical Almanac.

EQUATOR

Angles used to calculate the latitude. Alpha (a) is the altitude of
the sun measured with the sextant; sigma (o) is the lafitude of the
sun, obtained from the Nautical Aimanac; and theta (6) is the
latitude of point P.



To get the longitude, a clear shot of the sun at local noon
is required. The navigator tracks the solar alfitude to
determine the exact time when the sun reaches its highest
point. This is local apparent noon. The chronometer is set
to Coordinated Universal Time (UTC or GMT). Since the
earth rotates in 24 hours, the sun appears to move
westwards 15 degrees in each hour. Thus, if the
chronometer reads 15:00 GMT, local noon is three hours
behind Greenwich and the longitude is 45° west.

After 17 days, Shackleton and his companions landed on
the west coast of South Georgia, at about 54°. The
voyage was a marvel of navigation, one of the greatest
boat journeys ever accomplished. But the trouble was not
over yet. Shackleton still had to cross the mountainous
interior of the island to reach the whaling station at
Stromness and arrange a rescue mission to relieve the
men left behind on Elephant Island.

Ultimately, the entire party reached the safety of Punta
Arenas, Chile in September 1916. The survival of
Shackleton and all his companions was ‘a triumph of
hope and inspired leadership’.



WHERE IN THE WORLD?

Most hill-walkers can recall an anxious time when, caught
on a ridge between steep slopes, they were suddenly
enshrouded by dense fog. A carefree ramble becomes a
terrifying test of survival. The immediate question is ‘Where
exactly am 12" Map and compass are vital aids, but they
cannot answer that question. A hand-held device about
the size of a mobile phone can. How does it do that?2

The Global Positioning System is a satellite-based
navigation system, owned and operated by the US
government, that provides information on location in all
weathers, anywhere in the world. It is freely available to
anyone with a GPS receiver, costing perhaps €100. The
system compirises a constellation of between 24 and 32
satellites, orbiting at about 20,000 km above the earth.
Each satellite carries a high-precision atomic clock,
accurate to about one nanosecond. A nanosecond (ns)
is one billionth of a second, the time it takes light to travel
one foot.

To compute the position, the GPS receiver uses signals
from several satellites, each including the precise time
and location of the satellite. The satellites are synchronised
so that the signals are tfransmitted at precisely the same



instant. But they arrive at the GPS receiver at slightly
different times. Using the known signal speed, the speed
of light, the distance to each satellite is determined. These
distances are then used to calculate the position of the
receiver, using frilateration.

Trilateration determines position by using distances to
known locations. This is in confrast to friangulation, which
uses angles. For example, if you are 110 km from Athlone,
you are somewhere on a circle of this radius centred at
Athlone. If you are also 140 km from Belfast, you must be in
Dublin or in Garrison, Fermanagh, the points where two
circles intersect. Finally, if you are also 220 km from Cork,
you can only be in Dublin. Three distances suffice for a
unigque location.

In three-dimensional space, spheres replace circles and
four are needed, so the GPS receiver uses signals from four
satellites. This provides distances from four known
locations, sufficient to pin down the position of the
receiver. GPS receivers available today give location to
an accuracy of about ten metres. This position may be
plotted on a background map or given as latitude and
longitude or a National Grid reference.

Navigation is just one of the many civilian and military
applications of GPS. The system is vital for search and
rescue, for vehicle fracking, for map-making and
surveying and for detecting movements in the earth’s
crust. Monitoring the movements of elephants in Africa is
one among many other applications. Satnav s
considered so essential that the European Union s
developing a GPS system called Galileo. As of June 2016
there were 14 of 30 satellites in orbit and the system should
be fully operational by 2019.



GPS is a striking example of the practical importance of
Einstein’s relativity theory. Special relativity implies that a
moving clock ticks slowly relative to a stationary one, so
for an observer on earth, the satellite clocks lose about
7,000 ns (7 microseconds) each day. But general relativity
says that these clocks should go about 45,000 ns faster,
because the earth’s gravitational pull is weaker higher up.
The net effect is a speed-up of about 38,000 ns per day.
To avoid cumbersome corrections, the clocks are reset
before launch to compensate for relativistic effects.
Without this, GPS would be useless for navigation!

The Global Positioning System is a remarkable synthesis of
old and new. It involves high-tech engineering and
complex relativistic physics to enable it to function, but
the mathematics used to determine location is simple,
being a straightforward application of the geometry of
circles and spheres developed in ancient Greece.



SRINIVASA
RAMANUJAN

Srinivasa Ramanujan, one of the greatest mathematical
geniuses ever to emerge from India, was born in 1887 into
a poor Brahmin family. Ramanujan had limited formal
education but was consumed by his passion for
mathematics. He neglected all other subjects and failed
the entrance exam for the University of Madras. However,
he continued his mathematical research with intensity.

In 1213, Ramanujan wrote to G. H. Hardy, the leading
mathematician in Britain, enclosing some of his results.
Hardy examined them and concluded that they ‘could
only be written down by a mathematician of the highest
class’. Thus began one of the most successful
mathematical collaborations of all time. For five years,
Ramanujan worked with Hardy in Cambridge, publishing
many papers of great richness and originality. In 1918 he
was elected a Fellow of the Royal Society.

Ramanujan returned to India in 1219, but lived for only
one more year. Shortly before his death, aged only 32,
Ramanujan wrote a last letter to Hardy in which he
infroduced 17 completely new and strange power series



that he called ‘'mock theta functions’.

In 1976 the American mathematician George Andrews
was looking through some papers in the Wren Library in
Cambridge and recognised Ramanujan's handwriting.
What he found, now known as the ‘lost notebook’,
contains many remarkable results, including Ramanujan'’s
results on the mysterious mock theta functions.

Andrews' discovery opened up a vast new landscape.
The results were of stunning novelty, representing what
many regard as Ramanujan's deepest work. The finding of
the lost notebook has been compared to finding a
manuscript  of Beethoven's Tenth Symphony. The
consequences have been profound, for both pure
mathematics and theoretical physics.

Ramanujan gave no clue as to how he had discovered
the mock theta functions. An intrinsic meaning of them
has eluded mathematicians until very recently. Sander
Iwegers, a lecturer at UCD until he moved to Cologne in
2011, finally explained how they fit into a broader context.
Iwegers' 2002 PhD thesis was groundbreaking, and has
led to numerous publications and international
conferences.

The breakthrough in our understanding is having an
impact on many aspects of mathematics and physics. In
pure mathematics, the results have been applied to
graph theory, group theory and differential topology. In
physics, there are aqpplications in particle physics,
statistical mechanics and cosmology. In particular,
Ramanujan’s functions have proved valuable for
calculating the entropy of black holes.

Ramanujan’s startlingly briliant and innovative research



paved the way for many major breakthroughs in number
theory over the past century. Mathematician and
theoretical physicist Freeman Dyson spoke of ‘a grand
synthesis still to be discovered’, and he speculated about
applications of the mock theta functions to string theory.
This is an indication of the prescience and genius of
Ramanujan’s work, confirming Hardy's description of him
as having ‘profound and invincible originality’.



SHARING A PINT

Four friends, exhausted after a long hike, stagger into a
pub to slake their thirst. But, pooling their funds, they have
enough money for only one pint.

Annie drinks first, until the surface of the beer is halfway
down the side (Fig. 1 (A)). Then Barry drinks until the
surface touches the bottom corner (B). Cathy then takes
a sup, leaving the level as in (C), with the surface through
the centre of the bottom. Finally, Danny empties the glass.

(A) (B) ©
Figure 1

Question: Do all four friends drink the same amount? If nof,
who gets most and who gets leaste

By symmetry, Annie has drunk half of the top half of the
glass. So she has consumed 25% of the beer. Again by



symmetry, Barry has left exactly 50% of the beer in the
glass, so he has swallowed 25%. So far so good.

But Cathy has left beer forming a less regular shape: the
liguid remaining in (C) is in the shape of an ungula, the
volume formed by a plane slicing a cylinder and passing
through the centre of the base. We have to calculate the
volume of the ungula to see how much beer is left for
Danny.

Ungula means hoof, and a section of a cylinder or cone
cut off by a plane oblique to the base is so called
because it resembles a horse's hoof. The shape is shown in
Figure 2 below. Its volume can be calculated by a
mathematical operation known as integration.

(A (B) (©)

Figure 2 Cross-sections of an ungula perpendicular to (A) the x
axis, (B) the y axis and (C) the z axis.

The three panels in Figure 2 show cross-sections of the
ungula perpendicular to the x, y and z axes. They are
respectively a rectangle, a triangle and a segment, and
the volume is obtained by integration along the relevant
axis. So, schematically, we can write the volume as

V = [ (Rectangle) dx = [ (Triangle) dy = [ (Segment) dz



where the symbol | denotes an integral, or sum over all the
relevant shapes. Naturally, all three yield the same result,
V = (2/3)r’h where ris the radius and h the height.

Now, the volume of the cylinder is nréh, so the fraction left
for Danny is 2/(3m) or about 21%. Thus, while Annie and
Barry drank 25% of the beer, Cathy must have drunk
about 29%, leaving Danny short.

There is something remarkable about the volume of the
ungula: it does not involve 11, even though one of the
surfaces is curved. Where has m gone?

More remarkable still is that Archimedes showed that the
volume of the ungula is one-sixth that of the surrounding
cube or block. The volume is (2/3)r?h, and the volume of
the rectangular box containing the cylinderis 2r x 2r x h =
4r?h, so indeed the ratio is 1/6.

Archimedes used the triangular cross-section, infegrating
in the y direction. His reasoning was not some crude
approximation, but a true application of the method of
integral calculus.



PONS ASINORUM

The fifth proposition in Book | of Euclid's Elements states
that the two base angles of an isosceles triangle are equal
(in the figure here, angles B and C; an isosceles triangle is
one having two equal sides). For centuries, this result has
been known as the Pons Asinorum, or Bridge of Asses,
apparently a metaphor for a problem that separates
bright sparks from dunces.

Euclid proves the proposition by extending the sides AB
and AC and drawing lines to form additional triangles. His
proof is quite complicated. A simpler approach, popular
for a hundred years or so, is to draw the line that bisects
the apex angle A, splitting the triangle into two parts,
which are then shown to be congruent, or equal in all
respects. This requires use of an earlier result, Euclid’s
proposition 1.4, which says that two friangles are
congruent if they have two sides and the included angle
equal.

Around 1960 another proof appeared, allegedly
discovered by a computer. It ingeniously compared the
triangle ABC to its mirror image ACB (see figure) and used
Proposition .4 to show that they are congruent, whence
angle B equals angle C. This ‘new’ proof is infriguing in



that it treats the triangle and its mirror image as separate
for purposes of deduction but identical for purposes of
conclusion.

When first published, this proof was considered to provide
a convincing demonstration that computers can be
creative. It was frequently cited as evidence of artificial
intelligence (Al), for example in Douglas Hofstadter's
remarkable book Gddel, Escher, Bach: An Eternal Golden
Braid. But Michael Deakin of Monash University, Australia
has investigated the matter. He reports an interview in
1981 in the New Yorker, in which Al guru Marvin Minsky of
MIT stated that he produced the proof himself ‘by hand
simulation of what a machine might do’.

A A

B
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Amazingly, the ingenious proof was first discovered by the
last great Greek geometer, Pappus of Alexandria, working
around AD 320. It was derided by the nineteenth-century
Oxford mathematician C. L. Dodgson, who imagined the
reaction of Euclid: ‘Surely that has too much of the Irish
bull about it."” Dodgson was none other than Lewis Carroll,
author of Alice’s Adventures in Wonderland.

But what of the ‘standard proof' using the bisector of the



apex angle¢ Deakin points out that the reasoning in A
School Geometry, a book by Hall and Stevens that some
of us slaved over long ago, is circular. The proof of
Pappus, rediscovered by Minsky and wrongly attributed to
a computer, is certainly elegant. But perhaps it is safest o
stick with Euclid's original proof. At least one child

produced the Pappus proof in an examinatfion and was
marked wrong for it.



LOST AND FOUND: THE
SECRETS OF
ARCHIMEDES

Archimedes of Syracuse was the greatest mathematician
of anfiquity. He was also a brilliant physicist, engineer and
astronomer, famed for founding hydrostatics, for
formulating the law of the lever, for designing the helical
pump that bears his name, for designing engines of war,
and for much more. Generations of children have learned
how, upon discovering a way to assay King Hieron's
crown, Archimedes ran naked through the streets crying
‘Eurekal’

Archimedes estimated the value of 1, the ratfio of the
circumference to the diameter of a circle, to remarkable
accuracy, using polygons of 926 sides within and around a
circle. And he found the volume of a sphere, showing that
it is two-thirds of the volume of the smallest cylinder in
which it is contained. He asked that an image of a sphere
within a cylinder be inscribed on his tombstone. Centuries
later, the Roman orator Cicero found such a carving on @
grave in Syracuse.



Many of Archimedes' writings are lost, known to us only
through references made to them by later writers. Other
works have reached us by a circuitous route: they were
translated into Arabic in the ninth century, and from
Arabic into Latin during the Renaissance. But some of
Archimedes’ most important work remained hidden from
us until the remarkable discovery of the Archimedes
Palimpsest.

Palimpsests were works written on parchment that had
been scraped clean of earlier writing. This was common
practice in the Middle Ages because vellum was very
expensive. In 1906 a prayer book written in the thirteenth
century came to light in Constantinople. Upon close
examination by the Danish philologist Johan Heiberg, the
incompletely erased work underlying the text was
recognised as a tenth-century copy of several works of
Archimedes, which had been thought to have been lost
for ever.

The palimpsest is the only source we have of The Method
of Mechanical Theorems, in which Archimedes uses
infinitesimal quantities to calculate the volumes of various
bodies. This method foreshadowed integral calculus,
invented independently by Newton and Leibniz nearly
two thousand years later.

The Archimedes Palimpsest is the earliest extant
manuscript of Archimedes' work; it includes copies of the
geometric diagrams that he drew in the sand in the third
century BC. It contains several treatises by Archimedes,
including The Method. The palimpsest was bought at
auction in New York in 1998 for $2 million. The German
magazine Der Spiegel reported that the purchaser was
Jeff Bezos, founder of Amazon.com.



The palimpsest has been intensively analysed over the
past ten years, using advanced imaging methods. A
recent exhibition at the Walters Art Museum in Baltimore,
‘Lost and Found: The Secrets of Archimedes’, was
devoted to the analysis of the palimpsest and to the
outcome of the project to study it. All the images and
translations are freely available on the Archimedes
Palimpsest website  (www.archimedespalimpsest.org),
providing a freasure trove for scholars of Greek
mathematics.
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A page of the palimpsest showing older and more recent writing in
orthogonal directions (from www.archimedespalimpsest.org).



SUBTERRANEAN
TOPOLOGY

The London Underground map is a paragon of design
excellence. If you know where you are and where you
want to go, it shows you how to get there. But as a map of
London it is inaccurate in almost all respects. The beauty
of the design, originated by Harry Beck in 1931, is that the
key information is kept, and everything else is stripped
away.

The Tube map is what mathematicians call a graph. The
stations are the vertices and the frain lines joining them
are the edges. Interchanges are shown where different
lines connect. Distances and directions are distorted in the
interests of clarity and simplicity. One of the earliest such
graphs was drawn by the renowned Swiss mathematician
Leonhard Euler. Euler solved a puzzle called ‘The Seven
Bridges of Kénigsberg' by drastically simplifying a map of
that city. This made it clear that it is impossible to find a
route crossing all seven bridges without recrossing any of
them.

Graph theory is a branch of topology, the branch of
mathematics dealing with continuity and connectivity.



Topology is concerned with properties that remain
unchanged under continuous deformations, such as
stretching or bending, but not cutting or gluing.

Topology is often called rubber sheet geometry. If a figure
such as a triangle is drawn on a sheet of rubber and the
sheet is stretched, certain things change but others
remain unaltered. For example, the lengths of the sides
are changed, but points inside the figure remain inside
and points outside remain outside.

In three dimensions, a cube made of plasticine may be
distorted confinuously into a ball without tearing it, so a
cube and a ball are topologically equivalent. In contrast,
to make a bagel, or a doughnut with a hole, a ball of
plasticine must be torn at some point. So a ball and a
bagel are not equivalent.

The formal way of showing that two sets are topologically
equivalent is to establish a correspondence or mapping
between the two sets, such that nearby points in one are
mapped to nearby points in the other. If such a
correspondence — called a homeomorphism — exists, the
two sets are topologically equivalent.

In the familiar school geometry of Euclid, we have straight
lines, fixed distances between points and rigid shapes
such as triangles. Since topological deformations sacrifice
all these, is there anything useful left?z Yes: while the
London Tube map distorts distances, it preserves the order
of stations and the connections between lines, so the
traveller knows where to get on and off and where to
change ftrains. It is this topological information that is
critical; precise distances are of secondary importance.

The Tube map might be ‘corrected’ by drawing it on a



sheet of rubber and delicately stretching it in places,
gradually but continuously, until the stations are all in the
correct positions. Or it might be further distorted until the
Circle Line became a true circle. But the remarkable
success and longevity of the map proves that Harry Beck
got it just right all those years ago.



THE EARTH'S VAST
ORB

The shape of the earth has been a topic of great interest
to savants for millennia. It is an over-simplification to say
that the ancients believed the world to be flat. Just to
watch a ship appear or disappear over the horizon, or to
climb a mountain and notice the changing perspective of
a distant island, is enough to provide a hint about the
curved nature of the planet. But the prevalent view of
earth was one of a vast flat plane surface; only a few
people had greater insight.

Eratosthenes, a Greek mathematician, astronomer and
geographer, went further than others and made an
estimate of the earth’'s circumference that is close to the
true value. His method, simple but clever, demonstrates
the power of geometric reasoning. Eratosthenes knew
that in midsummer the noonday sun was overhead in the
city of Syene, modern-day Aswan, on the Tropic of
Cancer. Observers there had noticed that at midday the
sun's rays reached the bottom of a deep well.

But in Alexandria, when Eratosthenes measured the sun’s
angle relative to the zenith he obtained a value of about



7 degrees, or 1/50th of a circle. So, if the earth were a
sphere, its circumference must be 50 times the distance
from Aswan to Alexandria. Eratosthenes knew this
distance to be about 800 km (in modern units), so he
deduced a value close to 40,000 km for the earth's
circumference, a remarkably accurate result.

Eratosthenes was librarian at the Great Library in
Alexandria. He devised a system of latitude and longitude
and made the first map of the known world with parallels
and meridians. He is sometimes called the Father of
Geography because he in effect invented the discipline
and was the first person to use the term ‘geography’.

Eratosthenes was a contemporary and friend of
Archimedes. Eratosthenes himself was no mean
mathematician. In addition to his use of geometry for
map-making and measuring the size of the earth, he
devised a simple method, or algorithm, for finding prime
numbers, those numbers that cannot be evenly divided
into smaller parts. List the natural numbers, 1, 2, 3, ..., up to
some limit, say 500; then strike out every second number
following 2, every third number after 3, every fifth after 5
and so on. Finally, only the prime numbers, 2,3, 5,7, 11, ...,
remain. The procedure, the simplest way of listing small
prime numbers, is known as the ‘'sieve of Eratosthenes’.



Alexandria —-

Tropic of Cancer

The angle of the noonday sun measured in midsummer af
Alexandria and Syene (Aswan).



MORE EQUAL THAN
OTHERS

In his scientific bestseller, A Brief History of Time, Stephen
Hawking remarked that every equation he included
would halve sales of the book, so he put only one in if,
Einstein’s equation relating mass and energy, £ = mc?.
There is no doubt that mathematical equations strike terror
in the hearts of many readers. This is regrettable because
equations are really just concise expressions of precise
statements. They are actually quite user-friendly and more

to be loved than feared.

An equation indicates that whatever is to the left side of
the ‘equals’ sign has the same value as whatever is to the
right. For Einstein’s equation, E is the energy and it is equal
to the mass multiplied by the square of the speed of light.
In ancient times, equalities were expressed in verbal terms
like this. It was Robert Recorde, a Welsh-born
mathematician, who introduced the symbol = for ‘equals’.
In his book The Whetstone of Witte, written in 1557,
Recorde wrote that he chose this symbol consisting of two
parallel lines ‘bicause no 2 thynges can be moare
equalle’.



The first equation to appear in symbolic form was in
Recorde’s book, and was

14x+15=71.

The quantity x is called the unknown (although early
writers on mathematics called it ‘the thing') and the
equation states that if we take 14 times x and add 15 we
get 71. How might such an equation arise?¢ Suppose you
need a hammer and some nails. A hammer costs €15 and
a packet of nails is €14. If you buy a hammer and x
packets of nails, the total cost is 14x + 15, the left side of
Recorde's equation. If you have just €71 to spend, how
many packets of nails can you buye The answer is the
solufion x of the equation.

Recorde explained the transformations that can be made
to an equation to ‘solve’ it — that is, to find the unknown
quantity x. In the present case, you can subtract 15 from
each side to get a new equation 14x = 56 and then divide
both sides by 14 to get another one, x = 4. This is the
solution, and you can afford four packets of nails.

Recorde is credited with infroducing algebra into England
with his book. But he had other talents in additfion fo
mathematics. He was physician to Edward VI and Mary |,
and in 1551 was appointed Surveyor of the Mines and
Monies of Ireland. Alas, he ended his days in prison, for
reasons that are unclear. Perhaps he became embroiled
in a religious controversy, or ensnared in some political
intfrigue. Or perhaps some of the ‘Monies of Ireland’ went
astray.



MATHS AND CAT
SCANS

Many lives are saved each year through a synergistic
combination of engineering, computing, physics, medical
science and mathematics. This combinatfion is CT
imaging, or ‘computed tomography’, which is now an
essential tool for medical diagnosis.

The story began in 1895, when Wilhelm Rontgen made the
first radiograph using what he called X-rays. These high-
energy electromagnetic beams can penetrate body
tissues where light cannot reach. Intfernal organs can be
examined non-invasively and abnormalities located with
precision. For his frailblazing work, Rontgen was awarded
the first Nobel Prize in Physics in 1901.

The power and utility of X-ray imaging has been greatly
expanded by combining X-rays with computer systems to
generate three-dimensional images of organs of the
body. The diagnostic equipment used to do this is called a
CT scanner (or CAT scanner). The word ‘tomography’
comes from the Greek tomos, meaning slice, and a CT
scan is made by combining X-ray images of cross-sections
or slices through the body. From these, a 3-D



representation of internal organs can be built up.

Radiologists can use CT scans to examine all the major
parts of the body, including the abdomen, chest, heart
and head. In a CT scan, multiple X-ray images are taken
from different directions. The X-ray data are then fed into
a fomographic reconstruction program to be processed
by a computer. The image reconstruction problem is
essentially a mathematical procedure.

The tissue structure is deduced from the X-rays using a
technique first devised by an Austrian mathematician,
Johann Radon. He was motivated by purely theoretical
interests when, in 1917, he developed the operation now
known as the Radon transform. He could not have
anticipated the great utility of his work in the practical
context of CT. Reconstruction techniques have grown in
complexity, but are still founded on Radon’s work.

As they pass through the body, X-rays are absorbed to
different degrees by body ftissues of different optical
density. The total attenuation, or dampening, is expressed
as a ‘line integral’, the sum of the absorptions along the
path of the X-ray beam. The more tissue along the path,
and the denser that tissue, the less intense the beam
becomes. The challenge is to determine the patterns of
normal and abnormal tissue from the outgoing X-rays.

If the X-ray patterns were uncorrupted, the mathematical
conversion to 3-D images would be straightforward. In
reality, there is always noise present, and this introduces
difficulties: Radon'’s ‘inverse transform’ is very unstable and
error-prone, so a stable modification of the method,
known as ‘filtered back-projection’, is used. More
accurate algorithms have been developed in recent
years, and research in this field is continuing.



Applications of tomography are not confined to
medicine. The technique is also used in non-destructive
materials testing, both in large-scale engineering and in
the manufacture of microchips. It is also used to compute
ozone concentrations in the atmosphere from satellite
data. In addition to CT, there are numerous other volume-
imaging techniques. Electron fomography uses a beam of
electrons in place of the X-rays, ocean acoustic
tomography uses sound waves, and seismic tomography
analyses waves generated by earth movements to
understand geological structures. All involve intricate
mathematical processing to produce useful images from
raw data.



BAYES RULES OK

In May 2009, en route from Rio de Janeiro to Paris, Air
France flight AF447 crashed into the Atlantic Ocean.
Bayesian analysis played a crucial role in the location of
the flight recorders and the recovery of the bodies of
passengers and crew. What is Bayesian analysise

Classical and Bayesian statistics interpret probability in
different ways. To a classical statistician, or frequentist,
probability is the relative frequency of an event. If it
occurs on average 3 out of 4 times, he or she will assign to
it a probability of 3/4.

For Bayesians, probability is a subjective way to quantify
belief, or degree of certainty, based on incomplete
information. All probability is conditional and subject to
change when more data emerge. If a Bayesian assigns a
probability of 3/4, he or she should be wiling to offer odds
of 3to 1 on a bet.

Frequentists find it impossible to draw conclusions about
once-off events. By using prior knowledge, Bayesian
analysis can deal with individual incidents. It can answer
questions about events that have never occurred, such as
the risk of an asteroid smashing into the earth or the
chance of a major international war breaking out over



the next ten years.

The danger of a major accident for the Challenger space
shuttle was estimated by a Bayesian analysis in 1983 as 1
in 35. The official NASA estimate at the fime was an
incredible 1 in 100,000. In January 1986, during the 25th
launch, the Challenger exploded, kiling all seven crew
members.

Bayes' Rule transformed probability from a statement of
relative frequency info a measure of informed belief. In its
simplest form, the rule, devised in the 1740s by the
Reverend Thomas Bayes, tells us how to calculate an
updated assessment of probability in the light of new
evidence. We start with a prior degree of certainty. New
data then make this more or less likely.

An advantage of Bayesian analysis is that it answers the
questions that scientists are likely to ask. But, despite
spectacular successes, Bayesian methods have been the
focus of major controversy and their acceptance has
been slow and tortuous. Through most of the twentieth
century, the academic community eschewed Bayesian
ideas and derided practitioners who applied them.

The nub of the controversy was that the probability using
Bayesian methods depends on prior opinion. When data
are scarce, this yields a subjective rather than an
objective assessment. When information is in short supply,
subjective opinions may differ widely.

The controversy was long and often bitter, with aspects of
a religious war. The opponents vilified each other,
generating great hostility between the two camps. The
war is now over. frequentists and Bayesians both
recognise that the two approaches have value in



different circumstances.

Today, Bayesian analysis plays a crucial role in computer
science, arfificial inteligence, machine learning and
laonguage translation. Applications include search and
rescue operations, like the recovery of the Air France flight
AF447 black box, risk analysis, image enhancement, face
recognition, medical diagnosis, setting insurance rates,
filtering spam email and much more. Bayesian inference is
likely to find many new applications over the coming
decades.



PYTHAGORAS GOES
GLOBAL

About binomial theorem I'm teeming with a lot o'
news,

With many cheerful facts about the square of the
hypotenuse.

(‘I Am the Very Model of a Modern Major-
General’, from Gilbert and Sullivan, The Pirates of
Penzance)

Spherical trigonometry has all the qualities we expect of
the best mathematics: it is beautiful, useful and fun. It
played an enormously important role in scientific
development for thousands of years, from ancient Greece
through India, the Islamic Enlightenment and the
Renaissance, to more modern times. It was crucial for
astronomy, and essential for global navigation. Yet it has
fallen out of fashion, and is almost completely ignored in
modern education.

PYTHAGORAS ON THE SPHERE



Napier's Nifty Rules (here) give ten relationships between
the angles and sides of right-angled friangles on the
sphere. (Recall that the sides of the triangle are expressed
in tferms of the angles they subtend at the centre; the
radius of the sphere is taken to be unity.) One — and only
one — of Napier's Rules relates the three sides of the right-
angled triangle. We take the right angle to be C, and the
side opposite to it to be c. Then the rule is

cosc=cosacosh

This beautifully simple eguation may not appear familiar
but, believe it or not, this is just the spherical form of
Pythagoras' Theorem!

Let us consider a small tfriangle, so all the sides a, b and ¢
are small guantities. Then we may replace the cosine
functions by their first few terms:

cosax(1-%a%),cosb=x(1-"%b?),coscx(1-%c?).

To second-order accuracy, we can write the equation
COsSC =Cosa cos b as

c? =a*+b?,

the usual form of Pythagoras' Theorem that we all know
and love.



A spherical right-angled triangle with cos ¢ =cos a cos b
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A plane right-angled triangle with c2 = a2 + b2



DOZENAL DIGITS: FROM
DIX TO DOUZE

How many fingers has Mickey Mouse<¢ He has three fingers
and a thumb on each hand, so eight in all. Thus we may
expect Mickey to reckon in octal numbers, with base
eight. We use decimals, with ten symbols from 0 to 9 for
the smallest numbers and larger numbers denoted by
several digits, whose position is significant. Thus, 47 means
four tens plus seven units.

But the base ten is divisible only by 2 and 5. There are
advantages to having a highly composite base — one with
many divisors. The Sumerians and Babylonians used base
60, divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20 and 30. We still use
remnants of this sexagesimal system in reckoning time and
measuring angles, but base 60 is uncomfortably large for
general use.

The duodecimal, or dozenal, system with base twelve has
been proposed because 12 is divisible by 2, 3, 4 and 6. We
need two extra symbols for the numbers ten and eleven,
which are less than the base. Let's write them as X and E
and call them dek and el. Then twelve is written 10 and
called do (pronounced doh and short for a dozen). The



system continues with 11, 12, ... 1X, 1E and 20 or do one,
do two, ... do dek, do el and twodo.

Then, jumping in twelves, threedo, fourdo, up to eldo and
gro. This gro is short for gross or twelve twelves, written 100.
Twelve gro is one mo (twelve cubed or 1728 in decimal).
So the decimal number 47 becomes 3E, threedo el or
three twelves and el units. And we are currently (in 2016)
in the year 1200, or mo twogro.

What advantages has the dozenal system? For one thing,
multiplication tables are substantially simpler in dozenal.
And many small fractions (one-quarter, one-third, three-
quarters, etc.) have a simpler form in this system. So why
don't we move from dix to douze¢ The Dozenal Societies
of America and of Britain would favour this. We already
have twelve months in a year and twice twelve hours in a
day. But a number base change would be seriously
disruptive, causing unimaginable confusion.

Computers convert numbers to binary form, using only
zeros and ones, and convert the answer back to decimal
before presenting it. We are generally oblivious to what
goes on under the bonnet, and unconcerned about it.

The chance of the Dozenal Societies persuading us fo
change to base twelve is about the same as the likelihood
of Mickey Mouse converting us to octal. But hold on: How
many toes has Mickey got? In the notorious phrase
beloved of maths book writers, this is left as an exercise for
the student.



HOW LEOPARDS GET
THEIR SPOTS

Mathematical models enable us to understand many
features of a growing embryo. For example, the patterns
of hair colour that give leopards their spots and tigers their
stripes can be produced by solving a mathematical
equation with different inpufts.

The information to form a fully grown animal is encoded in
its DNA, so there is a lot of data in a single cell. But there
are only about three billion base pairs in DNA and tens of
trillions of cells in the body. So minute details like the twists
and whorls of a fingerprint cannot be predetermined.
Rather, they emerge during embryonic growth as a result
of conditions determined by the DNA, following the basic
laws of physics and chemistry.

Alan Turing is famous for cracking the Enigma code during
World War Il, but he was a polymath and worked on many
other problems. In 1952, Turing published a paper, ‘The
chemical basis of morphogenesis’, presenting a
mechanism of pattern formation. He developed a theory
of how the chemistry in the cell influences factors like hair
colour.



Turing’s model included ftwo chemical processes:
reaction, in which chemicals interact to produce different
substances; and diffusion, in which local concentrations
spread out over time. Suppose we have two chemicals, A
and B, called morphogens, with A triggering hair colouring
and B not doing so. Now suppose that A is a catalyst,
stimulating production of further morphogens, whereas B
suppresses production of them. Thus, A is called an
activator and B an inhibitor.

Where A is abundant, the hair is black; where B is
dominant, it is white. Now comes Turing's crucial
assumption: the inhibitor B spreads out faster than the
activator A. So B fills a circular region surrounding the initial
concentration, forming a barrier where concentration of
A is reduced. The result is an isolated spot of black hair
where A is plentiful.

What is going on here is a competition between the
reaction and diffusion processes. Many reaction—diffusion
models have been proposed. The resulting patterns
depend on the reaction rates and diffusion coefficients,
and a wide range of geometrical patterns of hair
colouring can result from this mechanism.

The figure opposite shows the concentration of chemical
A for varying strengths of reaction and diffusion. High
values of A are shaded black since hair colouring in these
regions is expected to be black. For strong diffusion, the
regions are large and striped like a tiger. For weak
diffusion, the black hair is confined to spofts like the coat of
a cheetah.

Many other patterns can be generated by varying the
parameters. Thin stripes, like those on an angel fish, or
thick stripes, like those of a zebra, can be generated, and



clusters of spots found on a leopard's coat can be
produced. Biological systems are hugely complex, and
simple mathematical models are valuable for elucidating
key factors and predicting specific aspects of behaviour.
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Concentration of constituent A at equilibrium predicted by the
Schnakenberg equations. Black indicates high concentratfions.
Upper left: y = 100. Upper right: y = 400. Lower left: y = 1600. Lower
right: y = 6400.



