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Like my earlier Street-Fighting Mathematics [33], this book is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike license. MIT
Press and I hope that you will improve and share the work noncommer-
cially, and we would gladly receive corrections and suggestions.

The most effective teacher is a skilled tutor [2]. A tutor asks many questions,
because questioning, wondering, and discussing promote learning. Ques-
tions of two types are interspersed through the book. Questions marked with
a I» in the margin, which a tutor would pose during a tutorial, ask you to de-
velop the next steps of an argument. They are answered in the subsequent
text, where you can check your thinking. Numbered problems, marked with
a shaded background, which a tutor would give you to take home, ask you
to practice the tool, to extend an example, to use several tools, and even to
resolve an occasional paradox. Merely watching workout videos produces
little fitness! So, try many questions of both types.

Through your effort, mastery will come—and with a broad benefit. As the
physicist Edwin Jaynes said of teaching [25]:
[T]he goal should be, not to implant in the students” mind every fact that the
teacher knows now; but rather to implant a way of thinking that enables the
student, in the future, to learn in one year what the teacher learned in two years.
Only in that way can we continue to advance from one generation to the next.
May the tools in this book help you advance our world beyond the state in
which my generation has left it.
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Part |

Organizing complexity

We cannot find much insight staring at a mess. We need to organize it. As
an everyday example, when I look at my kitchen after a dinner party, I feel
overwhelmed. It’s late, I'm tired, and I dread that I will not get enough
sleep. If I clean up in that scattered state of mind, I pick up a spoon here
and a pot there, making little progress. However, when I remember that a
large problem can be broken into smaller ones, calm and efficiency return.
I begin at one corner of the kitchen, clear its mess, and move to neighboring
areas until the project is done. I divide and conquer (Chapter 1).

Once the dishes are clean, I resist the temptation to dump them into one
big box. I separate pots from the silverware and, within the silverware, the
forks from the spoons. These groupings, or abstractions (Chapter 2), make
the kitchen easy to understand and use.

In problem solving, we organize complexity by using divide-and-conquer
reasoning and by making abstractions. In Part I, you'll learn how.

to master complexity

organize it discard it
Part Parts 11, 111
gl q without losing information losing information
conquer abstraction
Part I1 Part I11
| | \ / \\
5 6 7 8 9

3 4



4 1 Divide and conquer

This range is wide, spanning a factor of 100. In contrast, the dollar bill’s
width probably lies between 10 and 20 centimeters—a range of only a factor
of 2. The volume range is wider than the width range because we have
no equivalent of a ruler for volume; thus, volumes are less familiar than
lengths. Fortunately, the volume of the dollar bill is the product of lengths.

volume = width x height x thickness. (1.1)

The harder volume estimate becomes three easier length 6cm S1bill

estimates—the benefit of divide-and-conquer reasoning,. 15cm

The width looks like 6 inches, which is roughly 15 cen-
timeters. The height looks like 2 or 3 inches, which is roughly 6 centimeters.
But before estimating the thickness, let’s talk about unit systems.

Is it better to use metric or US customary units (such as inches, feet, and miles)?

Your estimates will be more accurate if you use the units most familiar to
you. Raised in the United States, I judge lengths more accurately in inches,
feet, and miles than in centimeters, meters, or kilometers. However, for
calculations requiring multiplication or division—most calculations—I con-
vert the customary units to metric (and often convert back to customary
units at the end). But you may be fortunate enough to think in metric. Then
you can estimate and calculate in a single unit system.

The third piece of the divide-and-conquer estimate, the thickness, is diffi-
cult to judge. A dollar bill is thin—paper thin.

But how thin is “paper thin"?

This thickness is too small to grasp and judge easily. However, a stack of
several hundred bills would be graspable. Not having that much cash lying
around, I'll use paper. A ream of paper, which has 500 sheets, is roughly
5 centimeters thick. Thus, one sheet of paper is roughly 0.01 centimeters
thick. With this estimate for the thickness, the volume is approximately
1 cubic centimeter:

volume ~ 15cm x 6cm x 0.0lem =~ 1cem®. (1.2)
width height thickness

Although a more accurate calculation could adjust for the fiber composi-
tion of a dollar bill compared to ordinary paper and might consider the
roughness of the paper, these details obscure the main result: A dollar bill
is 1 cubic centimeter pounded paper thin.
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To check this estimate, I folded a dollar bill until my finger strength gave
out, getting a roughly cubical packet with sides of approximately 1 centime-
ter—making a volume of approximately 1 cubic centimeter!

In the preceding analysis, you may have noticed the = and = symbols and
their slightly different use. Throughout this book, our goal is insight over
accuracy. So we’ll use several kinds of equality symbols to describe the
accuracy of a relation and what it omits. Here is a table of the equality
symbols, in descending order of completeness and often increasing order
of usefulness.

equality by definition read as “is defined to be”

= equality “is equal to”

1

equality except perhaps for a purely  “is approximately equal to”
numerical factor near 1

~  equality except perhaps for a purely ~ “is roughly equal to” or
numerical factor “is comparable to”

o equality except perhaps for a factor “is proportional to”
that may have dimensions

As examples of the kinds of equality, for the circle below, A = 7r?, and
A ~ 42, and A ~ 2. For the cylinder, V ~ hr?—which implies V r2
and V « h. In the V o h form, the factor hidden in the = symbol has
dimensions of length squared.

Problem 1.1 Weight of a box of books
How heavy is a small moving-box filled with books?

Problem 1.2 Mass of air in your bedroom

Estimate the mass of air in your bedroom.

Problem 1.3 Suitcase of bills

In the movies, and perhaps in reality, cocaine and elections are bought with a suit-
case of $100 bills. Estimate the dollar value in such a suitcase.
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Problem 1.4 Gold or bills?

As a bank robber sitting in the vault planning your getaway, do you fill your suit-
case with gold bars or $100 bills? Assume first that how much you can carry is a
fixed weight. Then redo your analysis assuming that how much you can carry is
a fixed volume.

1.2 Rails versus roads

We are now warmed up and ready to use divide-and-conquer reasoning for
more substantial estimates. Our next estimate, concerning traffic, comes to
mind whenever I drive the congested roads to JFK Airport in New York
City. The route goes on the Van Wyck Expressway, which was planned by
Robert Moses. As Moses’s biographer Robert Caro describes [6, pp. 904ff],
when Moses was in charge of building the expressway, the traffic planners
recommended that, in order to handle the expected large volume of traffic,
the road include a train line to the then-new airport. Alternatively, if build-
ing the train track would be too expensive, they recommended that the city,
when acquiring the land for the road, still take an extra 50 feet of width and
reserve it as a median strip for a train line one day. Moses also rejected the
cheaper proposal. Alas, only weeks after its opening, not long after World
War Two, the rail-free highway had reached peak capacity.

Let’s use our divide-and-conquer tool to compare, for rush-hour commut-
ing, the carrying capacities of rail and road. The capacity is the rate at which
passengers are transported; it is passengers per time. First we’ll estimate
the capacity of one lane of highway. We can use the 2-second-following rule
taught in many driving courses. You are taught to leave 2 seconds of travel
time between you and the car in front. When drivers follow this rule, a sin-
gle lane of highway carries one car every 2 seconds. To find the carrying
capacity, we also need the occupancy of each car. Even at rush hour, at least
in the United States, each car carries roughly one person. (Taxis often have
two people including the driver, but only one person is being transported
to the destination.) Thus, the capacity is one person every 2 seconds. As an
hourly rate, the capacity is 1800 people per hour:
1 person 3600 s 1800 people

x = (1.3)
25 1 hr hr

The diagonal strike-through lines help us to spot which units cancel and to
check that we end up with just the units that we want (people per hour).
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This rate, 1800 people per hour, is approximate, because the 2-second fol-
lowing rule is not a law of nature. The average gap might be 4 seconds late
at night, 1 second during the day, and may vary from day to day or from
highway to highway. But a 2-second gap is a reasonable compromise esti-
mate. Replacing the complex distribution of following times with one time
is an application of lumping—the tool discussed in Chapter 6. Organizing
complexity almost always reduces detail. If we studied all highways at all
times of day, the data, were we so unfortunate as to obtain them, would
bury any insight.

How does the capacity of a single lane of highway compare with the capacity of a
train line?

For the other half of the comparison, we’ll estimate the rush-hour capacity
ofatrainline in an advanced train system, say the French or German system.
Aswhen we estimated the volume of a dollar bill (Section 1.1), we divide the
estimate into manageable pieces: how often a train runs on the track, how
many cars are in each train, and how many passengers are in each car. Ilere
are my armchair estimates for these quantities, kept slightly conservative to
avoid overestimating the train-line’s capacity. A single train car, when full
at rush hour, may carry 150 people. A rush-hour train may consist of 20 cars.
And, on a busy train route, a train may run every 10 minutes or six times
per hour. Therefore, the train line’s capacity is 18 000 people per hour:

150 people 20 cars 6 trains 18000 people
X X = .

car’ train hr hr

(1.4)

This capacity is ten times the capacity of a single fast-flowing highway lane.
And this estimate is probably on the low side; Robert Caro [6, p. 901] gives
an estimate of 40 000 to 50000 people per hour. Using our lower rate, one
train track in each direction could replace two highways even if each high-
way had five lanes in each direction.

Tree representations

Our estimates for the volume of a dollar bill (Section 1.1) and for the rail
and highway capacities (Section 1.2) used the same method: dividing hard
problems into smaller ones. However, the structure of the analysis is buried
within the sentences, paragraphs, and pages. The sequential presentation
hides the structure. Because the structure is hierarchical—big problems
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split, or branch, into smaller problems—its most compact representation is
atree. A tree representation shows us the analysis in one glance.

Here is the tree representation for the capacity capacity

of a train line. Unlike the biological variety, our

trees stand on their head. Their roots, the goals,

sit at the top of the tree. Their leaves, the small

problems into which we have subdivided the  ?? people 77 cars ?? trains
goal, sit at the bottom. The orientation matches car train hour
the way that we divide and conquer, filling the

page downward as we subdivide.

In making this first tree, we haven’t estimated capacity
the quantities themselves. We have only identi-
fied the quantities. The question marks remind
us of our next step: to include estimates for the

three leaves. These estimates were 150 people 150 people 20 cars 6 trains
per car, 20 cars per train, and 6 trains per hour car train hour
(giving the tree in the margin).
Then we multiplied the leaf values to propagate capacity
the estimates upward from the leaves toward 18000 people/hour
the root. The result was 18000 people per hour.
The completed tree shows us the entire estimate
in one glance.

150 people 20 cars 6 trains
This train-capacity tree had the simplest possi- car train hour

ble structure with only two layers (the root layer

and, as the second layer, the three leaves). The

next level of complexity is a three-layer tree, which will represent our esti-
mate for the volume of a dollar bill. It started as a two-layer tree with three
leaves.

volume

width height thickness

Then it grew, because, unlike the width and height, the thickness was diffi-
cult to estimate just by looking at a dollar bill. Therefore, we divided that
leaf into two easier leaves.
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Here, subdivide the demand—the consumption. We consume oil in so
many ways; estimating the consumption in each pathway would take along
time without producing much insight. Instead, let’s estimate the largest
consumption—likely to be cars—then adjust for other uses and for overall
consumption versus imports.

allusage  imports
X B
carusage  allusage
Here is the corresponding tree. The first fac- imports
tor, the most difficult of the three to estimate,
will require us to sprout branches and make
a subtree. The second and third factors might
be possible to estimate without subdividing,. all usage imports

; A car usage N
Now we must decide how to continue. car usage all usage

imports = ;ar-usag‘é' X (1.6)

Should we keep subdividing until we've built the
entire tree and only then estimate the leaves, or should we try to estimate these
leaves and then subdivide what we cannot estimate?

It depends on one’s own psychology. I feel anxious in the uncharted wa-
ters of a new estimate. Sprouting new branches before making any leaf esti-
mates increases my anxiety. The tree might never stop sprouting branches
and leaves, and I'll never estimate them all. Thus, I prefer to harvest my
progressright away by estimating the leaves before sprouting new branches.
You should experiment to learn your psychology. You are your best prob-
lem-solving tool, and it is helpful to know your tools.

Because of my psychology, I'll first estimate a leaf quantity:

all usage - 0
car usage

But don’t do this estimate directly. It is more intuitive—that is, easier for
our gut—to estimate first the ratio of car usage to other (noncar) usage. The
ability to make such comparisons between disjoint sets, at least for physi-
cal objects, is hard wired in our brains and independent of the ability to
count. Not least, it is not limited to humans. The female lions studied by
Karen McComb and her colleagues [35] would judge the relative size of
their troop and a group of lions intruding on their territory. The females
would approach the intruders only when they outnumbered the intruders
by a large-enough ratio, roughly a factor of 2.
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Other uses for oil include noncar modes of transport (trucks, trains, and
planes), heating and cooling, and hydrocarbon-rich products such as fer-
tilizer, plastics, and pesticides. In judging the relative importance of other
uses compared to car usage, two arguments compete: (1) Other uses are so
many and so significant, so they are much more important than car usage;
and (2) cars are so ubiquitous and such an inefficient mode of transport, so
car usage is much larger than other uses. To my gut, both arguments feel
comparably plausible. My gut is telling me that the two categories have
comparable usages:

other usage

_ =~ 1. (1.8)
car usage

Based on this estimate, all usage (the sum of car and other usage) is roughly

double the car usage:

all usage - o)
car usage

This estimate is the first leaf. It implicitly assumes that the gasoline fraction
in a barrel of oil is high enough to feed the cars. Fortunately, if this assump-
tion were wrong, we would get warning. For if the fraction were too low,
we would build our transportation infrastructure around other means of
transport—such as trains powered by electricity generated by burning the
nongasoline fraction in oil barrels. In this probably less-polluted world, we
would estimate how much oil was used by trains.

Returning to our actual world, let’s estimate the second leaf:

imports

) (1.10)
all usage
This adjustment factor accounts for the fact that only a portion of the oil
consumed is imported.

What does your gut tell you for this fraction?

Again, don’t estimate this fraction directly. Instead, to make a comparison
between disjoint sets, first compare (net) imports with domestic production.
In estimating this ratio, two arguments compete. On the one hand, the
US media report extensively on oil production in other countries, which
suggests that oil imports are large. On the other hand, there is also extensive
coverage of US production and frequent comparison with countries such as
Japan that have almost no domestic oil. My resulting gut feeling is that the
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categories are comparable and therefore that imports are roughly one-half
of all usage:
imports imports 1

~1 so —_= . (1.11)
domestic production all usage 2

This leaf, as well as the other adjustment factor, are dimensionless numbers.
Such numbers, the main topic of Chapter 5, have special value. Our percep-
tual system is skilled at estimating dimensionless ratios. Therefore, a leaf
node that is a dimensionless ratio probably does not need to be subdivided.

The tree now has three leaves. Having plausi- imports
ble estimates for two of them should give us
courage to subdivide the remaining leaf, the
total car usage, into easier estimates. That leaf

will sprout its own branches and become an all usage imports
internal node. car tisage car usage all usage
2 0.5

How should we subdivide the car usage?

A reasonable subdivision is into the number of cars N, and car usage

the per-car usage. Both quantities are easier to estimate than

the root. The number of carsis related to the US population—a / \
familiar number if you live in the United States. The per-car

usage is easier to estimate than is the total usage of all US = N usage/car
cars. Our gut can more accurately judge human-scale quan-

tities, such as the per-car usage, than it can judge vast numbers like the

total usage of all US cars.

For the same reason, let’s not estimate the number of cars Noars

directly. Instead, subdivide this leaf into two leaves: 3x10°

1. the number of people, and

2. the number of cars per person.

The first leaf is familiar, at least to residents of the United  Npeo ple cars/ Per%n
States: Npeople & 3% 108. 10

The second leaf, cars per person, is a human-sized quantity.

In the United States, car ownership is widespread. Many adults own more
than one car, and a cynic would say that even babies seem to own cars.
Therefore, a rough and simple estimate might be one car per person—far

easier to picture than the total number of cars! Then N, ~ 3 x 10%.
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The per-car usage can be subdivided into three usage/car
easier factors (leaves). Here are my estimates. ]‘ \
1. How many miles per car year? Used cars with -1 -1
10000 miles per year are considered low use I N
?? miles 7?2 miles ?? gallons

but are not rare. Thus, for a typical year of
driving, let’s take a slightly longer distance:
say, 20 000 miles or 30 000 kilometers.

2. How many miles per gallon? A typical car fuel efficiency is 30 miles per
US gallon. In metric units, it is about 100 kilometers per 8 liters.

car year gallon

3. How many gallons per barrel? You might have seen barrels of asphalt
along the side of the highway during road construction. Following our
free-association tradition of equating the thickness of a sheet of paper
and of a dollar bill, perhaps barrels of oil are like barrels of asphalt.

Their volume can be computed by divide-and-conquer
reasoning. Just approximate the cylinder as a rectangu-
lar prism, estimate its three dimensions, and multiply:

volume ~ 1m x 0.5m x 0.5m = 0.25m°. (1.12)
height width depth

A cubic meter is 1000 liters or, using the conversion of
4 US gallons per liter, roughly 250 gallons. Therefore,
0.25 cubic meters is roughly 60 gallons. (The official vol-
ume of a barrel of oil is not too different at 42 gallons.)

Multiplying these estimates, and not forgetting the effect of the two —1 ex-
ponents, we get approximately 10 barrels per car per year (also written as
barrels per car year):

2x10* miles 1 gallon 1 barrel 10 barrels
X X 5 .
car year 30 miles 60 gallons car year

(1.13)

In doing this calculation, first evaluate the units. The gallons and miles
cancel, leaving barrels per year. Then evaluate the numbers. The 30 x 60 in
the denominator is roughly 2000. The 2 x 10* from the numerator divided
by the 2000 from the denominator produces the 10.

This estimate is a subtree in the tree representing total car usage. The car
usage then becomes 3 billion barrels per year:

3 x 107 barrels
car year year '

3% 10 ‘s 10 barrels

(1.14)
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This estimate is itself a subtree in the tree imports
representing oil imports. Because the two 3 x 10" barrels
adjustment factors contribute a factor of year

2 x 0.5, which is just 1, the oil imports are
also 3 billion barrels per year.

Here is the full tree, which includes the car usage all usage
subtree for the total car usage of oil: 3% 10” barrels car usage
year 2
imports
3% 10" barrels
year
car usage all usage imports
3 % 10” barrels car usage all usage
year 2 0.5
N usage/car
cars 10 barrels
3x 108
car year
-1 -1
1 AN
Npeople 1 car 20000 miles 30 miles 60 gallons
3% 108 person car year gallon barrel

/TN

height width depth 250 gallons
1m 0.5m 05m T mE

Problem 1.6  Using metric units

As practice with metric units (if you grew up in a nonmetric land) or to make the
results more familiar (if you grew up in a metric land), redo the calculation using
the metric values for the volume of a barrel, the distance a car is driven per year,
and the fuel consumption of a typical car.

How close is our estimate to official values?

imports
all usage
0.5
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divide-and-conquer tree has two leaves. (In Section 6.3.1, you'll see a qual-
itatively different method, where the two leaves will be the number of US
states and the population of a typical state.)

The area is the width times the height, so the area leaf US population
itself splits into two leaves. Estimating the width and
height requires only a short dialogue with the gut, at \
least if you live in the United States. Its width is a 6-hour /
plane flight at 500 miles per hour, so about 3000 miles; area population
and the height is, as a rough estimate, two-thirds of the density
width, or 2000 miles. Therefore, the area is 6 million
square miles:

3000 miles x 2000 miles = 6 x 10° miles”. (116)  width  height

In metric units, it is about 16 million square kilometers.

Estimating the population density requires talking to your gut. If you are
like me you have little conscious knowledge of the population density. Your
gut might know, but you cannot ask it directly. The gut is connected to the
right brain, which doesn’t have language. Although the right brain knows
a lot about the world, it cannot answer with a value, only with a feeling.
To draw on its knowledge, ask it indirectly. Pick a particular population
density—say, 100 people per square mile—and ask the gut for its opinion:
“O, my intuitive, insightful, introverted right brain: What do you think of
100 people per square mile for the population density?” A response, a gut
feeling, will come back. Keep lowering the candidate value until the gut
feeling becomes, “No, that value feels way too low.”

Here is the dialogue between my left brain (LB) and right brain (RB).
LB: What do you think of 100 people per square mile?
RB: That feels okay based on my experience growing up in the United States.

LB: I can probably support that feeling quantitatively. A square mile with 100
people means each person occupies a square whose side is 1/10th of a mile or
160 meters. Expressed in this form, does the population density feel okay?

RB: Yes, the large open spaces in the western states probably compensate for the
denser regions near the coasts.

LB: Now I will lower the estimate by factors of 3 or 10 until you object strongly
that the estimate feels too low. [A factor of 3 is roughly one-half of a factor of 10,
because 3 x 3 = 10. A factor of 3 is the next-smallest factor by which to move
when a factor of 10 is too large a jump.] In that vein, what about an average
population density of 10 people per square mile?
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RB: I feel uneasy. The estimate feels a bit low.

LB: I understand where you are coming from. That value may moderately over-
estimate the population density of farmland, but it probably greatly underesti-
mates the population density in the cities. Because you are uneasy, let's move
more slowly until you object strongly. How about 3 people per square mile?

RB: If the true value were lower than that, I'd feel fairly surprised.

LB: So, for the low end, I'll stop at 3 people per square mile. Now let’s navigate
to the upper end. You said that 100 people per square mile felt plausible. How
do you feel about 300 people per square mile?

RB: I feel quite uneasy. That estimate feels quite high.

LB: I hear you. Your response reminds me that New Jersey and the Netherlands,
both very densely populated, are at 1000 people per square mile, although I
couldn’t swear to this value. I cannot imagine packing the whole United States
to a density comparable to New Jersey’s. Therefore, let’s stop here: Our upper
endpoint is 300 people per square mile.

How do you make your best guess based on these two endpoints?

A plausible guess is to use their arithmetic mean, which is roughly 150 peo-
ple per square mile. However, the right method is the geometric mean:

best guess = ,[lower endpoint x upper endpoint. (1.17)

The geometric mean is the midpoint of the lower and upper bounds—but
on a ratio or logarithmic scale, which is the scale built into our mental hard-
ware. (For more about how we perceive quantity, see The Number Sense
[9].) The geometric mean is the correct mean when combining quantities
produced by our mental hardware.

Here, the geometric mean is 30 people per square mile: a factor of 10 re-
moved from either endpoint. Using that population density,

30

— 7 ~ 2x108. (1.18)
_mile

US population ~ 6 x 106_,milesl' X
The actual population is roughly 3x108. The estimate based almost entirely
on gut reasoning is within a factor of 1.5 of the actual population—a pleas-
antly surprising accuracy.

Problem 1.8 More gut estimates

By asking your gut to help you estimate the lower and upper endpoints, estimate
(a) the height of a nearby tall tree that you can see, (b) the mass of a car, and (c) the
number of water drops in a bathtub.
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Physical estimates

Your gut understands not only the social world but also the physical world.
If you trust its feelings, you can tap this vast reservoir of knowledge. T'or
practice, we’ll estimate the salinity of seawater (Section 1.7.1), human power
output (Section 1.7.2), and the heat of vaporization of water (Section 1.7.3).

Salinity of seawater

To estimate the salinity of seawater, which will later help you estimate the
conductivity of seawater (Problem 8.10), do not ask your gut directly: “How
do you feel about, say, 200 millimolar?” Although that kind of question
worked for estimating population density (Section 1.6), here, unless you
are a chemist, the answer will be: “I have no clue. What is a millimolar
anyway? | have almost no experience of that unit.” Instead, offer your gut
concrete data—for example, from a home experiment: adding salt to a cup
of water until the mixture tastes as salty as the ocean.

This experiment can be a thought or a real experiment—another example
of using multiple methods (Section 1.5). As a thought experiment, I ask
my gut about various amounts of salt in a cup of water. When I propose
adding 2 teaspoons, it responds, “Disgustingly salty!” At the lower end,
when I propose adding 0.5 teaspoons, it responds, “Not very salty.” I'll use
0.5 and 2 teaspoons as the lower and upper endpoints of the range. Their
midpoint, the estimate from the thought experiment, is 1 teaspoon per cup.

I tested this prediction at the kitchen sink. With 1 teaspoon (5 milliliters) of
salt, the cup of water indeed had the sharp, metallic taste of seawater that
I have gulped after being knocked over by large waves. A cup of water is
roughly one-fourth of a liter or 250 cubic centimeters. By mass, the resulting
salt concentration is the following product:

Lisp-salt y 1 cup-water 5 cm>salt 2 g salt

x x (1.19)
lcupwater 250g water  1ltspsalt 1 cm® salf.

Psalt

The density of 2 grams per cubic centimeter comes from my gut feeling that
salt is a light rock, so it should be somewhat denser than water at 1 gram
per cubic centimeter, but not too much denser. (For an alternative method,
more accurate but more elaborate, try Problem 1.10.) Then doing the arith-
metic gives a 4 percent salt-to-water ratio (by mass).
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The actual salinity of the Earth’s oceans is about 3.5 percent—very close to
the estimate of 4 percent. The estimate is close despite the large number
of assumptions and approximations—the errors have mostly canceled. Its
accuracy should give you courage to perform home experiments whenever
you need data for divide-and-conquer estimates.

Problem 1.9 Density of water

Estimate the density of water by asking your gut to estimate the mass of water in
a cup measure (roughly one-quarter of a liter).

Problem 1.10  Density of salt

Estimate the density of salt using the volume and mass of a typical salt container
that you find in a grocery store. This value should be more accurate than my gut
estimate in Section 1.7.1 (which was 2 grams per cubic centimeter).

Human power output

Our second example of talking to your gut is an estimate of hu- power

man power output—a power that is useful in many estimates
(for example, Problem 1.17). Energies and powers are good can-
didates for divide-and-conquer estimates, because they are con-
nected by the subdivision shown in the following equation and energy
represented in the tree in the margin:

energy

power = (1.20)

time
In particular, let’s estimate the power that a trained athlete can generate for
an extended time (not just during a few-seconds-long, high-power burst).
As a proxy for that power, I'll use my own burst power output with two
adjustment factors:

athlete’s steady power

my steady power athlete’s steady power
my burst power

my burst power my steady power

Maintaining a power is harder than producing a quick burst. Therefore,
the first adjustment factor, my steady power divided by my burst power,
is somewhat smaller than 1—maybe 1/2 or 1/3. In contrast, an athlete’s

\—1

\

time
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power output will be higher than mine, perhaps by a factor of 2 or 3: Even
though I am sometimes known as the street-fighting mathematician [33], I
am no athlete. Then the two adjustment factors roughly cancel, so my burst
power should be comparable to an athlete’s steady power.

To estimate my burst power, I performed a home experiment power
of running up a flight of stairs as quickly as possible. Deter- \
mining the power output requires estimating an energy and =
a time: \
ener .
power = t—gy . (1.21) energy time
ime

The energy, which is the change in my gravitational potential
energy, itself subdivides into three factors:

m g h
energy = mass x gravity x height. (1.22)

—
m g h

In the academic building at my university, a building with high
ceilings and staircases, I bounded up a staircase three stairs at a
time. The staircase was about 12 feet or 3.5 meters high. There-
fore, my mechanical energy output was roughly 2000 joules:

E ~65kgx10ms—2 x 3.5m ~ 2000]. (1.23)

5m

(The units are fine: 1] = 1kgm?s2.)

The remaining leaf is the time: how long the climb took me. I made it in
6 seconds. In contrast, several students made it in 3.9 seconds—the power
of youth! My mechanical power output was about 2000 joules per 6 sec-
onds, or about 300 watts. (To check whether the estimate is reasonable, try
Problem 1.12, where you estimate the typical human basal metabolism.)

This burst power output should be close to the sustained power output of
a trained athlete. And it is. As an example, in the Alpe d’'Huez climb in the
1989 Tour de France, the winner—Greg LeMond, a world-class athlete—put
out 394 watts (over a 42.5-minute period). The cyclist Lance Armstrong,
during the time-trial stage during the Tour de France in 2004, generated
even more: 495 watts (roughly 7 watts per kilogram). IHowever, he pub-
licly admitted to blood doping to enhance performance. Indeed, because
of widespread doping, many cycling power outputs of the 1990s and 2000s
are suspect; 400 watts stands as a legitimate world-class sustained power
output.
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An electric stove requires a line voltage of 220 volts, even in the United
States where most other appliances require only 110 volts. A standard fuse
is about 15 amperes, which gives us an idea of a large current. If a burner
corresponds to a standard fuse, a burner supplies roughly 3 kilowatts:

220V x 15 A = 3000 W. (1.26)

This estimate agrees with the gut estimate, so both methods gain plausibil-
ity—which should give you confidence to use both methods for your own
estimates. As a check, I looked at the circuit breaker connected to my range,
and it is rated for 50 amperes. The range has four burners and an oven, so
15 amperes for one burner (at least, for the large burner) is plausible.

We now have values for all the leaf nodes. Prop- heat of vaporization
agating the values toward the root gives the heat 2x10°]
of vaporization (L,,,) as roughly 2 megajoules per kg
kilogram: \
power time -1
Lo~ 3kW x 600s rer \”‘
- llfé 1.27) 2% 1(%3] Tibgb
mass
~2x100Tkg ™. / \
The true value is about 2.2x10° joules per kilogram.
This value is one of the highest heats of vaporiza- burner power evaporation time
3kW 10min

tion of any liquid. As water evaporates, it carries
away significant amounts of energy, making it an
excellent coolant (Problem 1.17).

Summary and further problems

The main lesson that you should take away is courage: No problem is too
difficult. We just use divide-and-conquer reasoning to dissolve difficult
problems into smaller pieces. (For extensive practice, see the varied exam-
ples in the Guesstimation books [47 and 48].) This tool is a universal solvent
for problems social and scientific.

Problem 1.14 Per-capita land area

Estimate the land area per person for the world, for your home country, and for
your home state or province.
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Problem 1.15 Mass of the Earth

Estimate the mass of the Earth. Then look it up (p. xvii) to check your estimate.

Problem 1.16  Billion

How long would it take to count to a billion (10%)?

Problem 1.17 Sweating

Estimate how much water you need to drink to replace water lost to evapora-
tion, if you ride a bicycle vigorously for 1 hour. Represent your estimate as a
divide-and-conquer tree. Hint: Humans are only about 25 percent efficient in gen-
erating mechanical work.

Problem 1.18 Pencil line

How long a line can you write with a pencil?

Problem 1.19 Pine needles

Estimate the number of needles on a pine tree.

Problem 1.20 Hairs

How many hairs are on your head?
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Divide-and-conquer reasoning, the tool introduced in Chapter 1, is power-
ful, but it is not enough by itself to organize the complexity of the world.
Try, for example, to manage the millions of files on a computer—even my
laptop says that it has almost 3 million files. Without any organization, with
all the files in one monster directory or folder, you could never find informa-
tion that you need. However, simply using divide and conquer by dividing
the files into groups—the first 100 files by date, the second 100 files by date,
and so on—does not disperse the chaos. A better solution is to organize the
millions of files into a hierarchy: as a tree of folders and subfolders. The ele-
ments in this hierarchy get names—for example, “photos of the children” or
“files for typesetting this book”—and these names guide us to the needed
information.

Naming—or, more technically, abstraction—is our other tool for organizing
complexity. A name or an abstraction gets its power from its reusability.
Without reusable ideas, the world would become unmanageably compli-
cated. We mightask, “Could you, without tipping it over, move the wooden
board glued to four thick sticks toward the large white plastic circle?” in-
stead of, “Could you slide the chair toward the table?” The abstractions
“chair,” “slide,” and “table” compactly represent complex ideas and physi-
cal structures. (And even the complex question itself uses abstractions.)
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Similarly, without good abstractions we could hardly calculate, and mod-
ern science and technology would be impossible. As an illustration, imag-
ine the pain of the following calculation:

XXVII x XXXVI, (2.1)

which is 27 x 36 in Roman numerals. The problem is not that the notation is
unfamiliar, but rather that it is not based on abstractions useful for calcula-
tion. Not least, it does not lend itself to divide-and-conquer reasoning; for
example, even though V (5) is a part of XXVII, V x XXXVI has no obvious an-
swer. In contrast, our modern number system, based on the abstractions of
place value and zero, makes the whole multiplication simple. Notations are
abstractions, and good abstractions amplify our intelligence. In this chap-
ter, we will practice making abstractions, discuss their high-level purpose,
and continue to practice.

Energy from burning hydrocarbons

Our understanding of the world is built on layers of abstrac- fluid

tions. Consider the idea of a fluid. At the bottom of the ab-

straction hierarchy are the actors of particle physics: quarks [

and electrons. Quarks combine to build protons and neu- molecules
trons. Protons, neutrons, and electrons combine to build I

atoms. Atoms combine to build molecules. And large collec-

tions of molecules act, under many conditions, like a fluid. atoms

The idea of a fluid is a new unit of thought. It helps us un- / \
derstand diverse phenomena, without our having to calcu- protons,
late or even know how quarks and electrons interact to pro- <" neutrons

duce fluid behavior. As one consequence, we can describe

the behavior of air and water using the same equations (the

Navier-Stokes equations of fluid mechanics); we need only

to use different values for the density and viscosity. Then

atmospheric cyclones and water vortices, although they result from widely
differing sets of quarks and electrons and their interactions, can be under-
stood as the same phenomenon.

A similarly powerful abstraction is a chemical bond. We'll use this abstrac-
tion to estimate a quantity essential to our bodies and to modern society:
the energy released by burning chains made of hydrogen and carbon atoms
(hydrocarbons). A hydrocarbon can be abstracted as a chain of CH, units:

!

quarks
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R

! |

-C—EC—JC—C—C—C—---
|

] | | | |

H 'H |H H H H

Burning a CH, unit requires oxygen (O,) and releases carbon dioxide (CO5),
water, and energy:

CHy + 0, — CO, + H,0 + energy. 22)

For a hydrocarbon with eight carbons—such as octane, a prime component
of motor fuel—simply multiply this reaction by 8:
(CHj)g + 120, — 8CO, + 8H,0 + lots of energy. (2.3)

(The two additional hydrogens at the left and right ends of octane are not
worth worrying about.)

How much energy is released by burning one CH, unit?

To make this estimate, use the table of bond

bond ener
energies. It gives the energy required to break &Y

(not make) a chemical bond—for example, be- ( kc_a]l ) ( i}) (
tween carbon and hydrogen. However, there me me
is no unique carbon-hydrogen (C-H) bond. ~_; 99 414
The carbon-hydrogen bonds in methane are 5 111 464
different from the carbon—hy‘.:lrogen bondsin ~_ 83 247
ethane. To make a reusable idea, we neglect ~ 86 360
those differences—placing them below our ; 4 104 435
abstraction barrier—and make an abstraction C—N 73 305
called the carbon-hydrogen bond. So the ta- 93 389
ble, already in its first column, is built onan _ 119 498
abstraction. C=0 192 803
The second gives the bond energy in kilo- c=C 146 611
calories per mole of bonds. A kilocalorie is N=N 226 946

roughly 4000 joules, and a mole is Avogadro’s

number (6x10%%) of bonds. The third column gives the energy in the SI units
used by most of the world, kilojoules per mole. The final column gives the
energy in electron volts (eV) per bond. An electron volt is 1.6 x 10717 joules.
Anelectron voltis suited for measuring atomic energies, because most bond
energies have an easy-to-grasp value of a few electron volts. | wish most of
the world used this unit!

eV
bond

4.3
4.8
3.6
3.7
4.5
3.2
4.0
52
8.3
6.3
9.8

)
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Playing many games might reveal a pattern to us or suggest how to com-
pute the probability. However, playing many games by flipping a real
coin becomes tedious. Instead, a computer can simulate the games, sub-
stituting pseudorandom numbers for a real coin. Here are several runs
produced by a computer program. Each line begins with 1 or 2 to indicate
which player won the game; the rest of the line shows the coin tosses. In
these ten iterations, each player won five times. A reasonable conjecture
is that each player has an equal chance to win. ITowever, this conjecture,

based on only ten games, cannot be believed too strongly.

Let’s try 100 games. Now even counting the wins becomes tedious. My

TH
TH

TH
TTH
TTTH
TH

=R R NN N NN

computer counted for me: 68 wins for player 1, and 32 wins for player 2.
The probability of player 1’s winning now seems closer to 2/3 than to 1/2.

To find the exact value, let’s diagram the game as a tree re-
flecting the alternative endings of the game. Each layer rep-
resents one flip. The game ends at a leaf, when one player
has tossed heads. The shaded leaves show the first player’s
wins—for example, after H, TTH, or TTTTH. The probabili-
ties of these winning ways are 1/2 (for H), 1/8 (for TTH), and
1/32 (for TTTTH). The sum of all these winning probabilities
is the probability of the first player’s winning;:
1 1 1

§+ §+§+"'- (2.5)

To sum this infinite series without resorting to formulas, make
an abstraction: Notice that the tree contains, one level down,
a near copy of itself. (In this problem, the abstraction gets
reused within the same problem. In computer science, such a
structure is called recursive.) For if the first player tosses tails,
the second player starts the game in the position of the first
player, with the same probability of winning.

start

/|

1/2

/A

1/4

1/8

To benefit from this equivalence, let's name the reusable idea, namely the
probability of the first player’s winning, and call it p. The second player
wins the game with probability p/2: The factor of 1/2 is the probability
that the first player tosses tails; the factor of p is the probability that the
second player wins, given that the first player blew his chance by tossing

tails on the first toss.

Because either the first or the second player wins, the two winning proba-

bilities add to 1:
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P + P/z = 1. (2.6)

P(first player wins)  P(second player wins)

The solution is p = 2/3, as suggested by the 100-game simulation. The ben-
efit of the abstraction solution, compared to calculating the infinite proba-
bility sum explicitly, is insight. In the abstraction solution, the answer has
to be what it is. It leaves almost nothing to remember. An amusing illustra-
tion of the same benefit comes from the problem of the fly that zooms back
and forth between two approaching trains.

If the fly starts when the trains are 60 miles apart, each train travels at 20 miles per
hour, and the fly travels at 30 miles per hour, how far does the fly travel, in total,
before meeting its maker when the trains collide? (Apologies that physics problems

are often so violent.)

Right after hearing the problem, John von Neumann, inventor of game the-
ory and the modern computer, gave the correct distance. “That was quick,”
said a colleague. “Everyone else tries to sum the infinite series.” “What's
wrong with that?” said von Neumann. “That’s how I did it.” In Problem 2.7,
you get to work out the infinite-series and the insightful solutions.

Problem 2.4 Summing a geometric series using abstraction
Use abstraction to find the sum of the infinite geometric series

T+ rtr+ 54 (2.7)

Problem 2.5 Using the geometric-series sum

Use Problem 2.4 to check that the probability of the first player’s winning is 2/3:
1 1 1 2

p=§+g+ﬁ+...=§, (2.8)

Problem 2.6 Nested square roots
Evaluate these infinite mixes of arithmetic and square roots:

4f3xqf3x4,‘3x,,f3xm . (2.9)
24424242+ . (2.10)

Problem 2.7 Two trains and a fly

Find the insightful and the infinite-series solution to the problem of the fly and
the approaching trains (Section 2.2). Check that they give the same answer for the
distance that the fly travels!
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Problem 2.8 Resistive ladder

In the following infinite ladder of 1-ohm resistors, what is the resistance between
points A and B? This measurement is indicated by the ohmmeter connected be-
tween these points.

1M 1 1M 1M 1M 1M

2.3 Purpose of abstraction

The coin game (Section 2.2), like the geometric series (Problem 2.4) or the
resistive ladder (Problem 2.8), contained a copy of itself. Noticing this reuse
greatly simplified the analysis. Abstraction has a second benefit: giving
us a high-level view of a problem or situation. Abstractions then show us
structural similarities between seemingly disparate situations.

As an example, let’s revisit the geometric mean, introduced in Section 1.6
to make gut estimates. The geometric mean of two nonnegative quantities
a and b is defined as

geometric mean = +ab. (2.11)

This mean is called the geometric mean because it has

a pleasing geometric construction. Divide the diameter ,
of a circle into two lengths, @ and b, and inscribe a right
triangle whose hypotenuse is the diameter. The triangle’s !

altitude is the geometric mean of a2 and b. a b

This mean reappears in surprising places, including the

beach. When you stand at the shore and look at the horizon, you are seeing
a geometric mean. The distance to the horizon is the geometric mean of
two important lengths in the problem (Problem 2.9).

For me, its most surprising appearance was in the “Programming and Prob-
lem-Solving Seminar” course taught by Donald Knuth [40] (who also cre-
ated TpX, the typesetting system for this book). The course, taught as a se-
ries of two-week problems, helped first-year PhD students transition from
undergraduate homework problems to PhD research problems. A home-
work problem requires perhaps 1 hour. A research problem requires, say,
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1000 hours: roughly a year of work, allowing for other projects. (A few prob-
lems stapled together become a PhD.) In the course, each 2-week module re-
quired about 30 hours—approximately the geometric mean of the two end-
points. The modules were just the right length to help us cross the bridge
from homework to research.

Problem 2.9 Horizon distance

How far is the horizon when you are standing at the shore? Hint: It's farther for
an adult than for a child.

Problem 2.10 Distance to a ship

Standing at the shore, you see a ship (drawn to scale) with a 10-me-
ter mast sail into the distance and disappear from view. How far

away was it when it disappeared?

As further evidence that the geometric mean is a useful abstraction, the idea
appears even when there is no geometric construction to produce it, such
as in making gut estimates. We used this method in Section 1.6 to estimate
the population density and then the population of the United States. Let’s
practice by estimating the oil imports of the United States in barrels per
year—without the divide-and-conquer reasoning of Section 1.4.

The method requires that the gut supply a lower and an upper bound. My
gut reports back that it would feel fairly surprised if the imports were less
than 10 million barrels per year. On the upper end, my gut would be fairly
surprised if the imports were higher than 1 trillion barrels per year—a bar-
rel is a lot of oil, and a trillion is a large number!

You might wonder how your gut too can come up with such large numbers
and how you can have any confidence in them. Admittedly, I have practiced
a lot. But you can practice too. The key is the practice effectively. First, have
the courage to guess even when you feel anxious about it (I feel this anxiety
still, so I practice this courage often). Second, compare your guess to values
in which you can place more confidence—for example, to your own more
careful estimates or to official values. The comparison helps calibrate your
gut (your right brain) to these large magnitudes. You will find a growing
and justified confidence in your judgment of magnitude.

My best guess for the amount is the geometric mean of the lower and upper
estimates:
barrels

410 million x 1 trillion . (2.12)
year
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The result is roughly 3 billion barrels per year—close to the our estimate
using divide and conquer and close to the true value. In contrast, the arith-
metic mean would have produced an estimate of 500 billion barrels per year,
which is far too high.

Problem 2.11  Arithmetic-mean—geometric-mean inequality

Use the geometric construction for the geometric mean to show that the arithmetic
mean of 4 and b (assumed to be nonnegative) is always greater than or equal to
their geometric mean. When are the means equal?

Problem 2.12 Weighted geometric mean

A generalization of the arithmetic mean of a and b as (a + b)/2 is to give a and
b unequal weights. What is the analogous generalization for a geometric mean?
(The weighted geometric mean shows up in Problem 6.29 when you estimate the
contact time of a ball bouncing from a table.)

Analogies

Because abstractions are so useful, it is helpful to have methods for making
them. One way is to construct an analogy between two systems. Each com-
mon feature leads to an abstraction; each abstraction connects our knowl-
edge in one system to our knowledge in the other system. One piece of
knowledge does double duty. Like a mental lever, analogy and, more gen-
erally, abstraction are intelligence amplifiers.

Electrical-mechanical analogies

An illustration with many abstractions on which we can practice is the anal-
ogy between a spring-mass system and an inductor—capacitor (LC) circuit.
L
k Vin 'nm Vﬂl\l

fAAAAA | e oL @13)

In the circuit, the voltage source—the V;, on its left side—supplies a cur-
rent that flows through the inductor (a wire wrapped around an iron rod)
and capacitor (two metal plates separated by air). As current flows through
the capacitor, it alters the charge on the capacitor. This “charge” is confus-
ingly named, because the net charge on the capacitor remains zero. Instead,
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Energy density in the gravitational field

With the electrical-mechanical analogy as practice, let’s try a less famil-
iar analogy: between the electric and the gravitational field. In particular,
we’ll connect the energy densities (energy per volume) in the correspond-
ing fields. An electric field E represents an energy density of ¢;E?/2, where
€q is the permittivity of free space appearing in the electrostatic force be-
tween two charges g, and q;:

F= 1192

. (2.19)
4rregr?

Because electrostatic and gravitational forces are both inverse-square forces
(the force is proportional to 1/r?), the energy densities should be analogous.
Not least, there should be a gravitational energy density. But how is it re-
lated to the gravitational field?

To answer that question, our first step is to find the gravitational analog of
the electric field. Rather than thinking of the electric field only as something
electric, focus on the common idea of a field. In that sense, the electric field
is the object that, when multiplied by the charge, gives the force:

force = charge x field. (2.20)

We use words rather than the normal symbols, such as E for field or g for
charge, because the symbols might bind our thinking to particular cases
and prevent us from climbing the abstraction ladder.

This verbal form prompts us to ask: What is gravitational charge? In elec-
trostatics, charge is the source of the field. In gravitation, the source of the
field is mass. Therefore, gravitational charge is mass. Because field is force
per charge, the gravitational field strength is an acceleration:

force _ force

= = acceleration. (2.21)
charge  mass

gravitational field =

Indeed, at the surface of the Earth, the field strength is g, also called the
acceleration due to gravity.

The definition of gravitational field is the first half of the puzzle (we are
using divide-and-conquer reasoning again). For the second half, we’ll use
the field to compute the energy density. To do so, let’s revisit the route from
electric field to electrostatic energy density:

1
E— EEQEZ.

—
~a
M
I

—
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With g as the gravitational field, the analogous route is
g- % x something x gz, (2.23)
where the “something” represents our ignorance of what to do about €.

What is the gravitational equivalent of €,?

To find its equivalent, compare the simplest case in both worlds: the field
of a point charge. A point electric charge g produces a field

__1 4
T dmeyr?

(2.24)

A point gravitational charge n (a point mass) produces a gravitational field
(an acceleration)

Gnt
r2’

where G is Newton’s constant.

The gravitational field has a similar structure to the electric field. Both
are inverse-square forces, as expected. Both are proportional to the charge.
The difference is the constant of proportionality. For the electric field, it is
1/47ey. For the gravitational field, it is simply G. Therefore, G is analogous
to 1/4rmey; equivalently, €, is analogous to 1/47G.

Then the gravitational energy density becomes
1,1 o8
2% 347G ¢ T 8aC

We will use this analogy in Section 9.3.3 when we transfer our hard-won

knowledge of electromagnetic radiation to understand the even more subtle
physics of gravitational radiation.

(2.26)

Problem 2.13  Gravitational energy of the Sun

What is the energy in the gravitational field of the Sun? (Just consider the field
outside the Sun.)

Problem 2.14 Pendulum period including buoyancy

The period of a pendulum in vacuum is (for small amplitudes) T = 27,[l/g, where
I is the bob length and g is the gravitational field strength. Now imagine the pen-
dulum swinging in a fluid (say, air). By replacing ¢ with a modified value, include
the effect of buoyancy in the formula for the pendulum period.
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Problem 2.15 Comparing field energies

Find the ratio of electrical to gravitational field energies in the fields produced by
a proton.

Parallel combination

Analogies not only reuse work, they help us rewrite expressions in compact,
insightful forms. Anexampleis the idea of parallel combination. It appears
in the analysis of the infinite resistive ladder of Problem 2.8.

the ladder all over again

10 [ e Y 1T T I T T T T 1T T T T T in T T T T T :
|
|
I
i

c
|
|
i
|

To find the resistance R across the ladder (in other words, what the ohmme-
ter measures between the nodes A and B), you represent the entire ladder
as a single resistor R. Then the whole ladder is 1 ohm in series with the
parallel combination of 1 ohm and R:

1M

The next step in finding R usually invokes the parallel-resistance formula:
that the resistance of R, and R, in parallel is
RiRy

) (2.28)
Ry + R;

For our resistive ladder, the parallel combination of 1 ohm with the ladder
is 1 ohm x R/(1 ohm + R). Placing this combination in series with 1 ohm
gives a resistance
10 xR
IO+R
This recursive construction reproduces the ladder, only one unit longer. We
therefore get an equation for R:

10 xR
10+4R

10+

(2.29)

R=1Q + (2.30)
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The (positive) solution is R = (1 + J5)/2 ohms. The numerical part is the
golden ratio ¢ (approximately 1.618). Thus, the ladder, when built with
1-ohm resistors, offers a resistance of ¢ ohms.

Although the solution is correct, it skips over a reusable idea: the parallel
combination. To facilitate its reuse, let’s name the idea with a notation:

Ry || Ry. (2.31)

This notation is self-documenting, as long as you recognize the symbol ||
to mean “parallel,” a recognition promoted by the parallel bars. A good
notation should help thinking, not hinder it by requiring us to remember
how the notation works. With this notation, the equation for the ladder
resistance R is

R=10 + 100 |R (2.32)

(the parallel-combination operator has higher priority than—is computed
before—the addition). This expression more plainly reflects the structure
of the system, and our reasoning about it, than does the version

10 xR
10+R’

The | notation organizes the complexity.

R=10+

Once you name anidea, you find it everywhere. As a child, after my family
bought a Volvo, I saw Volvos on every street. Similarly, we’ll now look at
examples of parallel combination far beyond the original appearance of the
idea in circuits. For example, it gives the spring constant of two connected
springs (Problem 2.16):

MWWWWWAWWWWWWA = WMWAWWWWWWWWWWAA 239

ky ky kyll ks

Problem 2.16 Springs as capacitors

Using the analogy between springs and capacitors (discussed in Section 2.4.1), ex-
plain why springs in series combine using the parallel combination of their spring
constants.

Another surprising example is the following spring-mass system with two
masses:

m M
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The natural frequency w, expressed without our || abstraction, is

k(nm + M)
W= ——°, 2.35
mM (235)
This form looks complicated until we use the || abstraction:
W= L (2.36)
m || M

Now the frequency makes more sense. The two masses act like their parallel
combination n: | M:

k

VWA 11

The replacement mass #: | M is so useful that it has a special name: the re-
duced mass. Our abstraction organizes complexity by turning a three-com-
ponent system (a spring and two masses) into a sirnpler two-component
system.

In the spirit of notation that promotes insight, use lowercase (“small”) #: for
the mass that is probably smaller, and uppercase (“big”) M for the mass that
is probably larger. Then write i || M rather than M || m. These two forms
produce the same result, but the » | M order minimizes surprise: The
parallel combination of nz and M is smaller than either mass (Problem 2.17),
so it is closer to #z, the smaller mass, than to M. Writing n: || M, rather than
M || m, places the most salient information first.

Problem 2.17 Using the resistance analogy

By using the analogy with parallel resistances, explain why m || M is smaller than
m and M.

Why do the two masses combine like resistors in parallel?
The answer lies in the analogy between mass and resistance. Resistance
appears in Ohm’s law:

voltage = resistance x current. (2.37)

Voltage is an effort. Current, which results from the effort, is a flow. There-
fore, the more general form—one step higher on the abstraction ladder—is

effort = resistance x flow. (2.38)

In this form, Newton's second law,
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With this changing voltage, the capacitor equation,

. d(voltage)

current = capacitance x — (2.49)
becomes

current = capacitance x jw X Voltage. (2.50)
Let’s compare this form to its analog for a resistor (Ohm's law):

1
current = ———— x voltage. (2.51)
resistance
Matching up the pieces, we find that a capacitor offers a resistance
1
= —. (2.52)
€7 jwC

This more general resistance, which depends on the frequency, is called im-
pedance and denoted Z. (In the analogy of Section 2.4.1 between capacitors
and springs, we found that capacitor offered a resistance to being charged of
1/C. Impedance, the result of an analogy between capacitors and resistors,
contains 1/C as well, but also contains the frequency in the 1/jw factor.)

Using impedance, we can describe what happens to any sinusoidal signal
in a circuit containing capacitors. Our thinking is aided by the compact
notation—the capacitive impedance Z- (or even Rc). The notation hides
the details of the capacitor differential equation and allows us to transfer
our intuition about resistance and flow to a broader class of circuits.

l|f/in — W Voul

The simplest circuit with resistors and capacitors is the R

so-called low-pass RC circuit. Not only is it the sim-
plest interesting circuit, it will also be, thanks to fur-
ther analogies, a model for heat flow. Let’s apply the ground
impedance analogy to this circuit.

c ——

To help us make and use abstractions, let’s imagine defocusing our
eyes. Under blurry vision, the capacitor looks like a resistor that just R
happens to have a funny resistance R = 1/jwC. Now the entire cir-
cuit looks just like a pure-resistance circuit. Indeed, it is the simplest
such circuit, a voltage divider. Its behavior is described by one num-
ber: the gain, which is the ratio of output to input voltage V_,/ V... ground

Voul

Re

In the RC circuit, thought of as a voltage divider,

. capacitive resistance Re
gain = - = . (2.53)
total resistance from V, to ground R+ R




