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1
Probability

“Probabilily is too important o be left to the experts.”

1.1 Introduction

Who has not watched the toss of a coin, the roll of dice, or the draw of a
card from a well shuffled deck? In each case, although the initial conditions
appear to be much the same, the specific outcome is not knowable. These
situations, and many equivalent ones, occur constantly in our society, and we
need a theory to enable us to deal with them on a rational, effective basis.
This theory is known as probability theory and is very widely applied in our
society—in science, in engineering, and in government, as well as in sociology,
medicine, politics, ecology, and economics.

How can there be laws of probability? Is it not a contradiction? Laws
imply regularity, while probable events imply irregularity. We shall see that
many times amid apparent irregularity some regularity can be found, and
furthermore this limited regularity often has significant consequences.

How is it that from initial ignorance we can later deduce knowledge?
How can it be that although we state that we know nothing about a single
toss of a coin yet we make definite statements about the result of many tosses,
results that are often closely realized in practice?

Probability theory provides a way, indeed a style, of thinking about such
problems and situations. The classical theory has proved to be very useful even
in domains that are far removed from gambling (which is where it arose and is
still, probably, the best initial approach). This style of thinking is an art and is
not easy to master; both the historical evidence based on its late development,
and the experience of current teaching, show that much careful thinking on
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the student’s part is necessary before probability becomes a mental habit.
The sophisticated approach of beginning with abstract postulates is favored
by mathematicians who are interested in covering as rapidly as possible the
material and techniques that have been developed in the past. This is not
an effective way of teaching the understanding and the use of probability in
new situations, though it clearly accelerates the formal manipulation of the
symbols (see the quotation at the top of the Preface). We adopt the slow,
cautious approach of carefully introducing the assumptions of the models,
and then examining them, together with some of their consequences, before
plunging into the formal development of the corresponding theory. We also
show the relationship between the various models of probability that are of
use in practice; there is not a single model of probability, but many and of
differing reliabilities.

Mathematics is not just a collection of results, often called theorems; it is
a style of thinking. Computing is also basically a style of thinking. Similarly,
probability is a style of thinking. And each field is different from the others.
For example, I doubt that mathematics can be reduced to button pushing
on a computer and still retain its style of thinking. Similarly, I doubt that
the theory of probability can be reduced to either mathematics or computing,
though there are people who claim to have done so.

In normal life we use the word “probable” in many different ways. We
speak of the probability of a head turning up on the toss of a coin, the probabil-
ity that the next item coming down a production line will be faulty, the prob-
ability that it will rain tomorrow, the probability that someone is telling a lie,
the probability of dying from some specific disease, and even the probability
that some theory, say evolution, special relativity, or the “big bang,” is correct.

In science (and engineering) we also use probability in many ways. In
its early days science assumed there was an exact measurement of something,
but there was also some small amount of “noise” which contaminated the
signal and prevented us from getting the exact measurement. The noise was
modeled by probability. We now have theories, such as information theory and
coding theory, which assume from the beginning that there is an irreducible
noise in the system. These theories are designed to take account of the noise
rather than to initially avoid it and then later, at the last moment, graft on
noise. And there are some theories, such as the Copenhagen interpretation
of quantum mechanics, which say that probability lies at the foundations of
physics, that it is basic to the very nature of the world.

Thus there are many different kinds of probability, and any attempt to
give only one model of probability will not meet today’s needs, let alone to-
morrow’s. Some probability theories are “subjective” and have a large degree
of “personal probability” (belief) as an essential part. Some theories try to
be more scientific (objective), and that is the path we will mainly follow—
without prejudice to the personal (more subjective) probability approaches
which we cannot escape using in our private lives. [Kr, both volumes].
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The belief that there is not a single model of probability is rarely held,
but it is not unique to the author. The following paraphrase shows an alter-
nate opinion (ignore the jargon for the moment) [G, p.xi,xii]:

In quantum probability theory the state of the system is de-
termined by a complex-valued function A (called the amplitude
function) on the outcome space (or sample space). The outcomes
of an event E = {4, z3, ...} have the probability P(E) of E which

is computed by
P(E)=) [A()] ?

This allows for interference as happens in optics and sound. If the
outcomes do not interfere, then of course

P(B) = [1A(=)]]

This last is the classical probability theory. In the interference
case P(E) decomposes into the sum of two parts. The real part
is the classical counterpart and the imaginary part leads to the
constructive or destructive interference which is characteristic of
quantum mechanics and much of physics.

The basic axiom of the path integral formalism is that the
state of a quantum mechanical system is determined by the am-
plitude function A and that the probability of a set of interfer-
ing outcomes {z;, z3, ...} is the first equation. This point has
been missed by the axiomatic approaches and in this sense they
have missed the essence of quantum mechanics. In principle this
essence can be regained by adjoining an amplitude function axiom
to the other axioms of the system, but then the axiomatic system
is stronger than necessary and may well exclude important cases.

Since we are going to use a scientific approach to probability it is nec-
essary to say what science is and is not. In the past science has tried to
be objective and to insist on the property that different people doing the
same experiment would get essentially the same results. But we must not as-
sume that science is completely objective, that this repeatability property is
perfectly attained or is even essential (for example, consider carefully observa-
tional astronomy). Again, if I were to ask two different people to measure the
width of a table, one of them might by mistake measure the length, and hence
the measurements might be quite different. There is an unstated amount of
“understanding what is meant” that is implied in every experimental descrip-
tion. We can only hope to control this assumed background (that is supposed
to produce absolute consistency) so that there is little room for error, but we
do not believe that we can ever completely eliminate some personal judgment

(3]
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in science. In science we try to identify clearly where judgment comes in and
to control the amount of it as best we can.

The statement at the head of this chapter,

Probability is too important to be left to the ezperts,

is a particular case of a very general observation that the experts, by their
very expert training and practice, often miss the obvious and distort reality
seriously. The classical statement of this general principle is, “War is too
important to be left to the generals.” We daily see doctors who treat cases
but not patients, mathematicians who give us exact solutions to the wrong
problems, and statisticians who give us verifiably wrong predictions. In our
Anglo-Saxon legal system we have clearly adopted the principle that in guilt
vs. innocence “twelve tried and true men” are preferable to an experienced
judge. The author clearly believes that the same is true in the use of proba-
bility; the desire of the experts to publish and gain credit in the eyes of their
peers has distorted the development of probability theory from the needs of
the average user.

The comparatively late rise of the theory of probability shows how hard
it is to grasp, and the many paradoxes show clearly that we, as humans, lack
a well grounded intuition in this matter. Neither the intuition of the man in
the street, nor the sophisticated results of the experts provides a safe basis for
important actions in the world we live in. The failure to produce a probability
theory that fits the real world as it is, more or less, can be very costly to our
society which uses it constantly.

In the past science has developed mainly from attempts to “measure
how much,” to be more precise than general statements such as larger, heavier,
faster, more likely, etc. Probability tries to measure more precisely than “more
likely” or “less likely.” In order to use the scientific approach we will start
(Section 1.5) with the measurement of probability in an objective way. But
first some detours and formalities are needed.

1.2 Models in General

It is reasonably evident to most people that all thought occurs internally, and
it is widely believed that thinking occurs in the head. We receive stimuli from
the external world, (although some sophists have been known to deny the
existence of the external world, we shall adopt a form of the “naive realism”
position that the world exists and is to some extent “knowable”). We organize
our incoming stimuli according to some ill-defined model of reality that we
have in our heads. As a result we do not actually think about the real external
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world but rather we “think” in terms of our impressions of the stimuli. Thus
all thought is, in some sense, modeling.

A model can not be proved to be correct; at best it can only be found
to be reasonably consistant and not to contradict some of our beliefs of what
reality is. Karl Popper has popularized the idea (which goes back at least
to Francis Bacon) that for a theory to be scientific it must be potentially
falsifiable, but in practice we do not always obey his criterion, plausible as it
may sound at first. From Popper’s point of view a scientific theory can only
be disproved, but never proved. Supporting evidence, through the application
of finite induction, can increase our faith in a theory but can never prove its
absolute truth.

In actual practice many other aspects of a model are involved. Occam’s
razor, which requires that minimal assumptions be used and extra ones re-
moved, is often invoked as a criterion—we do not want redundant, possibly
contradictory assumptions. Yet Occam’s razor is not an absolute, final guide.
Another criterion is aesthetic taste, and that depends, among other things,
on the particular age and culture you happen to live in. We feel that some
theories are nicer than others, that some are beautiful and some are ugly,
and we tend to choose the loveliest one in practice. Another very important
criterion is “fruitfulness”—does the model suggest many new things to try?

A model is often judged by how well it “explains” some observations.
There need not be a unique model for a particular situation, nor need a model
cover every possible special case. A model is not reality, it merely helps to
explain some of our impressions of reality. For example, for many purposes we
assume that a table is “solid,” yet in physics we often assume that it is made
of molecules and is mainly “empty space.” Different models may thus seem
to contradict each other, yet we may use both in their appropriate places.

In view of the wide variety of applications of probability, past, present,
and future, we will develop a sequence of models of probability, generally
progressing from the simpler to the more complex as we assume more and
more about the model. At each stage we will give a careful discussion of
the assumptions, and illustrate some features of them by giving consequences
you are not likely to have thought were included in the model. Thus we will
regularly discuss examples (paradoxes) whose purpose is to show that you can
get rather peculiar results from a model if you are not careful, even though
the assumptions (postulates) on the surface seem to be quite bland, [St]. It
is irresponsible to teach a probability course as if the contents were entirely
safe to use in any situation. As Abelard (1079-1142) said,

“I expose these contradictions so that they may excite the susceptible
minds of my readers 1o the search for truth, and that these contra-
dictions may render their minds more peneirating as the effect of
that search.”

(8]
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Since the applications of probability theory are constantly expanding
in range and depth, it is unlikely that anyone can supply models for all the
situations that will arise in the future. Hence we are reduced to presenting a
series of models, and to discussing some of their relationships, in the hopes
that you will be able to create the model you need when the time comes to
develop a new one. Each application you make requires you to decide which
probability model to adopt.

1.3 The Frequency Approach Rejected

Most people have at least two different models of probability in their minds.
One model is that there is a probability to be associated with a single event,
the other is that probability is the ratio of the number of successes to the
total number of trials in a potentially infinite sequence of similar trials. We
need to assume one of these and deduce, in so far as we can, the other from
the first—otherwise we risk assuming a contradiction! It will turn out that
the two models are not completely equivalent.

A third kind of probability that most people are familiar with is that
which arises in betting between friends on sporting events. The “odds” are
simply a version of probability; the odds of a to b are the probabilities of
a/(a+b) and b/(a+b). There is often no serious thought of repetitions of the
event, or a “random selection from an ensemble of similar events,” rather it
is the feeling that your “hunches” or “insights” are better than those of the
opponent. Both sides recognize the subjective aspect, that two people with
apparently the same information can have different probability assignments
for the same event. The argument that they have different amounts of infor-
mation is unconvincing; it is often merely a temporary mood that produces
the difference.

The frequency approach (the ratio of the number of successes to the
total number of equally likely possible outcomes) seems to be favored by most
statistically inclined people, but it has severe scientific difficulties. The main
difficulty with the frequency approach is that no one can say how many (neces-
sarily finite) number of trials to make, and it is not practical science to define
the probability as the limit of the ratio as the number of trials approaches
infinity. Furthermore, the statement of the limiting frequency, in a careful
form, will often include the words that you will for any long, finite sequence
be only probably close! It is circular to say the least! And you can’t know
whether you are looking at an exceptional case or a likely case. It is also true
that to get even reasonable accuracy usually requires a discouragingly large
number of trials. Finally, there are models, as we shall show in Section 8.7
for which the single event probability has meaning and at the same time the
average of n samples has more variability than the original distribution!
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For a long time there has been in science a strong trend towards ac-
cepting in our theories only objectively measureable quantities and of exclud-
ing purely conceptual ones that are only props (like the “ether” in classical
physics). The extreme of allowing only measureable quantities is perhaps
too rigid an attitude (though a whole school of philosophy maintains this
position); yet it is a useful criterion in doing science.

Similarly, there are many mathematical theorems in the literature whose
hypotheses cannot be known, even in an intuitive sense, to be close let alone
be either exactly true or false within the framework of the intended applica-
tion; hence these theorems are not likely to be very useful in these practical
applications of the theory. Such theorems may be interesting and beautiful
pure mathematics but are of dubious applicability.

This “practical use” attitude tends to push one towards “constructive
mathematics” [B] and away from the conventional mathematics. The increas-
ing use of computers tends to make many people favor “computable” numbers
as a basis for the development of probability theory. Without careful atten-
tion to the problem for which it is being used it is not a priori obvious which
approach to the real number system we should adopt. And there are some
people who regard the continuous mathematics as merely a useful approxi-
mation to the discrete since usually the equivalent operations are easier in
the continuous model than they are in the discrete. Furthermore, quantum
mechanics suggests, at least to some people, that ultimately the universe is
discrete rather than continuous.

Whenever a new field of application of mathematics arises it is always an
open question as to the applicability of the mathematics which was developed
earlier; if we are to avoid serious blunders it must be carefully rethought. This
point will be raised repeatedly in this book.

For these and other reasons we will not begin with the frequency ap-
proach, but rather deduce (Sections 2.8 and Appendix 2.A) the frequency
model along with its limitations. For this present Section see [Ke], especially
Chapter 8.

1.4 The Single Event Model

In most fields of knowledge it is necessary, sooner or later, to introduce some
technical notation and jargon so that what is being talked about is fairly pre-
cise and we can get rid of the vagueness of words as used in normal language.
We have used some of these words already!

At first a trial is a single unit, like the toss of a coin, the roll of a die
(singular of dice), or the draw of a single card from a well shuffled deck.
The elementary events of a trial are the possible outcomes of the trial. For
example, for the toss of a coin the elementary events are “head” and “tail.”

(7
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For the roll of a die the elementary events are the names of the six faces,
1,2,3,4,5,6. The elementary events are considered to be indivisible, atomic,
events from which more complex events (say an even numbered face of a die)
may be built. We will label the possible outcomes of a trial by the symbols z;,
where i runs from 1 to n (or possibly 0 to n). Thus as a first approximation,
to be modified later, we have the trial labeled X whose outcome is some
particular z;. The capital letter X represents the trial, and the set {z;}
represents the possible outcomes of the trial; some particular z; will be the
actual outcome of the trial X being conducted. In some circumstances the
symbol X may be thought of as being the whole set {z;} just as the function
sin z may be thought of as the entire function. This list of possible outcomes
is an idealization of reality. Initially we assume that this list is finite in length.

Later on a trial may be a sequence of these simple trials; the roll of, say,
four dice at one time will be a single trial. Still later we will continue for an
indefinite number of times until some condition is reached such as tossing a
coin until three heads occur in a row. In such cases the entire run will be con-
sidered a single trial, and the number of possible events will not be finite but
rather countably infinite. Still later, we will examine a continuum of events,
a classically non-countable number of events.

In principle the first step in a discrete probability problem is, for the
trial (named) X, to get the corresponding list (or set) X of all the possible
outcomes z;. Thus X has two meanings; it is the name of the trial and it is
also the list of possible the outcomes of the trial. The name of the outcome
should not be logically confused with any value associated with the outcome.
Thus logically the face “the number of spots,” say 4, on a die is a label and
should not be confused with the name “four,” nor with the value “4” that is
usually associated with this outcome. In practice these are often carelessly
treated as being the same thing.

The beginner is often confused between the model and reality. When
tossing a coin the model will generally not include the result that the coin
ends up on its edge, nor that it is lost when it rolls off the table, nor that
the experimenter drops dead in the middle of the trial. We could allow for
such outcomes if we wished, but they are generally excluded from simple
problems.

In a typical mathematical fashion these events (outcomes) z; are con-
sidered to be points in the sample space X; each elementary event z; is a
point in the (at present) finite, discrete sample space. To get a particular
realization of a trial X we “sample” the sample space and select “at random”
(to be explained in more detail in Section 1.9) an event z;. The space is also
called a list (as was stated above) and we choose (at random) one member
(some z;) of the list X as the outcome of the trial.
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1.5 Symmetry as the Measure of Probability

With this notation we now turn to the assignment of a measure (the numerical
value) of the probability p; to be associated with (assigned to) the event z; of
the trial.

Our first tool is symmetry. For the ideal die that we have in our mind
we see that (except for the labels) the six possible faces are all the same, that
they are equivalent, that they are symmetric, that they are interchangeable.
Only one of the elementary events z; can occur on one (elementary) trial and
it will have the probability p;. If any one of several different outcomes z;
is allowed on a trial (say either a 4 or a 6 on a roll of a die) then we must
have the “additivity” of probabilities p;. For the original sample space we will
get the same probability, due to the assumed symmetry, for the occurences
of each of the elementary events. We will scale this probability measure so
that the sum of all the probabilities over the sample space of the elementary
events must add up to 1.

If you do not make equal probability assignments to the interchangeable
outcomes then you will be embarrassed by interchanging a pair of the nonequal
values. Since the six faces of an ideal die are all symmetric, interchangeable if
you prefer, then each face must have the probability of 1/6 (so that the total
probability is 1). For a well shuffled ideal deck of cards we believe that each
of the 52 cards are interchangeable with every other card so each card must
have a probability of 1/52. For a well balanced coin having two symmetric
faces each side must have probability 1/2.

Let us stop and examine this crucial step of assigning a measure (num-
ber) p; called “the probability” to each possible outcome z; of a trial X. These
numbers are the probabilities of the elementary events. From the perceived
symmetry we deduced interchangeability, hence the equality of the measure of
probability of each of the possible events. The reasonableness of this clearly
reinforces our belief in this approach to assigning a measure of probability to
elementary events in the sample space.

This perception of symmetry is subjective; either you see that it is there
or you do not. But at least we have isolated any differences that may arise so
that the difference can be debated sensibly. We have proceeded in as objective
a fashion as we can in this matter.

However, we should first note that, “Symmetric problems always have
symmetric solutions.” is false [W]. Second, when we say symmetric, equiv-
alent, or interchangable, is it based on perfect knowledge of all the relevant
facts, or is it merely saying that we are not aware of any lack thereof? The
first case being clearly impossible, we must settle for the second; but since
the second case is vague as to how much we have considered, this leaves a lot
to be desired. We will always have to admit that if we examined things more
closely we might find reason to doubt the assumed symmetry.

We now have two general rules: (1) if there are exactly n different inter-

[9]
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changeable (symmetric in some sense) elementary events z;, then each event
z; has probability p; = 1/n since (2) the probabilities of the elementary events
in the sample space are additive with a total probability of 1.

Again, from the additivity of the probabilities of the elementary events
it follows that for more complex situations when there is more than one point
in the sample space that satisfies the condition then we add the individual
probabilities.

For the moment we will use the words “at random” to mean equally likely
choices in the sample space; but even a beginner can see that this is circular—
what can “equally likely” mean except equally probable, (which is what we
are trying to define)? Section 1.9 will discuss the matter more carefully; for
the moment the intuitive notion will suffice to do a few simple problems.

Example 1.5-1 Selected Faces of a Die

Suppose we have a well balanced die and ask for the probability that on a
random throw the upper face is less than or equal to 4.

The admissible set of events (outcomes) is {z;} = {1, 2, 3,4}. Since each
has probability p; = 1/6, we have

Prob {z; <4} =1/6+1/6+1/6+1/6=4/6=2/3

If instead we ask for the probability that the face is an even number,
then we have the acceptable set {2,4,6}, and hence

Prob {z; even} = 1/6+1/6+1/6 =3/6 =1/2

Example 1.5-2 A Card With the Face 7

What is the probability that on the random draw of a card from the standard
card deck of 52 cards (of 4 suits of 13 cards each) that the card drawn has
the number 7 on it?

We argue that there are exactly 4 cards with a 7 on their face, one card
from each of the four suits, hence since the probability of a single card is 1/52
we must have the probability

Prob {face = 7} = 4/52 = 1/13.

There are other simple arguments that will lead to the same result.
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Example 1.5-3  Probability of a Spade

What is the probability of drawing a spade on a random draw from a deck of
cards?

We observe that the probability of any card drawn at random is 1/52.
Since there are 13 spades in the deck we have the combined probability of

P(spade) = (13) (1/52) = 1/4

Exercises 1.5

1.5—1. If there are 26 chips each labeled with a different letter of the alphabet
what is the probability of choosing the chip labeled Q when a chip is drawn at
random? Of drawing a vowel (A4, E,I,0,U)? Of not drawing a vowel? Ans.
1/26, 5/26, 21/26.

1.5-2. If 49 chips are labeled 1,2,...49, what is the probability of drawing
the 7 at random? A number greater or equal to 77 Ans. 1/49, 43/49.

1.5-3. If 49 chips are labeled 2,4,...98, what is the probability of drawing
the chip 14 at random? Of a number greater than 20?

1.5-4 A plane lattice of points in the shape of a square of size n > 2 has n?
points. What is the probability of picking a corner point? The probability of
picking an inner point? Ans. 4/x2,[(n — 2)/n]?

1.5—-5 A day of the week is chosen at random, what is the probability that it
is Tuesday? A “weekday”?

1.5-6 We have n® items arranged in the form of a lattice in a cube, and
we pick at random an item from an edge (not on the bottom). What is the
probability that it is a corner item? Ans. 1/(2n — 3).

1.5-7 In a set of 100 chips 10 are red; what is the probability of picking a red
chip at random? Ans. 1/10.

1.5-8 If there are r red balls, w white balls, and b blue balls in an urn and

a ball is drawn at random, what is the probability that the ball is red? Is
white? Is blue? Ans. r/(r + w+b),w/(r + w+b),b/(r + w4 b). )
1.5—9 There are 38 similar holes in a roulette wheel. What is the probability
of the ball falling in any given hole?

1.5-10 In a deck of 52 cards what is the probability of a random drawing
being the 1 (ace) of spades? Of drawing at random a heart? Ans. 1/52,1/4

1.5-11 There are 7 bus routes stopping at a given point in the center of town.
If you pick a bus at random what is the probability that it will be the one to
your house?

1.5-12 In a box of 100 items there are 4 defective ones. If you pick one at
random what is the probability that it is defective? Ans. 1/25
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1.5-13 If 3% of a population has a certain disease what is the probability
that the next person you pass on the street has it? Ans. 0.03

1.5-14 Due to a malajustment a certain machine produces every fifth item
defective. What is the probability that an item taken at random is defective?

1.5-15 In a certain class of 47 students there are 7 with last names beginning
with the letter S. What is the probability that a random student’s name will
begin with the letter S? Ans. 7/47

1.6 Independence

The next idea we need is independence. If we toss a coin and then roll a die
we feel that the two outcomes are independent, that the outcome of the coin
has no influence on the outcome of the die. The sample space is now

|123456

H Hl H2 H3 H4 HS5 H6
T TT T2 T3 T4 T5 T6

We regard this sample space as the product of the two elemetary sample
spaces. This is often called the Cartesian (or direct) product by analogy with
cartesian coordinates of the two original sample spaces, {H, T} for the coin,
and {1,2,3,4,5,6} for the die. Since we believe that the outcomes of the
die and coin are independent we believe (from symmetry) that the events in
the product sample space are all equally likely, hence each has probability
1/(2 x 6) = 1/12. We see that the probability of the compound events in
the product sample space are (for independent events) just the product of the
corresponding probabilities of the separate original events, that

1/12 = (1/2) (1/6).

Clearly the product space (meaning the product of the sample spaces) of
the coin with the die is the same as the product space of the die with the coin.

We immediately generalize to any two independent events, each of these
being from an equally likely sample space. If there are n; of the first kind of
event and n3 of the second, then the product space of the combined trial has
nyn, events each of the same probability 1/n1ny = (1/n;) (1/n2).
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Example 1.6-1 The Sample Space of Two Dice

Consider the toss of two independently rolled dice. The sample space has
6 x 6 = 36 events each of probability 1/36, and the sample space is:

110 1,2 13 ... 16
21 22 23 ... 26
61 62 63 .. 68

Clearly the idea of a product space may be extended to more than two
independent things.

Example 1.6-2 The Sample Space of Three Coins

Consider the toss of three coins. We have 2x 2x 2 = 8 equally likely outcomes.
It is awkward to draw 3 dimensional sample spaces, and it is not feasible to
draw higher dimensional sample spaces, so we resort to listing the elementary
events. For the three coins we have a list (equivalent to the product sample
space)

HHH HHT HTH THH HTT THT TTH TIT
each of probability (1/2)(1/2)(1/2) = 1/8.

The extension to m different independent trials each having n;(i =
1,2,...,m) equally likely outcomes leads to a product space of size equal
to the product niny...n, of the dimensions of the original spaces. The
probabilities of the events in the product space are equal to the correspond-
ing products of the probabilities of the original events making up the original
spaces, hence the product space events are also equally likely (since the orig-
inal ones were equally likely).

Example 1.6-3 The Number of Paths

If you can go from A to B in 6 ways, from B to C in 7 ways, and from C
to D in 5 ways, then there are 6 x 7 x 5 = 210 ways of going from A to D,
Figure 1.6-1. If each of the original ways were equally likely and independent
then each of the 210 ways is also equally likely and has a probability of 1/210.

B c

FiGURE 1.6-1
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Notice again, the probabilities of the equally likely events in the product
sample space can be found by either: (1) computing the number of events z;
in the product space and assigning the same probability p; = 1/(the number
of events) to each event in the product space, or (2) assign the product of
the probabilities of the separate parts to each compound event in the product
space.

Notice also that we are always assuming that the elementary points in
the sample space are independent of each other, that one outcome is not
influenced by earlier choices. However, in this universe in which we live ap-
parently all things are interrelated (“intertwined” is the current jargon in
quantum mechanics); if so then independence is an idealization of reality, and
is not reality.

It is easy to make up simple examples illustrating this kind of probability
problem, and working out a large number of them is not likely to teach you
as much as carefully reviewing in your mind why they work out as they do.

Exercises 1.6
1.6-1 What is the probability of HH H on the toss of three coins when the
order of the outcomes is important? Of HTH? Of TTH? Ans. 1/8.
1.6—2 Describe the product space of the draw of a card and the roll of a die.

1.6—3 What is the size of the product space of the roll of three dice? Ans. 6° =
216.

1.6—4 What is the size of the product space of the toss of n coins? Ans. 2".
1.6-5 What is the size of the product space of the toss of n dice?

1.6-6 What is the product space of a draw from each of two decks of cards?
Ans. Size= (52)°.

1.6—7 What is the size of the sample space of independent toss of a coin, roll
of a die, and the draw of a card?

1.7 Subsets of a Sample Space

We are often interested not in all the individual outcomes in a product space
but rather only those outcomes which have some specific property. We have
already done a few such cases.
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Example 1.7-1 Exactly One Head in Three Tosses

Suppose we ask in how many ways can exactly one head turn up in the toss of
three coins, or equivalently, what is the probability of the event. We see that
in the complete sample space of 8 possible outcomes we are only interested in

the three events
HTT THT TTH

Each of these has a probability of 1/8, so that the sum of these will be 3/8
which is the corresponding probability.

Clearly we are using the additivity of the probabilities of the events in
the sample space. We need to know the size of the sample space, but we need
not list the whole original sample space, we need only count the number of
successes. Listing things is merely one way of counting them.

Example 1.7-2 Sum of Two Dice
What is the probability that the sum of the faces of two independently thrown
dice total 77 We have only the six successful possibilities

146, 245, 3+4, 4+3, 5+2, 6+1

in the total sample space of 62 = 36 possible outcomes. See Figure 1.7-1. Each
possible outcome has probability of 1/36, hence the probability of a total of 7
is 6/36 = 1/6.

First die

1 2 3 4 5 6
1 o
2 [ ]

Second 3 °
die 4 PS
5 °
6l e
Sum of two dice
FiGure 1.7-1

We can look at this in another way. Regardless of what turns up on the
first die, there is exactly one face of the second that will make the total equal
to 7, hence the probability of this unique face is 1/6.

If we were to ask in how many ways, (or equivalently what is the prob-
ability), can the sum of three or four, or more dice add up to a given number
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then we would have a good deal of trouble in constructing the complete sam-
ple space and of picking out the cases which are of interest. It is the purpose
of the next two chapters to develop some of the mathematical tools to carry
out this work; the purpose of the present chapter is to introduce the main
ideas of probability theory and not to confuse you by technical details, so we
will not now pursue the matter much further.

We now have the simple rule: count the number of different ways the
compound event can occur in the original sample space of equally likely events
(outcomes), then the probability of this compound event is the ratio of the
number of successes in the sample space to the total number of events in the
original sample space. :

Aside: Probability Scales

We have evidently chosen to measure probability on a scale from 0 to 1, with 0
being impossibility and 1 being certainty. A scale that might occur to you is
from 1 to infinity, which is merely the reciprocal of the first range, (you might
also consider 0 to infinity). In these cases you will find that the addition of
probabilities is not simple. There are other objections that you can find if
you choose to explore these scales.

‘ Venn Diagram

FIGURE 1.7-2

A Venn diagram is mainly a symbolic representation of the subsets of
a sample space. Typically circles are used to represent the subsets, see Fig-
ure 1.7-2. The subsets represented are the insides of the circles A, B and C.
Now consider those events which have both properties A and B, shown by the
region AB. Similarly for the sets AC and BC. Finally, consider the events
which have the properties of A, B and C at the same time; this is the inner
piece in the diagram, ABC. In this simple case the representation is very
illuminating. But if you try to go to very many subsets then the problem of
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drawing a diagram which will show clearly what you are doing is often dif-
ficult; circles are not, of course, necessary, but when you are forced to draw
very snake-like regions then the diagram is of little help in visualizing the sit-
uation. In the Venn diagram the members of a set are often scattered around
(in any natural display of the elements of the sample space), hence we will
not use Venn diagrams in this book.

Exercises 1.7

1.7-1 What is the probability of a die showing an odd digit?

1.7-2 What is the probability of drawing a “diamond” when drawing a card
from a deck of 52 cards? Ans. 1/4.

1.7-3 On the roll of two dice what is the probability of getting at least one
face as a 47 Ans. 11/36.

1.7-4 What is the probability of two H’s in two tosses of a coin?

1.7-5 On the roll of two independent dice what is the probability of a total
of 67 Ans. 5/36.

1.7-6 Make a Venn diagram for four sets.

1.7-7 In a toss of three coins what are the probabilities of 0, 1,2, or 3 heads?
Ans. 1/8,3/8,3/8,1/8.

1.7-8 What is the probability of drawing either the 10 of diamonds or the
jack of spades?

1.7-9 What is the probability of drawing an “ace” (ace= 1), jack, queen or
king from a deck of 52 cards? Ans. 4/13.

1.7-10 What is the probability of drawing a black card from the deck?

1.7-11 If two dice are rolled what is the probability both faces are the same?
Ans. 1/6.

1.7-12 If three dice are rolled what is the probability that all three faces are
the same? Ans. 1/36.

1.7-18 If a'coin is tossed n times what is the probability that all the faces
are the same? Anms. 1/2"!

1.7-14 If one card is drawn at random from each of two decks of cards what
is the Probability that the two cards are the same? Ans. 1/52.

1.7-15 Odd man out. Three people each toss a coin. What is the probability
of some person being the “odd man out”? Ans. 3/4.

1.7-16 If 4 people play odd man out what is the probability that on a round
of tosses one person will be eliminated? Ans. 1/2.

1.7-17 On the toss of two dice what is the probabilty that at least one face
has a 4 or else that the sum of the faces is 47 Ans. 1/18.

1.7-18 Same as 1.7-17 except the number is 6 (not 4). Ans. 4/9.



(18]

PROBABILITY CHAPTER 1

1.8 Conditional Probability

Frequently the probability we want to know is conditional on some event. The
effect of the condition is to remove some of the events in the sample space
(list), or equivalently to confine the admissable items of the sample space to
a limited region.

Example 1.8~-1 At Least Two Heads in Ten Tosses

What is the probability of at least two heads in the toss of 10 coins, given
that we know that there is at least one head.

The initial sample space of 2! = 1024 points is uncomfortably large
for us to list all the sample points, even when some are excluded; and we do
not care to list even the successes. Instead of counting we will calculate the
number of successes and the size of the entire sample space.

We may compute this probability in two different ways. First we may
reason that the sample space now excludes the case of all tails, which can
occur in only one way in the sample space of 29 points; there are now only
210 — 1 equally likely events in the sample space. Of these there are 10 ways
in which exactly one head can occur, namely in any one of the ten possible
positions, first, second, ..., tenth. To count the number of events with two
or more heads we remove from the counting (but not from the sample space)
these 10 cases of a single head. The probability of at least two heads is
therefore the ratio of the number of successes (at least 2 heads) to the total
number of events (at least one head)

(21° — 1 - 10)/(2!° — 1) = 1013/1023 = 0.9902. ...

Secondly, we could use a standard method of computing not what is
wanted but the opposite. Since this method is so convenient, we need to
introduce a suitable notation. If p is the probability of some simple event
then we write ¢ = 1 — p as the probability of it not happening, and call it the
complement probability. Given the above ten coin problem we can compute
the complement event, the probability @ that there was one head, and then
subtract this from 1 to get

P=1-Q=1-10/(2""-1)
As a matter of convenient notation we will often use lower case letters

for the sample space probabilities and upper case letters for the probabilities
of the compound events.
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Example 1.8-2 An Even Sum on Two Dice

On the roll of two independent dice, if at least one face is known to be an
even number, what is the probability of a total of 87

We reason as follows. One die being even and the sum is to be 8 hence
the second die must also be even. Hence the three equally likely successes
(the sum is 8) in the sample space are

2,6 4,4 6,2

out of a total sample space of {36 — (both faces odd)} = 36 — 3 x 3 = 27.
Hence the probability is 3/27 = 1/9.

Example 1.8-3  Probability of Exactly Three Heads Given
that there are at Least Two Heads

What is the probability of exactly three heads knowing that there are at least
two heads in the toss of 4 coins?

We reason as follows. First, how many cases are removed from the
original complete sample space 2* = 16 points? There is the single case of
all tails, and the four cases of exactly 1 head, a total of 5 cases are to be
excluded from the original 16 equally likely possible cases; this leaves 11 still
equally likely events in the sample space. Second, for the three heads there
are exactly 4 ways that the corresponding 1 tail can arise, (HHHT, HHTH,
HTHH, THHH), so there are exactly 4 successes. The ratio is therefore
4/11 = the probability of exactly three heads given that there are at least
two heads.

Exercises 1.8
1.8-1 If a fair coin is tossed 10 times what is the probabilty that the first
five are the same side? Ans. 1/16 = 6.25%.
1.8-2 Given that the sum of the two faces of a pair of dice is greater than 10,
what is the probability that the sum is 127 Ans. 1/3.
1.8-3 In drawing two cards from a deck (without returning the first card)
what is the probability of two aces when you get at least one ace?
1.8—4 What is the probability of different faces turning up on two tosses of
a die? Ans. 5/6.
1.8-5 What is the probability of no two faces being the same on three tosses
of a die? Ans. 5/9.
1.8—6 What is the probability that at least one face is a 6 on the toss of a
pair of dice, given that the sum is > 10? Ans. 5/6.
1.8-7 Given that in four tosses of a coin there are at least two heads, what
is the probability that there are at least three heads?

1.8-9 Given that both faces on the toss of two dice are odd, what is the
probability of at least one face being a 57 Ans. 5/9.
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1.8-10 In n tosses of a coin, given that there are at least two heads, what is
the probability of n or n — 1 heads?

1.8-11 Given that two cards are honor cards (10, J,Q, K, A) in spades what
is the probability that exactly one of them is the ace? Ans. 8/25.

1.8-12 Given that a randomly drawn card is black, what is the probability
that it is an honor card? Ans. 10/26 = 5/13.

1.8-13 Given that an even number of heads show on the toss of 4 coins (0 is
an even number), what is the probability of exactly 2 heads? Ans. 3/4.

1.8-14 On the toss of three coins what is the probability of an even number
of heads? Ans. 1/2.

1.8-15 On the toss of 4 coins what is the probability of an even number of
heads?

1.8-16 From the previous two problems what is the probability of an even
number of heads on the toss of n coins? Ans. 1/2.

1.8-19 Given that the sum of the faces on two dice is 6, what is the probability
that one face is a 47 Ans. 2/5.

1.8-20 Given that each of the faces on three dice show even number, what
is the probability of at least one face being a 67

1.9 Randomness

Randomness is a negative property; it is the absence of any pattern (we re-
ject the idea that the absence of a pattern is a pattern and for set theory
formalists this should be considered carefully). Randomness can never be
proved, only the lack of it can be shown. We use the absence of a pattern to
assert that the past is of no help in predicting the future, the outcome of the
next trial. A random sequence of trials is the realization of the assumption
of independence—they are the same thing in different forms. Randomness is
“a priori” (before) and not “a posteriori” (after).

We have not defined “pattern.” At present it is the intuitive idea that
if there is a pattern then it must have a simple description—at least simpler
than listing every element of the pattern.

Randomness is a mathematical concept, not a physical one. Mathemat-
ically we think of random numbers as coming from a random source. Any
particular sequence of numbers, once known, is then predictable and hence
cannot be random. A reviewer of the famous RAND [R] Table of a Million
Random Numbers caught himself in mid review with the observation that now
that they had been published the numbers were perfectly predictable (if you
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had the table) and therefore could not be random! Thus the abstract math-
ematical concept of a random sequence of numbers needs to be significantly
modified when we actually try to handle particular realizations of randomness.

In practice, of course, you can have only a finite sequence of numbers,
and again, of course, the sequence will have a pattern, if only itself! There is
a built in contradiction in the words, “I picked a random number between 1
and 10 and got 7.” Once selected (a posteriori) the 7 is definite and is not
random. Thus the mathematical idea of random (which is a priori) does not
match closely what we do in practice where we say that we have a random
sample since once obtained the random sample is now definite and is not
mathematically random. Before the roll of a die the outcome is any of the 6
possible faces; after the roll it is exactly one of them. Similarly, in quantum
mechanics before a measurement on a particle there is the set of possible
outcomes (states); after the measurement the particle is (usually) in exactly
one state.

On most computers we have simple programs that generate a sequence
of “pseudo random numbers” although the word “pseudo” is often omitted. If
you do not know that they are being generated by a simple formula then you
are apt to think that the numbers are from a random source since they will
pass many reasonable tests of randomness; each new pseudo random number
appears to be unpredictable from the previous ones and there appears to be
no pattern (except that for many random number generators they are all odd
integers!), but if you know the kind of generating formula being used, and
have a few numbers, then all the rest are perfectly predictable. Thus whether
or not a particular stream of numbers is to be regarded as coming from a
random source or not depends on your state of knowledge—an unsatisfactory
state of affairs!

For practical purposes we are forced to accept the awkward concept of
“relatively random” meaning that with regard to the proposed use we can
see no reason why they will not perform as if they were random (as the
theory usually requires). This is highly subjective and is not very palatable
to purists, but it is what statisticians regularly appeal to when they take
“a random sample” which once chosen is finite and definite, and is then not
random—they hope that any results they use will have approximately the
same properties as a complete counting of the whole sample space that occurs
in their theory.

There has arisen in computing circles the idea that the measure of ran-
domness (or if you wish, nonrandomness) should be via the shortest program
that will generate the set of numbers (without having carefully specified the
language used to program the machine!). This tends to agree with many peo-
ple’s intuitive feelings - it should not be easy to describe the lack of a pattern
in any simple fashion, it ought to be about as hard as listing all the random
numbers. Thus the sequence
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01010101 0...

is “more random” than is the sequence

0 000O0O0OO0TOO...

but is less random than the sequence

010001101 1000U0T0T1...

In this approach psendo random numbers are only slightly random since the
program that generates them is usually quite short! It would appear that a
genuinely mathematically random number generator cannot be written in any
finite number of symbols!

We will use the convenient expression “chosen at random” to mean that
the probabilities of the events in the sample space are all the same unless
some modifying words are near to the words “at random.” Usually we will
compute the probability of the outcome based on the uniform probability
model since that is very common in modeling simple situations. However, a
uniform distribution does not imply that it comes from a random source; the
numbers 1,2,3, ..., 6n when divided in this order by 6 and the remainders
(0,1,2,3,4,5) tabulated, gives a uniform distribution but the remainders are
not random, they are highly regular!

These various ideas of randomness (likeliness) are not all in agreement
with our intuitive ideas, nor with each other. From the sample space approach
we see that any hand of 13 cards dealt from a deck of 52 cards is as likely as
any other hand (as probable—as random). But the description of a hand as
being 13 spades is much shorter than that of the typical hand that is dealt.
Furthermore, the shortness of the description must depend on the vocabulary
available—of which the game of bridge provides many special words. We will
stick to the sample space approach. Note that the probability of getting a
particular hand is not connected with the “randomness of the hand” so there
is no fundamental conflict between the two ideas.

If this idea of a random choice seems confusing then you can take comfort
in this observation: while we will often speak of “picking at random” we will
always end up averaging over the whole sample space, or a part of it; we do
not actually compute with a single “random sample.” This is quite different
from what is done in statistics where we usually take a small “sample” from
the sample space and hope that the results we compute from the sample are
close to the ideal of computing over the complete sample space.



