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Series Foreword

‘The logic programming approach to computing investigates the use of
logic as a programming language and explores computational models
based on controlled deduction.

‘The field of logic programming has seen a tremendous growth in the
last several years, both in depth and in scope. This growth is reflected in
the number of articles, journals, theses, books, workshops, and confer-
ences devoted to the subject. The MIT Press series in logic programming
was created to accommodate this development and to nurture it. It is
dedicated to the publication of high-quality textbooks, monographs, col-
lections, and proceedings in logic programming.

Ehud Shapiro
The Weizmann Institute of Science
Rehovot, Israel



Foreword

Programming in Prolog opens the mind to a new way of looking at com-
puting. There is a change of perspective which every Prolog programmer
experiences when first getting to know the language.

1 shall never forget my first Prolog program. The time was early 1974.
1 had learned about the abstract idea of logic programming from Bob
Kowalski at Edinburgh, although the name “logic programming” had not
yet been coined. The main idea was that deduction could be viewed as a
form of computation, and that a declarative statement of the form

Pif Qand Rand 5.
could also be interpreted procedurally as
To solve P, solve Q and R and 5.

Now I had been invited to Marseilles. Here, Alain Colmerauer and his col-
leagues had devised the language Prolog based on the logic programming
concept. Somehow, this realization of the concept seemed to me, at first
sight, too simpleminded. However, Gerard Battani and Henri Meloni had
implemented a Prolog interpreter in Fortran (their first major exercise in
programming, incidentally). Why not give Prolog a try?

Isat at a clattering teletype connected down an ordinary telephone line
to an IBM machine far away in Grenoble. I typed in some rules defining
how plans could be constructed as sequences of actions. There was one
important rule, modeled on the SRI planner Strips, which described how
a plan could be elaborated by adding an action at the end. Another rule,
necessary for completeness, described how to elaborate a plan by insert-
ing an action in the middle of the plan. As an example for the planner to
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work on, I typed in facts about some simple actions in a “blocks world”
and an initial state of this world. I entered a description of a goal state to
be achieved. Prolog spat back at me:

?

meaning it couldn't find a solution. Could it be that a solution was not
deducible from the axioms I had supplied? Ah, yes, I had forgotten to
enter some crucial facts. I tried again. Prolog was quiet for a long time
and then responded:

DEBORDEMENT DE PILE

Stack overflow! I had run into a loop. Now a loop was conceivable since
the space of potential plans to be considered was infinite. However, I had
taken advantage of Prolog's procedural semantics to organize the axioms
50 that shorter plans ought to be generated first. Could something else
be wrong? After.a lot of head scratching, I finally realized that I had
mistyped the names of some variables. I corrected the mistakes, and
tried again.

Lo and behold, Prolog responded almost instantly with a correct plan
to achieve the goal state. Magic! Declaratively correct axioms had assured
a correct result. Deduction was being hamessed before my very eyes
to produce effective computation. Declarative programming was truly
programming on a higher plane! I had dimly seen the advantages in
theory. Now Prolog had made them vividly real in practice. Never had I
experienced such ease in getting a complex program coded and running.

Of course, I had taken care to formulate the axioms and organize them
in such a way that Prolog could use them effectively. I had a general
idea of how the axioms would be used. Nevertheless it was a surprise
to see how the axioms got used in practice on particular examples. It
was a delightful experience over the next few days to explore how Prolog
actually created these plans, to correct one or two more bugs in my facts
and rules, and to further refine the program.

Since that time, Prolog systems have improved significantly in terms of
debugging environments, speed, and general robustness. The techniques
of using Prolog have been more fully explored and are now better un-
derstood. And logic programming has blossomed, not least because of
its adoption by the Japanese as the central focus of the Fifth Generation
project.



Foreword

After more than a decade of growth of interest in Prolog, it is a great
pleasure to see the appearance of this book. Hitherto, knowledge of how
to use Prolog for serious programming has largely been communicated
by word of mouth. This textbook sets down and explains for the first
time in an accessible form the deeper principles and techniques of Prolog
programming.

The book is excellent for not only conveying what Prolog is but also ex-
plaining how it should be used. The key to understanding how to use
Prolog is to properly understand the relationship between Prolog and
logic programming. This book takes great care to elucidate the relation-
ship.

Above all, the book conveys the excitement of using Prolog—the thrill
of declarative programming. As the authors put it, “Declarative program-
ming clears the mind." Declarative programming enables one to concen-
trate on the essentials of a problem without getting bogged down in
too much detail. should be an

rewarding activity. Prolog helps to make it so. Prolog is indeed, as the
authors contend, a tool for t

David H. D. Warren
Manchester, England, September 1986



Preface

Seven years have passed since the first edition of The Art of Prolog was
published. In that time, the perception of Prolog has changed markedly.
While not as widely used as the language C, Prolog is no longer regarded
as an exotic language. An abundance of books on Prolog have appeared.
Prolog is now accepted by many as interesting and useful for certain
apphcatmns. Articles on Prolog regularly appear in popular magazines.
and logic programming are part of most computer science and
engmeenng programs, although perhaps in a minor role in an artificial
intelligence or programming languages class. The first conference on
Practical Applications of Prolog was held in London in April 1992. A
standard for the language is likely to be in place in 1994. A future for
Prolog among the programming languages of the world seems assured.
In preparing for a second edition, we had to address the question of
how much to change. I decided to listen to a request not to make the new
edition into a new book. This second edition is much like the first, al-
though a number of changes are to be expected in a second edition. The
typography of the book has been improved: Program code is now in a dis-
tinctive font rather than in italics. Figures such as proof trees and search
trees are drawn more We have taken the 0 be
more precise with language usage and to remove minor inconsistencies
with hyphenation of words and similar details. All known typographi-
cal errors have been fixed. The background sections at the end of most
chapters have been updated to take into account recent, important re-
search results. The list of references has been expanded considerably.
Extra, more advanced exercises, which have been used successfully in my
Prolog classes, have been added.
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Let us take an overview of the specific changes to each part in turn.
Part IV, Applications, is unchanged apart from minor corrections and
tidying. Part I, Logic Programs, is essentially unchanged. New programs
have been added to Chapter 3 on tree manipulation, including heapifying
abinary tree. Extra exercises are also present.

Part II, The Prolog Langauge, is primarily affected by the imminence of
a Prolog standard. We have removed all references to Wisdom Prolog in
the text in preparation for Standard Prolog. It has proved impossible to
guarantee that this book is consistent with the standard. Reaching a stan-
dard has been a long, difficult process for the members of the committee.
Certain predicates come into favor and then disappear, making it difficult
for the authors of a text to know what to write. Furthermore, some of the
proposed 1/0 predicates are not available in current Prologs, so it is im-
possible to run all the code! Most of the difficulties in reaching a Prolog
standard agreeable to all interested parties have been with builtin or sys-
tem predicates. This book raises some of the issues involved in adding
builtins to Prolog but largely avoids the concerns by using pure Prolog as
much as possible. We tend not to give detailed explanations of the con-
troversial nonlogical behaviors of some of the system predicates, and we
certainly do not use odd features in our code.

Part IIl, Advanced Programming Techniques, is the most altered in this
second edition, which perhaps should be expected. A new chapter has
been added on program transformation, and many of the other chapters
have been reordered. The chapters on Interpreters and Logic Grammars
have extensive additions.

Many people provided us feedback on the first edition, almost all of
it very positive. I thank you all. Three people deserve special thanks
for taking the trouble to provide long lists of suggestions for improve-
ments and to point out embarrassingly long lists of typos in the first
ed.mon Norbert Fuchs, Harald Sendergaard, and Stanley Selkow. The

llowing deserve mention for pointing out mistakes and typos in the
various printings of the first edition or making constructive comments
about the book that led to improvements in later printings of the first
edition and for this second edition. The list is long, my memory some-
times short, so please forgive me if I forget to mention anyone. Thanks
to Hani Assiryani, Tim Boemker, Jim Brand, Bill Braun, Pu Chen, Yves
Deville, George Emnst, Claudia Giinther, Ann Halloran, Sundar lyengar,
Gary Kacmarcik, Mansoor Khan, Sundeep Kumar, Arun Lakhotia, Jean-
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The origins of this book lie in graduate student courses aimed at teach-
ing advanced Prolog programming. A wealth of techniques has emerged
in the fifteen years since the inception of Prolog as a programming lan-
guage. Our intention in this book has been to make accessible the pro-
gramming techniques that kindled our own excitement, imagination, and
involvement in this area.

The book fills a general need. Prolog, and more generally logic pro-
gramming, has received wide publicity in recent years. Currently avail-
able books and accounts, however, typically describe only the basics. All
but the simplest examples of the use of Prolog have remained essentially
inaccessible to people outside the Prolog communit

We emphasize throughout the book the distinction between logic pro-
gramming and Prolog programming. Logic programs can be understood
and studied, using two abstract, machine-independent concepts: truth
and logical deduction. One can ask whether an axiom in a program is
true, under some interpretation of the program symbols; or whether a
logical statement is a consequence of the program. These questions can
be answered independently of any concrete execution mechanism.

On the contrary, Prolog is a programming language, borrowing its basic
constructs from logic. Prolog programs have precise operational mean-

: they are instructions for execution on a computer—a Prolog ma-
chine. Prolog programs in good style can almost always be read as log-
ical statements, thus inheriting some of the abstract properties of logic
programs. Most important, the result of a computation of such a Pro-
log program is a logical consequence of the axioms in it. Effective Prolog
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programming requires an understanding of the theory of logic program-

ing.

‘The book consists of four parts: logic programming, the Prolog lan-
guage, advanced techniques, and applications. The first part is a self-
contained tologic It consists of five chap
The first chapter introduces the basic constructs of logic programs. Our
account differs from other introductions to logic programming by ex-
plaining the basics in terms of logical deduction. Other accounts explain
the basics from the background of resolution from which logic program-
‘ming originated. We have found the former to be a more effective means
of teaching the material, which students find intuitive and easy to under-
stand.

‘The second and third chapters of Part I introduce the two basic styles
of logic programming: database programming and recursive program-
‘ming. The fourth chapter discusses the computation model of logic pro-

gramming, introducing unification, while the fifth chapter presents some
theoretical results without proofs. In developing this part to enable the
clear explanation of advanced techniques, we have introduced new con-
cepts and reorganized others, in particular, in the discussion of types
and termination. Other issues such as complexity and correctness are
concepts whose consequences have not yet been fully developed in the
logic programming research community.

The second part is an introduction to Prolog. It consists of Chapters 6
through 13. Chapter 6 discusses the computation model of Prolog in
contrast to logic programming, and gives a comparison between Prolog
and conventional programming languages such as Pascal. Chapter 7 dis-
cusses the differences between composing Prolog programs and logic
programs. Examples are given of basic programming techniques.

‘The next five chapters introduce system provided pred.lca\es that are
essential to make Prolog a practical programming language. We clas-
sify Prolog system predicates into four categories: those concerned
with efficient arithmetic, structure inspection, meta-logical predicates
that discuss the state of the computation, and extra-logical predicates
that achieve side effects outside the computation model of logic pro-
gramming. One chapter is devoted to the most notorious of Prolog
extra-logical predxcales. the cut. Basic techniques using these system
predicates are explained. The final chapter of the section gives assorted
pragmatic programming tips.
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The main part of the book is Part Ill. We describe advanced Prolog
programming techniques that have evolved in the Prolog programming
community, illustrating each with small yet powerful example programs.
The examples typify the applications for which the technique is useful.
‘The six chapters cover nondeterministic programming, incomplete data
structures, parsing with DCGs, second-order programming, search tech-
niques, and the use of meta-interpreters.

The final part consists of four chapters that show how the material in
the rest of the book can be combined to build application programs. A
common request of Prolog newcomers is to see larger applications. They
understand how to write elegant short programs but have difficulty in
building a major program. The applications covered are game-playing
programs, a prototype expert system for evaluating requests for credit, a
symbolic equation solver, and a compiler.

During the development of the book, it has been necessary to reorga-
nize the foundations and basic examples existing in the folklore of the
logic programming community. Our structure constitutes a novel frame-
‘work for the teaching of Prolog.

Material from this book has been used successfully for several courses
on logic programming and Prolog: in Israel, the United States, and Scot-
land. The material more than suffices for a one-semester course to first-
year graduate students or advanced undergraduates. There is consider-
able scope for instructors to particularize a course to suit a special area
of interest.

Arecommended division of the book for a 13-week course to senior un-
dergraduates or first-year graduates is as follows: 4 weeks on logic pro-
gramming, encouraging students to develop a declarative style of writing
programs, 4 weeks on basic Prolog programming, 3 weeks on advanced
techniques, and 2 weeks on applications. The advanced techniques
should include some discussion of nondeterminism, incomplete data
structures, basic second-order predicates, and basic meta-interpreters.
Other sections can be covered instead of applications. Application areas
that can be stressed are search techniques in artificial intelligence, build-
ing expert systems, writing compilers and parsers, symbol manipulation,
and natural language processing.

There is considerable flexibility in the order of presentation. The ma-
terial from Part I should be covered first. The material in Parts IIl and IV
can be interspersed with the material in Part Il to show the student how
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larger Prolog programs using more advanced techniques are composed
in the same style as smaller examples.

Our assessment of students has usually been 50 percent by homework
assignments throughout the course, and 50 percent by project. Our expe-
rience has been that students are capable of a significant programming
task for their project. Examples of projects are prototype expert systems,
assemblers, game-playing programs, partial evaluators, and implementa-
tions of graph theory algorithms.

For the student who is studying the material on her own, we strongly
advise reading through the more abstract material in Part I. A good Pro-
log programming style develops from thinking declaratively about the
logic of a situation. The theory in Chapter 5, however, can be skipped
until a later reading.

The exercises in the book range from very easy and well defined to
difficult and open-ended. Most of them are suitable for homework exer-
cises. Some of the more open-ended exercises were submitted as course
projects.

‘The code in this book is essentially in Edinburgh Prolog. The course has
been given where students used several different variants of Edinburgh
Prolog, and no problems were encountered. All the examples run on
Wisdom Prolog, which is discussed in the appendixes.

We acknowledge and thank the people who contributed directly to the
book. We also thank, collectively and anonymously, all those who indi-
rectly by influencing our styles in Prolog. Im-
provements were suggested by Lawrence Byrd, Oded Maler, Jack Minker,
Richard O'Keefe, Fernando Pereira, and several anonymous referees.

We appreciate the contribution of the students who sat through
courses as material from the book was being debugged. The first author
acknowledges students at the University of Edinburgh, the Weizmann
Institute of Science, Tel Aviv University, and Case Western Reserve Uni-
versity. The second author taught courses at the Weizmann Institute and
Hebrew University of Jerusalem, and in industry.

We are grateful to many people for assisting in the technical aspects
of producing a book. We especially thank Sarah Fliegelmann, who pro-
duced the various drafts and camera-ready copy, above and beyond the
call of duty. This book might not have appeared without her tremendous
efforts. Arvind Bansal prepared the index and helped with the references.
Yehuda Barbut drew most of the figures. Max Goldberg and Shmuel Safra
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prepared the appendix. The publishers, MIT Press, were helpful and sup-

Finally, we acknowledge the support of family and friends, without
which nothing would get done.

Leon Sterling
1986



Introduction

asequence of instructions to perform such operations, and an additional
set of control instructions, which can affect the next instruction to be
executed, possibly depending on the content of some register.

As the problems of building computers were gradually understood and
solved, the problems of using them mounted. The bottleneck ceased to
be the inability of the computer to perform the human'’s instructions but
rather the inability of the human to instruct, or program, the computer.
A search for programming languages convenient for humans to use be-
gan. Starting from the language understood directly by the computer,
the machine language, better notations and formalisms were developed.
‘The main outcome of these efforts was languages that were easier for
humans to express themselves in but that still mapped rather directly
10 the underlying machine language. Although increasingly abstract, the
languages in the mainstream of development, starting from assembly
language through Fortran, Algol, Pascal, and Ada, all carried the mark
of the underlying machine—the von Neumann architecture.

To the uninitiated intelligent person who is not familiar with the en-
gineering constraints that led to its design, the von Neumann machine
seems an arbitrary, even bizarre, device. Thinking in terms of its con-
strained set of operations is a nontrivial problem, which sometimes
stretches the adaptiveness of the human mind to its limits.

These characteristic aspects of programming von Neumann computers
led to a separation of work: there were those who thought how to solve
the problem, and designed the methods for its solution, and there were
the coders, who performed the mundane and tedious task of translating
the instructions of the designers to instructions a computer can use.

Both logic and programming require the explicit expression of one's
knowledge and methods in an acceptable formalism. The task of making
one's knowledge explicit is tedious. However, formalizing one’s knowl-
edge in logic is often an intellectually rewarding activity and usually
reflects back on or adds insight to the problem under consideration. In
contrast, formalizing one’s problem and method of solution using the
von Neumann instruction set rarely has these beneficial effects.

We believe that programming can be, and should be, an intellectu-
ally rewarding activity; that a good programming language is a powerful
conceptual tool—a tool for organizing, expressing, experimenting with,
and even communicating one's thoughts; that treating programming as
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“coding,” the last, mundane, intellectually trivial, time-consuming, anc
tedious phase of solving a problem using a computer eysmm, is pcrhaps
at the very root of what has been known as the “software crisis.

Rather, we think that programming can be, and should be, part of
the problem-solving process itself; that thoughts should be organized as
programs, so that consequences of a complex set of assumptions can be
investigated by “running” the assumptions; that a conceptual solution to
a problem should be developed hand-in-hand with a working program
that demonstrates it and exposes its different aspects. Suggestions in
this direction have been made under the title “rapid prototyping.”

To achieve this goal in its fullest—to become true mates of the human
thinking process—computers have still a long way to go. However, we
find it both appropriate and gratifying from a historical perspective that
logic, a companion to the human thinking process since the early days of
human intellectual history, has been discovered as a suitable stepping-
stone in this long journey.

Although logic has been used as a tool for designing computers and for
reasoning about computers and computer programs since almost their
beginning, the use of logic directly as a programming language, termed
logic programming, is quite recent.

Logic programming, as well as its sister approach, functional program-
ming, departs radically from the mainstream of computer languages.
Rather then being derived, by a series of abstractions and reorganiza-
tions, from the von Neumann machine model and instruction set, it is
derived from an abstract model, which has no direct relation to ‘or de-
pendence on to one machine model or another. It is based on the belief
that instead of the human learning to think in terms of the operations
of a computer that which some scientists and engineers at some point
in history happened to find easy and cost-effective to build, the com-
puter should perform instructions that are easy for humans to provide.
In its ultimate and purest form, logic programming suggests that even
explicit instructions for operation not be given but rather that the knowl-
edge about the problem and assumptions sufficient to solve it be stated
explicitly, as logical axioms. Such a set of axioms constitutes an alterna-
tive to the conventional program. The program can be executed by pro-
viding it with a problem, formalized as a logical statement to be proved,
called a goal statement. The execution is an attempt to solve the prob-
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lem, that is, to prove the goal statement, given the assumptions in the
logic program.

A distinguishing aspect of the logic used in logic programming is that
a goal statement typically is existentially quantified: it states that there
exist some individuals with some property. An example of a goal state-
ment is, “there exists a list X such that sorting the list [3,1,2] gives X."
‘The mechanism used to prove the goal statement is constructive. If suc-
cessful, it provides the identity of the unknown individuals mentioned in
the goal statement, which constitutes the output of the computation. In
the preceding example, assuming that the logic program contains appro-
priate axioms defining the sort relation, the output of the computation
would be X = [1,2,3].

These ideas can be summarized in the following two metaphorical
equations:

program = set of axioms.
computatio

= constructive proof of a goal statement from the program.

The ideas behind these equations can be traced back as far as intuition-
istic mathematics and proof theory of the early twentieth century. They
are related to Hilbert’s program, to base the entire body of mathemati-
cal knowledge on logical foundations and to provide mechanical proofs
for its theories, starting from the axioms of logic and set theory alone.
It is interesting to note that the failure of this program, from which en-
sued the incompleteness and undecidability results of Godel and Turing,
marks the beginning of the modern age of computers.

‘The first use of this approach in practical computing is a sequel to
Robinson's unification algorithm and resolution principle, published in
1965. Several hesitant attempts were made to use this principle as a basis
of a computation mechanism, but they did not gain any momentum.
The beginning of logic programming can be attributed to Kowalski and
Colmerauer. Kowalski formulated the procedural interpretation of Horn
clause logic. He showed that an axiom

Aif Biand B; and . .. and B,

can be read and executed as a procedure of a recursive programming
language, where A is the procedure head and the B; are its body. In
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addition to the declarative reading of the clause, A is true if the B, are
true, it can be read as follows: To solve (execute) A, solve (execute) B, and
By and...and B,. In this reading, the proof pracedure of Horn clause
logic is the interpreter of the language, and the unification algorithm,
which is at the heart of the resolution proof procedure, performs the
basic data manipulation operations of variable assignment, parameter
passing, data selection, and data construction.

At the same time, in the early 1970s, Colmerauer and his group at
the University of Marseilles-Aix developed a specialized theorem prover,
written in Fortran, which they used to implement natural language pro-
cessing systems. The theorem prover, called Prolog (for Programmation
en Logique), embodied Kowalski’s procedural interpretation. Later, van
Emden and Kowalski developed a formal semantics for the language of
logic programs, showing that its operational, model-theoretic, and fix-
point semantics are the same.

In spite of all the theoretical work and the exciting ideas, the logic pro-
gr approach seemed unrealistic. At the time of its inception, re-
searchers in the United States began to recognize the failure of the “next-
generation Al languages,” such as Micro-Planner and Conniver, which de-
veloped as a substitute for Lisp. The main claim against these languages
was that they were hopelessly inefficient, and very difficult to control.
Given their bitter experience with logic-based high-level languages, it is
no great surprise that U.S. artificial intelligence scientists, when hearing
about Prolog, thought that the Europeans were over-excited over what
they, the Americans, had already suggested, tried, and discovered not to
work.

In that atmosphere the Prolog-10 compiler was almost an imaginary
being. Developed in the mid to late 1970s by David H. D. Warren and
his colleagues, this efficient implementation of Prolog dispelled all the
myths about the impracticality of logic programming. That compiler, still
one of the finest implementations of Prolog around, delivered on py

‘programs a 10 the best Llsp sys-
tems available at the time. Furthermore, the compiler itself was written
almost entirely in Prolog, suggesting that classic programming tasks, not
just sophisticated Al applications, could benefit from the power of logic
programming.
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‘The impact of this implementation cannot be overemphasized. Without
it, the accumulated experience that has led to this book would not have
existed.

In spite of the promise of the ideas, and the practicality of their im-
plementation, most of the Western computer science and Al research
community was ignorant, openly hostile, or, at best, indifferent ta logic
programming. By 1980 the number of researchers actively engaged in
logic programming were only a few dozen in the United States and about
one hundred around the world.

No doubt, logic programming would have remained a fringe activity
in computer science for quite a while longer hadit not been for the an-
nouncement of the Japanese Fifth Generation Project, which took place
in October 1981. Although the research program the Japanese presented
was rather baggy, faithful to their tradition of achieving consensus at
almost any cost, the important role of logic programming in the next
‘generation of computer systems was made clear.

Since that time the Prolog language has undergone a rapid transition
from adolescence to maturity. There are numerous commercially avail-
able Prolog implementations on most computers. A large number of Pro-
log programming books are directed to different audiences and empha-
size different aspects of the language. And the language itself has more
or less stabilized, having a de facto standard, the Edinburgh Prolog fam-
ily.

‘The maturity of the language means that it is no longer a concept for
scientists yet to shape and define but rather a given object, with vices
and virtues. It s time to recognize that, on the one hand, Prolog falls
short of the high goals of logic programming but, on the other hand, is a
powerful, productive, and practical programming formalism. Given the
standard life cycle of computer programming languages, the next few
years will reveal whether these properties show their merit only in the
classroom or prove useful also in the field, where people pay money to
solve problems they care about.

What are the current active subjects of research in logic programming
and Prolog? Answers to this question can be found in the regular sci-
entific journals and conferences of the field; the Logic Programming
Journal, the Journal of New Generation Computing, the International
Conference on Logic Programming, and the IEEE Symposium on Logic



I Logic Programs

A logic program is a set of axioms, or rules, defining relations between

objects. A computation of a logic program is a deduction of conse-
quences of the program. A program defines a set of consequences, which
is its meaning. The art of logic programming is constructing concise and
elegant programs that have the desired meaning.



Basic Constructs

‘The basic constructs of logic programming, terms and statements, are
inherited from logic. There are three basic statements: facts, rules, and
queries. There is a single data structure: the logical term.

1.1 Facts

‘The simplest kind of statement is called a fact. Facts are a means of
stating that a relation holds between objects. An example is

father (abraham, isaac) .

‘This fact says that Abraham is the father of Isaac, or that the relation fa~
ther holds between the individuals named abrahan and isaac. Another
name for a relation is a predicate. Names of individuals are known as
atoms. Similarly, plus(2,3,5) expresses the relation that 2 plus 3 is 5.

amiliar plus relation can be realized via a set of facts that defines
the addition table. An initial segment of the table is

plus(0,0,0).  plus(0,1,1).  plus(0,2,2).  plus(0,3,3).
plus(1,0,1).  plus(1,1,2).  plus(1,2,3).  plus(1,3,4).

A sufficiently large segment of this table, which happens to be also a
lega.l logic program, will be assumed as the definition of the plus relation
ughout this chapter.
The syntactic conventions used throughout the book are introduced as
needed. The first is the case convention. It is significant that the names
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father (terach, abrahan) . male(verach) .
father (terach,haran) . male(nachor)
father (abrahan, isaac) . male(haran) .
father (haran, lot) . male(isaac) .
father (haran,milcah) . male(lot).
father (haran,yiscah) .
temale(sarah) .
isaac). temale(uilcah).
female(yiscah) .

Program 1.1 A biblical family database

of both predicates and atoms in facts begin with a lowercase letter rather
than an uppercase letter.

A finite set of facts constitutes a program. This is the simplest form
of logic program. A set of facts is also a description of a situation. This
insight is the basis of database programming, to be discussed in the next
chapter. An example database of family relationships from the Bible is
given as Program 1.1. The predicates father, nother, nale, and fenale
express the obvious relationships.

1.2 Queries

The second form of statement in a logic program is a query. Queries are
a means of retrieving information from a logic program. A query asks
whether a certain relation holds between objects. For example, the query
father (abraham, isaac)? asks whether the father relationship holds
between abrahan and isaac. Given the facts of Program 1.1, the answer
to this query is yes.

Syntactically, queries and facts look the same, but they can be distin-
guished by the context. When there is a possibility of confusion, a termi-
nating period will indicate a fact, while a terminating question mark will
indicate a query. We call the entity without the period or question mark
a goal. A fact P. states that the goal P is true. A query P? asks whether
the goal P is true. A simple query consists of a single goal.

Answering a query with respect to a program is determining whether
the query is a logical consequence of the program. We define logical
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consequence incrementally through this chapter. Logical consequences
are obtained by applying deduction rules. The simplest rule of deduction
is identity: from P deduce P. A query is a logical consequence of an
identical fact.

Opzranunally‘ answering simple queries using a program containing
facts like Program 1.1 is straightforward. Search for a fact in the program
that implies lhe query. If a fact identical to the query is found, the answer
is yes.

The answer no is given if a fact identical to the query is not found,
because the fact is not a logical consequence of the program. This answer
does not reflect on the truth of the query; it merely says that we failed to
prove the query from the program. Both the queries fenale (abrahan)?
and plus(1,1,2)7 will be answered no with respect to Program 1.1

1.3 The Logical Variable, Substitutions, and Instances

A logical variable stands for an unspecified individual and is used ac-
cordingly. Consider its use in queries. Suppose we want to know of
whom abrahan is the father. One way is to ask a series of queries,
father (abraham, lot)?, father (abraham,milcah)?, ..., father
(abrahan, isaac)?, ... until an answer yes is given. A variable allows
a better way of expressing the query as father (abraham,X)?, to which
the answer is X=isaac. Used in this way, variables are @ means of sum-
'marizing many queries. A query containing a variable asks whether there
is a value for the variable that makes the query a logical consequence of
the program, as explained later.

Variables in logic programs behave differently from variables in con-
ventional languages. They stand for an but sin-
gle entity rather than for a store location in memory.

Having introduced variables, we can define a term, the single data
structure in logic programs. The definition is inductive. Constants and
variables are terms. Also compound terms, or Structures, are terms.
A compound term comprises a functor (called the principal functor
of the term) and a sequence of one or more arguments, which are
terms. A functor is characterized by its name, which is an atom, and
its arity, or number of arguments. Syntactically, compound terms have
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the form f(t,tz....,ta), where the functor has name f and is of arity
n, and the t are the arguments. Examples of compound terms include
8(0), hot(milk), name(john,doe), list(a,list(b,nil)), foo(X), and
tree(tree(nil,3,nil),5,R).

Queries, goals, and more generally terms where variables do not occur
are called ground. Where variables do occur, they are called nonground.
For example, foo(a, b) is ground, whereas bar (X) is nonground.

Definition

A substitution is a finite set (possibly empty) of pairs of the form X, = t;,
where X; is a variable and f; is a term, and X # X; for every i # j, and X;
does not occur in t;, for any i and j. .

An example of a substitution consisting of a single pair is {X=isaac}.
Substitutions can be applied to terms. The result of applying a substi-
tution 0 to a term A, denoted by A®, is the term obtained by replacing
every occurrence of X by t in A, for every pair X =t in 6.

The result of applying {X=isaac} to the term father(abraham,X) is
the term father (abraham, isaac).

Definition
Ais an instance of Bif there is a substitution 0 such that A=B0.

The goal father (abrahan, isaac) is an instance of father (abrahan,
X) by this definition. Similarly, mother (sarah, isaac) is an instance of
mother (X,Y) under the substitution {X=sarah, Y=isaac].

1.4 Existential Queries

Logically speaking, variables in queries are existentially quanuhed which
means, intuitively, that the query father(abraham,X)? ‘Does
there exst an X sach that abraban i the father of X7 More genera.lly,
a query p(T;,Ty,...,T,)?, which contains the variables X;,X;,....X reads:
“Are there X, X,,....X; such that p(T},Te,...,T»)?" For convenience, exis-
tential quantification is usually omitted.

The next deduction rule we introduce is generalization. An existential
query P is a logical consequence of an instance of it, P, for any substi-
tution 6. The fact father (abraham, isaac) implies that there exists an X
such that father (abrahan,X) is true, namely, X=isaac.
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This is the third deduction rule, called instantiation. From a universally
quantified statement P, deduce an instance of it, P6, for any substitution

As for queries, two unspecified objects, denoted by variables, can be
constrained to be the same by using the same variable name. The fact
PLus(0,X,X) expresses that 0 is a left identity for addition. It reads that
for all values of X, 0 plus X is X. A similar use occurs when translating the
English statement “Everybody likes himself” to 1ikes(X,X).

Answering a ground query with a universally quantified fact is straight-
forward. Search for a fact for which the query is an instance. For example,
the answer to plus(0,2,2)7 is yes, based on the fact plus(0,X,X). An-
swering a nonground query using a nonground fact involves a new defi-
nition: a common instance of two terms.

Definition

Cis a common instance of Aand Bif it is an instance of A and an instance
f B, in other words, if there are substitutions 6 and 6, such that C=A6,

is syntactically identical to B6,. .

For example, the goals plus(0,3,Y) and plus(0,X,X) have a com-
mon instance plus(0,3,3). When the substitution {Y=3} is applied to
plus(0,3,Y) and the substitution {X=3} is applied to plus(0,X,X), both
yield plus(0,3,3).

In general, to answer a query using a fact, search for a common in-
stance of the query and fact. The answer is the common instance, if one
exists. Otherwise the answer is no.

Answering an existential query with a universal fact using a common
instance involves two logical deductions. The instance is deduced from
the fact by the rule of instantiation, and the query is deduced from the
instance by the rule of generalization.

1.6 Conjunctive Queries and Shared Variables

An important extension to the queries discussed so far is conjunctive
queries. Conjunctive queries are a conjunction of goals posed as a query,
for example, father (terach,X) ,father (X,Y)? or in general, Qu?.
Simple queries are a special case of conjunctive queries when there is a
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We employ this restriction in the meantime to simplify the discussion in
the coming sections,
Operationally, to solve the conjunctive query Ay,Az,...,An? using a pro-
ram P, find a substitution 8 such that 4,0 and . . . and A, are ground
instances of facts in P. The same substitution applied to all the goals en-
sures that instances of variables are common throughout the query. For
example, consider the query father(haran,X) ,male(X)? with respect
to Program 1.1. Applying the substitution (X=1lot} to the query gives
the ground instance father (haran,lot) ,nale(lot)?, which is a conse-
quence of the program.

1.7 Rules

Interesting conjunctive queries are defining relationships in their own
right. The query father (haran,X) ,male(X)? is asking for a son of Ha-
ran. The query father (terach,X) ,father(X,Y)? is asking about grand-
children of Terach. This brings us to the third and most important state-
ment in logic programming, a rule, which enables us to define new rela-
tionships in terms of existing relationships.

Rules are statements of the form:

Bn.

where n= n The goal A is the head of the rule, and the conjunction of
0 is the body of the rule. Rules, facts, and queries are also
callcd Hom clauxes‘ or clauses for short. Note that a fact is just a special
case of a rule when n.= 0. Facts are also called unit clauses. We also
have a special name for clauses with one goal in the body, namely, when
n=1. Such a clause is called an iterative clause. As for facts, variables
appearing in rules are universally quantified, and their scope is the whole
rule

A~ BB,

A rule expressing the son relationship is
son(X,Y) — father(Y,X), male(X).
Similarly one can define a rule for the daughter relationship:

daughter(X,Y) — father(Y,X), female(X).



Basic Constructs

A rule for the grandfather relationship is
grandfather(X,Y) — father(X,2), father(z,Y).

Rules can be viewed in two ways. First, they are a means of ex-
pressing new or complex queries in terms of simple queries. A query
son(X,haran)? to the program that contains the preceding rule for son
is translated to the query father (haran,X) ,male (X)? according to the
rule, and solved as before. A new query about the son relationship has
been built from simple queries involving father and male relationships.
Interpreting rules in this way is their procedural reading. The procedural
reading for the grandfather rule is: “To answer a query Is X the grand-
father of Y7, answer the conjunctive query Is X the father of Z and Z the
father of Y?.

‘The second view of rules comes from interpreting the rule as a logical
axiom. The backward arrow —is used to denote logical implication. The
son rule reads: “X is a son of Y if Y is the father of X and X is male.”
In this view, rules are a means of defining new or complex relationships
using other, simpler relationships. The predicate son has been defined in
terms of the predicates father and male. The associated reading of the
rule is known as the declarative reading. The declarative reading of the
grandfather rule is: “For all X, Y, and Z, X is the grandfather of ¥ if X
is the father of Z and Z is the father of ¥."

Although formally all variables in a clause are universally quantified,
we will sometimes refer to variables that occur in the body of the clause,
but not in its head, as if they are existentially quantified inside the body.
For example, the grandfather rule can be read: “For all X and Y, X is the
grandfather of Y if there exists a Z such that X is the father of Z and Z
is the father of Y.” The formal justification of this verbal transformation
will not be given, and we treat it just as a convenience. Whenever it is a
source of confusion, the reader can resort back to the formal reading of a
clause, in which all variables are universally quantified from the outside.

To incorporate rules into our framework of logical deduction, we need
the law of modus ponens. Modus ponens states that from B and A — B
we can deduce A.

Definition
‘The law of universal modus ponens says that from the rule

R=(A~ ByBy,....By)
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and the facts
B.

B,

B,
A’ can be deduced if

A= BBy By

is an instance of R. .

Universal modus ponens includes identity and instantiation as special
cases.

We are now in a position to give a complete definition of the concept
of a logic program and of its associated concept of logical consequence.

Definition
A logic program is a finite set of rules. .

Definition
An existentially quantified goal G is a logical consequence of a program P
if there is a clause in P with a ground instance A — By,...., By, n 2 0 such
that By,...,B, are logical consequences of P, and A s an instance of G. »

Note that the goal G is a logical consequence of a program P if and only
if G can be deduced from P by a finite number of applications of the rule
of universal modus ponens.

Consider the query son(S,haran)? with respect to Program 1.1 aug-
mented by the rule for son. The substitution {X=lot,Y=haran} applied
to the rule gives the instance son(lot,haran) —father (haran,lot),
nale(lot). Both the goals in the body of this rule are facts in Pro-
gram 1.1. Thus universal modus ponens implies the query with answer
{s=lot}.

Operationally, answering queries reflects the definition of logical con-
sequence. Guess a ground instance of a goal, and a ground instance of
a rule, and recursively answer the conjunctive query corresponding to
the body of that rule. To solve a goal A with program P, choose a rule
A1 =By,Bz,...,By in P, and guess substitution 0 such that A = A,0, and
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B0 is ground for 1< i < n. Then recursively solve each B,6. This pro-
cedure can involve arbitrarily long chains of reasoning. It is difficult in
‘general to guess the correct ground instance and to choose the right rule.
We show in Chapter 4 how the guessing of an instance can be removed.
The rule given for son is correct but is an incomplete specification of
lhe relauonshlp. For example, we cannot conclude that Isaac is the son
is missing is that a child can be the son of a mother as
wel.l as the son of a father. A new rule expressing this relationship can be
added, namely,

son(X,Y) - mother(Y,X), male(X).

To define the relationship grandparent correctly would take four rules
to include both cases of father and mother:

grandparent(X,Y) — father(X,2), father(Z,Y).
grandparent(X,Y) ~ father(X,2), mother(z,Y).
grandparent (X,Y) — mother(X,Z), father(z,Y).
grandparent (X,Y) — mother(X,Z), mother(Z,Y).

There is a better, more compact, way of expressing these rules. We need
to define the auxiliary relationship parent as being a father or a mother.
Part of the art of logic programming is deciding on what intermediate
predicates to define to achieve a complete, elegant axiomatization of a
relationship. The rules defining parent are straightforward, capturing
the definition of a parent being a father or a mother. Logic programs
can incorporate alternative definitions, or more technically disjunction,
by having alternative rules, as for parent:

parent(X,Y) — father(X,Y).
parent(X,Y) — mother(X,Y).

Rules for son and grandparent are now, respectively,

son(X,Y) ~— parent(Y,X), male(X).
grandparent (X,Y) — parent(X,Z), parent(Z,Y).

A collection of rules with the same predicate in the head, such as
the pair of parent rules, is called a procedure. We shall see later that
under the operational interpretation of these rules by Prolog, such a
collection of rules is indeed the analogue of procedures or subroutines
in conventional programming languages.
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Input.  son(lot,haran)? and Program 1.2
Resolvent is son (1ot haran)
Resolvent is not empty
choose son(1ot haran)  (the only choice)
choose son(lot haran) - father (haran,lot), male(lot).
new resolvent is father (haran, lot), male(lot)
Resolvent is not empty
hoose tather (haran, lot)
choose father (haran, 1ot)
new resolvent is zale(1ot)
Resolvent is not empty
choose male(1ot)
choose male(lot) .
ew resolvent is empty

Output:  yes
Figure 1.2 Tracing the interpreter

father (abrahan, isaac) male(isaac) .
father (haran, lot) . male(lot)
father (haran, milcah) fonale(nilcah) .

son(X.¥) ~ father(Y,X), male(x)
daughter(X,¥) ~ father(Y,X), female(X)

Program 1.2 Biblical family relationships

Definition

A reduction of a goal G by a program P is the replacement of G by the
body of an instance of a clause in P, whose head is identical to the chosen
goal. .

A reduction is the basic computational step in logic programming. The
goal replaced in a reduction is reduced, and the new goals are derived.
In this chapter, we restrict ourselves to ground reductions, where the
goal and the instance of the clause are ground. Later, in Chapter 4, we
consider more general reductions where unification is used to choose the
instance of the clause and make the goal to be reduced and the head of
the clause identical.
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son(lot haran)
father(lot haran) male(lot)

Figure 1.3 A simple proof tree

A trace of a query implicitly contains a proof that the query follows
from the program. A more convenient representation of the proof is with
a proof tree. A proof tree consists of nodes and edges that represent the
goals reduced during the computation. The root of the proof tree for a
simple query is the query itself. The nodes of the tree are goals that are
reduced during the computation. There is a directed edge from a node
to each node corresponding to a derived goal of the reduced goal. The
proof tree for a conjunctive query s fust the collection of proof trees for
the individual goals in the conjunction. Figure 1.3 gives a proof tree for
the program trace in Figure 1.2

‘An important measure pmvlded by proof trees is the number of nodes
in the tree. It indicates how many reduction steps are performed in a
computation. This measure is used as a basis of comparison between
different programs in Chapter 3.

1.9 The Meaning of a Logic Program

How can we know if a logic program says what we wanted it to say? If
it is correct, or incorrect? In order to answer such questions, we have
to define what is the meaning of a logic program. Once defined, we can
examine if the program means what we have intended it to mean.

Definition
The meaning of a logic program P, M(P), is the set of ground goals
deducible from

From this definition it follows that the meaning of a logic program
composed just of ground facts, such as Program 1.1, is the program it-
self. In other words, for simple programs, the program “means just what
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it says.” Consider Program 1.1 augmented with the two rules defining
the parent relationship. What is its meaning? It contains, in addition
to the facts about fathers and mothers, mentioned explicitly in the pro-
gram, all goals of the form parent(X,Y) for every pair X and Y such
that father (X, Y) or mother (X,Y) is in the program. This example shows
that the meaning of a program contains explicitly whatever the program
states implicitly.

Assuming that we define the intended meaning of a program also to
be a set of ground goals, we can ask what is the relation between the
actual and the intended meanings of a program. We can check whether
everything the program says is correct, or whether the program says
everything we wanted it to say.

Informally, we say that a program is correct with respect to some
intended meaning M if the meaning of P, M(P), is a subset of M. That is,
a correct program does not say things that were not intended. A program
is complete with respect to M if M is a subset of M(P). That is, a complete
program says everything that is intended. It follows that a program P is
correct and complete with respect to an intended meaning M if M = M(P).

Throughout the book, when meaningful predicate and constant names
are used, the intended meaning of the program is assumed to be the one
intuitively implied by the choice of names.

For example, the program for the son relationship containing only
the first axiom that uses father is incomplete with respect to the in-
tuitively understood intended meaning of son, since it cannot deduce
son(isaac,sarah). If we add to Program 1.1 the rule

son(X,Y) - mother(X,Y), male(Y).

it would make the program incorrect with respect to the intended mean-
ing, since it deduces son(sarah, isaac).

The notions of correctness and completeness of a logic program are
studied further in Chapter 5.

Although the notion of truth is not defined fully here, we will say
that a ground goal is true with respect to an intended meaning if it is
2 member of it, and false otherwise. We will say it is simply true if it is a
member of the intended meaning implied by the names of the predicate
and constant symbols appearing in the program.
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110 Summary

We conclude this section with a summary of the constructs and concepts
introduced, filling in the remaining necessary definitions.

The basic structure in logic programs is a term. A term is a constant,
a variable, or a compound term. Constants denote particular individuals
such as integers and atoms, while variables denote a single but unspec-
ified individual. The symbol for an atom can be any sequence of char-
acters, which is quoted if there is possibility of confusion with other
symbols (such as variables or integers). Symbols for variables are distin-
guished by beginning with an uppercase letter.

A compound term comprises a functor (called the principal functor
of the term) and a sequence of one or more terms called arguments. A
functor is characterized by its name, which is an atom, and its arity or
number of arguments. Constants are considered functors of arity 0. Syn-
Kac\xcally‘ compound terms have the form f(t,t,...,t) where the functor

and is of arity n, and the ¢ are the arguments. A functor
f of anw n is denoted f/n. Functors with the same name but different
arities are distinct. Terms are ground if they contain no variables; other-
wise they are nonground. Goals are atoms or compound terms, and are
generally nonground.

A substitution is a finite set (possibly empty) of pairs of the form X = t,
where X is a variable and t is a term, with no variable on the left-hand
side of a pair appearing on the right-hand side of another pair, and no
two pairs having the same variable as left-hand side. For any substitution
0= 1{Xi=t;,Xz = tz,..., Xn = ta} and term s, the term 50 denotes the
result of simultaneously replacing in s each occurrence of the variable
Xiby ti, 15 i < n; the term 50 is called an instance of s. More will be said
on this restriction on substitutions in the background to Chapter 4.

A logic program is a finite set of clauses. A clause o rule is a univer-
sally quantified logical sentence of the form

A~ ByB,...Bi. k=20,

where A and the B, are goals. Such a sentence is read declaratively: A is
implied by the conjunction of the B,” and s interpreted procedurally “To
answer query A, answer the conjunctive query By B,,...,B..” Afs called the
clause’s head and the conjunction of the B; the clause’s body. If k = 0,
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the clause is known as a fact or unit clause and written A., meaning A
is true under the declarative reading, and goal A is satisfied under the
procedural interpretation. If k = 1, the clause is known as an iterative
clause.

A query is a conjunction of the form

ApAn? m>0,

where the A, are goals. Variables in a query are understood to be existen-
tially quantified.

A computation of a logic program P finds an instance of a given query
logically deducible from P. A goal G is deducible from a program P if
there is an instance A of G where A —By,...,B, 7 > 0, is a ground instance
of a clause in P, and the B; are deducible from P. Deduction of a goal
from an identical fact is a special case.

‘The meaning of a program P is inductively defined using logical de-
duction. The set of ground instances of facts in P are in the meaning. A
ground goal G is in the meaning if there is a ground instance G ~B,...,B,
of arule in P such that B,...,B, are in the meaning. The meaning consists
of the ground instances that are deducible from the program.

An intended meaning M of a program is also  set of ground unit goals.
A program P is correct with respect to an intended meaning M if M(P) is
a subset of M. It is complete with respect to M if M is a subset of M(P).
Clearly, it is correct and complete with respect to its intended meaning,
which is the desired situation, if M = M(P).

A ground goal is true with respec\ to an intended meaning if it is a
member of it, and false otherwi

Logical deduction is Gehned symacncally here, and hence also the
‘meaning of logic programs. In Chapter 5, alternative ways of describing
the meaning of logic programs are presented, and their equivalence with
the current definition is discussed.
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underscores for predicate and function names, for example, schedule_
conflict.

New mlauons are built from these basic relationships by dehmng suit-
able relation schemes for the ced
in me prmous chapter are son(Son,Parent), dAughtar(Daughter,
Parent), parent(Parent,Child), and grandparent(Grandparent,
Grandchild). From the logical viewpoint, it is unimportant which re-
lationships are defined by facts and which by rules. For example, if the
available database consisted of parent, male and female facts, the rules
defining son and grandparent are still correct. New rules must be writ-
ten for the relationships no longer defined by facts, namely, father and
mother. Suitable rules are

father(Dad,Child) - parent(Dad,Child), male(Dad).
mother (Mum,Child) — parent(Mum,Child), female(Mum).

Interesting rules can be obtained by making relationships explicit that
are present in the database only implicitly. For example, since we know
the father and mother of a child, we know which couples produced off-
spring, or to use a Biblical term, procreated. This is not given explicitly in
the database, but a simple rule can be written recovering the information.
The relation scheme is procreated (Man, Woman).

procreated(Man,Woman) —
father (Man,Child), mother (Woman,Child).

‘This reads: “Man and Woman procreated if there is a Child such that an
is the father of Chi1d and Woman is the mother of Child."

Another example of information that can be recovered from the simple
information present is sibling relationships — brothers and sisters. We
give a rule for brother (Brother, Sibling).

brother (Brother,Sib) ~—
parent (Parent,Brother), parent (Parent,Sib), male(Brother).

This reads: “Brother is the brother of Sib if Parent is a parent of both
Brother and Sib, and Brother is male.”

There is a problem with this definition of brother. The query brother
(X,X)7 is satisfied for any male child X, which is not our understanding
of the brother relationship.

In order to preclude such cases from the meaning of the program,
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Another relationship implicit in the family database is whether a

woman is a mother. This is determined by using the mother/2 relation-
ship. The new relation scheme is mother (Wonan), defined by the rule
mother (Woman) - mother(Woman,Child).
‘This reads: “Woman is a mother if she is the mother of some Child.” Note
that we have used the same predicate name, mother, to describe two
different mother relationships. The mother predicate takes a different
number of arguments, ie., has a different arity, in the two cases. In
general, the same predicate name denotes a different relation when it has
a different arity.

We change examples, lest the example of family relationships become
incestuous, and consider describing simple logical circuits. A circuit can
be viewed from two perspectives. The first is the topological layout of
the physical components usually described in the circuit diagram. The
second is the interaction of functional units. Both views are easily ac-
commodated in a logic program. The circuit diagram is represented by
a collection of facts, while rules describe the functional components.

Program 2.2 is a database giving a simplified view of the logical and-

ate drawn in Figure 2.2. The facts are the connections of the particular

resistors and transistors comprising the circuit. The relation scheme
for resistors is resistor(End1,End2) and for transistors transis-
tor (Gate,Source,Drain).

Power

Figure 2.2 A logical circuit
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or (pover,n1) .
relhcor(pevcr,n?)
transistor (n2,ground,n1) .
transistor (13,n4,02) .
‘transistor (a5, ground, nd) .
inverter Grgut,Outpat) —
s the inversion of Input
snverter (Input,Output) —
transistor (Input ,ground, Output)
resistor (power, Output) .
nand_gate(Input1,Input2,Output) —
Output is the logical nand of Inputl and Input2.
sana_gateluputt, Tupue2,Dupor)
transistor (Inputt,X,Output) ,
transistor (Input2, ground,X),
resistor (pover,Output) .
lznigare(lnputl Input2,Output) —
ut is the logical and of Inputl and Input2
,gm(xnpuu.1nym.nucpuc) -
nand_gate (Inputs, Input2,X) ,
inverter (X, Output)

Program 2.2 A circuit for a logical and-gate

‘The program demonstrates the style of commenting of logic programs
we will follow throughout the book. Each interesting procedure is pre-
ceded by a relation scheme for the procedure, shown in italic font, and by
English text defining the relation. We recommend this style of comment-
ing, which emphasizes the declarative reading of programs, for Prolog
programs as well.

Paricular configuratons of resistors and transistors fulfill roles cap-
tured via rules defining the functional components of the circuit. The
circuit describes an and-gate, which Takes two input signals and pro-
duces as output the logical and of these signals. One way of building
an and-gate, and how this circuit is composed, is to connect a nand-gate
with an inverter. Relation schemes for these Ihree components are and_

te(Input1, Input2,Output), nand_gat
and inverter (Input,Output).
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To appreciate Program 2.2, let us read the inverter rule. This states that
an inverter s built up from a transistor with the source connected to the
ground, and a resistor with one end connected to the power source. The
gate of the transistor is the input to the inverter, while the free end of the
resistor must be connected to the drain of the transistor, which forms
the output of the inverter. Sharing of variables is used to insist on the
common connection.

Consider the query and_gate(In1,In2,0ut)? to Program 2.2. It has
the solution {In1=n3, In2=n5,0ut=n1}. This solution confirms that the
circuit described by the facts is an and-gate, and indicates the inputs and
output.

2.1.1 Exercises for Section 2.1

() Modify the rule for brother on page 21 to give a rule for sister,
the rule for uncle in Program 2.1 to give a rule for niece, and
the rule for sibling in Program 2.1 so that it only recognizes full
siblings, ie., those that have the same mother and father.

(i) Using a predicate narried_couple (Wife,Husband), define the rela-
tionships nother_in_1aw, brother_in_lav, and son_in_lav.

(i)

Describe the layout of objects in Figure 2.3 with facts using the
predicates left_of (Object1,0bject2) and above(Object1,Ob-
ject2). Define predicates right_of (Object1,0bject2) and below
(Object1,0bject2) in terms of left_of and above, respectively.

pZ

Figure 2.3 Stilllife objects
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2.2 Structured Data and Data Abstraction

A limitation of Program 2.2 for describing the and-gate is the treatment
of the circuit as a black box. There is no indication of the structure of the
circuit in the answer to the and_gate query, even though the structure
has been implicitly used in finding the answer. The rules tell us that
the circuit represents an and-gate, but the structure of the and-gate is
present only implicitly. We remedy this by adding an extra argument to
each of the goals in the database. For uniformity, the extra argument
becomes the first argument. The base facts simply acquire an identifier.
Proceeding from left to right in the diagram of Figure 2.2, we label the
resistors r1 and r2, and the transistors t1, t2, and t3.

Names of the functional components should reflect their structure. An
inverter is composed of a transistor and a resistor. To represent this,
we need structured data. The technique is to use a compound term,
1nv(T,R), where T and R are the respective names of the inverter's com-
ponent transistor and resistor. Analogously, the name of a nand-gate will
be nand(T1,T2,R), where T1, T2, and R name the two transistors and re-
sistor that comprise a nand-gate. Finally, an and-gate can be named in
terms of an inverter and a nand-gate. The modified code containing the
names appears in Program 2.3.

The query and_gate(G,In1,In2,0ut)? has solution
t3,r2),inv(t1,r1)),In1=n3, In2=n5,0ut=n1}. Ini, In2, and Out have
their previous values. The complicated structure for G reflects accurately
the functional composition of the and-gate.

Structuring data is important in programming in general and in logic
programming in particular. It is used to organize data in a meaningful
way. Rules can be written more abstractly, ignoring irrelevant details.
More modular programs can be achieved this way, because a change of
data representation need not mean a change in the whole program, as
shown by the following example.

Consider the following two ways of representing a fact about a lecture
course on complexity given on Monday from 9 to 11 by David Harel in
the Feinberg building, room A:

(. ,monday,9,11,david, harel, feinberg,a) .
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,9,11), lecturer (david, harel)

location(feinberg,a)) .

The first fact represents course as a relation between eight items — a
course name, a day,  starting hour, a finishing hour, a lecturer's first
name, a lecturer’s surname, a building, and a room. The second fact
makes course a relation between four items — a name, a time, a lecturer,
and a location with further qualification. The time is composed of a day,
a starting time, and a finishing time; lecturers have a first name and
a surname; and locations are specified by a building and a room. The
second fact reflects more elegantly the relations that hold.

‘The four-argument version of course enables more concise rules to
be written by abstracting the details that are irrelevant to the query.
Program 2.4 contains examples. The occupied rule assumes a predicate
less than or equal, represented as a binary infix operator <.

Rules not using the particular values of a structured argument need
not “know” how the argument is structured. For example, the rules for
duration and teaches represent time explicitly as time(Day,Start,
Finish) because the Day or Start or Finish times of the course are de-
sired. In contrast, the rule for lecturer does not. This leads to greater
modularity, because the representation of time can be changed without
affecting the rules that do not inspect it.

‘We offer no definitive advice on when to use structured data. Not using
structured data allows a uniform representation where all the data are
simple. The advantages of structured data are compactness of represen-
tation, which more accurately reflects our perspective of a situation, and

lecturer (Lecturer,Course) —
course (Course, Time, Lecturer  Location)
duration(Course, Length)
(Day,Start, Finish) L L .
Plus (Start, Length, Finish) .
teaches (Lecturer Day) ~
time (Day, Start, Finish) L Locat:

occupied(Roon,Day, Tize) —
ourea(Gourse, tze(Bay Staxt, Finsah) Lacturer Roce)
Start < Tive, Tive < Finish.

Program 24 Course rules
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2.3 Recursive Rules

‘The rules described so far define new relationships in terms of existing
ones. An interesting extension is recursive definitions of relationships
that define relationships in terms of themselves. One way of viewing
recursive rules is as generalization of a set of nonrecursive rules.

Consider a series of rules defining ancestors — grandparents, great-
grandparents, etc:

grandparent (Ancestor ,Descendant) —
parent (Ancestor ,Person), parent (Person,Descendant) .
greatgrandparent (Ancestor,Descendant) —
parent (Ancestor,Person), grandparent (Person,Descendant) .
Ancest; ) —

it (Ancestor ,Person) , Person,
Descendant) .

A clear pattern can be seen, which can be expressed in a rule defining the
relationship ancestor (Ancestor , Descendant):

ancestor (Ancestor, Descendant) —
parent (Ancestor,Person), ancestor (Person,Descendant) .

‘This rule is a generalization of the previous rules.

A logic program for ancestor also requires a nonrecursive rule, the
choice of which affects the meaning of the program. If the fact ances~
tor(X,X) is used, defining the ancestor relationship to be reflexive, peo-
ple will be considered to be their own ancestors. This is not the intuitive
meaning of ancestor. Program 2.5 is a logic program defining the ances-
tor relationship, where parents are considered ancestors.

ancestor (Ancestor, Descendant)
Ancestor is an ancestor of Descendant .
‘ancestor (Ancestor, Descendant) —
ent (Ancestor, Descendant) .
ancestor (Ancestor, Descendant) —
rson), Descendant)

Program 2.5 The ancestor relationship
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The ancestor relationship is the transitive closure of the parent re-
lationship. In general, finding the transitive closure of a relationship is
easily done in a logic program by using a recursive rule.

Program 2.5 defining ancestor is an example of a linear recursive pro-
gram. A program is linear recursive if there is only one recursive goal in
the body of the recursive clause. The linearity can be easily seen from
considering the complexity of proof trees solving ancestor queries. A
proof tree establishing that two individuals are n generations apart given
Program 2.5 and a collection of parent facts has 2 - n nodes.

Them are many alternative ways of defining ancestors. The declarative
content of the recursive rule in Program 2.5 is that Ancestor is an ances-
tor of Descendant if Ancestor is a parent of an ancestor of Descendant.
Another way of expressing the recursion is by observing that Ancestor
would be an ancestor of Descendant. if Ancestor is an ancestor of a par-
ent of Descendant. The relevant rule is

ancestor (Ancestor, Descendant) —
ancestor (Ancestor,Person), parent (Person,Descendant) .

Another version of defining ancestors is not linear recursive. A pro-
gram identical in meaning to Program 2.5 but with two recursive goals in
the recursive clause is

ancestor (Ancestor,Descendant) —
parent (Ancestor ,Descendant) .
ancestor (Ancestor,Descendant) —
ancestor (Ancestor,Person), ancestor (Person,Descendant) .

Consider the problem of testing connectivity in a directed graph. A
directed graph can be represented as a logic program by a collection
of facts. A fact edge(Node1,Node2) is present in the program if there
is an edge from Node1 to Node2 in the graph. Figure 2.4 shows a graph;
Program 2.6 is its description as a logic program.

Two nodes are connected if there is a series of edges that can be tra-
versed to get from the first node to the second. That is, the relation con~
nected(Nodet ,Node2), which is true if Node1 and Node2 are connected,
is the transitive closure of the edge relation. For example, a and e are
connected in the graph in Figure 2.4, but b and f are not. Program 2.7
defines the relation. The meaning of the program is the set of goals con-
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Figure 2.4 A simple graph

edge(a,b).  edge(a,c).  edge(b,d).
edge(c,d).  edge(d,e).  edgel(f,g).

Program 2.6 A directed graph

connected(Nodel,Node2) —
Nodel is connected to Node2 in the
graph defined by the edge/2 relation.
connected(Node, Node) .
connected(Nodet Node2) — edge(Nodel,Link), connected(Link,Node2) .

Program 2.7 The transitive closure of the edge relation

nected(X,Y), where X and Y are connected. Note that connected is a
transitive reflexive relation because of the choice of base fact.

2.3.1 Exercises for Section 2.3

@) A stack of blocks can be described by a collection of facts on
(Block1,Block2), which is true if Block1 is on Block2. Define a
predicate above(Block1,Block2) that is true if Block1 is above
Block? in the stack. (Hint: above is the transitive closure of on.)
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