The Art of
Readable Code

Simple and Practical Techniques for Writing Better Code

O’REILLY"

The Art of Readable Code

Dustin Boswell and Trevor Foucher

O’REILLY"

Beijing + Cambridge - Farnham - Kéln - Sebastopol - Tokyo

The Art of Readable Code
by Dustin Boswell and Trevor Foucher

Copyright © 2012 Dustin Boswell and Trevor Foucher. All rights reserved.

Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472,

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (hitp://my.safaribooksonline.com). For more information, contact our

corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler Indexer: Potomac Indexing, LLC

Production Editor: Teresa Elsey Cover Designer: Susan Thompson
Copyeditor: Nancy Wolfe Kotary Interior Designer: David Futato

Proofreader: Teresa Elsey Ilustrators: Dave Allred and Robert Romano
November 2011: First Edition.

Revision Hislory for the First Edition:
2011-11-01 First release

See http:/foreilly.com/catalog/errata.csp?isbn=9780596802295 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. The Artof Readable Code, the image of sheet music, and related trade dress are trademarks of O'Reilly

Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained

herein.

ISBN: 978-0-596-80229-5
[LST]

1320175254

CONTENTS

PREFACE vii
1 CODE SHOULD BE EASY TO UNDERSTAND 1
What Makes Code “Better”? 2
The Fundamental Theorem of Readability 3
Is Smaller Always Better? 3
Does Time-Till-Understanding Conflict with Other Goals? Yy
The Hard Part 4
Part One SURFACE-LEVEL IMPROVEMENTS
2 PACKING INFORMATION INTO NAMES 7
Choose Specific Words 8
Avoid Generic Names Like tmp and retval 10
Prefer Concrete Names over Abstract Names 13
Attaching Extra Information to a Name 15
How Long Should a Name Be? 18
Use Name Formatting to Convey Meaning 20
Summary 21
3 NAMES THAT CAN’T BE MISCONSTRUED 23
Example: Filter() 24
Example: Clip(text, length) 24
Prefer min and max for (Inclusive) Limits 25
Prefer first and last for Inclusive Ranges 26
Prefer begin and end for Inclusive/Exclusive Ranges 26
Naming Booleans 27
Matching Expectations of Users 27
Example: Evaluating Multiple Name Candidates 29
Summary 31
b3 AESTHETICS 33
Why Do Aesthetics Matter? 34
Rearrange Line Breaks to Be Consistent and Compact 35
Use Methods to Clean Up Irregularity 37
Use Column Alignment When Helpful 38
Pick a Meaningful Order, and Use It Consistently 39
Organize Declarations into Blocks 40
Break Code into “Paragraphs” 41
Personal Style versus Consistency 42
Summary 43

5 KNOWING WHAT TO COMMENT 45
What NOT to Comment 47
Recording Your Thoughts 49
Put Yourself in the Reader’s Shoes 51
Final Thoughts—Getting Over Writer’s Block 56
Summary 57

6 MAKING COMMENTS PRECISE AND COMPACT 59
Keep Comments Compact 60
Avoid Ambiguous Pronouns 60
Polish Sloppy Sentences 61
Describe Function Behavior Precisely 61
Use Input/Output Examples That lllustrate Corner Cases 61
State the Intent of Your Code 62
“Named Function Parameter” Comments 63
Use Information-Dense Words 64
Summary 65

Part Two SIMPLIFYING LOOPS AND LOGIC

7 MAKING CONTROL FLOW EASY TO READ 69
The Order of Arguments in Conditionals 70
The Order of if/else Blocks 71
The ?: Conditional Expression (a.k.a. “Ternary Operator”) 73
Avoid do/while Loops 74
Returning Early from a Function 75
The Infamous goto 76
Minimize Nesting 77
Can You Follow the Flow of Execution? 79
Summary 80

8 BREAKING DOWN GIANT EXPRESSIONS 83
Explaining Variables 84
Summary Variables 84
Using De Morgan’s Laws 85
Abusing Short-Circuit Logic 86
Example: Wrestling with Complicated Logic 86
Breaking Down Giant Statements 89
Another Creative Way to Simplify Expressions 90
Summary 90

9 VARIABLES AND READABILITY 93
Eliminating Variables 94
Shrink the Scope of Your Variables 97
Prefer Write-Once Variables 103
A Final Example 104
Summary 106

iv

CONTENTS

Part Three REORGANIZING YOUR CODE

10 EXTRACTING UNRELATED SUBPROBLEMS 109
Introductory Example: findClosestLocation() 110
Pure Utility Code 111
Other General-Purpose Code 112
Create a Lot of General-Purpose Code 114
Project-Specific Functionality 115
Simplifying an Existing Interface 116
Reshaping an Interface to Your Needs 117
Taking Things Too Far 117
Summary 118
11 ONE TASK AT ATIME 121
Tasks Can Be Small 123
Extracting Values from an Object 124
A Larger Example 128
Summary 130
12 TURNING THOUGHTS INTO CODE 131
Describing Logic Clearly 132
Knowing Your Libraries Helps 133
Applying This Method to Larger Problems 134
Summary 137
13 WRITING LESS CODE 139
Don't Bother Implementing That Feature—You Won't Need It 140
Question and Break Down Your Requirements 140
Keeping Your Codebase Small 142
Be Familiar with the Libraries Around You 143
Example: Using Unix Tools Instead of Coding 14y
Summary 145
Part Four SELECTED TOPICS
14 TESTING AND READABILITY 149
Make Tests Easy to Read and Maintain 150
What's Wrong with This Test? 150
Making This Test More Readable 151
Making Error Messages Readable 154
Choosing Good Test Inputs 156
Naming Test Functions 158
What Was Wrong with That Test? 159
Test-Friendly Development 160
Going Too Far 162
Summary 162
15 DESIGNING AND IMPLEMENTING A “MINUTE/HOUR COUNTER” 165
The Problem 166
Defining the Class Interface 166

CONTENTS

v

vi

Attempt 1: A Naive Solution
Attempt 2: Conveyor Belt Design
Attempt 3: A Time-Bucketed Design
Comparing the Three Solutions
Summary

FURTHER READING

INDEX

CONTENTS

169
171
174
179
179

181

185

PREFACE

LATE ONE NIGHT...

2 WEEKS LATER...

WHAT | HAVE
1S THAT G NC IDEA.)
CODE DOING? " T
WHO WROTE ~ o =
el
p C

JHI& COPE?,

vii

We've worked at highly successful software companies, with outstanding engineers, and the
code we encounter still has plenty of room for improvement. In fact, we’ve seen some really

ugly code, and you probably have too.

But when we see beautifully written code, it’s inspiring. Good code can teach you what’s going
on very quickly. It’s fun to use, and it motivates you to make your own code better.

The goal of this book is help you make your code better. And when we say “code,” we
literally mean the lines of code you are staring at in your editor. We're not talking about the
overall architecture of your project, or your choice of design patterns. Those are certainly
important, but in our experience most of our day-to-day lives as programmers are spent on

”

the “basic” stuff, like naming variables, writing loops, and attacking problems down at the
function level. And a big part of this is reading and editing the code that’s already there. We
hope you’ll find this book so helptul to your day-to-day programming that you’ll recommend

it to everyone on your team.

What This Book Is About

This book is about how to write code that’s highly readable. The key idea in this book is that
code should be easy to understand. Specifically, your goal should be to minimize the time
it takes someone else to understand your code.

This book explains this idea and illustrates it with lots of examples from different languages,
including C++, Python, JavaScript, and Java. We’ve avoided any advanced language features,
so even if you don’t know all these languages, it should still be easy to follow along. (In our

experience, the concepts of readability are mostly language-independent, anyhow.)

Each chapter dives into a different aspect of coding and how to make it “easy to understand.”
The book is divided into four parts:

Surface-level improvements
Naming, commenting, and aesthetics—simple tips that apply to every line of your
codebase

Simplifying loops and logic
Ways to refine the loops, logic, and variables in your program to make them easier to

understand

Reorganizing your code

Higher-level ways to organize large blocks of code and attack problems at the function level

Selected topics

Applying “easy to understand” to testing and to a larger data structure coding example

viii PREFACE

How to Read This Book

Our book is intended to be a fun, casual read. We hope most readers will read the whole book

in a week or two.

The chapters are ordered by “difficulty”: basic topics are at the beginning, and more advanced
topics are at the end. However, each chapter is self-contained and can be read in isolation. So

feel free to skip around if you’d like.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
signilicant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “The Art of Readable Code by Dustin Boswell and Trevor
Foucher. Copyright 2012 Dustin Boswell and Trevor Foucher, 978-0-596-80229-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily search
s over 7,500 technology and creative reference books and videos to find the
answers you need quickly.

Books Online

With a subscription, you can read any page and watch any video from our library online. Read
books on your cell phone and mobile devices. Access new titles before they are available for
print, and get exclusive access to manuscripts in development and post feedback for the
authors. Copy and paste code samples, organize your favorites, download chapters, bookmark
key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital
access to this book and others on similar topics from O’Reilly and other publishers, sign up for

free at hitp://my.safaribooksonline.com.

PREFACE ix

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
We have a web page lor this book, where we list errata, examples, and any additional

information. You can access this page at:
htip://shop.oreilly.com/product/9780596802301 .do

To comment or ask technical questions about this book, send email to:
bookqutestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website at
http:/iwww.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: Jittp://twitter.com/oreillymedia

Watch us on YouTube: http://www . youtube.com/oreillymedia

Acknowledgments

We’d like to thank our colleagues who donated their time to review our entire manuscript,
including Alan Davidson, Josh Ehrlich, Rob Konigsberg, Archie Russell, Gabe W., and Asaph
Zemach. Any errors in the book are entirely their fault (just kidding).

We're gratelul to the many reviewers who gave us detailed feedback on various drafts of our

book, including Michael Hunger, George Heineman, and Chuck Hudson.

We also got numerous ideas and feedback from John Blackburn, Tim Dasilva, Dennis Geels,
Steve Gerding, Chris Harris, Josh Hyman, Joel Ingram, Erik Mavrinac, Greg Miller, Anatole
Paine, and Nick White. Thanks to the numerous online commenters who reviewed our draft
on O'Reilly’s OFPS system.

Thanks to the team at O'Reilly for their endless patience and support, specifically Mary Treseler
(editor), Teresa Elsey (production editor), Nancy Kotary (copyeditor), Rob Romano

(illustrator), Jessica Hosman (tools), and Abby Fox (tools). And also to our cartoonist, Dave

Allred, who made our crazy cartoon ideas come to life.

Lastly, we’d like to thank Melissa and Suzanne, for encouraging us along the way and putting
up with incessant programming conversations.

X PREFACE

CHAPTER ONE

Code Should Be Easy to Understand

IS HE
THE ONE
WHO CAN
PROGRAM THIS?P

SHOULD WE TAKE You
TO OUR LEAPERP

Over the past five years, we have collected hundreds of examples of “bad code” (much of it
our own), and analyzed what made it bad, and what principles/techniques were used to make

it better. What we noticed is that all of the principles stem from a single theme.

KEY IDEA

Code should be easy to understand.

We believe this is the most important guiding principle you can use when deciding how to
write your code. Throughout the book, we’ll show how to apply this principle to different
aspects of your day-to-day coding. But before we begin, we’ll elaborate on this principle and

justify why it’s so important.

What Makes Code “Better”?

Most programmers (including the authors) make programming decisions based on gut feel and
intuition. We all know that code like this:

for (Node* node = list->head; node != NULL; node = node->next)
Print(node->data);

is better than code like this:

Node* node = list->head;
if (node == NULL) return;

while (node-»next != NULL) {
Print(node->data);
node = node->next;

if (node != NULL) Print(node->data);
(even though both examples behave exactly the same).
But a lot of times, it’s a tougher choice. For example, is this code:
return exponent >= 0 ? mantissa * (1 << exponent) : mantissa / (1 << -exponent);

better or worse than:

if (exponent >= 0) {

return mantissa * (1 << exponent);
} else {

return mantissa / (1 << -exponent);
}

The first version is more compact, but the second version is less intimidating. Which criterion

is more important? In general, how do you decide which way to code something?

2 CHAPTER ONE

The Fundamental Theorem of Readability

After studying many code examples like this, we came to the conclusion that there is one metric
for readability that is more important than any other. It’s so important that we call it “The
Fundamental Theorem ol Readability.”

KEY IDEA
Code should be written to minimize the time it would take for someone else to

understand it.

What do we mean by this? Quite literally, if you were to take a typical colleague of yours, and
measure how much time it took him to read through your code and understand it, this “time-

till-understanding” is the theoretical metric you want to minimize.

And when we say “understand,” we have a very high bar for this word. For someone to fully
understand your code, they should be able to make changes to it, spot bugs, and understand
how it interacts with the rest of your code.

Now, you might be thinking, Who cares if someone else can understand it? I'm the only one using the
code! Even if you're on a one-man project, it’s worth pursuing this goal. That “someone else”
might be you six months later, when your own code looks unfamiliar to you. And you never
know—someone might join your project, or your “throwaway code” might get reused for
another project.

Is Smaller Always Better?

Generally speaking, the less code you write to solve a problem, the better (see Chapter 13,
Writing Less Code). It probably takes less time to understand a 2000-line class than a 5000-line
class.

But fewer lines isn’t always better! There are plenty of times when a one-line expression like:

assert((!(bucket = FindBucket(key))) || !bucket->IsOccupied());

takes more time to understand than if it were two lines:

bucket = FindBucket(key);
if (bucket != NULL) assert(!bucket->IsOccupied());

Similarly, a comment can make you understand the code more quickly, even though it “adds

code” to the file:

// Fast version of "hash = (65599 * hash) + c"
hash = (hash << 6) + (hash << 16) - hash + c;

So even though having fewer lines of code is a good goal, minimizing the time-till-
understanding is an even better goal.

CODE SHOULD BE EASY TO UNDERSTAND 3

Does Time-Till-Understanding Conflict with Other Goals?

You might be thinking, What about other constraints, like making code efficient, or well-architected, or

easy to test, and so on? Don't these sometimes conflict with wanting to make code easy to understand?

We’ve found that these other goals don't interfere much at all. Even in the realm of highly
optimized code, there are still ways to make it highly readable as well. And making your code

casy to understand often leads to code that is well architected and easy to test.

The rest of the book discusses how to apply “easy to read” in different circumstances. But
remember, when in doubt, the Fundamental Theorem of Readability trumps any other rule or
principle in this book. Also, some programmers have a compulsive need to fix any code that
isn’t perfectly factored. It’s always important to step back and ask, Is this code easy to
understand? 1f so, it’s probably fine to move on to other code.

The Hard Part

Yes, it requires extra work to constantly think about whether an imaginary outsider would
find your code easy to understand. Doing so requires turning on a part of your brain that might

not have been on while coding before.

But if you adopt this goal (as we have), we're certain you will become a better coder, have
fewer bugs, take more pride in your work, and produce code that everyone around you will

love to use. So let’s get started!

L] CHAPTER ONE

PART |

Surface-Level Improvements

We begin our tour of readability with what we consider “surface-level” improvements: picking
good names, writing good comments, and formatting your code neatly. These types of changes
are easy to apply. You can make them “in place,” without having to refactor your code or
change how the program runs. You can also make them incrementally, without a huge time
investment.

These topics are very important because they affect every line of code in your codebase.
Although each change may seem small, in aggregate they can make a huge improvement to a
codebase. If your code has great names, well-written comments, and clean use of whitespace,
your code will be much easier to read.

Of course, there’s a lot more beneath the surface level when it comes to readability (and we’ll
cover that in later parts of the book). But the material in this part is so widely applicable, for

so little effort, that it’s worth covering first.

Caopyrighted material

CHAPTER TWO

Packing Information into Names

DCOES
ANYONE KNOW

WHY IT'S CALLED
“THE MAN-EATER

IN
RETROSPECT,
THE N

Whether you’'re naming a variable, a function, or a class, a lot of the same principles apply.
We like to think of a name as a tiny comment. Even though there isn’t much room, you can

convey a lot of information by choosing a good name.

KEY IDEA

Pack information into your names.

A lot of the names we see in programs are vague, like tmp. Even words that may seem
reasonable, such as size or get, don’t pack much information. This chapter shows you how to
pick names that do.
This chapter is organized into six specific topics:

* Choosing specific words

s Avoiding generic names (or knowing when to use them)

e Using concrete names instead of abstract names

¢ Attaching extra information to a name, by using a suffix or prefix

e Deciding how long a name should be

* Using name formatting to pack extra information

Choose Specific Words

Part of “packing information into names” is choosing words that are very specific and avoiding
“empty” words.

For example, the word “get” is very unspecific, as in this example:

def GetPage(url):
The word “get” doesn’t really say much. Does this method get a page from a local cache, from
a database, or from the Internet? If it’s from the Internet, a more specific name might be

FetchPage() or DownloadPage().
Here’s an example of a BinaryTree class:

class BinaryTree {
int Size();

b

What would you expect the Size() method to return? The height of the tree, the number of

nodes, or the memory footprint of the tree?

The problem is that size() doesn’t convey much information. A more specific name would be
Height(), NumNodes(), or MemoryBytes().

8 CHAPTER TWO

As another example, suppose you have some sort of Thread class:

class Thread {

void Stop();

¥
The name Stop() is okay, but depending on what exactly it does, there might be a more specitic
name. For instance, you might call it Kill() instead, if it’s a heavyweight operation that can’t

be undone. Or you might call it Pause(), if there is a way to Resume() it.

Finding More “Colorful” Words

“ W
o o\ & 4
e 7 A
) s
== 54,
STEGOSAURUS BRACHIOSAURUS THESAURUS

Don’t be afraid to use a thesaurus or ask a friend for better name suggestions. English is a rich

language, and there are a lot of words to choose from.

Here are some examples of a word, as well as more “colorful” versions that might apply to your
situation:

Word | Alternatives

send deliver, dispaich, announce, distribute, route
find search, exiract, locale, recover
starl launch, creale, begin, open

make creale, sel up, build, ¢enerate, compose, add, new

Don’t get carried away, though. In PHP, there is a function to explode() a string. That’s a colorful
name, and it paints a good picture of breaking something into pieces, but how is it any different

PACKING INFORMATION INTO NAMES 9

from split()? (The two functions are different, but it’s hard to guess their differences based on

the name.)

KEY IDEA

It’s better to be clear and precise than to be cute.

Avoid Generic Names Like tmp and retval

Names like tmp, retval, and foo are usually cop-outs that mean “I can’t think of a name.” Instead
of using an empty name like this, pick a name that describes the entity’s value or

purpose.

For example, here’s a JavaScript function that uses retval:

var euclidean norm = function (v) {
var retval = 0.0;
for (var i = 0; i < v.length; i += 1)
retval += v[i] * v[i];
return Math.sqrt(retval);
b
It’s tempting to use retval when you can’t think of a better name for your return value. But
retval doesn’t contain much information other than “T am a return value” (which is usually
obvious anyway).

A better name would describe the purpose of the variable or the value it contains. In this case,
the variable is accumulating the sum of the squares of v. So a better name is sum_squares. This

would announce the purpose of the variable upfront and might help catch a bug.
For instance, imagine if the inside of the loop were accidentally:

retval += v[i];
This bug would be more obvious if the name were sum_squares:

sum_squares += v[i]; // Where's the "square" that we're summing? Bug!

ADVICE

The name retval doesn’t pack much information. Instead, use a name that describes

the variable’s value.

There are, however, some cases where generic names do carry meaning. Let’s take a look at
when it makes sense to use them.

10 CHAPTER TWO

tmp
Consider the classic case of swapping two variables:

if (right < left) {

tmp = right;
right = left;
left = tmp;

}

In cases like these, the name tmp is perfectly fine. The variable’s sole purpose is temporary
storage, with a lifetime of only a few lines. The name tmp conveys specific meaning to the
reader—that this variable has no other duties. It’s not being passed around to other functions
or being reset or reused multiple times.

But here’s a case where tmp is just used out of laziness:

String tmp = user.name();
tmp += " " + user.phone_number();
tmp += " " + user.email();

template.set("user_info", tmp);

Even though this variable has a short lifespan, being temporary storage isn’t the most important

thing about this variable. Instead, a name like user_infe would be more descriptive.
In the following case, tmp should be in the name, but just as a part of it:
tmp_file = tempfile.NamedTemporaryFile()
!.Sé;el)a'ta(tmp_file, vee)
Notice that we named the variable tmp_file and not just tmp, because it is a file object. Imagine
if we just called it tmp:
SaveData(tmp, ...)

Looking at just this one line of code, it isn’t clear if tmp is a file, a filename, or maybe even the

data being written.

ADVICE

The name tmp should be used only in cases when being short-lived and temporary

is the most important fact about that variable.

PACKING INFORMATION INTO NAMES 11

Loop lterators

Names like i, j, iter, and it are commonly used as indices and loop iterators. Even though
these names are generic, they’'re understood to mean “I am an iterator.” (In fact, if you used

one of these names for some other purpose, it would be confusing—so don’t do that!)
But sometimes there are better iterator names than i, j, and k. For instance, the following loops
find which users belong to which clubs:

for (int i = 0; i < clubs.size(); i++)
for (int j = 0; j < clubs[i].members.size(); j++)
for (int k = 0; k < users.size(); k++)
if (clubs[i].members[k] == users[j])
cout << "user[" << j << "] is in club[" << i << "]" << endl;

In the if statement, members[] and users[] are using the wrong index. Bugs like these are hard
to spot because that line of code seems fine in isolation:

if (clubs[i].members[k] == users[j])
In this case, using more precise names may have helped. Instead of naming the loop indexes
(i,j.k), another choice would be (club_i, members_i, users_i) or, more succinctly (ci, mi, ui). This
approach would help the bug stand out more:

if (clubs[ci].members[ui] == users[mi]) # Bug! First letters don't match up.
When used correctly, the first letter of the index would match the first letter of the array:

if (clubs[ci].members[mi] == users[ui]) # OK. First letters match.

The Verdict on Generic Names

As you’ve seen, there are some situations where generic names are useful.

ADVICE
If you're going to use a generic name like tmp, it, or retval, have a good reason for

doing so.

A lot of the time, they're overused out of pure laziness. This is understandable—when nothing
better comes to mind, it’s easier to just use a meaningless name like foo and move on. But if
you get in the habit of taking an extra few seconds to come up with a good name, you’ll find

your “naming muscle” builds quickly.

12 CHAPTER TWO

Prefer Concrete Names over Abstract Names

- o

When naming a variable, function, or other element, describe it concretely rather than

abstractly.

For example, suppose you have an internal method named Servercanstart(), which tests
whether the server can listen on a given TCP/IP port. The name ServerCanstart() is somewhat
abstract, though. A more concrete name would be CanListenonPort(). This name directly

describes what the method will do.

The next two examples illustrate this concept in more depth.

Example: DISALLOW_EVIL_CONSTRUCTORS

Here’s an example from the codebase at Google. In C++, if you don't define a copy constructor

or assignment operator for your class, a default is provided. Although handy, these methods

PACKING INFORMATION INTO NAMES 13

can casily lead to memory leaks and other mishaps because they're executed “behind the

scenes” in places you might not have realized.

As a result, Google has a convention to disallow these “evil” constructors, using a macro:
class ClassName {
private:
DISALLOW EVIL CONSTRUCTORS(ClassName);
public:
b

This macro was defined as:

e

#define DISALLOW_EVIL CONSTRUCTORS(ClassName) \
ClassName(const ClassName&); \
void operator=(const ClassName&);
By placing this macro in the private: section of a class, these two methods become private, so
that they can’t be used, even accidentally.

The name DISALLOW EVIL CONSTRUCTORS isn’t very good, though. The use of the word “evil”
conveys an overly strong stance on a debatable issue. More important, it isn’t clear what that
macro is disallowing. It disallows the operator=() method, and that isn't even a “constructor”!

The name was used for years but was eventually replaced with something less provocative and
more concrete:

#define DISALLOW_COPY_AND_ASSIGN(ClassName) ...

Example: --run_locally

One of our programs had an optional command-line flag named --run_locally. This flag would
cause the program to print extra debugging information but run more slowly. The flag was
typically used when testing on a local machine, like a laptop. But when the program was
running on a remote server, performance was important, so the flag wasn’t used.

You can see how the name --run_locally came about, but it has some problems:
¢ A new member of the team didn’t know what it did. He would use it when running locally
(imagine that), but he didn’t know why it was needed.

s Occasionally, we needed to print debugging information while the program ran remotely.
Passing --run_locally to a program that is running remotely looks funny, and it’s just

confusing.

e Sometimes we would run a performance test locally and didn’t want the logging slowing

it down, so we wouldn’t use --run_locally.

The problem is that --run_locally was named after the circumstance where it was typically

used. Instead, a flag name like --extra_logging would be more direct and explicit.

1% CHAPTER TWO

But what if --run_locally needs to do more than just extra logging? For instance, suppose that
it needs to set up and use a special local database. Now the name --run_locally seems more

tempting because it can control both of these at once.

But using it for that purpose would be picking a name because it’s vague and indirect,

which is probably not a good idea. The better solution is to create a second flag named
--use_local database. Even though you have to use two flags now, these flags are much more
explicit; they don’t try to smash two orthogonal ideas into one, and they give you the option

of using just one and not the other.

Attaching Extra Information to a Name

PACKING INFORMATION INTO NAMES 15

As we mentioned before, a variable’s name is like a tiny comment. Even though there isn‘t
much room, any extra information you squeeze into a name will be seen every time the

variable is seen.

So if there’s something very important about a variable that the reader must know, it’s worth
attaching an extra “word” to the name. For example, suppose you had a variable that contained
a hexadecimal string:

string id; // Example: "af84ef845cd8”

You might want to name it hex_id instead, if it’s important for the reader to remember the ID’s
format.

Values with Units

If your variable is a measurement (such as an amount of time or a number of bytes), it’s helpful

to encode the units into the variable’s name.

For example, here is some JavaScript code that measures the load time of a web page:

var start = (new Date()).getTime(); // top of the page
var elapsed = (new Date()).getTime() - start; // bottom of the page
document.writeln("Load time was: " + elapsed + " seconds");

There is nothing obviously wrong with this code, but it doesn’t work, because getTime() returns

milliseconds, not seconds.

By appending _ms to our variables, we can make everything more explicit:

var start_ms = (new Date()).getTime(); // top of the page

var elapsed ms = (new Date()).getTime() - start_ms; // bottom of the page
document.writeln("Load time was: " + elapsed_ms / 1000 + " seconds");

Besides time, there are plenty of other units that come up in programming. Here is a table of

unitless function parameters, and better versions that include the units:

Function parameter Renaming parameter to encode units
Start(int delay) delay » delay_secs
CreateCache(int size) size » size_mb

ThrottleDownload(float limit) | limit + max_kbps

Rotate(float angle) angle > degrees_cw

Encoding Other Important Attributes

This technique of attaching extra information to a name isn’t limited to values with units. You
should do it any time there’s something dangerous or surprising about the variable.

16 CHAPTER TWO

For example, many security exploits come from not realizing that some data your program
receives is not yet in a safe state. For this, you might want to use variable names like
untrustedUrl or unsafeMessageBody. After calling functions that cleanse the unsafe input, the
resulting variables might be trustedurl or safeMessageBody.

The following table shows additional examples of when extra information should be encoded
in the name:

Siluation Variable name | Bettername

A password is in “plaintexi” and should be encrypted before further password plaintext_password
processing

A user-provided comment that needs escaping before being displayed comment unescaped_comment
Byles of html have been converted to UTF-8 html html_utf8

Incoming data has been “url encoded” data data_urlenc

You shouldn’t use attributes like unescaped_ or _utf8 for every variable in your program. They're
most important in places where a bug can easily sneak in if someone mistakes what the variable
is, especially if the consequences are dire, as with a security bug. Essentially, if it’s a critical
thing to understand, put it in the name.

IS THIS HUNGARIAN NOTATION?

Hungarian notation is a system of naming used widely inside Microsoft. It encodes the “type” of

every variable into the name’s prefix. Here are some examples:

pLast A pointer (p) to the last element in some data structure

pszBuffer A pointer (p) to a zero-terminated (z) string (s) buffer

cch A count (c) of characters (ch)

mpcopx A map (m) from a pointer to a color (pco) to a pointer 1o an x-axis length (px)

Itis indeed an example of “attaching attributes to names.” But it's a more formal and strict system
focused on encoding a specific set of attributes.

What we're advocating in this section is a broader, more informal system: identify any crucial
attributes of a variable, and encode them legibly, if they’re needed at all. You might call it “English

Notation.”

PACKING INFORMATION INTO NAMES 17

How Long Should a Name Be?

.

oy

Mn P " g e,
b S Naaa

b

-

LVD. THEY SaAID IT'S
- GHAHOGI]GGAGOBGMl\NL‘.HAUEGAEUGGBMUBUNAGUNEAMAUGt.‘:‘i \ THE STREET

WITH THE REALLY

1

[

When picking a good name, there’s an implicit constraint that the name shouldn’t be too long.

No one likes to work with identifiers like this:
newNavigationControllerWrappingViewControllerForDataSource0fClass

The longer a name is, the harder it is to remember, and the more space it consumes on the

screen, possibly causing extra lines to wrap.

On the other hand, programmers can take this advice too far, using only single-word (or single-
letter) names. So how should you manage this trade-off? How do you decide between naming
a variable d, days, or days_since_last_update?

This decision is a judgment call whose best answer depends on exactly how that variable is
being used. But here are some guidelines to help you decide.

Shorter Names Are Okay for Shorter Scope

When you go on a short vacation, you typically pack less luggage than it you go on a long
vacation. Similarly, identifiers that have a small “scope” (how many other lines of code can
“see” this name) don’t need to carry as much information. That is, you can get away with
shorter names because all that information (what type the variable is, its initial value, how it’s

destroyed) is easy to see:

18 CHAPTER TWO

if (debug) {
map<string,int> m;
LookUpNamesNumbers (&m) ;
Print(m);

¥

Even though m doesn’t pack any information, it’s not a problem, because the reader already

has all the information she needs to understand this code.

However, suppose mwere a class member or a global variable, and you saw this snippet of code:

LookUpNamesNumbers (&m) ;
Print(m);

This code is much less readable, as it’s unclear what the type or purpose of mis.

So if an identifier has a large scope, the name needs to carry enough information to make it
clear.

Typing Long Names—Not a Problem Anymore

There are many good reasons to avoid long names, but “they’re harder to type” is no longer
one of them. Every programming text editor we've seen has “word completion” built in.
Surprisingly, most programmers aren’t aware of this feature. If you haven’t tried this feature
on your editor yet, please put this book down right now and try it:

1. Type the first few characters of the name.
2. Trigger the word-completion command (see below).
3. If the completed word is not correct, keep triggering the command until the correct name

appears.

It’s surprisingly accurate. It works on any type of file, in any language. And it works for any
token, even if you're typing a comment.

Editor | Command

Vi Ctrl-p

Emacs Meta-/ (hil ESC, then /)
Eclipse Alt-/

Intelli) IDEA | Alt-/

TextMate ESC

Acronyms and Abbreviations

Programmers sometimes resort to acronyms and abbreviations to keep their names small—for
example, naming a class BEManager instead of BackEndManager. Is this shrinkage worth the
potential confusion?

PACKING INFORMATION INTO NAMES 19

In our experience, project-specitic abbreviations are usually a bad idea. They appear cryptic
and intimidating to those new to the project. Given enough time, they even start to appear

cryptic and intimidating to the authors.

So our rule of thumb is: would a new teammate understand what the name means? If
50, then it’s probably okay.

For example, it’s fairly common for programmers to use eval instead of evaluation, doc instead
of document, str instead of string. So a new teammate secing FormatStr() will probably
understand what that means. However, he or she probably won’t understand what a

BEManager is.

Throwing Out Unneeded Words

Sometimes words inside a name can be removed without losing any information at all. For
instance, instead of ConvertToString(), the name ToString() is smaller and doesn’t lose any real

information. Similarly, instead of DoServeloop(), the name Serveloop() is just as clear.

Use Name Formatting to Convey Meaning

The way you use underscores, dashes, and capitalization can also pack more information in a
name. For example, here is some C++ code that follows the formatting conventions used for
Google open source projects:

static const int kMaxOpenFiles = 100;

class LogReader {
public:
void OpenFile(string local file);

private:
int offset_;
DISALLOW COPY AND ASSIGN(LogReader);
b
Having different formats for different entities is like a form of syntax highlighting—it helps you

read the code more easily.

Most of the formatting in this example is pretty common—using CamelCase for class names, and
using lower_separated for variable names. But some of the other conventions may have
surprised you.

For instance, constant values are of the form kConstantName instead of CONSTANT _NAME. This style
has the benefit of being easily distinguished from #define macros, which are MACRO_NAME by

convention.

Class member variables are like normal variables, but must end with an underscore, like

offset_. At lirst, this convention may seem strange, but being able to instantly distinguish

20 CHAPTER TWO

members from other variables is very handy. For instance, if you're glancing through the code

of a large method, and see the line:

stats.clear();

you might ordinarily wonder, Does stats belong to this class? Is this code changing the internal state
of the class? If the member_ convention is used, you can quickly conclude, No, stats must be a local

variable. Otherwise it would be named stats_.

Other Formatting Conventions

Depending on the context of your project or language, there may be other formatting

conventions you can use to make names contain more information.

For instance, in JavaScript: The Good Parts (Douglas Crockford, O’Reilly, 2008), the author
suggests that “constructors” (functions intended to be called with new) should be capitalized
and that ordinary functions should start with a lowercase letter:

var x = new DatePicker(); // DatePicker() is a "constructor" function
var y = pageHeight(); // pageHeight() is an ordinary function

Here’s another JavaScript example: when calling the jQuery library function (whose name is
the single character $), a useful convention is to prefix jQuery results with $ as well:

var $all_images = $("img"); // $all images is a jQuery object
var height = 250; // height is not

Throughout the code, it will be clear that $all_images is a jQuery result object.

Here’s a final example, this time about HTML/CSS: when giving an HTML tag an id or class
attribute, both underscores and dashes are valid characters to use in the value. One possible
convention is to use underscores to separate words in IDs and dashes to separate words in

classes:

<div id="middle_column" class="main-content"> ...

Whether you decide to use conventions like these is up to you and your team. But whichever

system you use, be consistent across your project.

Summary

The single theme for this chapter is: pack information into your names. By this, we mean
that the reader can extract a lot of information just from reading the name.

Here are some specific tips we covered:

* Use specific words—{for example, instead of Get, words like Fetch or Download might be

better, depending on the context.

* Avoid generic names like tmp and retval, unless there’s a specific reason to use them.

PACKING INFORMATION INTO NAMES 21

Symbols

4xx HTTP response codes, 144
5xx HTTP response codes, 144
?: conditional expression, 73-74

A

abbreviations, names using, 19
abstract names, vs. concrete, 1315
acronyms, names with, 19
aesthetics, 34—43
breaking code into paragraphs, 41-42
column alignment, 38-39
declarations organized into blocks, 40-41
importance of, 35
line breaks for consistency and compactness,
35-37
methods to clean up irregularity, 37-38
order of code, 39-40
personal style vs. consistency, 42
vs. design, 34
Ajax, submitting data to server with, 112
alert() (JavaScript), 112
ambiguous names, 24
ambiguous pronouns, comments with, 60
anonymous functions, 80
arguments
assignment by name, 63
order in conditionals, 70
arrays, JavaScript function to remove value from,
95
assert() method, 154-155
assertEqual() method (Python), 155
assignment, inside if statement, 71
attributes, encoding in names, 16-17
authorization of web page user, PHP for, 132

Beck, Kent, Smalltalk Best Practice Patterns, 119

INDEX

begin and end, inclusive/exclusive ranges using,
26-27
big picture comments, 55
block scope, 100
blocks of code, declarations organized into, 40-41
Booleans
names for, 27
rewriting expressions, 85
Boost C++ library, 154
bottom-up programming, 114
Brechner, Eric, 96
bucketing events in small time window, 174-178
bugs
comments and, 50
off-by-one, 25

C

C programming language, variable definitions
location, 101-102
Cit, structured idiom for cleanup code, 76
C++
block scope, 100
code for reading file, 112
if statement scope in, 98
inline comment for named function parameter,
64
macros, 90
simplifying expressions, 90
Standard Library, 28
structured idiom for cleanup code, 76
cache, adding, 141
capitalization, names with, 20
Cipher class {Python), 117
class interface, for minute/hour counter, 166—169
class member variables, 97
class member, restricting access to, 98
classes
inter-class complexity from multiple, 179
names of, 8
cleanup code, structured idiom, 76

We'd like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

185

clever code, contfusion from, 86
Clip() function, 24
closure in JavaScript, 99
code, viii, 150
(see also test code)
eliminating duplicate, 38
isolating regions of, 129
less vs. more, 3
multiple tasks vs. single, 122-130
qualities of good, 2
redundant, 170
removing unused, 143
test-friendly development, 160
turning thoughts into, 132-138
understandable, 2
writing less, 140-145
codebases
directory for general-purpose code, 114
keeping small, 142
column alignment, 38-39
command-line flag, name for, 14
comments, 3, 46-57, 60-65
ambiguous pronouns in, 60
big picture, 54
code flaw descriptions, 50-51
compactness, 60
constants explained, 51
function behavior description, 61
information-dense words in, 64
input/output examples to illustrate corner
cases, 61-62
insights about code in, 50
intent statement for code, 62—63
lining up, 36-37
minute/hour counter improvements, 167-169
named function parameter, 63—64
names and, 49
preciseness, 60, 61
purpose of, 46
reader’s perspective for, 51
summary, 42, 55
what, why, or how, 56
when not to use, 47-49
writer’s block, 56
complex idea, ability to explain, 132
complexity, 142
complicated logic, breaking down, 86-88
concrete names, vs. abstract, 13-15
conditional expression (?:), 73-74
conditionals, order of arguments, 70
consistent layout, 34
line breaks for, 35=37
personal style vs., 42
constants, 103
comments to explain, 51

186 INDEX

constructors, formarting names, 21

continue statement, 75

control flow, 70-81
?: conditional expression, 73-74
early return from function, 75-76
eliminating variables, 96
following flow of execution, 80
goto statement, 76
nesting, 77-79

ConveyorQueue interface, 176
implementing, 178

cookies in JavaScript, 116

copy constructor, default, 13

corner cases, input/output comment examples to

illustrate, 61-62
crutch comments, 49

dashes, names with, 20
database tables, program to join, 134-137
De Morgan's laws, 85
declarations, organized into blocks, 40-41
defragmenting code, 122
deleting unused code, 143
design, vs. aesthetics, 34
development time, sweet spot for, 162
dictionary in Python, 144

sensitive information in, 117
DISALLOW_COPY_AND_ASSIGN macro, 14
DISALLOW_EVIL_CONSTRUCTOR macro, 13
do-while loops, avoiding, 74-75
DRY (Don't Repeat Yourself) principle, 89
duplicated code, eliminating, 38

Eclipse, word-completion command, 19
Emacs, word-completion command, 19
end, inclusive/exclusive ranges using, 26-27
error ITlESSElgES
hand-crafted, 155-156
readability, 154-156
exceptions, 80
execution flow, following, 80
expectations of users, matching, 27-28
explaining variables, 84
expressions
breaking down, 84-91
complicated logic in, 86-88
one-line vs. multiple lines, 3
short-circuit logic abuse, 86
simplilying, 90
external components
testing issues, 161
extracting, 110

(see also subproblems code extraction)
values from object, 124-128

F

false, 27
features, decision not to implement, 140
file contents, reading, 112
Filter() function, 24
findClosestLocation() example, 110-111
first and last, inclusive ranges using, 26
FIXME: marker, 50
flow of execution, following, 80
for loops, 170, 171
removing nesting inside, 78-79
formatting names, meaning from, 20-21
format_pretty() tunction, 113
Fowler, Martin, Refactoring: Improving the Design
of Existing Code, 119
function pointers, 80
functionality, project-specilic, 115
functions
anonymous, 80
comments for behavior description, 61
early return from, 75-76, 78
extracting code into separate, 110-118
names of, 8
wrapper, 116
fundamental theory of readability, 3

G

general-purpose code, 112-114
creating, 114
generic names, 10-12
get*() methods, user expectations for, 27
global scope, JavaScript, 100
global variables
avoiding, 97
testability, 161
Google
DISALLOW_EVIL_CONSTRUCTOR macro, 14
formatting conventions for open-source
projects, 20-21
Gosling, James, 104
goto statement, 76

H

HACK: marker, 50
helper methods, 37, 130
names in test code, 159
ShittOldEvents() in minute/hour counter, 173
test code clean-up with, 151
high-level comments, 55
HTML tags, id or class attribute names, 21
HttpDownload object, 128

Hungarian notation, 17

1

if statement
assignment inside, 71
handling separate, 127-128
name of index for, 12
order of arguments, 70
scope in C++, 98
if/else blocks, order of, 72=73
immutable data types, 104
implementing features, decision not to, 140
inclusive ranges, first and last for, 26
inclusive/exclusive ranges, begin and end for, 26—
27
indices, names tor, 12
information-dense words, comments with, 64
inline comments, named function parameters in,
64
input values, choosing good for test, 156-158
input/output comment examples, to illustrate
corner cases, 61-62
IntelliJ IDEA, word-completion command, 19
interface
reshaping, 117
simplifying existing, 116
intermediate result variable, eliminating, 95, 101,
105
isolating regions of code, 129

)

Java
block scope, 100-101
inline comment for named function parameter,
64
structured idiom for cleanup code, 76
JavaScript
alert(), 112
cookies, 116
findClosestLocation() example, 110-111
formatting names, 21
function to remove value from array, 95
global scope, 100
no nested scope, 100-101
or operator, 86
private variables in, 99
jQuery JavaScript library, 133
jQuery library function, formatting names, 21

L

last, inclusive ranges using, 26
libraries, 116
knowledge of, 133-134, 143-144
regular expressions, 153

INDEX 187

limits, names for, 25

line breaks in code, 35-37

lines of code, minimizing, vs. time requirements,

73

list::size () method, user expectations for, 28

lists in Python, 144

logic
breaking down complicated, 86-88
clear description, 132

loop iterators, 12

loops, removing nesting inside, 78-79

macros (C++), 90
matching database rows, Python code to find, 135
137
max, for inclusive limits, 25
memory leaks, 14
memory requirements, 174
mental baggage, 67
messy code, comment for, 50
min, for inclusive limits, 25
minilanguages, implementing custom, 152-153
minute/hour counter, 166180
class interface, 166-169
comments, 167-169
comparing solutions, 179
conveyor belt design, 171-174
naive solution, 169-171
performance problems, 171
time-bucketed design, 174-178
TrailingBucketCounter implementation, 176-
177

named function parameter comments, 63-64
names
acronyms or abbreviations in, 19
avoiding misunderstanding, 24-31
Booleans, 27
comments and, 49
concrete vs. abstract, 13-15
encoding attributes, 16—17
evaluating multiple candidates, 29-31
formatting for meaning, 20-21
generic, 10-12
information in, 8, 16-17
length of, 18-20
limits, 25
loop iterator options, 12
measurement units in, 16
MinuteHourCounter class improvements, 167
Python argument assignment by, 63
specilicity of words and, 8-10

188 INDEX

for test functions, 158-159
negative case in if/else, vs. positive, 72-73
nesting, 77-79

accumulating, 77

removing by early return, 78

removing inside loops, 78-79
nondeterministic behavior, 161

o

oft-by-one bug, 25

OpenBSD operating system, Wizard mode, 29
or operator, 86

order of code, 39-40

P

paragraphs, breaking code into, 41-42
performance, vs. precision, 174
personal style vs. consistency, 42
perspective of others, 169
PHP
reading file contents, 112
user authorization for web page, 132
pitfalls, anticipating with comments, 53-54
plain English
code explanation in, 132
test description in, 152
plaintext, indicator in names, 17
positive case in if/else, vs. negative, 72-73
precision, vs. performance, 174
printf(), 153
private variables, in JavaScript, 99
problems
anticipating with comments, 53-54
in test code, 150
product development, testing as limitation, 162
project-specilic functionality, 115
prototype inheritance pattern, evaluating names
for, 29-31
purpose of entity, name choices and, 10-12, 10
Python
argument assignment by name, 63
assert statement, 155
code to find matching database rows, 135-137
dictionary with sensitive user information, 117
lists and sets, 144
no nested scope, 100
or operator, 86
reading file contents, 112
structured idiom for cleanup code, 76
unittest module and test method names, 159

Q

questions, anticipating with comments, 52

ranges
inclusive, first and last for, 26
inclusive/exclusive, begin and end for, 26-27
readability
error messages and, 154-156
fundamental theory of, 3
test code and, 150-153
variables and, 94-106
reading file contents, 112
redundancy check, comment as, 63
redundant code, 170
Refactoring: Improving the Design of Existing Code
(Fowler), 119
regular expressions
libraries, 153
precompiling, 115
removing unused code, 143
requirements, questions and breakdown, 140-141
return value, name for, 10
returning early from function, 75-76
removing nesting by, 78
reverse iterator, 171
Ruby, or operator, 86
--run locally command-line flag, 14-15

S

scope
global, in JavaScript, 100
if statement in C++, 98
name length and, 18
of variables, shrinking, 97-102

security bug, names and, 17

sets in Python, 144

ShiftOldEvents() method, 173

short-circuit logic abuse, 86

signal/interrupt handlers, 80

silhouette of code, 36

Smalltalk Best Practice Patterns (Beck), 119

speciticity of words, name selection and, 8-10

statements, breaking down, 89

static methods, 98

statistics, incrementing, 128-130

stock purchases, recording, 134-137

store locator for business, 140-141

Stroustrup, Bjarne, 75

subproblems code extraction, 110-118
findClosestLocation() example, 110-111
general-purpose code, 112-114
project-specific functionality, 115
simplifying existing interface, 116
taking things too far, 117
utility code, 111-112

summary comments, 42, 55

summary variables, 84-85, 89
“surface-level” improvements, 5

T

tasks
extracting values from object, 124-128
multiple vs. single, 122-130
size of, 123-124
UpdateCounts() function example, 128-130
temporary variables, 94
ternary operator, 73-74
test code
creating minimal statement, 152
helper method names in, 159
locating problems in, 150
readability, 150-153
Test-Driven Development (TDD), 160
testing, 150-163
CheckScoresBeforeAfter() function for, 153
choosing good input values, 156-158
code development and, 160
going too far, 162
and good design, 161
identitying problems in, 159-160
large inputs for, 157
multiple tests of functionality, 158
names for test functions, 158-159
website changes, 29
text editors, word-completion command, 19
TextMate, word-completion command, 19
threading, 80
time, requirement for understanding code, 3
time-sensitive systems, 176
tmp variable, alternative, 11
TODO: marker, 50
top-down programming, 114
TrailingBucketCounter class, 176-177
true, 27
typo, column alignment to find, 39

U

underscores, names with, 20

Unix tools, 144

UpdateCounts() function, 128-130

user authorization for web page, PHP for, 132

user information, Python dictionary with sensitive,
117

users, matching expectations, 27-28

utility code, extracting, 111-112

v

values, extracting from object, 124-128
var keyword (JavaScript), 100
variables

INDEX 189

class member, 97
eliminating, 94-96
eliminating intermediate results, 95, 101, 105
explaining, 84
global, testability, 161
impact on readability, 94-106
measurement units in name, 16
moving definitions down, 101-102
names of, 8
order of definitions, 39-40
private, in JavaScript, 99
shrinking scope, 97-102
summary, 84-85
swapping, name choices when, 11
temporary, 94
write-once, 103-104, 106
Vi, word-completion command, 19
virtual methods, 80

w

web pages, PHP for user authorization, 132
web server, tracking bytes transferred (see minute/
hour counter)
websites, experiments to test change, 29
while loops
order of arguments, 70
vs. do-while loops, 75
word-completion command, long names and, 19
wrapper functions, 116
write-once variables, 103-104, 106
writer’s block, comments and, 56

X

XXX: marker, 50

190 INDEX

