THE BEAUTY OF
MATHEMATICS IN COMPUTER
SCIENCE

A Chapman & Hall Book CRC Press

—_7



CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed on acid-free paper

International Standard Book Number-13: 978-1-138-04960-4 (Paperback)
978-1-138-04967-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources.
Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from
the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance
Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-
for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of
payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered
trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Wu, Jun, 1967- author.

Title: The beauty of mathematics in computer science / Jun Wu.
Description: Boca Raton, FL : Taylor & Francis Group, 2019.

Identifiers: LCCN 2018035719| ISBN 9781138049604 paperback | ISBN
9781138049673 hardback

Subjects: LCSH: Computer science--Mathematics. | Machine learning.
Classification: LCC QA76.9.M35 W84 2019 | DDC 004.01/51--dc23

LC record available at https://lccn.loc.gov/2018035719

Visit the Taylor & Francis Web site at



Contents

Foreword
Preface

Acknowledgments

1 Words and languages, numbers and information
Informati
1.2 Words and numbers
1.3 The mathematics behind language
1.4 Summary

2 Natural language processing—From rules to statistics

2.1 Machine intelligence

2.3  Summary

3 Statistical language model

3.1 Describing language through mathematics
3.2 Extended reading: Implementation caveats
3.2.1 Higher order language models
3.2.2 Training methods, zero-probability problems, and
smoothing
3.2.3 Corpus selection
3.3 Summary
Bibliography

4 Word segmentation

4.1 Evolution of Chinese word segmentation
4.2 Extended reading: Evaluating results
4.2.1 Consistency
4.2.2 Granularity
4.3 Summary
Bibliography




Hidden Markov model

E : ! I I . | h ’.JI |

5.3 Extended reading: HMM training
5.4 Summary

Bibliography

Quantifying information

6.1 Information entropy

6.3 Mutual information

6.4 Extended reading: Relative entropy
6.5 Summary

Bibliography

Jelinek and modern language processing

7.1 Early life
7.2 From Watergate to Monica Lewinsky
7.3 _An old man’s miracle

Boolean algebra and search engines

8.1 Boolean algebra
8.2 Indexing
8.3 Summary

Graph theory and web crawlers

9.1 Graph theory

9.3 Extended reading: Two topics in graph theory
9.3.1 Euler’s proof of the Kénigsberg bridges
9.3.2 The engineering of a web crawler

9.4 Summary

PageRank: Google’s democratic ranking technology

10.1 The PageRank algorithm

10.2 Extended reading: PageRank calculations
10.3  Summary

Bibliography

Relevance in web search

11.1  TF-IDF
11.2  Extended reading: TF-IDF and information theory



16

17

11.3  Summary

Bibliography

Finite state machines and dynamic programming:
Navigation in Google Maps

12.1 Address analysis and finite state machines
12.2  Global navigation and dynamic programming
12.3 Finite state transducer

12.4  Summary

Bibliography

Google’s AK-47 designer, Dr. Amit Singhal

Cosi 1 1 ficati
14.1  Feature vectors for news
14.3 Extended reading: The art of computing cosines
14.3.1 Cosines in big data
14.3.2 Positional weighting
14.4 Summary
Solving classification problems in text processing with

matrices
15.1  Matrices of words and texts
15.2 Extended reading: Singular value decomposition method and

applications
15.3 Summary
Bibliography

Information fingerprinting and its application

16.1 Information fingerprint
16.2 Applications of information fingerprint
16.2.1 Determining identical sets

16.2.2 Detecting similar sets
16.2.3  YouTube’s anti-piracy
16.3 Extended reading: Information fingerprint’s repeatability and

SimHash
16.3.1 Probability of repeated information fingerprint
16.3.2 SimHash

16.4 Summary

Bibliography

Thoughts inspired by the Chinese TV series Plot: The



19

23

24

mathematical principles of cryptography

17.1 The spontaneous era of cryptography
17.2 Cryptography in the information age
17.3 Summary

Not all that glitters is gold: Search engine’s anti-SPAM
problem and search result authoritativeness question

18.1 Search engine anti-SPAM

18.3  Summary

Discussion on the importance of mathematical models

Don’t put all your eggs in one basket: The principle of
maximum entropy

20.1 Principle of maximum entropy and maximum entropy model
20.2 Extended reading: Maximum entropy model training

20.3 Summary

Bibliography

Mathematical principles of Chinese input method editors

21.1 Input method and coding
21.2 How many keystrokes to type a Chinese character? Discussion

21.3 The algorithm of phonetic transcription
21.4 Extended reading: Personalized language models
21.5 Summary

Bloom filters

22.1 The principle of Bloom filters
22.2 Extended reading: The false alarm problem of Bloom filters
22.3 Summary

Bayesian network: Extension of Markov Chain

23.1 Bayesian network

23.2 Bayesian network application in word classification
23.3 Extended reading: Training a Bayesian network
23.4 Summary

Conditional random fields, syntactic parsing, and more

24.1 Syntactic parsing—the evolution of computer algorithms
24.2 Conditional random fields



25

26

27

28

24.3 Conditional random field applications in other fields
24.4 Summary

Andrew Viterbi and the Viterbi algorithm

25.1 The Viterbi algorithm

25.2 CDMA technology: The foundation of 3G mobile
communication

25.3 Summary

God’s algorithm: The expectation-maximization algorithm

26.1 Self-converged document classification

26.2 Extended reading: Convergence of expectation- maximization
algorithms
26.3 Summary

Logistic regression and web search advertisement

27.1 The evaluation of web search advertisement
27.2 The logistic model
27.3 Summary

Google Brain and artificial neural networks

28.1 Artificial neural network
28.2 Training an artificial neural network

28.3 The relationship between artificial neural networks and
Bayesian networks
28.4 Extended reading: “Google Brain”

28.5 Summary
Bibliography

The power of big data

29.1 The importance of data
29.2 Statistics and information technology
29.3 Why we need big data

29.4 Summary
Bibliography

Postscript

Index



Foreword

A few years ago, I wrote the forewords for Dr. Jun Wu’s Chinese editions of
On Top of Tides and The Beauty of Mathematics. Since, I'm happy to learn
that The Beauty of Mathematics was awarded the prestigious Wenjin Prize.

The Beauty of Mathematics in Computer Science, with its new name in
the English edition, originates from a series of Google China blog articles by
Google’s senior staff research scientist, Jun Wu. Initially, the blog’s editors
were afraid that the subject matter would bore readers—that it was too
abstract and esoteric. That fear was quickly dispelled. Through vivid and
compelling language, The DBeauty of Mathematics in Computer Science
connects the history of mathematics to the emergence of its practical
applications. Wu systematically introduces the reader to important
mathematical bases from which modern science and technology arise.
Complex ideas are made accessible to a wide audience, especially those
interested in science and technology.

As I wrote in the preface to On Top of Tides, Wu is one of a rare kind,
with both strong narrative abilities and deep insight into the development of
modern technology. Among the researchers and engineers I know, Wu stands
in a unique position to share effectively his knowledge with the general
public. In The Beauty of Mathematics in Computer Science, Wu proves this
point once again. From years of accumulated knowledge, Wu excels in his
grasp of mathematics and information processing, introduced here as
professional disciplines ranging from speech recognition and natural language
processing to information search. From the origins of digital computing, to
the mathematics behind search engines, and clever mathematical
applications to search, Wu brings the essence of mathematics to life. In his
writing, mathematics is not a bag of boring, abstruse symbols; rather, it
drives fascinating technologies in our everyday lives. Indeed, through Wu’s
tale, the reader will inevitably discover the hidden beauty of mathematics.

Galileo once said that “mathematics is the language with which God has
written the universe.” Along the same line of thought, Einstein wrote, in an
obituary to Amalie Emmy Noether:

Pure mathematics is, in its way, the poetry of logical ideas ... In this
effort toward logical beauty spiritual formulas are discovered necessary
for the deeper penetration into the laws of nature.



From years of personal study in information processing and speech
recognition, I deeply appreciate the fundamental role mathematics plays in
all fields of science.

In the fifth century AD, Greek philosopher Proclus Diadochus quipped
that “wherever there is number, there is beauty.” Today, I sincerely
recommend The Beauty of Mathematics in Computer Science to any friend
interested in the natural sciences, scientific research, or life in general.
Whether you study liberal arts or engineering, Wu’'s exposition on
mathematics will help you appreciate the elegance and sublimity of our
universe. The value of this book lies in both the author’s familiarity with the
subject matter and his active role in developing such technologies as a
career. Wu not only explains why simple mathematical models can solve
complex engineering problems, but also reveals the thought processes behind
his colleagues’ and his own work. Without experience in application, most
scholars of pure mathematics cannot achieve the latter point.

From the original Google China blog articles to the publication of The
Beauty of Mathematics in Computer Science, Wu has spent much time and
effort on this book. During his spare time from work, he rigorously rewrote
most of the articles, so that an ordinary reader could understand and enjoy
the material, but an expert would still learn much from its depth. Since the
first version, Wu has encapsulated two more years of research at Google into
two new chapters. In this edition, I hope that the reader will further
appreciate the beauty of mathematics.

Sometimes, I find that today’s world is under a lot of pressure to be
practical, and in the process, has lost some of its curiosity about the natural
world. In this respect, Wu’s book is an excellent remedy. I verv much hope
that in the future, Wu will continue to write such books, elucidating complex
ideas in simple terms. These ideas are the best gifts he could bestow upon
society and the younger generation.

Kai-Fu Lee



Preface

The word “mathematics” stems from the Greek word, pya Onua, which means
“wisdom gained from learning.” In that sense, early mathematics
encompassed a wider field of study and related more closely to people’s
everyday lives.

Early mathematics was less mysterious and more practical. Like any field,
mathematics undergoes constant change, becoming deeper and more
theoretical in the process. In fact, the evolution of mathematics corresponds
to the constant abstraction of concrete experiences and their effects on our
lives. Today, several millennia have stripped mathematics down to numbers,
symbols, equations, and theorems—quite detached from our everyday lives.
People might use arithmetic to calculate the amount to tip at a restaurant,
but beyond those basics, many see little value in mathematics, especially
pure mathematics. After graduation, most college students will never
encounter advanced mathematics again, so after a few years, they forget
most of what they have learned. As such, many question the point of
learning mathematics in the first place.

Even worse, many mathematicians have difficulty making a living from
pure mathematics, both in the United States and China. A common
stereotype portrays all mathematicians as hopeless “nerds,” with thick-
rimmed glasses and poor social skills. To the layperson, why doom yourself
to the socially unattractive label of “mathematician”” Thus, neither the
abstruse numbers and symbols, nor the peculiar folk who study them, evoke
common signs of beauty.

On the contrary, mathematics is far more prevalent in our lives than we
may think. Initially, we might consider only scientists as direct consumers of
mathematics—that is, of course studying atomic energies or aerodynamics
would require mathematical knowledge! If we look deeper, though,
technologies we use every day are all constructed from mathematical
building blocks. When you ask Siri for today’s weather, mathematical gears
whir into action. As a researcher for over twenty years, I have often
marveled at the ways mathematics can be applied to practical problems,
which are solved in a way I can only describe as magic. Therefore, I hope to
share some of this magic with you.

In ancient times, the most important skill people developed. besides
knowledge of the natural world, was to exchange ideas, or broadly, to



communicate. Accordingly, T have selected communication as the starting
point of this book. Communication is an excellent field to illustrate the
beauty of mathematics, for not only does it abundantly adopt mathematics
as a tool, but it also ties closely to our everyday lives.

Since the Industrial Revolution, communication has occupied a large
percentage of time in people’s lives. Moreover, after the advent of electricity,
communication has both closed the distance between people and accelerated
the world’s economic growth. Today, it is commonplace to spend copious
amounts of time lounging in front of a TV or watching Netflix, browsing the
latest social media or posting photos from a smart phone. These are all
offshoots of modern communication. Even activities that traditionally
involved physically traveling somewhere, like shopping, have been overtaken
by e-commerce sites—again, modern communication technologies. From
century-old inventions, like Morse’s telegraph and Bell’s phone, to today’s
mobile phones and Internet, all modern implementations of communication
have adhered to information theory principles, which are rooted in
mathematics. If we search further back, even the development of language
and writing were based on mathematical foundations.

Consider some of our everyday technologies: omnipotent web search,
locating the tastiest restaurants and your local DMV speech recognition on
a smart phone, setting a reminder for laundry; or even online translation
services, preferably not for your child’s foreign language homework. To an
everyday user, it is not immediately evident that mathematics drives all
these seemingly magical features. Upon further inspection, however, these
diverse applications can all be described by simple mathematical models.
When engineers find the appropriate mathematical tool for some hairy
problem, they will often bask in the elegance of their solution. For instance,
although there are hundreds of human languages, from English to Swahili,
the underlying mathematical models for translating them are the same, or
nearly so. In this simplicity lies beauty. This book will introduce some of
these models and demonstrate how they process information, especially to
bring about the technological products we use today.

There is often an aura of mystery about mathematics, but its essence is
uncomplicated and straightforward. English philosopher, Francis Bacon, once
quipped, “Virtue is like a rich stone, best plain set.” Mathematics is precisely
this type of virtue. Thus throughout this book, I will attempt to portray that
simplicity is beauty.

Finally, I provide a brief explanation for the book’s extensive treatment of
natural language processing ideas and in particular, its experts. These world-
class scholars hail from a diverse set of nationalities or backgrounds, but
they share a common love for mathematics and apply its methods towards
practical problems. By recounting their lives and daily work, I hope the
reader can better understand these individuals—understand their



ordinariness and excellence; grasp their reasons for success; and most of all,
sense that those who discover the beauty in mathematics live more fulfilling
lives.

Jun Wu
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Chapter 1

Words and languages, numbers
and information

Words and numbers are close kin; both building blocks of information, they
are as intricately linked as elements of nature. Language and mathematics
are thereby connected by their shared purpose of recording and transmitting
information. However, people only realized this commonality after Claude E.
Shannon proposed the field of information theory, seven decades ago.

Since ancient times, the development of mathematics has been closely tied
to the ever-growing human understanding of the world. Many fields—
including astronomy, engineering, economics, physics, and even biology—
depended on mathematics, and in turn, provided new grounds for
mathematics to advance. In the past, however, it was quite unheard of for
linguistics to draw from mathematics, or vice versa. Many famous
mathematicians were also physicists or astronomers, but very few were also
linguists. Until recently, the two fields appeared incompatible.

Most of this book tells the story of the past half century or so, but in this
chapter, we will venture back to ancient history, when writing and numbers
were first invented.

1.1 Information

Before our Homo sapiens ancestors developed technologies or started
looking like modern humans, they could convey information to each other.
Just as zoo animals make unintelligible animal noises, early humans made
unintelligible “human” sounds. Initially, maybe the sounds had little meaning
beyond exercising available muscles, but gradually, they began to carry
messages. For example, some series of grunts may signify, “there’s a bear!”.
To which a companion may grunt “yuh” in acknowledgment, or another
series of sounds that signify, “let’s go pelt it with rocks.” See Figures 1.1 and
1.2.



FIGURE 1.1: Earliest forms of communication for humankind

] , “yuh” | _ confirm | _
information - information : information
encoding decoding

speaker (source) channel receiver

FIGURE 1.2: Same communication model beneath primordial grunts and
modern information transfer.

In principle, there is little difference between these primordial grunts and
the latest methods of information transmission, reception, and response. We
will fill in the details of communication models in later chapters, but note
here that simple models capture both ancient and modern communication.

Early humans did not understand enough about the world to communicate
much, so they had no need for language or numbers. However, as humankind
progressed and civilization developed, there was a growing need to express
more and more information. A few simple noises could no longer fulfill
humans’ communication needs, and thus language was invented. Stories of
daily life, which can be considered a specific type of data, were actually the
most valuable artifacts from that time. Transmitted through oral tradition,
these stories were passed down the generations, through each cycle of
offspring. When humans began to accumulate material goods or food
surpluses, the concepts of “more” and “less” emerged. In these days, counting
had not yet been invented, since there was no need to count.

1.2 Words and numbers

Our ancestors quickly learned more about their world, and their language
became richer, more abstract in the process. Elements that were often



described, including objects, numbers, and actions, were abstracted into
words of their own, precursors to the vast vocabularies of today. When
language and vocabulary grew to a certain size, they could no longer fit
inside a single human brain—just as no one today can remember all the
wisdom of mankind. A need for efficient recording of information arose, and
its solution was writing.

Archeologists today can verify when writing (including numbers) first
appeared. Many readers of On Top of Tides have asked me why that book
primarily discusses companies in the United States. The reason is simple: the
past hundred years of technological revolutions have been set almost
completely there. Likewise, to study the information revolutions of 5,000 to
10,000 years ago, we must return to the continent of Africa, where our
human ancestors first walked out, the cradle of human civilization.

A few thousand years before the oldest (discovered) Chinese oracle bones
were carved, the Nile River Valley was already nurturing an advanced
civilization. Ancient Egyptians were not only excellent farmers and
architects, but they were also the earliest inventors of ideographs.® These
were the famed hieroglyphics. Ancient Egyptian left many hieroglyphical
scrolls describing their lives and religions. One of the most famous
hieroglyphical scrolls is “Book of the Dead (Papyrus of Ani.)”, which resides
permanently in the British Museum. The scroll consists of over 20 meters of
painted papyrus, with over 60 paintings and pictographs. This cultural relic
portrays an all-encompassing record of Egyptian civilization, 3,300-3,400 ago.

In early days of Egyptian civilization, the number of existing hieroglyphics
corresponded directly to the amount of information to be documented. The
earliest engravings of hieroglyphics, dating back to the 32nd century BC,
utilized only around 500 characters. By the fifth century BC (the classical
Greco-Roman era), this number had increased 5,000 characters,
approximately the number of commonly used Chinese characters. However,
as civilization continued to develop, the number of hieroglyphics did not
increase with the production of information. There is a finite limit to the
number of characters any one person can remember, so instead of inventing
more characters, ancient civilizations began to generalize and categorize
concepts. For example, the ancient Chinese ideograph for “day” represented
both the sun itself, as well as the time between sunrise and sunset. In ancient
Egyptian hieroglyphics, a single symbol could also convey multiple meanings.

This idea of clustering ideas into single characters is similar to today’s
concept of “clustering” in natural language processing or machine learning.
Ancient Egyptians required thousands of years to consolidate multiple
meanings into a single word. Today, computers may take several hours, or
even minutes, to accomplish the same task.

When a single word can take on many meanings, ambiguities inevitably
emerge. Given different environments, a word can dance from one meaning



to another. Disambiguation, or determining the specific meaning, has not
changed from traditional linguists to modern computers: we must examine
the context. In most cases, the context will tell us the answer, but of course,
there are always outliers. Consider your favorite religious text. Many
scholars, students, or other theologians have expounded on these texts, but
there exists no interpretation without controversy. Each scholar will use his
or her own understanding to eliminate ambiguity, but none have flawlessly
succeeded thus far, otherwise many a bloody war would have been averted.
Thus is the inconclusive nature of human language. In our case, the situation
is similar. Even the most successful probabilistic models will fail at some
point.

After the advent of writing, lifetimes of experience could be handed down
from generation to generation. As long as a civilization is not exterminated,
and there exist those who understand its language, this information can
persist forever. Such is the case of the Chinese or, with a stretch, the
Egyptians. Certainly, it is more difficult to unlock ancient records without
living knowledge of the language, but it is not impossible.

Isolated civilizations, whether due to geographic, cultural, or historical
reasons, adopted different languages. As civilizations grew, however, and the
earth refused to expand, they came into contact, peaceful or otherwise.
These interactions spawned a need for communication and with that,
translation.

Translation itself is only possible because despite differences among
languages, the underlying information is of the same type. Furthermore,
language is only a carrier of information, not the information itself. With
these two observations in mind, you might wonder, if we abstract out
“language” and replace it with another medium, such as numbers, can we still
encode the same information? Why yes, this is the basis of modern
communication. If we are lucky, different civilizations might even
communicate the same information in the same language, in which case we
have a key to unlock their unknown secrets.

Around the seventh century BC, the Hellenic sphere of influence extended
to Egypt, whose culture was gradually impacted by the Greek. After the
Greeks (including Macedonians) and Romans became the rulers of Egypt,
the Egyptian language was eventually latinized. Hieroglyphics phased out of
usage, into the backstage of history. Only temple priests now learned the
pictographs, which served only for record keeping. In the fourth century AD,
emperor Diocletian eradicated all non-Christianity religions in Egypt, where
the knowledge of hieroglyphics ceased to be taught.

Not until 1400 years later, in 1798, did the meaning of hieroglyphics come
into light once more. When Napoleon led his expedition to Egypt, he
brought along hundreds of scholars. On a lucky day, lieutenant Pierre-
Francois Bouchard discovered an ancient Egyptian relic in a placed called



Rosetta (Figure 1.3). Atop were inscribed the same message in three
languages: ancient Egyptian hieroglyphics, Demotic script (ancient phonetic
Egyptian), and ancient Greek. Bouchard immediately realized the
importance of his discovery to cracking the hieroglyphic code, so he handed
the Rosetta Stone to accompanying scientist Jean-Joseph Marcel. Marcel
copied the writings and brought them back to France for further study. In
1801, France was defeated in Egypt, and the physical tablet transferred to
British hands, but Marcel’s prints were circulated through Europe. Twenty-
one years later in 1822, French linguist Jean-Francois Champollion finally
decoded the hieroglyphics on the Rosetta Stone. Here, we see that the carrier
of those writings, stone or paper, was unimportant. Instead, the writings
themselves, the information, were the key.

FIGURE 1.3: Rosetta Stone.

Rosetta Stone deciphered, the entire history of ancient Egypt, dating back
to the 32nd century BC, was suddenly at the disposal of historians and
linguists. Thanks to this trove of information, modern day historians know
much more about the Egyptians of five thousand years ago than the Mayans
of only one thousand years ago. The Egyptians recorded the most important
aspects of their lives in writing, so the information lives on. As a natural
language processing researcher, I extract two guiding principles from the
Rosetta Stone story.

First, redundancy vastly improves the chances that information can be
communicated or stored without corruption. The Rosetta Stone repeated the
same content three times, so if at least one version remains readable, the



stone is decipherable. Fortunately, 2,000 years ago, someone had the
foresight to copy Ptolemy’s imperial edict in three languages. This concept of
redundancy extends to information encoding across noisy channels (for
instance, wireless networks). Consider naively that we send the same
message twice. Then, it is more likely our recipient will receive at least one
of them.

Second, large amounts of bilingual or multilingual language data, known
as a corpus, are essential to translation. These data are the bases of machine
translation. In this aspect, we do not require more knowledge than
Champollion possessed, for the Rosetta Stone. We simply own more
computers and apply mathematical tools to speed up the process.

With Rosetta Stone’s importance in mind, we should not be surprised that
so many translation services and software are all named after Rosetta. These
services include Google’s own machine translation service, as well as the
best-selling (or at least much advertised) software for foreign languages,
Rosetta.

We have seen that the emergence of writing was induced by an ancient
“information revolution,” when people knew more than they could remember.
Similarly, the concept of numbers arose when people owned too many
possessions to keep track of otherwise. A famous American physicist, George
Gamow tells of such a primitive tribe in his book, “One, Two, Three...
Infinity.” The story goes that two tribal leaders were competing in who could
name the largest number. One chief thought for some time and named,
“three.” After considering for some time, the other chief admitted defeat.
Today, a nerdy middle school student might have named a googol, and the
second, a googol to the googol, but consider the times. In primitive tribes, all
objects were extremely scarce. Beyond three, the tribal chiefs knew only of
“many” or “uncountable.” By this reasoning, early humans could not have
developed a complete counting system.

When our ancestors developed a need for numbers beyond three, when
“five” and “eight” became distinguishable, counting systems were invented.
Numbers, naturally, are the bases of these counting systems. Like words,
numbers were born first in concept, then in writing. With ten convenient
fingers to count on, early humans set their numeric systems in base ten.
Without a doubt, if we all had twelve fingers instead of ten, we would
probably be counting in base twelve right now.

To remember numbers, early humans also carved out scratches on wood,
bone, or other portable objects. In the 1970s, archeologists unearthed several
baboon leg bones from the Lebombo Mountains, between Swaziland and
South Africa. These 42,000-year-old bones featured such scratches, and
scientists believe that they are the earliest evidence of counting.

Characters with numeric meaning appeared around the same time as
hieroglyphics, thousands of years ago. Nearly all ancient -civilizations



recorded “one,” “two,” and “three” in some form of line—horizontal like the
Chinese, vertical like the Romans, or wedge-shaped, like the Mesopotamians
(Figure 1.4). Early numbers simply recorded information, without any
abstract meaning.
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FIGURE 1.4: Cuneiform from ancient Mesopotamia.

Gradually, our ancestors accumulated so much wealth that ten fingers

have been to count on fingers and toes, but then what, grow another set of
appendages?

Our ancestors invented far more sophisticated methods, though of course,
there may have existed some extinct Eurasian tribe that did count on toes.
They developed the “carry method” in base ten. This system was a great leap
forward for mankind: for the first time, man had developed a form of
numeric encoding, where different symbols represented different amounts.

Nearly all civilizations adopted the base ten system, but did there exist
any civilizations who counted in base twenty—that is, took full advantage of
all ten toes before switching to the carry system? The ancient Mayans did
so. Their equivalent to our “century” was the sun cycle, 400 years long each.
In 2012, the Mayans’ last sun cycle ended, and in 2013, the cycle began
anew. This I learned from a Mayan culture professor, when I visited Mexico.
Somewhere along the way, 2012’s “end of the sun cycle” became synonymous
with “end of the world.” In perspective, imagine if the turn of each century
meant apocalypse for us! Of course, we digress.

Compared to the decimal system, a base twenty system comes with
nontrivial inconveniences. Even a child, without sophisticated language or
vocabulary, can memorize a times tables, up to 9 times 9 equals 81. In base
twenty, we would have to memorize a 19 by 19 table, equivalent to a Go
board you could say, with 19 times 19 equals 361 entries. Even in burgeoning
human civilizations, around 1 AD, no one but scholars would have the mind
to study such numbers. The base twenty numeric system, coupled with a



painfully difficult writing system, may have significantly slowed the
development of Mayan society. Within a single tribe, very few were fully
literate.

With respect to the different digits in base ten numbers, the Chinese and
the Romans developed distinct units of orders of magnitude. In the Chinese
language, there are words for ten, hundred, thousand, 104, 108, and 1012, In
contrast, the Romans denote 1 as I, 5 as V, 10 as X, 50 as L, 100 as C, 500
as D, and 1,000 as M, which is the maximum. These two representations
unknowingly captured elements of information encoding. First, different
characters represent different numerical concepts; and second, both imply an
algorithm for decoding. In ancient China, the rule of decoding was
multiplication. Two million is written as two hundred “ten-thousands,” or 2 x
100 x 10000. On the other hand, in ancient Rome the rules were addition and
subtraction. Smaller numbers to the left meant subtraction, as IV signifies 5
- 1 = 4. The same numbers to the right meant addition, as VI signifies 5 + 1
= 6. Unfortunately, the Roman numeric system does not scale well to large
numbers. If we wanted to express one million, we would need to write
MMMM... and cover up an entire wall (Figure 1.5). Later the Romans
invented M with a horizontal bar on top to represent “a thousand times a
thousand,” but to express one billion, we would still need to cover an entire
wall. Therefore, from an efficiency standpoint, the Chinese mathematicians
were more clever.



FIGURE 1.5: A Roman mathematician tried to write “one million” on the
board.

However, the most efficient numeric system came from ancient India,
where today’s universal “Arabic numerals” actually originated. This system
included the concept of “zero,” and it was more abstract (hence flexible) than
that of both the Romans and the Chinese. As a result, “Arabic numerals”
were popularized throughout Europe, which learned of them through Arabic
scholars. This system’s success lay not only in its simplicity, but also in its
separation of numbers and words. While a convenience for traders, this
detachment led to a divide between natural language and mathematics for
thousands of years.

1.3 The mathematics behind language

While language and mathematics grew farther apart as disciplines, their
internal similarities did not fade, unaffected by the growingly disparate
crowds who studied them. Natural language inevitably follows the principles
of information theory.

When mankind established its second civilization in the Fertile Crescent, a
new type of cuneiform letter was born. Archeologists first uncovered these
symbols on clay tablets, which looked esoterically similar to Egyptian
tablets, so they mistook these symbols for pictograms. Soon, however, they



realized that these wedge-shaped symbols were actually phonetic, where each
symbol stood for a different letter. These constituted the world’s earliest
phonetic language.™ The British Museum owns tens of thousands of these
slate and clay tablets, carved with cuneiform letters. These engravings, along
with Assyrian reliefs, are among the most valuable Babylonian relics.

This alphabetic language was developed by the Phoenicians and
introduced to the east coast of Syria, in the west of Mesopotamia.
Businessmen and traders, the Phoenicians preferred not to carve intricate
wedge letters, so they designed an alphabet of 22 symbols. This alphabet
spread with the Phoenicians’ business interests, reaching the Aegean islands
(including Crete) and the ancient Greeks. Upon reaching the Greeks, the
alphabet was transformed into a fully developed alphabet, with no more ties
to the Babylonian cuneiform script. Spelling and pronunciation were more
closely linked, and the Greek alphabet was easier to learn. In the next few
centuries, accompanying Macedonian and Roman conquests, these languages
with at most a few dozen characters were embraced by much of Eurasia.
Today, we refer to many Western phonetic languages as “Romance
languages” for the Romans’ role in linguistic dissemination.

Human language took a large leap from hieroglyphics to phonetic
languages. An object’s description transformed from its outward appearance
to an abstraction of its concept, while humans subconsciously encoded these
words as combinations of letters. Furthermore, our ancestors chose very
reasonable encodings for their languages. For the Romans, common words
were often short, and obscure words long. In writing, common words
required fewer strokes than uncommon ones. Although our ancestors did not
understand information theory, their ideas were fully compliant with the
principle of making an encoding as short as possible. The resulting advantage
is that writing saves time and material.

Before Cai Lun invented paper, writing was neither easy nor cheap. For
example, in the Eastern Han dynasty (around first century AD), text was
often inscribed on materials including turtle shell, stone, and bamboo. Since
the process was so arduous, every single character was treated as if written
with gold. Consequently, classical Chinese writing was painfully concise,
while contemporary spoken language was much more verbose and colloquial,
not much different from today’s Chinese. In fact, the Lingnan Hakka peoples
of southern China closely retain the ancient spoken language, with
vocabulary and mannerisms of the late Qing dynasty.

This concept of language compression aligns with basic ideas in
information theory. When a communication channel is wide, information can
be sent directly; but if a communication channel is narrow, then information
must be compressed as much as possible before delivery and recovered upon
receiving. In ancient times, two people could speak quickly (wide channel),
so no compression was needed. On the other hand, writing was slow and



expensive (narrow channel), so scholars must first distill daily vernacular
into exquisitely crafted poetry. Converting everyday speech into fine writing
was a form of compression, and interpreting classic Chinese today is a form
of decompression.

We also see this phenomenon in action when streaming video. Broadband
provides high bandwidth, so we can watch high-definition videos with sharp
resolution. Mobile data plans enforce heavy limits, and data is sent over
unreliable networks, so latency is much higher, and resolution is a few
magnitudes lower. Though a few thousand years ago there was no
information theory, classic Chinese writing adhered to its principles.

Around the time of the late Babylonians, two historical works were
produced: one Chinese, one Jewish. Chinese historian Sima Qian wrote a
530,000-word account of Chinese history in the classical style, and the
ancient Jews began documenting their history in the Middle East, under
Babylonian rule. This latter body of work consisted of Moses’ teachings, and
we refer to them collectively as the Torah. Its straightforward prose is
similar to Sima Qian’s writings, but unlike the Chinese manuscript, the
Torah was taken into the Bible, whose writing spanned many centuries.
Later scribes worked from manuscripts that were hundreds of years old
themselves, so copying errors were unavoidable. Scholars say that today,
only Oxford University owns an errorless copy of the ancient Bible.

Ancient Jewish scholars copied the Bible with utmost devotion and
propriety, washing their hands to pray before writing the words “God” or
“Lord.” However, copy errors would undeniably emerge, so the scholars
devised an error detection method, similar to that used in computers today.
They assigned each Hebrew letter to a number, so that every row and
column summed to a known value. After coping each page, a scholar would
verify that the sums on the new page were the same as those on the old or
conclude that he erred in the transcription. Each incorrect sum for a row (or
column) signified at least one error on that row, so errors could be easily
found and eliminated (see Figure 1.6). Like the ancient Hebrews, modern
computers also use the idea of checksums to determine whether data is valid
or corrupted.
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FIGURE 1.6: Ancient Jewish scholars check every row and sum to verify that
they copied the Bible correctly.

From ancient times to now, language has become more accurate and rich,
largely due to advances in grammar. I am not a historian of languages, but I
would guess that with high probability, grammar started taking shape in
ancient Greek. If we consider morphology (constructing words from letters)
as the encoding rules for words, then grammar captures the encoding and
decoding for languages. However, while we can enumerate all words in a
finite collection, the set of possible sentences is infinite. That is, a few tomes
worth of dictionary can list all the words in the English language, but no one
can compile all English writings ever to exist. Mathematically speaking,
while the former can be completely described by a finite set of rules
(trivially, we can enumerate all words), the latter cannot.

Every language has its niche usages that grammar rules do not cover, but
these exceptions (or “inaccuracies”) give language its color. Occasional
dogmatic linguists treat these exceptions as “sick sentences.” They spend
their lives trying to eliminate the linguistic disease and purify the language
through new grammar rules, but their work is futile. Take Shakespeare, for
instance. Classics now and popular in his time, Shakespeare’s works often
contained famous, yet ungrammatical phrases. Many attempts were made to



correct (or rather, tamper with) his writings, but while these attempts have
been long forgotten, Shakespeare’s “incorrect” writings persisted.
Shakespearean brilliance, taught in schools around the world, originates from
grammatical “mistakes.”

Grammatical deviancy in literature leads to a controversy: do we consider
our existing bodies of text (corpus) as the true expression of language, or
should we designate a set of rules as correct usage? After three or four
decades of debate, natural language processing scientists converged on the
former, that existing data is truth. We will cover this period of history in
Chapter 2.

1.4 Summary

In this chapter, we traced the history of words, numbers, and language to
pique the reader’s appetite for the mathematics intrinsic to our lives. Many
of the topics introduced here are the focus of later chapters, including the
following.

e Principle of communication and the model of information
dissemination

e Encoding, and shortest codes

e Decoding rules and syntax of language

e C(lustering

e Checksums (error detection and correction)

e DBilingual texts and corpuses, useful in machine translation

e Ambiguity, and the importance of context in eliminating ambiguity

Modern natural language processing researchers are guided by the same
principles as our ancestors who designed language, though the latter’s choices
were mostly spontaneous and unintentional. Mathematics is the underlying
thread through past and present.

*Images that represent objects or ideas.
*If we treat each stroke of a Chinese character as a “letter,” we could consider
Chinese as “alphabetic” as well, but only in two dimensions.



Chapter 2

Natural language processing—
From rules to statistics

In the previous chapter, we introduced that language emerged as the
medium of information exchange between humans. Any language is an
encoding of information: it is composed of individual units—Iletters, words, or
Arabic numerals—and an encoding algorithm—a collection of grammar rules.
When we communicate an idea, our brains apply grammar encodings on
these units to extract comprehensible sentences from abstract thought. If the
audience understands the same language, they can use the same rules to
decode a string of words back into abstract thought. Thus, human language
can be described in terms of information theory and mathematics. While
many animals have means of communication, only mankind uses language to
encode information.

By 1946, modern computers were becoming increasingly accessible, and
computers began to outperform humans at many tasks. However, computers
could only understand a limited set of machine-oriented commands, not at
all like the English we speak. In this context, a simple question arose: do
computers have the potential to understand natural language? Scientists
have contemplated this idea since the computer’s earliest days, and there are
two cognitive aspects to it. First, is a computer powerful enough to
understand natural language? Second, does a computer process and learn
natural language the same ways a human would? This chapter explores these
two questions in depth, but on a high level, the answer to both is a
resounding yes.

2.1 Machine intelligence

The earliest proponent of machine intelligence was the father of computer
science, Alan Turing. In 1950, he published the seminal paper, “Computing
machinery and intelligence,” in the journal Mind. Rather than detailing new
research methods or results, this paper was the first to provide a test that
determined whether a machine could be considered “intelligent.” Suppose a
human and machine were to communicate, both acting as if they were
human (Figure 2.1). Then, the machine is intelligent if the human cannot



discern whether he is talking to a machine or another human. This procedure
is known as the eponymous Turing Test. Though Turing left behind an open
question, rather than an answer, we generally trace the history of natural

language processing back to that era, 60 years ago.
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FIGURE 2.1: The human cannot tell whether he is talking to a human or
machine, behind that wall.

These 60 years of history can be roughly divided into two phases. The first
two decades, from the 1950s to the 1970s, were spent in vain but well-
intentioned efforts. Scientists around the world wrongly assumed that
machines learned the same way humans did, so they spent some nearly
fruitless 20 years trying to replicate human thought processes in machines.
Only in the 1970s did scientists reassess their approach towards natural
language processing, which entered its second phase of research. In the past
40 years, their mathematical models and statistical methods have proven
successful. Nowadays, natural language processing is integrated into many
consumer products, such as voice assistants on smartphones or automated
phone call agents. There are few remaining contributions by the early
natural language processing scientists, but their work has been essential to
understanding the success of modern methods and avoiding the same pitfalls.
In this section, we recount the history of early machine intelligence efforts
and in the next, we follow the transition to statistical methods.

Tracing the history of artificial intelligence, we come to the summer of
1956. Four young visionaries—28-year-olds John McCarthy and Marvin
Minsky, 37-year-old Nathaniel Rochester, and 40-year-old Claude Shannon—
proposed a summer workshop on artificial intelligence at Dartmouth College,
where McCarthy was teaching at the time. Joining them were six additional
scientists, among which were 40-year-old Herbert Simon and 28-year-old
Allen Newell. At these seminars, they discussed unsolved problems in
computer science, including artificial intelligence, natural language
processing, and neural networks. It was here that the concept of artificial



intelligence was first formulated. Other than Shannon, these ten scientists
were of little fame or import at that time, but in years to come, four would
win Turing Awards (McCarthy, Minsky, Simon, and Newell). Though he
received no Turing Award himself, Shannon has an equivalent position to
Turing in the history of computer science as the “father of information
theory”; in fact, the highest award in information theory is named for
Shannon.

These ten scientists were later hailed as the top computer scientists of the
20th century, having initiated a multitude of research areas that are still
active today, many of which have directly improved our lives. Unfortunately,
the bright minds gathered at Dartmouth that summer produced few results
of merit during that month. In fact, their understanding of natural language
processing would have been inferior to that of a PhD student today. This is
because the scientific community had made a gross misunderstanding about
the nature of natural language processing research.

At that time, scientists presumed that in order to complete advanced tasks
like translation, a computer must first understand natural language and in
turn, possess human-level intelligence. Today, very few scientists insist on
this point, but the general public still believes, to some extent, that
computers require human-like intelligence to carry out intelligent tasks. In
perspective, this assumption is not without reason. For example, we take for
granted that a Chinese-English translator is fluent in both tongues. To
humans, this is an intuitive deduction. However, this assumption falls into
the “flying bird” fallacy. That is, by simply observing birds, we might design
an airplane to flap wings in the proper manner, without needing to
understand aerodynamics. In reality, the Wright brothers invented the
airplane through aerodynamics, not bionics. Exactly replicating mechanisms
in the natural world may not be the optimal way to construct competent
machines. Understanding natural language processing from a computer’s
perspective is akin to designing an airplane from aerodynamic principles. For
translation, a computer does not need to understand the languages it
translates between; it simply translates.

Today, speech recognition and translation are widely adapted technologies,
with billions of users, but few understand their underlying mechanisms.
Many mistakenly assume that computers understand language, when in
reality, these services are all rooted in mathematics, and more specifically,
statistics.

In the 1960s, the primary problem scientists encountered was to teach
computers to understand natural language. Prevailing beliefs decomposed
natural language processing into two tasks: syntactic analysis and semantics
extraction. That is, scientists believed that computers could understand
natural language by uncovering the grammatical structure of text and
looking up the meaning of words. Unfortunately, these goals were misguided,



rooted in centuries-old presumptions. Linguistic and language studies have
been well established in European universities since the Middle Ages, often
forming the core of their curricula. By the 16th century, standardized
grammar was becoming widespread, a byproduct of the Bible’s introduction
outside Europe. By the 18th and 19th centuries, Western linguists had
formalized the study of various languages. The large corpus of papers
produced by these scholars led to an all-encompassing linguistic system.

In the study of Western languages, we are guaranteed to encounter
grammar rules, parts of speech, and word formation patterns (morphology).
These rules provide a methodical way to learn foreign languages, and they
are straightforward to describe to a computer. As a result, scientists had
high hopes for applying traditional linguistics to syntactic analysis.

Compared to syntactic analysis, semantics were much harder to
encapsulate and convey to a computer. Until the 1970s, most results about
semantic analysis were mediocre at best.* Despite limited successes,
semantics are indispensable to our understanding of language, so
governments do fund both syntactic and semantic analysis research. The
history of bringing natural language processing research to application is
described in Figure 2.2.

Application Speech Machine Question- Document
' recognition translation answer sumimarization
Understanding Understanding of natural language
Foundation Syntactic analysis Semantic analysis

FIGURE 2.2: Early attitudes towards natural language processing.

Let us illustrate an example of syntactic analysis. Consider the simple
sentence, “Romeo loves Juliet.” We can separate the sentence into three
parts: the subject, predicate, and punctuation. Each part can be further
incorporated into the following syntactic parse tree.

Computer scientists and linguists often denote these sentence analysis
rules as “rewrite rules.” The rules used above include:

e sentence — noun phrase + verb phrase + punctuation
e noun phrase — noun
e verb phrase — verb + noun phrase

e noun phrases — nouns



e noun — “Romeo”
e verb — “loves”

e noun — “Juliet”

e punctuation — *.”

Before the 1980s, grammar rules for natural language processing were
manually created, which is quite different from modern statistical methods.
In fact, up until 2000, many companies including the then well-known
SysTran still relied primarily on large sets of grammar rules. Today,
although Google pursues a statistical approach, there are still vestiges of
grammar rules in some products like Google Now (the precursor to Google
Assistant).

In the 1960s, compiler technologies were propelled forward by Chomsky’s
formal language theory. High-level programming languages utilized context-
free grammars, which could be compiled in polynomial time (see appendix,
Polynomial problem). These high-level programming languages appeared
conceptually similar to natural language, so scientists developed some simple
natural language parsers in the same spirit. These parsers supported a
vocabulary of a few hundred words and allowed simple clauses (sentences
with a single digit number of words).

Of course, natural language is far more elaborate than simple sentences,
but scientists assumed that computers’ explosively increasing computation
power would gradually make up for these complexities. On the contrary,
more computation power could not solve natural language. As we see in
Figure 2.3, syntactic analysis of even a three-word sentence is quite complex.
We require a two-dimensional tree structure and eight rules to cover three
words. To a computer, these computations are negligibly fast—until we
evaluate the growth in complexity with respect to the text. Consider the
following sentence from a Wall Street Journal excerpt:

“The FED Chairman Ben Bernanke told the media yesterday that
$700B bailout funds would be lended to hundreds of banks, insurance
companies, and automakers.”
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[nmln phrase] Verb phraqe [[)umzhmti{m]

/ noun phrase]

Romeo loves Juliet ©

FIGURE 2.3: Syntactic parse tree for “Romeo loves Juliet.”

This sentence still follows the “subject, predicate, punctuation” pattern,

Verb Phrase

Noun Phrase [The FED Chairman Ben Bernanke|
[told the media... automakers| Punctuation |[.]

The noun phrase at top level can be further divided into two noun
phrases, “The FED Chairman” and “Ben Barnanke,” where the former acts as
a modifier to the latter. We can similarly decompose the predicate, as we can
any linear statement. That said, the resultant two-dimensional parse tree
would become exceedingly complicated, very fast. Furthermore, the eight
rules provided for the “Romeo loves Juliet” example cannot adequately parse
this new sentence. This complex example not only has more elements to
parse, but also requires more rules to cover its structure.

In the general case, there are two barriers to analyzing all natural
language using a deterministic set of rules. First, there is an exponential
growth in the number of rules (not including part-of-speech tagging rules)
required to cover additional grammatical structures. To cover a mere 20% of
all statement requires tens of thousands of rules. Linguists simply cannot
produce enough rules fast enough, and more specific rules are often
contradictory, so context is required to resolve conflicts. If we want to cover
over 50% of all statements, then every additional sentence requires many
new grammatical rules.

This phenomenon is similar to an adult’s reduced capability of picking up



foreign languages. Children build language schemas as their brains develop,
directly integrating language into the way they think. In contrast, adults
learn foreign languages by studying vocabulary and grammar rules. An
intelligent adult who learns English as a second language may find it difficult
to speak as fluently as a native speaker or perform well on the GRE, even
after 10 years of immersion. That is because rules cannot exhaustively
describe a language’s nuances.

Even if we obtained a full set of rules governing a language, we cannot
efficiently implement them as algorithms. Thus, the second barrier to using
deterministic rules for mnatural language processing is computational
intractability. Recall that aforementioned compiler technologies of the 1960s
parsed context-free grammars, which could be evaluated in polynomial time.
These grammars are inherently different from natural language’s context-
dependent grammar. In natural language, meaning is often derived from
surrounding words or phrases. Programming languages are artificially
designed to be context-free, so they are much faster to evaluate. Since
natural language grammars depend on context, they can become very slow to
parse.

The computational complexity (see appendix) required to parse such
grammars was formalized by Turing Award winner, Donald Knuth. Context-
free grammars could be parsed in O(n?) time, where n is the length of the
statement. On the other hand, context-dependent grammars require at least
O(n®) time. In other words, if we had a sentence of 10 words, then a context-
dependent grammar would be ten thousand times slower to parse than
context-free grammar. As sentence lengths grow, the difference in running
time explodes. Even today, a very fast computer (Intel i7 quad-core
processor) takes a minute or two to analyze a sentence of 20-30 words using
rule-based methods. Therefore in the 1970s, IBM, with its latest mainframe
technologies, could not analyze useful statements using grammar rules.

2.2 From rules to statistics

Rule-based syntactic analysis (for both grammar and semantics) came to
an end in the 1970s. Scientists began to realize that semantic analysis was
even more difficult with a rule-based system: context, common sense, and
“world knowledge” often contribute to meaning, but are difficult to teach a
computer. In 1968, Minsky highlighted the limitations of the then artificial
“intelligence” in semantic information processing with a simple example by
Bar-Hillel. Consider the two sentences, “the pen is in the box” and “the box is
in the pen.” The first sentence is easy to understand, and a foreign student
who has studied half a year of English can comprehend its meaning. The
second sentence may cause confusion for such students—how can a large box
fit inside a pen? For a native speaker, the second sentence makes perfect



sense alone: the box fits inside a fenced area, a pig pen or similar. Whether
“pen” refers to a writing implement or farm structure requires a degree of
common sense to determine. Humans develop these sensibilities from real-
world experience; unfortunately for scientists, computers do not live” in the
real world. This is a simple example, but it clearly illustrates the challenges
of analyzing semantics with computers.

Around this time, interest in artificial intelligence waned, partly due to the
obstacles inflicted by misguided research. Minsky was no longer an unknown
young fellow, but one of the world’s leading artificial intelligence experts; his
views then significantly impacted the US government’s policies on science
and technology. The National Science Foundation and other departments
were disappointed by the lack of progress in natural language processing, and
combined with Minsky’s uncertainty, funding in this field greatly shrunk
over time. It can be said that until the late 1970s, artificial intelligence
research was more or less a failure.

In the 1970s, however, the emergence of statistical linguistics brought new
life to natural language processing and led to the remarkable achievements
we see today. The key figures in this shift were Frederick Jelinek and his
group in IBM’s T.J. Watson Research Center. Initially they did not aim to
solve natural language, but rather the problem of speech recognition. Using
statistical methods, IBM’s speech recognition accuracy increased from
roughly 70% to about 90%, while the number of words supported increased
from hundreds to tens of thousands. These breakthroughs were the first steps
towards practical applications of this research, outside the laboratory. We
will pick up Jelinek’s story later in this chapter.

IBM Watson Laboratories methods and achievements led to a momentous
shift in natural language processing. A major figure in these developments
was Dr. Alfred Spector, who took roles of VP of research at IBM and Google
and held a professorship at Carnegie Mellon University. After Spector joined
Google in 2008, I chatted with him about that shift in natural language
processing those years ago. He said that while Carnegie Mellon University
had delved very deep into traditional artificial intelligence, the researchers
there encountered a few insurmountable obstacles. After visiting IBM
Watson Laboratories later that year, he realized the power of statistical
methods, and even as a professor of the traditional system, he could sense
great change on the horizon. Among his students were Kai-Fu Lee, who was
among the first to switch from traditional natural language processing
methods to statistics. Along this line of research, Kai-Fu Lee’s and Hsiao-
Wuen Hon’s excellent work also helped their thesis advisor, Raj Reddy, win
the Turing Award.

As the head of research in two of the world’s top technology companies,
Spector’s keen sense of the future of artificial intelligence was unsurprising.
However, this was not a unanimous recognition; the schism between rule-



based and statistical-based natural language processing lasted another 15
years, until the early 1990s. During this period, subscribers to each viewpoint
organized their own conferences. In mutually attended conferences, each
sector held their respective sub-venues. By the 1990s, the number of
scientists adhering to the former method steadily decreased, and attendees of
their conferences gradually switched over. As such, the prevailing viewpoint
slowly converged to statistics.

In perspective, 15 years is a long time for a scientist; anyone who began
their doctoral research following traditional methods and insisted on that
path may have emerged to realize that their life’s work had no more value.
So why did this controversy last for 15 years? First, it takes time for a new
branch of research to mature. Early on, the core of the statistical approaches
lay in communication models and their underlying hidden Markov models
(these mathematics are described in more detail later in the book). The input
and output of this system were one-dimensional sequences of symbols, whose
ordering is preserved. The earliest success of this system was speech
recognition, followed by part-of-speech tagging.

Note that this model’s output differs significantly from that of traditional
methods. Syntactic analysis required a one-dimensional sentence as input but
output a two-dimensional analysis tree. Traditional machine translation
output a one-dimensional sequence (in another language), but did not
preserve semantic order, so the output had little practical value.

In 1988, IBM’s Peter Brown proposed a statistical-based machine
translation approach, but IBM had neither enough data nor a strong enough
model to produce useful results. IBM was unable to account for the
variations in sentence structure across languages. For example, in English we
say “a red apple,” but in Spanish, it would become “una manzana roja,” or
“an apple red.” With these limitations, few studied or made progress in
statistical machine translation. Eventually, even Brown joined Renaissance
Technologies to make a fortune in investment. Twenty years later, the paper
of Brown and his colleagues became popular and highly cited.

On the technical side, syntactic analysis’s difficulty lies in the fact that
grammatical components are often interspersed within a sentence, rather
than simply adjacent to one another. Only a statistical model based on
directed graphs can model complex syntaxes, and it was difficult to envision
how those would scale. For a long time, traditional artificial intelligence
scientists harped on this point: they claimed that statistical methods could
only tackle shallow natural language processing problems and would be
useless against larger, deeper problems.

In the past three decades, from the late 1980s to the present, the ever-
increasing amounts of computing power and data have made the daunting
task of statistical natural language processing attainable. By the late 1990s,
statistical methods produced syntactic analysis results more convincing than



those of the linguists. In 2005, the last bastion of rule-based translation,
SysTran, was surpassed by Google’s statistics-based methods. Google had
achieved a more comprehensive and accurate translation system, all through
mathematical models. That is why we can say that mathematics will answer
all of natural language processing problems.

Recall that there were two reasons it took traditional natural language
processing 15 years to die out. The first was purely technical-—models
required maturity through time—but the second was practical—scientific
progress awaited the retirement of the old linguists. This is a frequent
occurrence in the history of science. Qian Zhongshu, in the novel Besieged
City, remarked that even if scientists in their prime are not physically old,
they may hold tightly to old ideas. In this case, we must patiently wait for
them to retire and relinquish their seats in the halls of science. After all, not
everyone is willing to change their points of view, right or wrong. So the
faster these people retire, the faster science can advance. Therefore, I often
remind myself to retire before I become too confused and stubborn.

Two groups contributed heavily to the transition between the old and new
generations of natural language processing scientists. Other than Jelinek’s
own IBM-Johns Hopkins collaboration (which included myself), the
University of Pennsylvania, led by Mitch Marcus, also played a big role.
Marcus managed to obtain support from the National Science Foundation to
set up the LCD project, which amassed the world’s largest major-language
corpus and trained a group of world-class researchers. Scientists from these
two groups joined the world’s leading research institutions, forming a de
facto school of thought and shifting academia’s predominant viewpoint.

At the same time, applications of natural language processing have also
changed tremendously in the past three decades. For example, the demand
for automatic question-answer services has been replaced with web search
and data mining. As new applications relied more on data and shallow
natural language processing work, the shift towards statistics-based systems
was expedited.

Today, there are no remaining defenders of the traditional rule-based
approach. At the same time, natural language processing has shifted from
simple syntactic analysis and semantic understanding to practical
applications, including machine translation, speech recognition, data mining,
knowledge acquisition, and so on.

2.3 Summary

With respect to mathematics, natural language processing is equivalent to
communication models. Communication models were the missing link
between language as an encoding of information and natural language
processing, but it took scientists many decades to arrive at this realization.



*It is worth mentioning that ancient Chinese linguists primarily focused on semantics,
rather than grammar. Many ancient monographs, such as “Shuowen Jiezi” (explaining
graphs and analyzing characters), were the results of such research.



Chapter 3

Statistical language model

Again and again, we have seen that natural language is a contextual encoding for
expressing and transmitting information. For computers to understand natural language,
mathematical models must first capture context. A model that accomplishes this—also the
most commonly used model in natural language processing—is known as the statistical
language model. This model is the basis of all natural language processing today, with
applications including machine translation, speech recognition, handwriting recognition,
autocorrect, and literature query.

3.1 Describing language through mathematics

The statistical language model was created to solve the problem of speech recognition. In
speech recognition, a computer must decide whether a sequence of words forms a
comprehensible sentence, and if so, return the result to the user.

Let us return to the example from the previous chapter:

The Fed Chair Ben Bernanke told media yesterday that $700B bailout funds would be
lended to hundreds of banks, insurance companies and auto-makers.

This sentence reads smoothly and its meaning is clear. Now suppose we changed the order
of some words in the sentence, so that the sentence becomes:

Ben Bernanke Federal Reserve Chairman of $700 billion told the media yesterday that
would be lent to banks, insurance companies, and car companies hundreds of.

The sentence’s meaning is no longer clear, but the reader can still infer its meaning,
through the numbers and nouns. Now we scramble the words in the sentence to produce:

the media Ben $700B of told Fed companies that lended yesterday insurance and
banks, of auto-makers The and Chair, hundreds would be Bernanke the.

This final sentence is beyond comprehension.

If we ask a layperson to distinguish the differences between the three versions, he might
say that the first follows proper grammar and is easy to understand; the second, while not
grammatical, still retains meaning through words; the third obfuscates the words and any
remaining meaning. Before the last century, scientists would have agreed. They would have
tried to determine whether a text was grammatical, and if so, whether it conveyed any
meaning. As we discussed in the previous chapter, this methodology led to a dead end. Near
the turn of the century, Jelinek changed the prevailing perspective with an elegant
statistical model.

Jelinek assumed that a sentence is meaningful if it is likely to appear, where this likeliness
is measured with probabilities. We return to the three sentences again. The probability the
first sentence appears is about 10_2”, while second and third range from 10725 and 10_7“,
respectively. While these probabilities are all extremely small, the first sentence is actually
100,000 more likely to appear than the second, and billions of billions more likely to appear



than the third.

For the mathematically rigorous, let sentence S—=wl,w2,...,wn represent an ordered
sequence of individual words of length n. We would like to determine the probability P(S)
that S appears in any body of text we can find. Naively, we could compute this probability
as follows. Enumerate all sentences ever uttered in the entirety of human history, and count
the number of times S appears. Unfortunately, even a fool could see the impossibility of such
an approach. Since we cannot determine the true probability that any sentence occurs, we

require a mathematical model for approximating this value. S—wl,w2,...,wn, so we can
expand P(S) as

P(S)=P(w1,w2,...,wn). (3.1)

By conditional probability, it follows that the probability w; occurs in the sequence is equal
to the probability w; appears alone, multiplied by the probability that w; appears, given the
existing sequence wl,w2,...,wi-1. We thus expand P(S) to

P(S)=P(w1,w2,...,wn)=P(w1) - P(w2|w1) - P(w3|w1,w2)...P(wn|wl,w2,...,wn-1), (3.2)

where each word’s appearance depends on the previous words.*

From a calculation standpoint, P(w) is easy to find, and P(ws|w) is not hard either.
However, P(w3|wl,w2) provides some difficulty because it involves three variables (words),
wy, wo, and wg. To calculate each variable’s probability, we require a table the size of a
language dictionary, and the size of these tables for conditional probabilities increases
exponentially with the number of variables involved. When we reach the final word w,,. we
realize that P(wn|wl,w2,...,wn-1) is computationally infeasible to calculate. So we return to
our mathematical model—is there any way to approximate this probability without these
expensive computations?

Russian mathematician Andrey Markov (1856-1922) proposed a lazy but effective method
for resolving this quandary. Whenever we want to determine the probability of word w; in
sentence S, we no longer consider all previous words wl,w2,...,wi-1. Rather, we reduce our
model to only consider the previous word w;_j. Today we call these models Markov chains.*
Now, the probability that sentence S appears becomes

P(S)=P(w1) - P(w2|w1) - P(w3|w2)...P(wn|wn-1). (3.3)

Equation 3.3 corresponds to the statistical language model known as the bigram model. Of
course, we may also consider the n-1 words preceding word w,,, and such grams are known
as N-gram models, introduced in the next section.

After applying the Markov assumption to P(S), we encounter the next problem of
determining conditional probabilities. By definition,

P(wilwi-1)=P(wi-1,wi)P(wi-1). (3.4)

Nowadays, researchers can easily calculate the joint probability P(w; 1, w;) and the marginal
probability P(w;). Extensive amounts of digital text (corpuses) allow us to count occurrences
of word pairs (w;_1, w;) and individual words w;. Suppose we have a corpus of size N words.
Let #(wi-1,wi) be the number of times w,_q, w; appear consecutively, and #(wi-1) be the
number of times w; | appears alone. We now obtain relative frequencies of occurrences in



our corpus.

f(wi-1,wi)=#(wi-1,wi)N (3.1

o
—

flwi-1)=#(wi-1)N (3.6)

By the Law of Large Numbers, as long as our sample size N is large enough, then relative
frequencies of events approach their true probabilities.

P(wi-1,wi)=#(wi-1,wi)N (3.7)

P(wi-1)=#(wi-1)N (3.8)

Returning to conditional probability, we notice that the two above values share the
denominator N, so P(wi|wi-1) simplifies to a ratio of counts.

P(wilwi-1)=#(wi-1,wi)#(wi-1) (3.9)

Now, some readers may begin to appreciate the beauty of mathematics, which converts
complicated problems into elementary forms. This process may seem slightly unbelievable at
first. Basic probabilities can accomplish feats including speech recognition and machine
translation, in which complicated grammars and artificial intelligence rules stumble. If you
are questioning the efficacy of the model we just presented, you are not alone. Many
linguists also doubted this statistics-based approach. In the modern day, however,
researchers have found that statistics trumps the most sophisticated rule-based systems. We
provide three real-world applications of this model, for the disbelievers.

Thirty years ago, the ex-president of Google China, Kai-Fu Lee, meteorically rose to the
preeminence of speech recognition. As a doctoral student, he built a continuous-speech,
speaker-independent system using the same Markov models described above.,

Now let us fast forward some years to the 21st century, when Google developed its
machine translation system, Rosetta. Compared to many universities and research
institutions, Google was late to the machine translation game. Prior to Rosetta, IBM, the
University of Southern California, Johns Hopkins, and SysTran had already made much
progress in the field. For many years, these veteran institutions had participated in the
National Institute of Standards and Technology (NIST) machine translation evaluation, a
widely recognized performance benchmark. Google’s Rosetta system first entered the
competition in 2005, after only two years of development. To everyone’s astonishment,
Rosetta came in first, by a wide margin. It surpassed all rule-based systems, upon which
over a decade of research was focused. What’s Google’s secret weapon? It is datasets and
mathematical models hundreds of times larger than those of its competitors.*

A few years after that, around 2012, we come to some of my own work at Google
involving the automatic question-answer system. At the time, many scientists in laboratory
settings could design computers that answered basic questions. That is, “what is the
population of the United States,” or “what year was Donald Trump born?” While factual
questions had straightforward answers like 300 million or 1946, “why” and “how” questions
required further explanation. Questions like “why is the sky blue” were beyond the scope of
computers then. We could mine large datasets to compile an answer with all the right
keywords, but in order to sound fluent., a computer required the statistical language model.



Since incorporating that model, this system has been released in English and other foreign
languages. If you Google “why is the sky blue” today, you will find a well-prepared answer.
In future chapters, we will delve into the details of this system’s mathematics, but now we
return to the statistical language model.

From these three examples, we see that the statistical langnage model has become an
indispensable part of any “intelligent” computer system. Nonetheless, there are still countless
implementation details between the mathematics and the software. For example, if a word
(or pair of words) we encounter does not appear in the corpus, or only appears rarely, then
our estimated probabilities are skewed. Fortunately, Jelinek and his colleagues not only
presented this model, but also filled in many of its corner cases. These cases will be outlined
in the following section. If you do not work with the statistical language model or find this
mathematics unpalatable, then worry not. We have already laid all the foundations for the
statistical language model, and you do not need to read further to appreciate its brilliance.
The beauty of mathematics lies in its potential to accomplish groundbreaking work with a
simple model.

3.2 Extended reading: Implementation caveats

Suggested background knowledge: probability theory and statistics.

Most of this book’s chapters will include an extended reading section, tailored towards
professionals and those who wish to further study behind the mathematics behind the
presented topics. These sections may require additional background to fully comprehend, so
to save the reader’s time, I have noted the suggested prerequisite knowledge at the start of
cach section. While not a hard requirement, familiarity with these subjects will improve the
reading experience. Later chapters do not depend on these extended readings, so readers are
free to choose whether to read or skip any such section.

3.2.1 Higher order language models

In Equation 3.3 of the previous section, we assumed that the probability of each word w;
is related to its immediately preceding word w;_i, but unrelated to all other preceding words
w;, where j < i - 1. The reader might wonder whether such an asswmption is slightly
oversimplified. Indeed, it is easy to find such examples where word w; depends on words
other than w; . Consider the phrase, “sweet blue lilies.” Here, “sweet” and “blue” both
describe “lilies,” but only “blue” is considered the previous word. As a result, we should
perhaps consider the previous two words. Generalizing even further, we may modify our
assumption so that a word w; depends on several preceding words.

We express this assumption in mathematical notation. Suppose word w; depends on N-1
preceding words. We modify the conditional probability of w;, given an existing sequence of
words, to

P(wilw1,w2,...,wi-1)=P(wilwi-N+1,wi-N+2,...,wi-1). (3.10)

Equation 3.10 corresponds to a higher order Markov chain, or in natural language processing
terms, an n-gram model. Some special cases of the n-gram model include n = 2, the bigram
model (Equation 3.3), and n = 1, the context-free unigram model. The unigram model
assumes that each word’s appearance is unrelated to the appearance of nearby words. In
practice, the most commonly used model is N = 3, the trigram model, and higher orders
beyond N = 3 are rarely used.

After learning that context is key to language, we might ask, why limit the orders to such



low orders? There are two reasons. First, N-gram models quickly become computationally
intractable. Both the spatial and time complexity of a meta model undergo exponential
growth as the number of dimensions increases. A language’s words are usually contained in a
dictionary V where |V] = 10,000 to 100,000 words. Each additional dimension adds
exponentially many word combinations, where order N would require O(| V]Y) space and
O(|VIN-1) time. The model significantly improves from N = 1 to N = 2 and slightly
improves at N — 3, but the model experiences little additional benefits when increasing to N
— 4. While the marginal benefit of increasing N approaches none, the resources consumed
increases exponentially, so N — 4 is near the maximum order that anyone will use. Google’s
Rosetta translation and voice search systems use the 4-gram model, but the model requires
over H00 servers to store.

Second, we cannot cover all langnage phenomena, even if we try to increase N to infinity.
In natural language, the relevance of context may span paragraphs, or even sections.
Literary analysis is a prime suspect of far-ranging context, given that symbols may appear
throughout an entire novel. Even if we could increase the order of our model to n = 100, we
could not encapsulate all context. Such is a limitation of the Markov assumption. In its
place, we have tools that consider long distance dependencies, which we will discuss later in
this book.

3.2.2 Training methods, zero-probability problems, and smoothing

As described in Equation 3.3, the statistical language model requires the knowledge of all
conditional probabilities, which we denote as the model’s parameters. Obtaining these
parameters from a corpus’s statistics is known as training. For example, the bigram model
requires two numbers, (w1, w;) and /(wpq), to estimate the conditional probability
P(wi|wi-1). Seemingly straightforward, the model fails if the pair (w; j, w;) never appears.
Does P(wi|lwi-1) equal 0 for all new sentences? Likewise, if the two counts are the same,
does P(wi|wi-1) really equal 1?7 These questions involve the reliability of our statistics.

So far, we have assumed that statistics observed on our sample (available corpus) are
equivalent to those that could be observed on the population (entire language). As long as
our datasets are large enough, the Law of Large Numbers guarantees that this assumption
holds. For example, suppose we want to determine the demographics of customers at the
local mall. On a Saturday afternoon, we count 550 women and 520 men, so we conclude that
550/(550 + 520) — 51.4% are women, and 48.6% are men. However, suppose we are in a
hurry, so we walk in and out of the mall on a Tuesday morning. There are only 5 people, 4
men and 1 woman. Is it reasonable to conclude that 20% of customers are women, and 80%
are men? What if we only observe 3 people, all women? Do we dare conclude that not a
single man shops at the mall? Of course not. Small samples produce statistics with high
variance.

Many people would say the unreliability of small samples is common sense, but the same
people often forget this fact when training language models. Instead of addressing the lack of
data, they question the model’s validity. Today, the statistical language model has
withstood the test of time, and many digital communications applications are built atop
similar models. Given that the theory is sound, the remaining challenge lies in proper
training of the model.

The first solution that comes to mind is to directly increase our dataset size. With some
quick estimations though, we will see that all the data in the world is not enough to
compose an adequate sample. Take Chinese, for instance. A Chinese dictionary contains
around 200,000 words, not all commonly used.* To train a trigram model, we require
200,0003-8- 1015 unique parameters. If we obtain our corpus by crawling the Chinese web,
there are around 10 billion web pages, each with an average of 1,000 words (overestimate).



