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Foreword: Recreational Mathematics

FrReemaN Dyson

Hobbies are the spice of life. Recreational mathematics is a splendid
hobby which young and old can equally enjoy. The popularity of Sudoku
shows that an aptitudc for recreational mathematics is widcsprcad in the
population. From Sudoku it is easy to ascend to mathematical pursuits
that offer more scope for imagination and originality. To enjoy recre-
ational mathematics you do not need to be an expert.You do not need
to know the modern abstract mathematical jargon.You do not need to
know the difference between homology and homotopy. You need only
the good old nineteenth-century mathematics that is taught in high
schools, arithmetic and algebra and a little geometry. Luckily for me,
the same nineteenth-century mathematics was all that I needed to do
useful calculations in theoretical physics. So, when I decided to become
a professional physicist, [ remained a recreational mathematician. This
foreword gives me a chance to share a few of my adventures in recre-
ational mathematics.

The articles in this collection, The Best Writing on Mathematics 2011, do
not say much about recreational mathematics. Man}' of them describe
the interactions of mathematics with the serious worlds of education
and finance and politics and history and philosophy. They are mostly
looking at mathematics from the outside rather than from the inside.
Three of the articles, Doris Schattschneider’s piece about Maurits Escher,
the Fergusons’ piece on mathematical sculpture, and Dana Mackenzie’s
piece about packing a circle with circles, come closest to being recre-
ational. I particularly enjoved those pieces, but I recommend the others
too, whether the}' are recreational or not. Ihope they will get you inter-
ested and excited about mathematics. I hope they will tempt a few of
vou to take up recreational mathematics as a hobby.

I bcgan my addiction to recreational mathematics in high school

with the fifty-nine icosahedra. The Fifty-Nine Icosahedra is a little book
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published in 1938 by the University of Toronto Press with four authors,
H.S.M. Coxeter, P. DuVal, H.T. Flather, and J. F. Petrie. I saw the title
in a catalog and ordered the book from a local bookstore. Coxeter was
the world expert on polyhedra, and Flather was the amateur who made
models of them. The book contains a complete description of the fifty-
nine stellations of the icosahedron. The icosahedron is the Platonic solid
with twenty equilateral triangular faces. A stellation is a symmetrical
solid figure obtained by continuing the planes of the twenty faces out-
side the original triangles. I joined my school friends Christopher and
Michael Longuet-Higgins in a campaign to build as many as we could of
the fifty-nine icosahedra out of cardboard and glue, with brightly colored
coats of enamel paint to enhance their lucaut)'. Christopher and Michael
both went on later to become distinguished scientists. Christopher, now
deceased, was a theoretical chemist. Michael is an oceanographer. In
1952, Michael took a holiday from oceanography and wrote a paper with
Coxeter giving a complete enumeration of higher-dimensional poly
topes. Today, if you visit the senior mathematics classroom at our old
school in England, you will see the fruits of our teenage labors grandly
displayed in a glass case, looking as bright and new as they did seventy
years ago.

My favorites among the stellations are the twin figures consisting of
five regular tetrahedra with the twenty vertices of a regular dodecahe-
dron. The twins are mirror images of each other, one right-handed and
the other left-handed. These models give to anyone who looks at them
a vivid introduction to symmetry groups. They show in a dramatic fash-
ion how the symmetry group of the icosahedron is the same as the
group of 120 permutations of the five tetrahedra, and the subgroup of
rotations without reflections is the same as the subgroup of 60 even
permutations of the tetrahedra. Each of the twins has the symmetry of
the even permutation subgroup, and any odd permutation changes one
twin into the other.

Another book which I acquired in high-school was An Introduction to
the Theory of Numbers by G. H. Hardy and E. M. Wright, a wonderful
cornucopia of recreational mathematics published in 1938. Chapter 2
contains the history of the Fermat numbers, F, = 2?7+ 1, which Fer-
mat conjectured to be all prime. Fermat was famously wrong. The first

four Fermat numbers are prime, but Euler discovered in 1732 that
F, = 2% +1 is divisible by 641, and Landry discovered in 1880 that
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lenge to readers of this volume to find it. To find it requires no expert
knowledge. All that you have to do is to Stud)’ the l)artitions and smallest
parts for a few small values of n, and make an inspired guess at the prop-
erty that divides them equall}'. A second Chaﬂenge is to prove that the
guess actually works. To succeed with the second Challcngc probabl}r
requires some expert knowledge, since I am asking you to beat George
Andrews at his own game.

My most recent adventure in recreational mathematics is concerned
with the hypothesis of Decadactylic Divinity. Decadactylic is Greek for
tcn—ﬁngcrcd. In da}"s gone b}-’, serious mathematicians were SCI‘iOUSl}T
concerned with theology. Famous examples were Pythagoras and Des-
cartes. Each of them applied his analytical abilities to the elucidation of
the attributes of God. [ recently found myself unexpectedly following in
their footsteps, applying elementary number theory to answer a theo-
logical question. The question is whether God has ten fingers. The evi-
dence in favor of a ten-fingered God was brought to my attention by
Norman Frankel and Lawrence Glasser. I hasten to add that Frankel and
Glasser were only concerned with the mathematics, and [ am solely re-
sponsible for the theological interpretation. Frankel and Glasser were
studying a sequence of rational approximations to 7 discovered by
Derek Lehmer. For each integer k, there is a rational approximation
[R,(k)/R,(k)] to T, with numerator and denominator defined by the
identity -

R, (k) + R, (k)T = Z[(mf)l/(Zm)l]zmmk.

m=1

The right—hand side of this identit}-' has interesting anal}_-'ﬁc properties
which Frankel and Glasser explored. The approximations to 7 that it
generates are remarkably accurate, beginning with 3, 22/7, 22/7,
335/113, for k =1, 2, 3, 4. Frankel and Glasser calculated the first
hundred approximations to high accuracy, and found to their astonish-
ment that the kth approximation agrees with the exact value of 7 to
roughly k places of decimals. I deduced from this discovery that God
must calculate as we do, using arithmetic to base ten, and it was then
casy to conclude that He has ten ﬁngers. It seemed obvious that no other
theological hypothesis could account for the appearance of powers of

ten in the approximations to such a transcendental quantity as .
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Unfortunately, I soon found out that my theological breakthrough
was illusory. I calculated precisely the magnitude of the error of the kth
Lehmer approximation for large k, and it turned out that the error does
not go like 107 but like Q7*, where Q = 9.1197 . . . is a little smaller
than ten. For large k, the approximation is in fact only accurate to 0.96k
places of decimals, where 0.96 is the logarithm of Q to base ten. Q is
defined as the absolute value of the Complex number g — 1+ Qmi/
In(2)). When we are dealing with complex numbers, the logarithm is a
many-valued function. The logarithm of 2 to the base 2 has many values,
beginning with the trivial value 1. The first nontrivial value of log,(2)
is ¢. This is the reason why ¢ determines the accuracy of the Lehmer
approximations. This calculation demonstrates that God does not use
arithmetic to base ten. He uses only fundamental units such as 1 and
In(2) in the design of His mathematical sensorium. The number of His
fingers remains an open question.

Two of these recreational adventures were from my boyhood and two
from my old age. In between, I was doing mathematics in a more profes-
sional style, finding problems in the understanding of nature where el-
egant nineteenth-century mathematics could be usetully applied. Math-
ematics can be highly enjoyable even when it is not recreational. I hope
that the articles in this volume will spark readers’ interest in digging
deeper into some aspect of mathematics, whether it is puzzles and games,
history of mathematics, mathematics education, or perhaps studving for
a professional degree in mathematics. The joys of mathematics are to be
found at all levels of the game.



Introduction

Mircea PiTICI

This new volume in the series of The Best Writing on Mathematics brings
together a collection of remarkable texts, originally printed during 2010
in publications from several countries. A few exceptions from the strict
timeframe are inevitable, due to the time required for the distribution,
surveying, reading, and selection of a vast literature, part of it coming
from afar.

Over the past decade or so, writing about mathematics has become a
genre, with its own professional practitioners—some highly talented,
some struggling to be relevant, some well established, some newcomers.
Every year these authors, considered together, publish many books. This
abundance is welcome, since writing on mathematics realizes the seman-
tic component of a mental activity too often identified to its syntactic-
procedural mode of operation. The appropriation to the natural language
of meaningful intricacies latent in symbolic formulas opens up paths to-

ward comprehending the abstraction that characterizes mathematical
thinking and some mathematical notions; it also offers unlimited expres-
sive, imaginative, and cognitive possibilities. In the second part of the
introduction, [ mention the books on mathematics that came to my at-
tention last year; the selection in this volume concerns mostly pieces that
are not yet available in book form—either articles from academic jour-
nals or good writing in the media that goes unobserved or is forgotten
after a little while. The Best Writing on Mathematics reflects the literature
on mathematics available out there in myriad publications, some difficult
to consult even for people who have access to exceptional academic re-
sources. In editing this series I see my task as restitution to the public, in
convenient form, of excellent writing on mathematics that deserves en-
hanced reception beyond the initial publication. By editing this series |

also want to make widcly available good texts about mathematics that
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otherwise would be lost in the deluge of information that surrounds us.
The content of each volume builds itself up to a point; I onl)" give it a
coherent structure and present it to the reader. That means that every
year some prevaﬂing themes will be new, others will reappear.

Most readers of this book are likcl)’ to be cngagcd with mathematics
in some way, at least by being curious about it. But most of them are in-
e\qtabl\ engaged w1th onlv a (small) part of mathematics, That is true
even for professional nnthematmans with rare exceptions. Mathemat-
ics has far-reaching tentacles, in pure research branches as well as in
mundane applications and in instructional contexts. No wonder the
stakeholders in the metamorphosis of mathematics as a social phenome-
non can hardly be well informed about the main ideas and dcvclopmcnts
in all the different aspects connected to mathematics. Solipsism among
mathematicians is surely not as common as the general public assumes it
is; yet specialization is widespread, with many professionals finding it
difficult to keep abreast of developments beyond their strict areas of in
terest. By making this volume intentionally eclectic, I aim to break some
of the barriers laid by intense specialization. I hope that the enterprise
makes it easier for readers, insiders and outsiders, to identify the main
trends in thinking about mathematics in areas unfamiliar to them.

Anthologies of writings on mathematics have a long—if sparse and
irregular—history. Countless volumes of contributed collections in par-
ticular fields of mathematics exist but, to my knowledge, only a handful
of anthologies that include panoramic selections across multiple fields.
Soon after the Second World War, William Schaaf edited Mathematics, OQur
Great Heritage, which included writings by G. H. Hardy, George Sarton,
D. J. Struik, Carl G. Hempel, and others. A few vears later James New-
man edited The World of Mathematics in four massive tomes, a collection
widely read for decades by many mathematicians still active today. In
paraﬂcl in francophone countries circulated Le Lionnaise’s Les Grand
Courants de la Pensce Mathématique, translated into English only several
years ago. During the 1950s and 1960s a synthesis in three volumes
edited by A. D. Aleksandrov, A. N. Kolmogorov, and M. A. Lavrentiey,
including contributions by Soviet authors, was translated and widely
circulated. Very few similar books appeared during the last three de-
cades of the twentieth century; notable was Mathematics Today, edited by
Lynn Arthur Steen in the late 1970s. In the present century the pace
quickened; several excellent volumes were published, starting with



Introduction xIix

Mathematics: Frontiers and Perspectives edited in 2000 by Vladimir Arnold,
Michael Atiyah, Peter Lax, and Barry Mazur, followed by the volumi-
nous tomes edited by Bjérn Engquist and Wilfried Schmid in 2001,
Timothy Gowers in 2008, as well as the smaller collections edited by
Raymond Ayoub in 2004 and Reuben Hersh in 2006 (for complete ref-
erences, see the list of works mentioned at the end of this introduction).
The BestWriting on Mathematics builds on this illustrious tradition, capital-
izing on an ever more interconnected world of ideas and benefiting
from the regularity of yearly serialization.

Overview of the Yolume

The texts included in this volume touch on many topics related to math-
ematics. [ gave up the thematic organization adopted in the first volume,
since some of the texts are not casy to categorize and some themes
would have been represented by only one or very few pieces.

Underwood Dudley argues that mathematics beyond the elemen-
tary notions is the best preparation for reasoning in general and that
most people value it primarily for that purpose, not for its immediate
practicality.

Dana Mackenzie describes the overt and the hidden properties of the
Apollonian gasket, a configuration of infinitely nested tangent circles
akin to a fractal.

Rik van Grol tells the story of finding the optimal number of steps
that solve scrambled Rubik’s cubes of different sizes—starting with the
easy cases and going to the still unsolved ones.

Andrew Schultz writes on the friendly professional interactions that
shape the career of a mathematician, from learning the ropes as a gradu-
ate student to becoming an accomplished academic.

In a polemical reply to a text we selected in last year’s volume of this
series (Gowers and Nielsen), Melvyn Nathanson argues that the most
original mathematical achievements are distinctively individual, rather
than results of collaboration.

Martin Campbell-Kelly meditates on the long flourishing popularity
and recent demise of mathematical tables.

Reuben Hersh ponders on the post—World War Il abundance of Jew-
ish mathematicians at American universities, in contrast to the pale pre-
war representation of Jews among American mathematicians.
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A captivating first-person account of research in pure mathematics,
with insights into the collaborative work of mathematicians, is given by
ShillngungYau (with Steve Nadis) in The S]mpc (3f]nncr S[m(“e. Alexandre
Borovik gives a rich exploration of cognitive aspects of mathematical
intuition, based on many biographical accounts, in Mathematics under the
Microscope. A book difficult to categorize, touching on psychological,
cognitive, and historical aspects of mathematical thinking, in an original
manner, is Mathematical Reasoning by Raymond Nickerson. Also interdis-
cip]inary is Grammar, Geometry, and Brain b}_’ Jens Erik Fenstad. Two recent
books of interviews also offer glimpses into the rich life experiences
of mathematicians: Recountings: Conversations with MIT Mathematicians ed-
ited by Joel chcl and Creative Minds, Charmed Lives edited by Yu Kiang
Leong—as does Reuben Hersh and Vera John-Steiner’s Loving and Hat-
ing Mathematics.

Among several books that combine excellent expository writing
with mathematics proper are Charming Proofs by Claudi Alsina and Roger
Nelsen, Creative Mathematics by Alan Beardon, Making Mathematics Come
to Life by O. A. Ivanov, A Mathematical Medley by George Szpiro, and the
latest volume (number 8) of What’s Happcnjng in the Mathematical Sciences
by Dana Mackenzie.

Many notable books on the history of mathematics are being pub-
lished these days; some of the most recent titles and their authors are the
following. Benjamin Wardhaugh has written a brief but badly needed
guide called How to Read Historical Mathematics. Two excellent books on
the history of geometry are Revolutions of Geometry by Michael O’Leary
and Geometry from Euclid to Knots by Saul Stahl. Other accounts of particu-
lar mathematical branches, times, or personalities are The Birth of Nu-
merical Analysis edited by Adhemar Bultheel and Ronald Cools, The Baby-
lonian Theorem by Peter Rudman, The Pythagorean Theorem: The Story of Its
Power and Beaut)’ b}' Alfred Posamentier, Hidden Harmonies: The Lives and
Times of the Pythagorean Theorem by Robert and Ellen Kaplan, Galileo by
J. L. Heilbron, Defending Hypatia by Robert Goulding, Voltaire’s Riddle by
Andrew Simoson, The Scientific Legacy of Poincare edited by Eric Charpen-
tier, Etienne Ghys, and Annick Lesne, Emmy Noether’sWonderful Theorem by
Dwight Neuenschwander, and Studies in the Hisrozjf cj‘fndjnn Mathematics
edited by C. 8. Seshadri. Thematically more encompassing are Mathematics
and Its History by John Stillwell, An Episodic History of Mathematics by Steven
Krantz, Duel at Dawn by Amir Alexander, and History of Mathematics: High-
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ways and Byways by Amy Dahan-Dalmeédico and Jeanne Peiffer. The math-
ematical avatars of representative politics since Ancient Greece are won-
derfully narrated by George Szpiro in Numbers Rule. Joseph Mazur, in
What’s Luck Got to Do with It? also takes a historical perspective, by telling
the story of the mathematics involved in gambling. Alex Bellos gives a
refreshingly informal tour of the history of elementary mathematics in a
new edition of Here’s Looking at Euclid. Two histories of sciences with
substantial material dedicated to mathematics are Kinematics: The Lost Ori-
gins of Einstein’s Relativity by Alberto Martinez and Technology and Science
in Ancient Civilizations b}’ Richard Olson. Anlong editions of old mathe-
matical writings are Pappus of Alexandria: Book 4 of the Collection edited by
Heike Sefrin-Weis and the fourth volume of Lewis Carroll’s pamphlets,
containing The Logic Pamphlets, an edition by Francine Abeles.

Among recent books of philosophical issues in mathematics I note
There’s Something about Godel by Francesco Berto, Roads to Infinity by John
Stillwell, the reprinting of the Philosophy of Mathematics by Charles S.
Peirce, and several new volumes on logic: The Evolution of Logic by W. D.
Hart, Logic and Philosophy of Mathematics in the Early Husser]l by Stefania
Centrone, Logic and How It Gets that Way by Dale Jacquette, and the col-
lection of classic essays Thinking about Logic edited by Steven Cahn, Rob-
ertTalisse, and Scott Aikin. In Mathematics and Reality, Mary Leng is con-
cerned with the ontology of mathematical objects and its implications
for the status of mathematical practice.

Several recent books on mathematics education that came to my at-
tention are worth mentioning. Theories of Mathematics Education edited by
Bharath Sriraman and Lyn English is a synthesis of contributions by fore-
most researchers in the field. Others, concerned with particular themes,
are Proof in Mathematics Education by David Reid and Christine Knipping,
Mathematical Aetion and Structures of Noticing edited by Stephen Lerman
and Brent Davis (honoring the work of John Mason, a contributor to
this volume), Culturally Responsive Mathematics Education edited by Brian
Greer and collaborators, and Winning the Math Wars by Martin Abbott
and collaborators. A detailed and authoritative presentation of inquiry-
based teaching of mathematics is The Moore Method by Charles Coppin,
Ted Mahavier, Lee May, and Edgar Parker. A new volume (number VII) in
the series of Research in Collegiate Mathematics was edited recently by Fer-
nando Hitt, Derek Holton, and Patrick Thompson. Volumes concerned
with education generally but with excellent chapters on mathematical
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aspects are Instructional Explanations in the Disciplines edited by Mary Kay
Stein and Linda Kucan, Beauty and Education by Joe Winston, and Visual-
ization in Mathematics, Reading, and Science Education edited b}' Linda Phil-
lips, Stephen Norris, and John Macnab. The National Council of Teach-
ers of Mathematics has continued the publication of several series,
listed below under the authors Marian Small, Michael Shaughnessy,
Mark Saul, Jane Schielack, and Frank Lester.

In Numbers Rule Your World, Kaiser Fung (who also maintains the Junk
Charts blog: http://junkcharts.typepad.com/junk_charts/) presents
in detail several cases of sensible statistical thinking in engineering,
health, finance, sports, and other walks of life. Related recent titles are
The Pleasures Qf "Statistics: The Aurobwgrﬂph}' [)j Frederick Mosteller, What Is
p-Value anyway? by Andrew Vickers, and Probabilities by Peter Olofsson.

In applied mathematics several remarkable volumes became available
or were reissued latel}'. Colin Clark’s Mathematical Bioeconomics is now in
print in its third edition, offering a wide range of examples in resource
management and environmental studies, all in an easy-to-read presenta-
tion. Mohammed Farid edited a massive volume covering 37 major top-
ics concerning properties of food, under the title Mathematical Modeling of
Food Processing. A group including Warren Hare and collaborators wrote
Modelling in Healthcare, a substantial report on data collection, mathe-
matical modeling, and interpretation in healthcare institutions. Robert
Keidel authored a refreshing visual-conceptual view of strategic manage-
ment in The Geometry of Strategy. Closer to mathematics proper is Mrs.
Perkins’s Electric Quilt by Paul Nahin, an introduction to mathematical
physics written with much verve. Once Before Time by Martin Bojowald
and What If the Earth Had Two Moons? by Neil Comins underlie the crucial
role of mathematics in understanding the meaning of physical laws gov-
erning the observable universe. Highly readable, appealing to basic no-
tions of randomness and Conll)lcxit}', is Bio]og}v’s First Law b}' Daniel Mc-
Shea and Robert Brandon. In The Mathematics of Sex, Stephen Ceci and
Wendy Williams zoom in on gender aspects of education, social inequal-
ity, and public policy. Two books with a wide span of applications are
Critical Transitions in Nature and Society by Marten Scheffer and Disrupted
Networks b}' Bruce West and Nicola Scafetta. David Easlcy and Jon Klein-
berg take an interdisciplinary approach in Networks, Crowds, and Markets.
And a lively account of the use, overuse, and abuse of mathematical
methods in 'the financial industr}’ is given by Scott Patterson in The Quants.
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A splendid illustration of mathematical methods in charting complex
data sets is the Atlas of Science by Katy Borner. Also visual, at the intersec-
tion between mathematics, arts, and philosophy, is Quadrivium, edited
by John Martineau and others.

Popularizing mathematics is well rcprcscntcd b}’ several titles. In Our
Da)'sArc Numbered, Jason Brown writes on common occurrences of many
elementar}' (and a few less—thm1—elementary) mathematical notions—as
do lan Stewart in Cows in the Maze and Other Mathematical Exp]omrions
(pointing to a wealth of online resources), John D. Barrow in 100 Essen-
tial Thinngou Didn’t KnowYou Didn’t Know, Marcus du Sau‘[oy in Sj'mmerr)/:
A Journey into the Patterns of Nature (an attractive blend of history, games,
and storytelling), and Jamie Buchan in Easy as Pi. A sort of dictionary of
number properties is Number Freak by Derrick Niederman. First-hand
accounts of learning mathematics are Hot X: Algebra Exposed by Danica
McKellar, The Calculus Diaries by Jennifer Ouellette, and Dude, Can You
Count? by Christian Constanda. Finally in this category, a must-read an
tidote to blindly taking for granted numerical arguments in public dis-
course is Proofiness by Charles Seife.

In a separate register, it is worth mentioning a moving novel of love
and loneliness on a mathematical metaphor, The Solitude qurime Numbers
by the young Italian physicist Paolo Giordano.

I conclude this summary overview of the vast number of books on
mathematics published last year by mentioning the recent publication of
the first issue (January 2011) of a new periodical, the Journal of Human-
istic Mathematics (thanks to Fernando Gouvéa for drawing my attention
to this journal).

This is not a critical review of the recent literature on mathematics
and surely not a comprehensive list. Other books, not mentioned here,
can be found on the list of notable texts at the end of the volume; per-
haps still others have escaped my survey. Authors and publishers can
make sure [ know about a certain title by contacting me at the address
provided just before the list of works mentioned in this introduction.

A Few Internet Resources

The sheer number of excellent websites on mathematics (including those
hosted by educational institutions and individual mathematicians) makes
any attempt to compile a comprehensive inventory look quixotic. Here
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I'only suggest a handful of online mathematical resources that caught my
attention over the past year that I did not mention in the introduction to
the previous volume.

[begin with a few specialized sites. The Why Do Math website (http://
WWW.Whyciomath.org/) is Particularly original in highlighting the suc-
cess stories of applied mathematics in science, society, and everyday life.
A multilanguage site profiled on number sequences is the On-Line En-
cyclopedia of Integer Sequences (http://oeis.org/). The Geometric
Dissections site (http://home.btconnect.com/GavinTheobald/Index.
html) obviously needs no further description. Neither does the World
Federation of National Mathematics Competitions (http://www.amt.
edu.au/winme/). And an excellent website for questions and answers is
the Math Overflow site (http://mathoverflow.net/).

Among the many good blogs on mathematics, I mention a few very
active ones: the Math-blog (http://math-blog.com/), the Computa-
tional Complexity blog (http://blog.computationalcomplexity.org/),
Wild about Math! blog (http://wildaboutmath.com/), and the Think-
finity blog (http://www.thinkfinity.org/). A number of prestigious
mathematicians maintain active blogs, with a rich network of links to
other blogs—including Timothy Gowers (http://gowers.wordpress.
com/), Terence Tao (http://terrytao.wordpress.com/), and Richard
Lipton (http://rjlipton. wordpress.com/), to mention just a few.

Some good instructional /educational sites, among many, are the
Khan Academy (http://www.khanacademy.org/), Mathematically Sane
(http://mathematicallysane.com/), and the Reasoning Mind (http://
www.reasoningmind.org/).
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What Is Mathematics For?

UNDERWOOD DUDLEY

A more accurate title is “What is mathematics education for?” but the
shorter one is more attention-getting and allows me more generality.
M}f answer will become apparent soon, as will my answer to the sub-
question of why the public supports mathematics education as much as
it does.

So that there is no confusion, let me say that by “mathematics” I mean
algebra, trigonometry, calculus, linear algebra and so on: all those sub
jects beyond arithmetic. There is no question about what arithmetic is
for or why it is supported. Society cannot proceed without it. Addition,
subtraction, multiplication, division, percentages: though not all citizens
can deal fluently with all of them, we make the assumption that they can
when necessary. Those who cannot are sometimes at a disadvantage.

Algebra, though, is another matter. Almost all citizens can and do get
through life very well without it, after their schooling is over. Neverthe-
less it becomes more and more pervasive, seeping down into more and
more eighth-grade classrooms and being required by more and more
states for graduation from high school. There is unspoken agreement
that everyone should be exposed to algebra. We live in an era of univer-
sal mathematical education.

This is something new in the world. Mathematics has not always
loomed so large in the education of the rising generation. There is no
telling how many children in ancient Egypt and Babylon received train-
ing in numbers, but there were not many. Of course, in ancient civiliza-
tions education was not for everyone, much less mathematical educa-
tion. Literacy was not universal, and I suspect that many who could read
and write could not subtract or multiply numbers. The ancient Greeks,
to their glory, originated real mathematics, but they did not do it to fill
classrooms with students lcarning how to prove theorems. Comparcd

to them, the ancient Romans were a mathematical blank. The Arab
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scholars who started to develop algebra after the fall of Rome were
doing it for their own pleasure and not as something intended for the
masses. When Brahmagupta was solving Pell’s equation a millennium
before Pell was born, he did not have students in mind.

Of course, you may thmk those were the ancients; in modern times
we have learned better and arithmetic at least has always been part of
everyone’s schooling, Not so. It may come as a surprise to you, as it did
to me, that arithmetic was not part of elementary education in the
United States in the colonial period. In A History of Mathematics Educarion
in the United States and Canada (National Council of Teachers of Mathe-
matics, 1970), we read

Until within a few years no studies have been permitted in the day
school but spelling, reading, and writing. Arithmetic was taught by
a few instructors one or two evenings a week. But in spite of the
most determined opposition, arithmetic is now being permitted
in the day school.

Opposition to arithmetic! Determined opposition! How could such a
thing be? How could society function without a population competent
in arithmetic? Well, it did, and it even thrived. Arithmetic was indeed
needed in many occupations, but those who needed it learned it on the
job. It was a system that worked with arithmetic then and that can work
with algebra today.

Arithmetic did make it into the curriculum, but, then as now, em-
ployers were not happy with what the schools were turning out. Patricia
Cline Cohen, in her estimable A Calculating People:The Spread of Numeracy
in Early America (U. of Chicago Press, 1983; Routledge paperback, 1999)
tells us that

Prior to this act [1789] arithmetic had not been required in the
Boston schools at all. Within a few years a group of Boston busi-
nessmen protested to the School committee that the pupils taught
by the method of arithmetic instruction then in use were totally
unprepared for business. Unfortunately, the educators in this case
insisted that they were doing an adequate job and refused to make

Changes in the program.

Both sides were right. It is impossiblc to prepare everyone for every

possible occupation, and it is foolish to try. Hence many school leavers
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will be unprepared for many businesses. But mathematics teachers, then
as now, were doing an adequate job.

A few years ago I was at a meeting that had on its program a talk on
the mathematics used by the Florida Department of Transportation.
There is quite a bit. For example, the Florida DoT uses Riemann sums
to determine the area of irregular plots of land, though it does not call
the sums that. After the talk I asked the speaker what mathematical prep-
aration the DoT expects in its new hires. The answer was, none at all.
The DoT has determined that it is best for all concerned to assume that
the background of its employees includes nothing beyond elementary
arithmetic. What employees need, they can learn on the job.

There seems to be abroad in the land the delusion that skill in algebra
is necessary in the world of work and in everyday life. In Moving Beyond

Myths (National Academy of Sciences, 1991) we see

Myth: Most jobs require little mathematics.
Reality: The truth is just the opposite.

[looked very hard in the publication for evidence for that assertion, but
found none. Perhaps the NAS was equating mathematics with arithme-
tic. Many people do this, as I have found in asking them about how, or if,
they use mathematics. Almost always, the “mathematics” they tell me
about is material that appears in the first eight grades of school.

Algebra, though, is mentioned explicitly in Everybody Counts (National
Research Council, 1989):

Over 75 percent of all jobs require proficiency in simple algebra
and geometry, either as a prerequisite to a training program or as
J &

part of a licensure examination.

I find that statement extraordinar}: I will take my telephone Yellow
Pages, open it at random, and list in order the first eight categories that
I see:

Janitor service, Janitors’ equipment and supplies, Jewelers, Karate
and other martial arts, Kennels, Labeling, Labor organizations,
Lamps and lamp shades.

In which six is algebra required, even for training or license? I again
looked very hard for evidence in the NRC’s publication but couldn’t

find anv.
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1,000 gallons of ice cream, so you will need 526.3/10 = 52.6 ounces
of flavor.

The employee adding the tlavor will not need algebra, nor will he or
she need to think through this calculation. There will be a formula, or
rule, that gives the result, and that is what happens on the job. Problems
that arise on the job will be for the most part problems that have been
solved before, so new solutions by workers will not be needed.

[am glad that we do not have to depend on workers’ abﬂit}’ to solve
algebra problems to get through the day because, as every teacher of
mathematics knows, students don’t always get problems right.The chair
of the department of a Big Ten university once observed, probably after
abad day, that it was possible for a student to graduate with a mathemat-
ics major without ever having solved a single problem correctly. Partial
credit can go a long way. This was in the 1950s, looked on by many as a
golden age of mathematics education.

In one of those international tests of mathematical achievement ap-
peared the problem of finding which of two magazine subscriptions was
cheaper: 24 issues with (a) the first four issues free and $3 each for the
remainder or (b) the first six issues free and $3.50 each for the remain-
der.This is not a tough problem, so I leave its solution to you. As easy as
it is, only 26% of United States eighth-graders could do it correctly.
That percentage was above the international average of 24%. Even the
Japanese eighth-graders could manage only 39%. No doubt when the
eighth-graders become adults they will be better at solving such prob-
lems, but even so I do not want them having to solve problems that
when solved incorrectly can do me harm.

Though people know that they do not use algebra every day, or even
every month, many seem to think that there are hosts of others who do.
Perhaps they have absorbed the textbook writers’ insistence on the “real
world” uses of algebra, even though the texts actuaﬂ/v demonstrate that
there are none. Were uses of algebra widespread in the world of work,
all textbook writers would have to do is to ask a few people about their
last applications of algebra, turn them into problems, and put them in
their texts. If 75% of all jobs required algebra, thev could get a problem
from three of every four people they ask. However, such problems do
not appear in the texts. We get instead the endlessly repeated problems
about investment clubs losing two members and all of the other chest-
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nuts, about cars going from A to B and farmers fencing fields and so on,
that T lack the space to display. The reason that problems drawn from
everyday life do not appear in the texts is not that textbook authors lack
energy and initiative; it is that they do not exist,

Though they may not use algebra themselves, people are solidly be-
hind having everyone learn algebra. Tom and Ray Magliozzi, the broth-
ers who are hosts of National Public Radio’s popular “Car Talk” pro-
gram, like to pose as vulgarians when they are actually nothing of the
kind. On one program, brother Tom made some remarks against teach-
ing geometry and trigonometry in high school. I doubt very much that
he was serious. Whether he was serious or not does not affect the con-
tent of his remarks or the reaction of listeners. The reaction was unani-
mous endorsement of mathematics. When mathematics is attacked,
people leap to its defense.

In his piece Tom alleged that he had an Octagonal fountain in his back-
vard that he wanted to surround with a border and that he needed to
calculate the length of the side of the concentric octagon. After succeed-
ing, using, he said, the Pythagorean theorem, he reflected

That this was maybe the second time in my life—maybe the
first—that [ had occasion to use the geometry and trigonometry
that I had learned in high school. Furthermore, I had never had
occasion to use the higher mathematics that the high school math
had prepared me for.

Never! Why did I-—and millions of other students—spend valu-
able educational hours learning something that we would never
use? Is this education? Learning skills that we will never need?

After some real or pretended populism (“The people who run the
education business are 1110116}'—grubbing, self—serving morons’), he con-
cluded that

The purpose of learning math, which most of us will never use, is
only to prepare us for further math courses—which we will use
even less frequently than never.

There were answers, quite a few of them, posted at the “Car Talk”
website. All disagreed with Tom’s conclusion, which actually has ele-
ments of truth. (A reply that started with “I agree” might be thought to
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be a counterexample, but the irony that followed was at least as heavy as

lead.) One response included

Perhaps you've had only one opportunity to use geometry in your
life, but there are a number of occupations in which it’s a must.
Myself, I'm pleased that my house was designed and built by peo-
ple who were capable of calculating the correct rise of a roof for
proper drainage or the number of cubic feet of concrete needed

for a strong foundation.

Here is the common error of supposing that problems once solved must
be solved anew every time they are encountered. House builders have
handbooks and tables, and use them. Indeed, houses, as well as pyramids
and cathedrals, were being built long before algebra was taught in the
schools and, in fact, before algebra.

Another common misconception occurs in another response:

You sure laid a big oblate spheroid shaped one when you went on
your tirade against having to learn geometry, trigonometry and
other Things mathematical.

Who uses this stuff? Geologists, aircraft designers, road build-
ers, building contractors, surgeons and, yes, even radio broad-
cast technicians (amplitude modulation and frequency modula-
tion are both based on manipulating wave forms described by trig
functions—don’t get me started on alternating current).

So, Tommy, get a life. The only people who don’t use these prin-
ciples every day are those who can’t do and can’t teach, and thus
are suited only for lives as politicians or talk show hosts.

People seem to think that because something involves mathematics it
is necessary to know mathematics to use it. Radio does indeed involve
sines and cosines, but the person adjusting the dials needs no trigonom-
etry. Geologists searching for oil do not have to solve differential equa-
tions, though differential equations may have been involved in the cre-
ation of the tools that geologists use.

[ am not saying that mathematics is never required in the workplace.
Of course it is, and it has helped to make our technology what it is.
However, it is needed very, very seldom, and we do not need to train
millions of students in it to keep businesses going. Once, when I was

an employee of the Metropolitan Life Insurance Company, [ was given
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an annuity rate to calculate. Back then, insurance companies had rate
books, but now and then there was need for a rate not in the book.
Using my knowledge of the mathematics of life contingencies, I calcu-
lated the rate. When I gave it to my supervisor he said, “No, no, that’s
not right.You have to do it this way.” “But,” I said, “that’s three times as
much work.” Yes, I was told, but that’s the way that we calculate rates.
My knowledge of life contingencies got in the way of the proper calcula-
tion, done the way it had been done before, which any minimally com-
petent employee could have carried out.

It may be that there could arise, say, a partial differential equation that
some company needed to solve, the likes of which it had never seen
before. If so, there are plcnt)’ of mathematicians available to do the job.
They’d work cheap, too.

Jobs do not require algebra. I have expressed this truth many times in
talks to any group who would listen, and it was not uncommon for a
member of the audience to tell me, after the talk or during it, that I was
wrong and that he used algebra or calculus in his job all the time. It al-
ways turned out that he used the mathematics because he wanted to, not
because he had to.

Even those who are not burdened with the error that algebra is nec-
essary to hold many jobs support the teaching of algebra. Everyone sup-
ports the teaching of algebra.The public wants more mathematics taught,
to more students. The requirements keep going up, never down.

The reason for this, I am convinced, is that the public knows, or
senses, that mathematics develops the power to reason. It shows, better
than any other subject, how reason can lead to truth. Of course, other
sciences exhibit the power of reason, but there’s all that overhead—fer-
rous and ferric, dynes and ergs—that has to be dealt with. In mathemat-
ics, there is nothing standing between the problem and the reasoning.

Economists reason as well, but sometimes two economists reason to
two different conclusions. Philosophers reason, but never come to any
conclusion. In mathematics, problems can be solved using reason, and
the solutions can be checked and shown to be correct. Reasoning needs
to be learned, and mathematics is the best way to learn it.

People grasp this, perhaps not consciously, and hence want their chil-
dren to undergo mathematics. Many times people have told me that
they liked mathematics (though the\ call it “math”) because it was so
definite and it was satisfying to get the right answer. Have you not heard
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the same thing? They liked being able to reason correctly. They knew
that the practice was good for them. No one has ever said to me, “T liked
math because it got me a good job.”

We no longer have the confidence in our sub]ect that allows us to
say that. We justify mathematics on its utility in the world of getting
and spending. Our forebears were not so difhdent. In 1906 ]. D. Fitch

wrote

Our future lawyers, clergy, and statesmen are expected at the
University to learn a good deal about curves, and angles, and num-
ber and proportions; not because these subjects have the smallest
relation to the needs of their lives, but because in the very act of
learning them they are likely to acquire that habit of steadfast and
accurate thinking, which is indispensable in all the pursuits of life.

I do not know who |. D. Fitch was, but he was correct. Thomas |effer-
son said

Mathematics and natural philosophy are so peculiarly engaging
and delightful as would induce everyone to wish an acquaintance
with them. Besides this, the faculties of the mind, like the mem-
bers of a body, are strengthened and improved by exercise. Math-
ematical reasoning and deductions are, therefore, a fine prepara-
tion for investigating the abstruse speculations of the law.

In 1834, the Congressional Committee on Military Affairs reported

Mathematics is the study which forms the foundation of the course
[at West Point]. This is necessary, both to impart to the mind that
combined strength and versatility, the peculiar vigor and rapidity
of comparison necessary for military action, and to pave the way
for progress in the higher military sciences.

Here is testimony from a contemporary student:

The summer after my freshman year I decided to teach myself al-
gebra. At school next year my grades improved from a 2.6 gpa to
a 3.5 gpa. Tests were easier and I was much more efficient when
taking them and this held true in all other facets of my life. To sum
this up: algcbra is not onl}' mathematical principlcs, itisa Philoso—

phy or way of thinking, it trains your mind and makes otherwise



A Tisket, a Tasket, an Apollonian Gasket

DaNna MACKENZIE

In the spring of 2007 I had the good fortune to spend a semester at the
Mathematical Sciences Research Institute in Berkeley, an institution of
highcr lcarning that takes “highcr” to a whole new extreme. Perched
precariously on a ridge far above the University of California at Berke-
ley campus, the building offers postcard-perfect vistas of the San Fran-
cisco Bay, 1,200 feet below. That’s on the west side. Rather sensibly, the
institute assigned me an office on the east side, with a view of nothing
much but my computer screen. Otherwise [ might not have gotten any
work done.

However, there was one flaw in the plan: Someone installed a screen-
saver program on the computer. Of course, it had to be mathematical.
The program drew an endless assortment of fractals of varying shapes
and ingenuity. Every couple minutes the screen would go blank and re-
fresh itself with a completely different fractal. I have to confess that I
spent a few idle minutes watching the fractals instead of writing,

One day, a new design popped up on the screen (see the first figure). It
was different from all the other fractals. It was made up of simple shapes—
circles, in fact—and unlike all the other screen savers, it had numbers!
My attention was immediately drawn to the sequence of numbers run-
ning along the bottom edge: 1,4,9,16 . . . They were the perfect squares!
The sequence was 1 squared, 2 squared, 3 squared, and so on.

Before I became a full-time writer, ] used to be a mathematician. See-
ing those numbers awakened the math geek in me. What did they mean?
And what did they have to do with the fractal on the screen? Quickly,
before the screen-saver image vanished into the ether, I sketched it on
my notcpad, making a resolution to find out som(‘day.

As it turned out, the picture on the screen was a special case of a
more gcncral construction. Start with three circles of any size, with

each one touching the other two. Draw a new circle that fits snugly into
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Figure 1. Numbers in an Apollonian gasket correspond to the curvatures or
“bends” of the circles, with ]arger bends corresponding to smaller circles. The
entire gasket is determined by the first four mutually tangent circles; in this
case, two circles with bend 1 and two “circles” with bend 0 (and therefore in-
finite radius). The circles with a bend of zero look, of course, like straight

lines. Image courtesy of Alex Kontorovich.

the space between them, and another around the outside enclosing all
the circles. Now you have four roughly triangular spaces between the
circles. In each of those spaces, draw a new circle that just touches each
side. This creates 12 triangular pores; insert a new circle into each one
of them, just touching each side. Keep on going forever, or at least until
the circles become too small to see. The resulting foamlike structure is
called an Apollonian gasket (see the second figure).

Something about the Apollonian gasket makes ordinary, sensible
mathematicians get a little bit giddy. It inspired a Nobel laureate to
write a poem and publish it in the journal Nature. An 18th-century Jap-

anese samurai painted a similar picture on a tablet and hung it in front

Figure 2. An Apollonian gasket is built up through successive “generations.”
For instance, in generation 1 (top left), each of the lighter circles is inscribed
in one of the four triangular pores formed by the dark circles. The complete
gaskct, whimsl'ca“y named “bugcyc” by Katherine Bellafiore Sanden, an
undergraduate student of Peter Sarnak at Princeton University, has circles
with bends —1 (for the largest circle that encloses the rest), 2, 2, and 3. The
list of bends that appears in a given gasket (here, 2, 3, 6, 11, etc.) form a
number sequence whose properties Sarnak would like to explain—but, he
says, “the necessary mathematics has not been invented yet.” Image courtesy

of Katherine Bellafiore Sanden.
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of a Buddhist temple. Researchers at AT&T Labs printed it onto
T-shirts. And in a book about fractals with the lovely title Indra’s Pearls,

mathematician David Wright compared the gasket to Dr. Seuss’s The
Cat in the Hat:

The cat takes off his hat to reveal Little Cat A, who then removes
his hat and releases Little Cat B, who then uncovers Little Cat C,
and so on. Now imagine there are not one but three cats inside
each cat’s hat. That gives a good impression of the explosive pro-

liferation of these tiny ideal triangles.

Getting the Bends

Even the first step of drawing an Apollonian gasket is far from straight-
forward. Given three circles, how do you draw a fourth circle that is
exactly tangent to all three?

Apparently the first mathematician to seriously consider this ques-
tion was Apollonius of Perga, a Greek geometer who lived in the third
century B.C. He has been somewhat overshadowed by his predecessor
Euclid, in part because most of his books have been lost. However,
Apollonius’s surviving book Conic Sections was the first to systematically
study ellipses, hyperbolas, and parabolas—curves that have remained
central to mathematics ever since.

One of Apollonius’ lost manuscripts was called Tangencies. According
to later commentators, Apollonius apparently solved the problem of
drawing circles that are simultaneously tangent to three lines, or two
lines and a circle, or two circles and a line, or three circles. The hardest
case of all was the case where the three circles are tangent.

No one knows, of course, what Apollonius’ solution was, or whether
it was correct. After many of the writings of the ancient Greeks be-
came available again to European scholars of the Renaissance, the un-
solved “problem of Apollonius” became a great challenge. In 1643, ina
letter to Princess Elizabeth of Bohemia, the French philosopher and
mathematician René Descartes correctly stated (but incorrectly proved)
a beautiful formula concerning the radii of four mutually touching cir-
cles. If the radii are r, s, t, and u, then Descartes’s formula looks like this:

/P 1/ +1/2 +1/0 =1/2(1/r +1/s + 1/t + 1/u)’.
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All of these reciprocals look a little bit extravagant, so the formula is
usual]}-‘ sin]pliﬁed b}' writing it in terms of the curvarures or the bends of
the circles. The curvature is simply defined as the reciprocal of the ra-
dius. Thus, if the curvatures are denoted by a, b, ¢, and d, then Des-

cartes’s formula reads as follows:
a+bV+c+dP=(@tb+c+d)y?/2.

As the third figure shows, Descartes’s formula greatly simplifies the
task of finding the size of the fourth circle, assuming the sizes of the first
three are known. It is much less obvious that the very same equation can
be used to compute the location of the fourth circle as well, and thus
completely solve the drawing problem. This fact was discovered in the
late 1990s by Allan Wilks and Colin Mallows of AT&T Labs, and Wilks
used it to write a very efficient computer program for plotting Apollo-
nian gaskets. One such plot went on his office door and eventually got
made into the aforementioned T shirt.

Descartes himself could not have discovered this procedure, because
it involves treating the coordinates of the circle centers as complex
numbers. Imaginary and complex numbers were not widely accepted
by mathematicians until a century and a half after Descartes died.

In spite of its relative simplicity, Descartes’s formula has never be-
come widely known, even among mathematicians. Thus, it has been re-
discovered over and over through the years. In Japan, during the Edo
period, a delightful tradition arose of posting beautiful mathematics
problems on tablets that were hung in Buddhist or Shinto temples, per-
haps as an offering to the gods. One of these “Japanese temple prob-
lems,” or sangaku, is to find the radius of a circle that just touches two
circles and a line, which are themselves mutually tangent. This is a re-
stricted version of the Apollonian problem, where one circle has infinite
radius (or zero bend). The anonymous author shows that, in this case,
\/_ + ’\/}_) = J a sort of demented ver sion of the Pythagorean theo-
rem. This formula, by the way, explains the pattern I saw in the screen-
saver. If the first two circles have bends 1 and 1, then the circle between
them will have bend 4, because \/1_ + \/T = /4. The next circle will
have bend 9, because \/I + \/Z = \/§ Needless to say, the pattern con-
tinues forever. (This also explains what the numbers in the first figure

mean. Each circle is labeled with its own bend.)
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The first thing to notice is the foamlike structure that remains after
you cut out all of the discs in the gasket. Clearly the disks themselves
take up an area that approaches 100 percent of the area within the outer
disk, and so the area of the foam (known as the “residual set”) must be
zero. On the other hand, the foam also has infinite length. Thus, in fact,
it was one of the first known examples of a fractal—a curve of dimen-
sion between 1 and 2. Even toda)f its dimension (denoted 8) is not known
exactly; the best-proven estimate is 1.30568.

The concept of fractional dimension was popularized by Benoit Man-
delbrot in his Cnorlnously influential book The Fractal Geomerrly qf'Namre.
Although the meaning of dimension 1.30568 is somewhat opaque, this
number is related to other properties of the foam that have direct physi-
cal meaning. For instance, if you pick any cutoft radius r, how many
bubbles in the foam have radius larger than r? The answer, denoted N(r),
is roughly proportional to ».Orif you pick the n largest bubbles, what is
the remaining pore space between those bubbles? The answer is roughly
proportional to n'=/%.

Physicists are very familiar with this sort of rule, which is called a
power law. As I read the literature on Apollonian packings, an interesting
cultural difference emerged between physicists and mathematicians. In
the physics literature, a fractional dimension & is de facto equivalent to a
power law r’. However, mathematicians look at things through a sharper
lens, and they realize that there can be additional, slowly increasing or
slowly decreasing terms. For instance, N(r) could be proportional to
log(r) or r*/log(r). For physicists, who study foams empirically (or
semiempirically, via computer simulation), the logarithm terms are ab-
solutely undetectable. The discrepancy they introduce will always be
swamped by the noise in any simulation. But for mathematicians, who
deal in logical rigor, the logarithm terms are where most of the action is.
In 2008, mathematicians Alex Kontorovich and Hee Oh of Brown Uni-
versity showed that there are in fact no logarithm terms in N(r). The
number of circles of radius greater than r obeys a strict power law,
N(r)~Cr®, where C is a constant that depends on the first three circles
of the packing, For the “bugeye” packing illustrated in the second figure,
Cis about 0.201. (The tilde (~) means that this is not an equation but an
estimate that becomes more and more accurate as the radius r decreases
to 0.) For mathematicians, this was a major advance. For physicists, the
likely reaction would be, “Didn’t we know that already?”
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Figure 4. Physicists study random Apollonian packings as a model for foams
or powders. In these simulations, new bubbles or grains nucleate in a random
place and grow, either with rotation or without, until they encounter another
bubble or grain. Different geometries for the bubbles or grains, and different
growth rules, lead to different values for the dimension of the residual set—a
way of mcasuring the cfﬂciency of the Packing. lmagc courtesy of Stefan Hut-
zler and Gary Delaney. First published in Delaney GW, Hutzler S and Aste T
(2008), Relation Between Grain Shape and Fractal Properties in Random
Apollonian Packing with Grain Rotation http: //dx.doi.org/10.1103/
PhysRevLett.101.120602, Phys. Rev. Lett., 101, 120602.



22 Dana Mackenzie

Random Packing

For many physical problems, the classical definition of the Apollonian
gasket is too restrictive, and a random model may be more appropriate.
A bubble may start growing in a randoml}' chosen location and expand
until it hits an existing bubble, and then stop. Or a tree in a forest may
grow until its canopy touches another tree, and then stop. In this case,
the new circles do not touch three circles at a time, but only one. Com-
puter simulations show that these “random Apollonian packings” still
behave like a fractal, but with a different dimension. The empirically
observed dimension is 1.56. (This means the residual set is larger, and
the packing is less efficient, than in a deterministic Apollonian gaskct.)
More recently, Stetan Hutzler of Trinity College Dublin, along with Gary
Delaney and Tomaso Aste of the University of Canberra, studied the
effect of bubbles with different shapes in a random Apollonian packing,
They found, for example, that squares become much more efficient
packers than circles if they are allowed to rotate as they grow, but sur-
prisingly, triangles become only slightly more efficient. As far as I know,
all of these results are begging for a theoretical explanation.

For mathematicians, however, the classical, deterministic Apollonian
gasket still offers more than enough challenging problems. Perhaps the
most astounding fact about the Apollonian gasket is that if the first four
circles have integer bends, then every other circle in the packing does too.
If you are given the first three circles of an Apollonian gasket, the bend
of the fourth is found (as explained above) by solving a quadratic equa-
tion. However, every subsequent bend can be found by solving a linear
equation:

d"‘(l”:z(a"‘b"‘()

For instance, in the bugeye gasket, the three circles with bends a = 2,
b = 3, and ¢ = 15 are mutually tangent to two other circles. One of
them, with bend d = 2, is already given in the first generation. The
other has bend d" = 38, as predicted by the formula, 2 + 38 = 2(2 +
3 + 15). More importantly, even if we did not know d", we would still
be guaranteed that it was an integer, because a, b, ¢, and d are.

Hidden behind this “baby Descartes equation” is an important fact
about Apollonian gaskets: They have a very high degree of symmetry.
Circles a, b, and ¢ actually form a sort of curved mirror that reflects
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Figure 5. “Bugeye” gasket,

circle d to circle d” and vice versa. Thus the whole gasket is like a kalei-
doscopic image of the first four circles, reflected again and again through
an infinite collection of curved mirrors.

Kontorovich and Oh exploited this symmetry in an extraordinary
and amusing way to prove their estimate of the function N(r). Remem-
ber that N(r) simply counts how many circles in the gasket have radius
larger than r. Kontorovich and Oh modified the function N(r) by intro-
ducing an extra variable of position—roughly equivalent to putting a
lightbulb at a point x and asking how many circles illuminated by that
lightbulb have radius larger than r. The count will fluctuate, depending
on exactly where the bulb is placed. But it fluctuates in a very predict-
able way. For instance, the count is unchanged if you move the bulb to
the location of any of its kaleidoscopic reflections.

This property makes the “lightbulb counting function” a very special
kind of function, one which is invariant under the same symmetries as
the Apollonian gasket itself. It can be broken down into a spectrum of
similarly symmetric functions, just as a sound wave can be decomposed
into a fundamental frequency and a series of overtones. From this spec-
trum, you can in theory find out everything you want to know about
the lightbulb counting function, including its value at any particular lo-
cation of the lightbulb.

For a musical instrument, the fundamental frequency or lowest over-

tone is the most important one. Similarly, it turned out that the first
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Figure 6. A favorite examp]e of Sarnak’s is the “coins” gas](et, so called be-
cause three of the four generating circles are in proportion to the sizes of a

quarter, nickel, and dime, respectively. Image courtesy of Alex Kontorovich.

symmetric function was all that Kontorovich and Oh needed to figure
out what happens to N(r) as r approaches 0.

In this way, a simple problem in geometry connects up with some of
the most fundamental concepts of modern mathematics. Functions that
have a kaleidoscopic set of symmetries are rare and wonderful. Konto-
rovich calls them “the Holy Grail of number theory.” Such functions
were, for instance, used by Andrew Wiles in his proof of Fermat’s last
theorem. An interesting new kaleidoscope is enough to keep mathema-
ticians happy for years.

Gaskets Galore

Kontorovich learned about the Apollonian kaleidoscope from his men-
tor, Peter Sarnak of Princeton University, who learned about it from
Lagarias, who learned about it from Wilks and Mallows. For Sarnak, the
Apollonian gasket is wonderful because it has neither too few nor too
many mirrors. If there were too few, you would not get enough infor-
mation from the spectral decomposition. If there were too many, then
previously known methods, such as the ones Wiles used, would already
answer all your questions.



The Quest for God’s Number

Rik van GrOL

The Rubik’s cube triggered one of the largest puzzle crazes in the world.
The small mechanical puzzle, invented by Erné Rubik in Hungary, has
sold more than 350 million copies. Although it has existed since 1974,
the popularity of the cube skyrocketed around 1980, when the cube
was introduced outside of Hungary. In the early days, simply solving the
puzzle was the main issue, especially because no solution books were
available and there was no Internet. But solving the puzzle in the short
est amount of time was also hot news. In the early 1980s the best times
were on the order of 24 seconds.

By the end of the 1980s, the craze was starting to ebb, but in certain
groups the puzzle remained very much alive, and now the Rubik’s cube
is making a comeback. Solving the cube the quickest—speed cubing—is
currently a major activity. The fastest times are under 8 seconds with
the average around 11 seconds. The foundation for a fast solving time is
a good algorithm, and so the search for efficient algorithms has been an
important area of study since the early 1980s. The ultimate goal is to
discover the best method of all—the ()ptlmal solution algorlthm—
which has been dubbed God’s algorithm.

God’s algorithm is the procedure to bring back Rubik’s Cube from any

random posirion to its solved state in the minimum number qfvsfeps.

The maximum of all Inlnunall\ needed number of steps is referred to
as God'’s number. This number can be defined in several ways. The most
common is in terms of the number of face turns required, but it can also
be measured as the number of quarter rurns. Whereas a quarter turn is
either a positive or negative 90° turn, a face turn can be either of these
or a 180° turn. A 180° face turn is equal to two quarter turns. Earlier
this year, after decades of gradual progress, it was determined that
God’s number is 20 face turns. Thus, if God’s algorithm were used to
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solve the cube, no starting position would ever require more than 20
face turns.

Apart from determining God’s number, another major question has
been to find out whether God’s algorithm is an elegant sequence of
moves that can be “easily” memorized, or if, instead, God’s algorithm
amounts to a short procedure with giant lookup tables. If it’s the latter
case, then no one will ever be able to learn how to solve the Rubik’s
cube in the minimal number of moves (read on to learn why this is
true). Still, even if God’s algorithm has no practical purpose, it is inter-
esting to know what God’s number is.

Playing God ( with Small Numbers)

If you start with a solved cube and ask someone to make a few turns,
you will (after some practice) be able to return it to the solved state in a
minimum number of moves as long as the initial number of scrambling
moves is not too large. With fewer than four scrambling moves, it is easy;
with four, it becomes tricky. With five, it is simply hard. Some experts
can handle six or even seven scrambling moves, but any more and it is
essentially impossible to solve the cube in the minimal number of moves.

Generally speaking, most algorithms take between 50 and 100 moves.
What if you were to randomly turn the cube 1,000 times? Will it take
1,000 moves to get it back? No, it still takes most algorithms 50 to 100
moves because the algorithms are designed to work from any starting
position.

Starting Small:The 2 X 2 X 2 Cube
Unlike the classic 3 X 3 XX 3 Rubik’s Cube, the 2 X 2 XX 2 cube has

been completely analyzed. God’s number is 11 in face turns and 14 in
quarter turns. To find these values, all possible configurations of the
2 X2 X 2 cube were cataloged, and for each of these configurations,
the minimal number of turns needed to reach the solved state was de-
termined. This brute force approach was possible because there are
“only”about 3.7 million configurations to study.

To calculate the number of configurations for the 2 > 2 >X'2 cube,
we start with the observation that the eight corner cubies (as they are
called) can be permuted in 8! ways. For any such permutation, each
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corner cubie can be oriented in three ways, leading to 3* possible orien-
tations. However, given the orientation of seven corners, the orienta-
tion of the eighth is determined by the puzzle mechanism, so the cor-
ners reall}' have 37 orientations. As the orientation of the whole cube is
not fixed in space (any one of the Cight corners can be placcd in, say, the
top-front-right position, and once it is placed there, the entire cube can
be rotated so that any one of three faces is on top), the total number of
permutations needs to be divided by 8 X3 = 24. Hence, the total
number of positions is

81 < 3 .

—— =71 X3 =3,674,160.

8§ X3

There are only 2,644 positions for which 11 face turns are required to
solve the puzzle. Assuming all configurations have the same likelihood of
being a starting position, the average number of face turns required to
solve the puzzle is 9. Likewise, there are only 276 positions from which
14 quarter turns are required, and on average, 11 quarter turns are re-
quired to solve the puzze.

A Leap in Complexity: The 3 X 3 X 3 Cube

Until recently, God’s number for the 3 > 3 X 3 cube was not known.
From the late 1970s until now the search area has been limited by two
numbers: the lower bound and the upper bound. The lower bound Glow
is determined by proving that there are positions that require at least
high ;

G"" turns. The upper bound G"¢" is determined by proving that no posi-
tion requires more than G"¢" turns.

So, how many configurations are there? With 8 corner cubies and 12
edge cubies, there are 8! X 121 > 3% > 2" different patterns, but not

all patterns are possible:

e With 8 corners there are 8! corner permutations, and with 12 ed(ges
there are 12/ edge permutations. However, because it is impossiblc to
interchange two edge cubies without also interchanging 2 corner cubies,
the total number (y(‘permumrions should be divided b)/ 2.

* Turning qfrorner cubies (keeping their position, but cycling the colors
on their three jb(es) needs to be done in pairy—an]}' 7 corner cubies can

be mrnedftee])-'.
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. Flipping gfca'ge cubies (keeping their position, but swirching the colors
gfth@ir rwofaces) needs to be done in pairsfonlv 11 edge cubies can be
. ﬂ ippca" frcclj’.
Because of the six center pieces, the orientation of the cube is fixed in
space, so the number of permutations should not be divided by 24 as
with the 2 X2 X2 cube. Hence, the number of positions of the
3 X 3 X 3 cube s
glx120 3 " , o
———— X — X — =43,252,003,274,489,856,000 = 4 3 <X 10",
2 3 2

This is astronomically bigger than 3,674,160 for the 2 X 2 X 2 cube,
and it made searching the entire space computationally impossible. For
instance, if every one of the 350 million cubes ever sold were put in a
new position every second, it would take more than 3,900 vears for
them to collectively hit every possible position (with no pair of cubes
ever sharing a common configuration). Or to put it another way: if a
computer were capable of determining the fewest number of moves re-
quired to solve the cube for 1,000 different starting positions each sec-
ond, it would take more than a billion years of computing time to get
through every configuration.

Determining God’s number by independently improving the upper
and lower bounds was a quest that lasted for three decades—but it has
finally come to an end. In July 2010 the upper and lower bounds met at
the number 20.

Raising the Lower Bound

Using counting arguments, it can be shown that there exist positions
requiring at least 18 moves to solve.To see this, one counts the number
of distinct positions achievable from the solved state using at most 17
moves. It turns out that this number is smaller than 4.3 > 10", This
simple argument was made in the late 1970s (see Singmaster’s book in
the Further Reading section), and the result was not improved upon for
many vears. Note that this is not a constructive proof; it does not spec-
ify a concrete position that requires 18 moves. At some point, it was
suggcstcd that the so-called supe{ﬂip would be such a l)osition.ThC su-

pertlip is a state of the cube where all the cubies are in their correct
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position with the corner cubies oriented correctly, but where each edge
cubie is flipped (oriented the wrong way).

[t took until 1992 for a solution for the superflip with 20 face turns
to be found, by Dik Winter. In 1995 Michael Reid proved that this solu-
tion was minimal, and thus a new lower bound for God’s number was
found. Also in 1995, a solution for the superflip in 24 quarter turns was
found by Michael Reid, and it was later proved to be minimal by Jerry
Bryan. In 1998 Michael Reid found a new position requiring more than
24 quarter turns to solve. The position, which he calls the superflip com-
posed with four spots, requires 26 quarter turns. This put the lower bound
at 20 face turns or 26 quarter turns.

Lowering the Upper Bound

Finding an upper bound requires a different kind of reasoning, Perhaps
the first concrete value for an upper bound was the 277 moves men
tioned by David Singmaster in early 1979. He simply counted the maxi-
mum number of moves required by his cube-solving algorithm. Later,
Singmaster reported that Elwyn Berlekamp, John Conway, and Richard
Guy had come up with a different algorithm that took at most 160 moves.
Soon after, Conway’s Cambridge Cubists reported that the cube could
be restored in at most 94 moves. Again, this reflected the maximum
number of moves required by a specific algorithm.

A significant breakthrough was made by Morwen Thistlethwaite.
Whereas algorithms up to that point attacked the problem by putting
various cubies in place and performing subsequent moves that left them
in place, he approached the problem by gradually restricting the types
of moves that could be executed. Understanding this method requires a
brief introduction to the cube group.

As we work with the cube, let’s agree to keep the overall orientation
of the cube fixed in space. This means that the center cubies on each face
will never change. We may then label the faces Left, Right, Front, Back,
Up, and Down. The cube group is composed of all possible combina-
tions of successive face turns, where two such combinations are equal if
and only if they result in the same cube configuration. We denote the
clockwise quarter turns of the faces by L, R, F; B, U, and D, and use con-
catenation as the group operation. For instance, the product FR denotes
a quarter turn of the front face followed by a quarter turn of the right
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sold more than 1.5 million copies. Another classic, complete with the
requisite group theory, is Inside Rubik’s Cube and Beyond, by Christoph
Bandelow (Birkhauser, 1982). On the web, an excellent how-to guide
with several links to other sources can be found at Jaap’s Puzzle Page:
http://www.jaapsch.net/puzzles/. A brief history of the quest for God’s
number can be found onTom Rokicki’s site, http://www.cube20.org,



Meta-morphism:
From Graduate Student to Networked

Mathematician

ANDREW SCHULTZ

While the stereotypical mathematician is a hermit locked alone in his
office, the typical mathematician is far from a solitary explorer. A great
amount of the mathematics produced today is created collaboratively,
spurred into existence during those quintessentially mathematical social
interactions: on chalkboards following a seminar talk, on napkins during
a coffee break at a conference, on the back of a coaster at a pub. Though
it often isn’t clear to those wading through graduate programs, one of
the key metamathematical skills one should develop while working on a
master’s or Ph.D. is the ability to participate in this social network.
What follows is a rough guide to how you can use graduate school to
build the professional relationships that will shape your career.

The Hungry Caterpillar

Stepping into the mathematical social network begins by getting to
know your graduate student cohort. It’s likely that some of the friend-
ships you form during graduate school will be among the closest in your
life, and even those fellow students who aren’t your best friends are
likely to be professional colleagues long after you've received your de-
gree. It's worth the investment of time and energy to foster these rela-
tionships as your first semester begins.

When arriving on campus to start your graduate career, you'll likely
convene with the new graduate students in your department and a hand-
ful of the faculty for a kind of informal orientation. Ph.D. programs often
draw students from a wide variety of backgrounds, so don’t be surprised
to find people whose professional experience, familial status, or country



