The BEST
WRITING on
MATHEMATICS




Copyright © 2013 I)y Princeton University Press

Published by Princeton University Press, 41 William Street,
Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,

6 Oxford Street, Woodstock, Oxfordshire OX20 1TW
press.princeton.edu
All Rights Reserved
ISBN 978-0-691-15655-2
This book has been composed in Perpetua
Printed on acid-free paper. oo

Printed in the United States of America

13579108642



For my parents




Copyrighted material



Contents

Foreword: The Synergy of Pure and Applied Mathematics,
of the Abstract and the Concrete

Davib MUMFORD ix
Introduction
MircEA PiTICI xvii

Why Math Works

Magrio Livio 1
s Matl ics Di lor ] 2

TiMoTHY GOWERS 8
The Unplanned Impact of Mathematics

PETER ROWLETT 21
I ] in the Nth Di .

Brian HAYES 30

T re and Randomness in the Prime Number.

TerReENCE TAO 43
The Strangest Numbers in String Theory

Joun C. BAEZ AND JOHN HUERTA 50

Mathematics Meets Photography: The Viewable Sphere

Davip SwarT AND BRUCE TORRENCE 61
Dancing Mathematics and the Mathematics of Dance

SARAH-MARIE BELCASTRO AND KARL SCHAFFER 79
Can One Hear the Sound ofa Theorem?

ROB SCHNEIDERMAN 93
F]at—Unfb]dabi]it)/ and Woven Origami Tessellations

ROBERT |. LANG 113

A Continuous Path from High School Calculus to University Analysis

s
()
NO

TiMoTHy GOWERS




viii Contents

Mathematics Teachers’ Subtle, Complex Disciplinary Knowledge
BRENT DAvIS

How to Be a Good Teacher Is an Undecidable Problem
Erica Frapran

How Your Philosophy qf Mathematics Impacts Your Teaching

BonnNie GoLb

Variables in Matl ics Educati

Susanna S. Epp
B i Matl s Educati
D M SoL G
History of Mathematics and History of Science Reunited?

JEREMY GRAY

Augustus De Morgan behind the Scenes
CHARLOTTE SIMMONS

Routing Problems: A Historical Perspective

G1usePPE BRUNO, ANDREA GENOVESE, AND GENNARO IMPROTA

The Cycloid and Jean Bernoulli
GERALD L. ALEXANDERSON

Was Cantor Surprised?
FErRNANDO Q. GouvEa

Why Is There Philosophy chathematics at All?
IaN HackING

Ultimate Logic: To Infinity and Beyond
RicHARD E1WES

Mating, Dating, and Mathematics: It’s All in the Game
Mark CoLyvan

Contributors
Notable Texts
Acknowledgments

Credits

z

—
-

2

s
WS}

g

176

k

197

216

234

255

ST S 5]
je o] ~1
[ T .

o
o0
I~



Foreword: The Synerqy of Pure and Applied
Mathematics, of the Abstract and the Concrete

Davipb MUMFORD

All of us mathematicians have discovered a sad truth about our pas-
sion: It is pretty hard to tell anyone outside your field what you are
so excited about! We all know the sinking feeling you get at a party
when an attractive person of the opposite sex looks you in the eyes and
asks—“What is it you do?” Oh, for a simple answer that moves the
conversation along.

Now Mircea Pitici has stepped up to the plate and for the third year
running has assembled a terrific collection of answers to this query.
He ranges over many aspects of mathematics, including interesting
pieces on the history of mathematics, the philosophy of mathematics,
mathematics education, recreational mathematics, and even actual pre-
sentations of mathematical ideas! This volume, for example, has accessible
discussions of n-dimensional balls, the intricacies of the distribution
of prime numbers, and even of octonions (a strange type of algebra in
which the “numbers” are 8-tuples of the ordinary sort of number)—
none of which are casy to convey to the layperson. In addition—and
[ am equally pleased with this—several pieces explain in depth how
mathematics can be used in science and in our lives—in dancing, for
the traveling salesman, in search of marriage, and for full-surround
photography, for instance.

To the average layperson, mathematics is a mass of abstruse for-
mulae and bizarre technical terms (e.g., perverse sheaves, the mon-
ster group, barreled spaces, inaccessible cardinals), usually discussed
by academics in white coats in front of a blackboard covered with pe-
culiar symbols. The distinction between mathematics and physics is
blurred and that between pure and applied mathematics is unknown.
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But to the professional, these are three different worlds, different sets
of colleagues, with different goals, different standards, and different
customs.

The layperson has a point, though. Throughout history many practi-
tioners have crossed seamlessly between one or another of these fields.
Archimedes not only calculated the volume of a ball of radius r (a pure
mathematics problem with the answer 471r’/3) but also studied the lever
(a physics problem) and used it both in warfare (applied mathematics:
hurling fiery balls at Roman ships) and in mind experiments (“Give me
a place to stand and I will move the earth”). Newton was both a bril-
liant mathematician (inventing calculus) and physicist (discovering the
law of gravity).

Today it is different: The three fields no longer form a single space
in which scientists can move easily back and forth. Starting in the mid-
twentieth century, mathematicians were blindsided by the creation of
quantum field theory and even more by string theory. Here physicists,
combining their physical intuition with all the latest and fanciest math-
ematical theories, began to use mathematics in ways mathematicians
could not understand. They abandoned rigorous reasoning in favor of
physical intuition and played wildly with heuristics and extrapolations
from well-known mathematics to “explain” the world of high energy.
At about the same time (during the "50s and '60s), mathematics split
into pure and applied camps. One group fell in love with the dream of
a mathematics that lived in and for itself, in a Platonic world of blind-
ing beauty. The English mathematician G. H. Hardy even boasted that
his work could never be used for practical purposes. On the other side,
another group wanted a mathematics that could solve real-world prob-
lems, such as defeating the Nazis. John von Neumann went to Los Ala-
mos and devised a radical new type of mathematics based on gambling,
the Monte Carlo technique, for designing the atom bomb. A few years
later, this applied group developed a marvelous new tool, the com-
puter—and with it applied mathematics was off and running in its own
directions.

[ have been deeply involved with both pure mathematics and applied
mathematics. My first contact with real mathematical problems was
during a summer job in 1953, when [ used an analog computer to simu-
late the neutron flux in the core of an atomic reactor. I was learning the
basics of calculus at the time, just getting used to writing Greek letters
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for numbers and operations—and the idea of connecting resistors in a
grid to simulate A (technically, the Laplace differential operator) struck
me as profoundly beautiful. I was struggling to get my mind around
the abstract notions, but luckily I was well acquainted with the use of a
soldering iron. I was delighted that I could construct simple electrical
circuits that made calculus so tangible.

Later, in college, I found that I could not understand what quantum
field theory was all about; ergo, I was not a physicist but a mathemati-
cian! [ went all the way and immersed myself in one of the purest areas
of pure mathematics. (One can get carried away: At one time the math
department at Cambridge University advertised an opening and a mis-
print stated that the position was in the Department of “Purer” Math-
ematics!) I “constructed” something called “moduli schemes.” T do not
expect the reader to have ever heard of moduli schemes or have a clue
what they are. But here is the remarkable thing: To mathematicians
who study them, moduli schemes are just as real as the regular objects
in the world.

I can explain at least the first steps of the mental gymmastics that
led to moduli schemes. The key idea is that an ordinary object can be
studied using the set of functions on the object. For example, if you have
a pot of water, the water at each precise location, at each spatial point
inside the pot, has a temperature. So temperature defines a function, a
rule that associates to each point in the pot the real number that is the
temperature at that exact point. Or you can measure the coordinates of
each point, for instance, how many centimeters the point is above the
stove. Secondly, you can do algebra with these functions—that is, you
can add or multiply two such functions and get a third function. This
step makes the set of these functions into a ring. [ have no idea why, but
when you have any set of things that can be added and multiplied, con-
sistent with the usual rules (for instance, the distributive law a [times]
(b + ¢) = a [times] b + a [times] ¢), mathematicians call this set a ring.
You see, ordinary words are used in specialized ways. In our case, the
ring contains all the information needed to describe the geometry of
the pot because the points in the pot can be described by the map car-
rying each function to its value at that point.

Then the big leap comes: If you start with any ring—that is, any set
of entities that can be added and multiplied subject to the usual rules,
you simply and brashly declare that this creates a new kind of geometric
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approximately 1,000,000,000,000,000,000,000,000 neutrons that are
really whizzing about—and it turned out to work well, unless you regret
the legacy von Neumann’s inspiration left the world.

But the drifting apart of pure and applied mathematics is not the
whole story. The two worlds are tied more closely than you might imag-
ine. Each contributes many ideas to the other, often in unexpected ways.
Perhaps the most famous example is Einstein’s need of new mathemati-
cal tools to push to deeper levels the ideas of special relativity. He found
that Italian mathematicians, dealing with abstract n-dimensional space,
had discovered tools for describing higher dimensional versions of cur-
vature and the equations for shortest paths, called geodesics. Adapting
these ideas, Einstein turned them into the foundations of general rela-
tivity (without which your global positioning system [GPS] wouldn’t
work). In the other direction, almost a century after Einstein discovered
general relativity, working out the implications of Einstein’s model is a
hot area in pure mathematics, driving the invention of new techniques
to deal with the highly nonlincar PDEs underlying his theory. In other
words, pure mathematics made Einstein’s physics possible, which in
turn opened up new fields for pure mathematics.

A spectacular recent example of the interconnections between pure
and applied mathematics involves prime numbers. No one (especially
G. H. Hardy, as I mentioned) suspected that prime numbers could ever
be useful in the real world, yet they are now the foundation of the
encryption techniques that allow online financial transactions. This
application is a small part of an industry of theoretical work on new
algorithms for discrete problems—in particular, their classification by
the order of magnitude of their speed—which is the bread and butter
of computer science.

I want to describe another example of the intertwining of pure and
applied mathematics in which I was personally involved. Computer vi-
sion research concerns writing computer code that will interpret cam-
era and video input as effectively as humans can with their brains, by
identifying all the objects and actions present. When this problem was
first raised in the 1960s, many people believed that it was a straight-
forward engineering problem and would be solved in a few years. But
fifty years later, computers still cannot recognize specific individuals
from their faces very well or name the objects and read all the signs
in a street scene. We are getting closer: Computers are pretty good at
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talked about a variety of such connections among these fields. But even
within pure mathematics, amazing connections between remote arcas
are uncovered all the time. In the last decade, for example, ideas from
number theory have led to progress in the understanding of the topology
of high-dimensional spheres.

It will be difticult to fully repair the professional split between pure
and applied mathematics and between mathematics and physics. One
reason for this difficulty is that each academic field has grown so much,
so that professionals have limited time to read work outside their spe-
cialties. It is not easy to master more than a fraction of the work in any
single field, let alone in more than one. What we need, therefore, is to
work harder at explaining our work to each other. This book, though it
is addressed mostly to lay people, is a step in the right direction.

As I see it, the major obstacle is that there are two strongly con-
flicting traditions of writing and lecturing about mathematics. In pure
mathematics (but not exclusively), the twentieth century saw the devel-
opment of an ideal exposition as one that started at the most abstract
level and then gradually narrowed the focus. This style was especially
promoted by the French writing collaborative “Bourbaki.” In the long
tradition of French encyclopedists, the mathematicians forming the
Bourbaki group sought to present the entire abstract structure of all
mathematical concepts in one set of volumes, the Lléments de Mathéma-
tigue. In that treatise the real numbers, which most of us regard as a
starting point, only appeared midway into the series as a special “locally
compact topological field.” In somewhat less relentless forms, their ori-
entation has affected a large proportion of all writing and lecturing in
mathematics.

An opposing idea, promoted especially in the Russian school, is that
a few well-chosen examples can illuminate an entire field. For example,
one can learn stochastic processes by starting with a simple random
walk, moving on to Brownian motion, its continuous version, and then
to more abstract and general processes. I remember a wonderful talk
on hyperbolic geometry by the mathematician Bill Thurston, where
he began by scrawling with yellow chalk on the board: He explained
that it was a simple drawing of a fire. His point was that in hyperbolic
space, you have to get much, much closer to the fire to warm up than
you do in Fuclidean space. Along with such homey illustrations, there
is also the precept “lie a little.” If we insist on detailing all the technical
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qualifications of a theorem, we lose our readers or our audience very
fast. If we learn to say things simply and build up slowly from the con-
crete to the abstract, we may be able to build many bridges among our
various specialties. For me, this style will always be The Best Writing on
Mathematics, and this book is full of excellent examples of it.
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MIRCEA PrTICI

A little more than cight years ago I planned a series of “best writing” on
mathematics with the sense that a sizable and important literature does
not receive the notice, the consideration, and the exposure it deserves.
Several years of thinking on such a project (for a while I did not find a
publisher interested in my proposal) only strengthened my belief that
the best of the nontechnical writings on mathematics have the potential
to enhance the public reception of mathematics and to enrich the inter-
disciplinary and intradisciplinary dialogues so vital to the emergence
of new ideas.

The prevailing view holds that the human activity we conventionally
call “mathematics” is mostly beyond fruitful debate or personal inter-
pretation because of the uncontested (and presumably uncontestable)
matters of fact pertaining to its nature. According to this view, math-
ematics speaks for itself, through its cryptic symbols and the efficacy of
its applications.

At close inspection, the picture is more Complicated. Mathematics
has been the subject of numerous disputes, controversies, and crises—
and has weathered them remarkably well, growing from the resolution
of the conundrums that tested its strength. By doing so, mathematics
has become a highly complex intellectual endeavor, thriving at the ever-
shifting intersection of multiple polarities that can be used to describe
its characteristics. Consequently, most people who are engaged with
mathematics (and many people disengaged from it) do it on a more
personal level than they are ready to admit. Writing is an effective way
of informing others on such individualized positioning vis-a-vis math-
ematics. A growing number of authors—professionals and amateurs—
are taking on such a task. Every week new books on mathematics are
published, in a dazzling blossoming of the genre hard to imagine even
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a decade ago (I mention a great number of these titles later in this in-
troduction). This recent flourishing confirms that, just as mathematics
offers unlimited possibilities for asking new questions, formulating new
problems, opening new theoretical vistas, and rethinking old concepts,
narrating our individualized perspectives on it is equally potent in ex-
pressivity and in impact.

By editing this annual series, I stand for the wide dissemination of
insightful writings that touch on any aspect related to mathematics. 1
aim to diminish the gap between mathematics professionals and the
general public and to give exposure to a substantial literature that is
not currently used systematically in scholarly settings. Along the way,
I hope to weaken or even to undermine some of the barriers that stand
between mathematics and its pedagogy, history, and philosophy, thus
alleviating the strains of hyperspecialization and offering opportunities
for connection and collaboration among people involved with different
aspects of mathematics. If, by presenting in each volume a snapshot of
contemporary thinking on mathematics, we succeed in building a useful
historical reference, in offering an informed source of further inquiry,
and in encouraging even more exceptional writing on mathematics, so
much the better.

Overview of the Volume

In the first article of our selection, Mario Livio ponders the old ques-
tion of what makes mathematics effective in describing many features
of the physical universe and proposes that its power lies in the peculiar
blending between the human ingenuity in inventing flexible and adapt-
able mathematical tools and the uncanny regularities of the universe.

Timothy Gowers brings the perspective of a leading research mathema-
tician to another old question, that concerning features of discovery and
elements of invention in mathematics; he discusses some of the psycho-
logical aspects of this debate and illustrates it with a wealth of examples.

In a succession of short pieces, Peter Rowlett and his colleagues at
the British Society for the History of Mathematics present the unex-
pected applications, ricocheting over centuries, of notions and results
long believed to have no use beyond theoretical mathematics.

Brian Hayes puzzles over the proportion between the volume
of a sphere and that of the cube circumscribed to it, in various
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concludes that, despite various degrees of success, she remains an ag-
nostic in this matter.

Bonnie Gold argues that everyone teaching mathematics does it ac-
cording to certain philosophical assumptions about the nature of math-
ematics—whether the assumptions are explicit or remain implicit.

Susanna S. Epp examines several uses of the concept of “variable” in
mathematics and opines that, from an educational standpoint, the best
is to treat variables as placeholders for numerals.

David Mumford and Sol Garfunkel plead for a broad reform of the
U.S. system of mathematics education, more attuned to the practical
uses of mathematics for the citizenry and less concerned with the high-
stakes focus on testing currently undertaken in the United States.

Jeremy Gray surveys recent trends in the study of the history of math-
ematics as compared to research on the history of science and examines
the possibility that the two might be somehow integrated in the future.

Charlotte Simmons writes about Augustus De Morgan as a mentor
of other mathematicians, an aspect less known than the research con-
tributions of the great logician.

Giuseppe Bruno, Andrea Genovese, and Gennaro Improta review
several formulations of various routing problems, with wide applica-
tions to matters of mathematical optimization.

Special curves were at the forefront of mathematical research about
three centuries ago, and one of them, the cycloid, attracted the atten-
tion (and the rivalry) of the most famous mathematicians of the time—
as Gerald L. Alexanderson shows in his piece on the Bernoulli family.

Fernando Gouvéa examines Georg Cantor’s correspondence, to
trace the original meaning of Cantor’s famous remark “I see it, but I
don’t believe it!” and to refute the ulterior, psychological interpreta-
tions that other people have given to this quip.

lan Hacking explains that the enduring fascination and the powertul
influence of mathematics on so many Western philosophers lie in the
experiences engendered on them by learning and doing mathematics.

Richard Elwes delves into the subtleties of mathematical infinity and
ventures some speculations on the future clarification of the problems
it poses.

Finally, Mark Colyvan illustrates the basic mathematics involved in
the games of choice we encounter in life, whenever we face processes
that require successive alternative decisions.
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The number of interdisciplinary and applicative books that build
connections between mathematics and other domains continues to
grow fast. On mathematics and music, we recently have A Geometry of
Music by Dmitri Tymoczko and The Science of String Instruments, edited
by Thomas D. Rossing. Some remarkable books on mathematics and
architecture are now available, including The Function of Form by Farshid
Moussavi (marvelously illustrated); Advances in Architectural Geometry
2010, edited by Cristiano Ceccato and his collaborators; The New Math-
ematics of Architecture by Jane and Mark Burry; the 30th anniversary reis-
sue of The Dynamics of Architectural Form by Rudolf Arnheim; and Matter
in the Floating World, a book of interviews by Blaine Brownell.

Among the books on mathematics and other sciences are Martin B.
Reed’s Core Maths for the Biosciences; BioMath in the Schools, edited by Mar-
garet B. Cozzens and Fred S. Roberts; Chaos: The Science of Predictable
Random Motion by Richard Kautz (a historical overview); Some Mathemat-
ical Models from Population Genetics by Alison Etheridge; and Mathematics
Meets Physics, a collection of historical pieces (in English and German)
edited by Karl-Heinz Schlote and Martina Schneider.

Everyone expects some books on mathematics and social sciences; in-
deed, this time we have Mathematics of Social Choice by Christoph Borgers,
Bond Math by Donald J. Smith, An Elementary Introduction to Mathematical
Finance by Sheldon M. Ross, and E. E. Slutsky as Economist and Mathemati-
cian by Vincent Barnett. A highly original view on mathematics, phi-
losophy, and financial markets is The Blank Swan by Elie Ayache. And an
important collection of papers concerning statistical judgment in the
real world is David A. Freedman’s Statistical Models and Causal Inference.

More surprising reaches of mathematics can be found in Magical
Mathematics by Persi Diaconis and Ron Graham, Math for the Professional
Kitchen (with many worksheets for your convenience) by Laura Dreesen,
Michael Nothnagel, and Susan Wysocki, The Hidden Mathematies of Sport
by Rob Eastaway and John Haigh, Face Geometry and Appearance Modeling
by Zicheng Liu and Zhengyou Zhang, How to Fold It by Joseph O’Rourke,
and Mathematics for the Environment by Martin E. Walter. Sudoku comes
of (mathematical) age in Taking Sudoku Seriously by Jason Rosenhouse and
Laura Taalman. More technical books, but still interdisciplinary and ac-
cessible, are Viewpoints: Mathematical Perspective and Fractal Geometry in Art
by Marc Frantz and Annalisa Crannell and Infinity: New Research Frontiers,
edited by Michael Heller and W. Hugh Woodin.
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Many new books have been published recently in mathematics edu-
cation, too many to mention them all. Several titles that caught my
attention are Tony Brown’s Mathematics Education and Subjectivity, Hung-
Hsi Wu’s unlikely voluminous Understanding Numbers in Elementary
School Mathematics, Judith E. Jacobs” A Winning Formula for Mathematics
Instruction, as well as Upper Elementary Math Lessons by Anna O. Graeber
and her collaborators, The Shape of Algebra in the Mirrors of Mathemat-
ics by Gabriel Katz and Vladimir Nodelman, and Geometry: A Guide _for
Teachers by Judith and Paul Sally. Keith Devlin offers an original view
of the connections between computer games and mathematics learn-
ing in Mathematics Education for a New Era. Among the many volumes at
the National Council of Teachers of Mathematics, notable is the 73rd
NCTM Yearbook, Motivation and Disposition, edited by Daniel J. Brahier
and William R. Speer; Motivation Matters and Interest Counts by James
Middleton and Amanda Jansen; and Disrupting Tradition by William
Tate and colleagues. NCTM also publishes many books to support the
professional development of mathematics teachers. A good volume for
preschool teachers is Math from Three to Seven by Alexander Zvonkin.
With an international perspective are Russian Mathematics Education, ed-
ited by Alexander Karp and Bruce R. Vogeli; International Perspectives
on Gender and Mathematics Education, edited by Helen J. Forgasz and her
colleagues; and Teacher Education Matters by William H. Schmidt and
his colleagues. Mathematics Teaching and Learning Strategies in PISA, pub-
lished by the Organisation for Economic Co-operation and Develop-
ment, contains a wealth of statistics on global mathematics education.

An excellent volume at the intersection of brain research, psychol—
ogy, and education, with several contributions focused on learning
mathematics, is The Adolescent Brain, edited by Valerie F. Reyna and her
collaborators.

Besides the historical biographies mentioned above, several other
contributions to the history of mathematics are worth enumerating,
Among thematic histories are Ranjan Roy’s Sources in the Development
of Mathematics, a massive and exhaustive account of the growth of the
theory of series and products; Early Days in Complex Dynamics by Dan-
iel S. Alexander and collaborators; The Origin of the Logic of Symbolic
Mathematics by Burt C. Hopkins; Lobachevski Illuminated by Seth Braver;
Mathematics in Victorian Britain, edited by Raymond Flood and collabora-
tors; Journey through Mathematics by Enrique A. Gonzalez-Velasco; and
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Histories of Computing by Michael Sean Mahoney. Two remarkable books
that weave the history of mathematics and European arts are Between
Raphael and Galileo by Alexander Marr and The Passionate Triangle by
Rebecca Zorach,

Several historical editions are newly available, for instance,
Lobachevsky’s Pangeometry, translated and edited by Athanase Papa-
dopoulos; 80 Years of Zentralblatt MATH, edited by Olaf Teschke and
collaborators; and Albert Lautman’s Mathematics, Ideas, and the Physical
Real. Other historical works are The Theory That Would Not Die by Sha-
ron Bertsch McGrayne, From Cardano’s Great Art to Lagrange’s Reflections
by Jacqueline Stedall, Chasing Shadows by Clemency Montelle, and World
in the Balance by Robert P. Crease.

In philosophy of mathematics, a few books concern personalities:
After Godel by Richard Tieszen; Kurt Gédel and the Foundations of Math-
ematics, edited by Matthias Baaz et al.; Spinoza’s Geometry of Power by
Valtteri Viljanen; Bolzano’s Theoretical Philosophy by Sandra Lapointe;
and New Essays on Peirce’s Mathematical Philosophy, edited by Matthew E.
Moore. Other recent volumes on the philosophy of mathematics and
its history are Paolo Mancosu’s The Adventure of Reason, Paul M. Liv-
ingston’s The Politics of Logic, Gordon Belot’s Geometric Possibility, and
Fundamental Uncertainty, edited by Silva Marzetti Dall’Aste Brandolini
and Roberto Scazzieri.

Mathematics meets literature in William Goldbloom Bloch’s The Un-
imaginable Mathematics of Borges™ Library of Babel and, in a different way, in
AIl Cry Chaos by Leonard Rosen (where the murder of a mathematician
is pursued by a detective called Henri Poincare). Hans Magnus Enzens-
berger, the German writer who authored the very successful book The
Number Devil, has recently published the tiny booklet Fatal Numbers.

For other titles the reader is invited to check the introduction to the
previous volumes of The Best Writing on Mathematics.

As usual, at the end of the introduction I mention several interest-
ing websites. A remarkable bibliographic source is the online list of ref-
erences on Benford’s Law organized by Arno Berger, Theodore Hill,
and Erika Rogers (http://www.benfordonline.net/). Other good topic-
oriented websites are the MacTutor History of Mathematics archive from
the University of St. Andrews in Scotland (http://www-history.mcs
st-and.ac.uk/), Mathematicians of the African Diaspora (MAD) (http://
www.math.buffalo.edu/mad/), the Famous Curves index (http://www
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-history.mcs.st-and.ac.uk/Curves/Curves.html), the National Curve
Bank  (http://curvebank.calstatela.edu/index/index. htm), and Free
Mathematics Books (http://www.e-booksdirectory.com/mathematics.
php). An intriguing site dedicated to the work of Alexandre Grothen-
dieck, one of the most intriguing mathematicians alive, is the Grothen-
dieck Circle (http://www.grothendieckcircle.org/). An excellent
website for mathematical applications in science and engineering is
Equalis (http://www.equalis.com/). Among websites with potential for
finding materials for mathematical activities are the one on origami be-
longing to Robert Lang, a contributor to this volume (http://www.lang
origami.com/index.php4); many other Internet sources for the light
side of mathematics can be found conveniently on the personal page
maintained by Greg Frederickson of Purdue University (http://www.cs
.purdue.edu/homes/gnt/hotlist.html).

[ hope you, the reader, find the same value and excitement in reading
the texts in this volume as I found while searching, reading, and se-
lecting them. For comments on this book and to suggest materials for
consideration in preparing future volumes, I encourage you to send cor-
respondence to me: Mircea Pitici, P.O. Box 4671, Ithaca, NY 14852.
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truths? Many great mathematicians—including David Hilbert, Georg
Cantor, and quite a few of the group known as Nicolas Bourbaki—have
shared Einstein’s view, associated with a school of thought called For-
malism. But other illustrious thinkers—among them Godfrey Harold
Hardy, Roger Penrose, and Kurt Godel—have held the opposite view,
Platonism.

This debate about the nature of mathematics rages on today and
scems to clude an answer. I believe that by asking simply whether
mathematics is invented or discovered, we ignore the possibility of a
more intricate answer: both invention and discovery play a crucial role.
I posit that together they account for why math works so well. Although
eliminating the dichotomy between invention and discovery does not
fully explain the unreasonable effectiveness of mathematics, the prob-
lem is so profound that even a partial step toward solving it is progress.

Invention and Discovery

Mathematics is unreasonably effective in two distinct ways, one I think
ofasactive and the other as passive. Sometimes scientists create methods
specifically for quantifying real-world phenomena. For example, Isaac
Newton formulated calculus largely for the purpose of capturing mo-
tion and change, breaking them up into infinitesimally small frame-by-
frame sequences. Of course, such active inventions are effective; the
tools are, after all, made to order. What is surprising, however, is their
stupendous accuracy in some cases. Take, for instance, quantum elec-
trodynamies, the mathematical theory developed to describe how light
and matter interact. When scientists use it to calculate the magnetic
moment of the electron, the theoretical value agrees with the most
recent experimental value—measured at 1.00115965218073 in the ap-
propriate units in 2008—to within a few parts per trillion!

Even more astonishing, perhaps, mathematicians sometimes develop
entire fields of study with no application in mind, and yet decades, even
centuries, later physicists discover that these very branches make sense
of their observations. Examples of this kind of passive effectiveness
abound. French mathematician Evariste Galois, for example, developed
group theory in the early 1800s for the sole purpose of determining the
solvability of polynomial equations. Very broadly, groups are algebraic
structures made up of sets of objects (say, the integers) united under
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the edges of individual objects and at distinguishing between straight
and curved lines and between different shapes, such as circles and el-
lipses—abilities that probably led to the development of arithmetic and
geometry. So, too, the repeated human experience of cause and effect
at least partially contributed to the creation of logic and, with it, the
notion that certain statements imply the validity of others.

Selection and Evolution

Michael Atiyah, one of the greatest mathematicians of the 20th cen-
tury, has presented an elegant thought experiment that reveals just how
perception colors which mathematical concepts we embrace—even
ones as seemingly fundamental as numbers. German mathematician
Leopold Kronecker famously declared, “God created the natural num-
bers, all else is the work of man.” But imagine if the intelligence in our
world resided not with humankind but rather with a singular, isolated
jellyfish, floating decp in the Pacific Ocecan. Everything in its experi-
ence would be continuous, from the flow of the surrounding water to
its fluctuating temperature and pressure. In such an environment, lack-
ing individual objects or indeed anything discrete, would the concept
of number arise? If there were nothing to count, would numbers exist?

Like the jellyfish, we adopt mathematical tools that apply to our
world—a fact that has undoubtedly contributed to the perceived ef-
fectiveness of mathematics. Scientists do not choose analytical methods
arbitrarily but rather on the basis of how well they predict the results
of their experiments. When a tennis ball machine shoots out balls, you
can use the natural numbers 1, 2, 3, and so on, to describe the flux of
balls. When firefighters use a hose, however, they must invoke other
concepts, such as volume or weight, to render a meaningful descrip-
tion of the stream. So, too, when distinct subatomic particles collide
in a particle accelerator, physicists turn to measures such as energy and
momentum and not to the end number of particles, which would reveal
only partial information about how the original particles collided be-
cause additional particles can be created in the process.

Over time, only the best models survive. Failed models—such as
French philosopher René Descartes’s attempt to describe the motion of
the planets by vortices of cosmic matter—die in their infancy. In con-
trast, successful models evolve as new information becomes available.
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For instance, very accurate measurements of the precession of the
planet Mercury necessitated an overhaul of Newton's theory of gravity
in the form of Einstein’s general relativity. All successful mathemati-
cal concepts have a long shelf life: The formula for the surface area of
a sphere remains as correct today as it was when Archimedes proved
it around 250 BC. As a result, scientists of any era can search through a
vast arsenal of formalisms to find the most appropriate methods.

Not only do scientists cherry-pick solutions, they also tend to select
problems that are amenable to mathematical treatment. There exists,
however, a whole host of phenomena for which no accurate mathemati-
cal predictions are possible, sometimes not even in principle. In eco-
nomics, for example, many variables—the detailed psychology of the
masses, to name one—do not easily lend themselves to quantitative
analysis. The predictive value of any theory relies on the constancy of
the underlying relations among variables. Our analyses also fail to fully
capture systems that develop chaos, in which the tiniest change in the
initial conditions may produce entircly different end results, prohibit-
ing any long-term predictions, Mathematicians have developed statis-
tics and probability to deal with such shortcomings, but mathematics
itself is limited, as Austrian logician Gédel famously proved.

Symmetry of Nature

This careful selection of problems and solutions only partially accounts
for the success of mathematics in describing the laws of nature. Such
laws must exist in the first placeI Luckily for mathematicians and physi-
cists alike, universal laws appear to govern our cosmos: An atom 12
billion light-years away behaves just like an atom on Earth; light in the
distant past and light today share the same traits; and the same gravita-
tional forces that shaped the universe’s initial structures hold sway over
present-day galaxies. Mathematicians and physicists have invented the
concept of symmetry to describe this kind of immunity to change.
The laws of physics seem to display symmetry with respect to space
and time: They do not depend on where, from which angle, or when
we examine them. They are also identical to all observers, irrespec-
tive of whether these observers are at rest, moving at constant speeds,
or accelerating, Consequently, the same laws explain our results,
whether the experiments occur in China, Alabama, or the Andromeda
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galaxy—and whether we conduct our experiment today or someone
else does a billion years from now. If the universe did not possess these
symmetries, any attempt to decipher nature’s grand design—any math-
ematical model built on our observations—would be doomed because
we would have to continuously repeat experiments at every point in
space and time.

Even more subtle symmetries, called gauge symmetries, prevail
within the laws that describe the subatomic world. For instance, be-
cause of the fuzziness of the quantum realm, a given particle can be
a negatively charged electron or an electrically neutral neutrino, or a
mixture of both—until we measure the electric charge that distin-
guishes between the two. As it turns out, the laws of nature take the
same form when we interchange electrons for neutrinos or any mix of
the two. The same holds true for interchanges of other fundamental
particles. Without such gauge symmetries, it would have been difficult
to provide a theory of the fundamental workings of the cosmos. We
would be similarly stuck without locality—the fact that objects in our
universe are influenced directly only by their immediate surroundings
rather than by distant phenomena. Thanks to locality, we can attempt
to assemble a mathematical model of the universe much as we might
put together a jigsaw puzzle, starting with a description of the most
basic forces among elementary particles and then building on additional
pieces of knowledge.

Our current best mathematical attempt at unifying all interactions
calls for yet another symmetry, known as supersymmetry. In a uni-
verse based on supersymmetry, every known particle must have an
as-yet undiscovered partner. If such partners are discovered (for in-
stance, once the Large Hadron Collider at CERN near Geneva reaches
its full energy), it will be yet another triumph for the effectiveness of
mathematics.

I started with two basic, interrelated questions: Is mathematics in-
vented or discovered? And what gives mathematics its explanatory and
predictive powers? I believe that we know the answer to the first ques-
tion: Mathematics is an intricate fusion of inventions and discoveries.
Concepts are generally invented, and even though all the correct rela-
tions among them existed before their discovery, humans still chose
which ones to study. The second question turns out to be even more
complex. There is no doubt that the selection of topics we address
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mathematically has played an important role in math’s perceived effec-
tiveness. But mathematics would not work at all were there no universal
features to be discovered. You may now ask: Why are there universal
laws of nature at all? Or equivalently: Why is our universe governed by
certain symmetries and by locality? I truly do not know the answers,
except to note that perhaps in a universe without these properties,
complexity and life would have never emerged, and we would not be
here to ask the question.

More to Eprore
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favour of Platonism only needs some of mathematics to be discovered:
If it turns out that there are two broad kinds of mathematics, then per-
haps one can understand the distinction and formulate more precisely
what mathematical discovery (as opposed to the mere producing of
mathematics) is.

As the etymology of the word “discover” suggests, we normally talk
of discovery when we find something that was, unbeknownst to us, al-
ready there. For example, Columbus is said to have discovered America
(even if one can question that statement for other reasons), and Tut-
ankhamun’s tomb was discovered by Howard Carter in 1922, We say
this even when we cannot directly observe what has been discovered:
For instance, J. J. Thompson is famous as the discoverer of the electron.
Of greater relevance to mathematics is the discovery of facts: We dis-
cover that something is the case. For example, it would make perfectly
good sense to say that Bernstein and Woodward discovered (or contrib-
uted to the discovery) that Nixon was linked to the Watergate burglary.

In all these cases, we have some phenomenon, or fact, that is brought
to our attention by the discovery. So one might ask whether this transi-
tion from unknown to known could serve as a definition of discovery.
But a few examples show that there is a little more to it than that.
For instance, an amusing fact, known to people who like doing cryptic
crosswords, is that the words “carthorse” and “orchestra” are anagrams.
[ presume that somebody somewhere was the first person to notice this
fact, but I am inclined to call it an observation (hence my use of the
word “notice”) rather than a discovery. Why is this? Perhaps it is be-
cause the words “carthorse” and “orchestra” were there under our noses
all the time and what has been spotted is a simple relationship between
them. But why could we not say that the relationship is discovered even
if the words were familiar? Another possible explanation is that once
the relationship is pointed out, one can easily verify that it holds: You
don’t have to travel to America or Egypt, or do a delicate scientific ex-
periment, or get access to secret documents.

As far as evidence for Platonism is concerned, the distinction be-
tween discovery and observation is not especially important: If you no-
tice something, then that something must have been there for you to
notice, just as if you discover it, then it must have been there for you
to discover. So let us think of observation as a mild kind of discovery
rather than as a fundamentally different phenomenon.
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realm and brought the rules into existence. A more appealing picture
would be that they selected the rules of cricket from a vast “rule space”
that consists of all possible sets of rules (most of which give rise to ter-
rible games). A drawback with this second picture is that it fills up the
abstract realm with a great deal of junk, but perhaps it really is like
that. For example, it is supposed to contain all the real numbers, all but
Countably many of which are undefinable.

Another argument against the idea that one brings an abstract con-
cept into existence when one invents it is that the concepts that we in-
vent are not fundamental enough: They tend to be methods for dealing
with other objects, cither abstract or concrete, that are much simpler.
For example, the rules of cricket describe constraints on a set of proce-
dures that are carried out by 22 players, a ball, and two wickets. From
an ontological point of view, the players, ball, and wickets seem more
secure than the constraints on how they behave.

Earlier, I commented that we do not normally talk of inventing a
single work of art. However, we do not discover it cither. A commonly
used word for what we do is “create.” And most people, if asked, would
say that this kind of creation has more in common with invention than
with discovery, just as observation has more in common with discovery
than with invention.

Why is this? Well, in both cases what is brought into existence has
many arbitrary features: If we could turn the clock back to just before
cricket was invented and run the world all over again, it is likely that
we would see the invention of a similar game, but unlikely that its rules
would be identical to those of the actual game of cricket. (One might
object that if the laws of physics are deterministic, then the world would
develop precisely as it did the first time. In that case, one could make
a few small random changes before the rerun.) Similarly, if somebody
had accidentally destroyed Les Desmoiselles d’Avignon just after Picasso
started work on it, forcing him to start again, it is likely that he would
have produced a similar but perceptibly different painting. By contrast,
it Columbus had not existed, then somebody else would have discov-
ered America and not just some huge landmass of a broadly similar kind
on the other side of the Atlantic. And the fact that “carthorse” and “or-
chestra” are anagrams is independent of who was the first to observe it.

With these thoughts in mind, let us turn to mathematics. Again, it
will help to look at some examples of what people typically say about
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various famous parts of the subject. Let me list some discoveries, some
observations, and some inventions. (I cannot think of circumstances
where | would definitely want to say that a piece of mathematics was
created.) Later I will try to justify why each item is described in the
way it is.

A few well-known discoveries are the formula for the quadratic
equation, the absence of a similar formula for the quintic, the monster
group, and the fact that there are infinitely many primes. A few obser-
vations are that the number of primes less than 100 is 25, that the last
digits of the powers of 3 form the sequence 3,9,7,1,3,9,7,1,...,and
that the number 10,001 factors as 73 times 137. An intermediate case
is the fact that if you define an infinite sequence z, z,, z,, . . . of complex
numbers by setting 7z =0 and 7z, = z_, 4 C for every n>0, then the
set of all complex numbers C for which the sequence does not tend to
infinity, now called the Mandelbrot set, has a remarkably complicated
structure. (I regard this as intermediate because, although Mandelbrot
and others stumbled on it almost by accident, it has turned out to be an
object of fundamental importance in the theory of dynamical systems.)

On the other side, it is often said that Newton and Leibniz indepen-
dently invented calculus. (I planned to include this example, and was
heartened when, quite by coincidence, on the day that Iam writing this
paragraph, there was a plug for a radio program about their priority
dispute, and the word “invented” was indeed used.) One also some-
times talks of mathematical theories (as opposed to theorems) being in-
vented: It does not sound ridiculous to say that Grothendieck invented
the theory of schemes, though one might equal]y well say “introduced”
or “developed.” Similarly, any of these three words would be appropri-
ate for describing what Cohen did to the method of forcing, which he
used to prove the independence of the continuum hypothesis. From
our point of view, what is interesting is that the words “invent,” “in-
troduce,” and “develop” all carry with them the suggestion that some
general technique is brought into being,

A mathematical object about which there might be some dispute is
the number i, or more generally the complex number system. Were
complex numbers discovered or invented? Or rather, would mathemati-
cians normally refer to the arrival of complex numbers into mathemat-
ics using a discovery-type word or an invention-type word? If you type
the phrases “complex numbers were invented” and “complex numbers
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were discovered” into Google, you get approximately the same number
of hits (between 4,500 and 5,000 in both cases), so there appears to be
no clear answer. But this too is a useful piece of data. A similar example
is non-Euclidean geometry, though here “discovery of non-Euclidean
geometry” outnumbers “invention of non-Euclidean geometry” by a
ratio of about 3 to 1.

Another case that is not clear-cut is that of pm(j&: Are they discov-
ered or invented? Sometimes a proof seems so natural—mathemati-
cians often talk of “the right proot” of a statement, meaning not that it
is the only correct proof but that it is the one proof that truly explains
why the statement is true—that the word “discover” is the obvious
word to use. But sometimes it feels more appropriate to say something
like, “Conjecture 2.5 was first proved in 1990, but in 2002 Smith came
up with an ingenious and surprisingly short argument that actually es-
tablishes a slightly more general result.” One could say “discovered” in-
stead of “came up with” in that sentence, but the latter captures better
the idea that Smith’s argument was just one of many that there might
have been and that Smith did not simply stumble on it by accident.

Let us take stock at this point, and see whether we can explain what
it is about a piece of mathematics that causes us to put it into one of the
three categories: discovered, invented, or not clearly either.

The nonmathematical examples suggest that discoveries and obser-
vations are usually of objects or facts over which the discoverer has no
control, whereas inventions and creations are of objects or procedures
with many features that could be chosen by the inventor or creator. We
also drew some more refined, but less important, distinctions within
cach class. A discovery tends to be more notable than an observation
and less easy to verify afterward. And inventions tend to be more gen-
eral than creations.

Do these distinctions continue to hold in much the same form when
we come to talk about mathematics? [ claimed earlier that the formula
for the quadratic was discovered, and when I try out the phrase “the
invention of the formula for the quadratic,” I find that I do not like it,
for exactly the reason that the solutions of ax” + bx + ¢ are the numbers
(—b £ yb’ — 4ac)/2a. Whoever first derived that formula did not have
any choice about what the formula would eventually be. It is, of course,
possible to notate the formula differently, but that is another matter. I
do not want to get bogged down in a discussion of what it means for
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two formulas to be “essentially the same,” so let me simply say that the
formula itself was a discovery but that different people have come up
with different ways of expressing it. However, this kind of concern will
reappear when we look at other examples.

The insolubility of the quintic is another straightforward example. It
is insoluble by radicals, and nothing Abel did could have changed that.
So his famous theorem was a discovery. However, aspects of his proof
would be regarded as invention—there have subsequently been differ-
ent looking proofs. This notion is particularly clear with the closely
related work of Galois, who is credited with the invention of group
theory. (The phrase “invention of group theory” has 40,300 entries in
Google, compared with 10 for “discovery of group theory.”)

The monster group is a more interesting case. It first entered the
mathematical scene when Fischer and Griess predicted its existence
in 1973. But what does that mean? If they could refer to the monster
group at all, then does that not imply that it existed? The answer is sim-
ple: They predicted that a group with certain remarkable properties (one
of which is its huge size—hence the name) existed and was unique. So
to say “I believe that the monster group exists” was shorthand for “I be-
lieve that there exists a group with these amazing properties,” and the
name “monster group” was referring to a hypothetical entity.

The existence and uniqueness of the monster group were indeed
proved, though not until 1982 and 1990, respectively, and it is not quite
clear whether we should regard this mathematical advance as a discov-
ery or an invention. If we ignore the story and condense 17 years to
an instant, then it is tempting to say that the monster group was there
all along until it was discovered by group theorists. Perhaps one could
even add a little detail: Back in 1973, people started to have reason to
suppose that it existed, and they finally bumped into it in 1982.

But how did this “bumping” take place? Griess did not prove in some
indirect way that the monster group had to exist (though such proofs are
possible in mathematics). Rather, he constructed the group. Here, I am
using the word that all mathematicians would use. To construct it, he
constructed an auxiliary object, a complicated algebraic structure now
known as the Griess algebra, and showed that the symmetries of this al-
gebra formed a group with the desired properties. However, this method
is not the only way of obtaining the monster group: There are other
constructions that give rise to groups that have the same properties,
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[ do not have a complete answer to this question, but I suspect that
the reason it is a somewhat difficult example is similar to the reason
that the monster group is difficult, which is that one can “construct”
the complex numbers in more than one way. One approach is to use
something like the way they were constructed historically (my knowl-
edge of the history is patchy, so I shall not say how close the resem-
blance is). One simply introduces a new symbol, i, and declares that it
behaves much like a real number, obeying all the usual algebraic rules,
and has the additional property that i’ = —1. From this setup, one can
deduce that

(a+ bi)(c + di)= ac + bci + adi + bdi’ = (ad — bd) + (ad + bc)i

and many other facts that can be used to build up the theory of com-
plex numbers. A second approach, which was introduced much later to
demonstrate that the complex number system was consistent if the real
number system was, is to define a complex number to be an ordered
pair (a, b) of real numbers, and to stipulate that addition and multiplica-
tion of these ordered pairs are given by the following rules:

(a,b)+(c,d) = (a+¢,b+d)
(a,b) *+ (c,d) = (ac — bd, ad + bc)

This second method is often used in university courses that build up the
number systems rigorously. One proves that these ordered pairs form a
field under the two given operations, and finally one says, “From now
on I shall write a + bi instead of (a, b).”

Another reason for our ambivalence about the complex numbers is
that they feel less real than real numbers. (Of course, the names given
to these numbers reflect this notion rather unsubtly.) We can directly
relate the real numbers to quantities such as time, mass, length, tem-
perature, and so on (though for this usage, we never need the infinite
precision of the real number system), so it feels as though they have
an independent existence that we observe. But we do not run into the
complex numbers in that way. Rather, we play what feels like a sort of
game—imagine what would happen if —1 did have a square root.

But why in that case do we not feel happy just to say that the com-
plex numbers were invented? The reason is that the game is much more
interesting than we had any right to expect, and it has had a huge influ-
ence even on those parts of mathematics that are about real numbers or
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me point out just one source of choice and arbitrariness: Often a proof
requires one to show that a certain mathematical object or structure
exists (either as the main statement or as some intermediate lemma),
and often the object or structure in question is far from unique.

Before drawing any conclusions from these examples, I would like
to discuss briefly another aspect of the question. I have been looking at
it mainly from a linguistic point of view, but, as [ mentioned right at
the beginning, it also has a strong psychological component: When one
is doing mathematical research, it sometimes feels more like discovery
and sometimes more like invention. What is the difference between the
two experiences?

Since I am more familiar with myself than with anybody else, let me
draw on my own experience. In the mid-1990s, I started on a research
project that has occupied me in one way or another ever since. | was
thinking about a theorem that I felt ought to have a simpler proof than
the two that were then known. Eventually, I found one (here I am using
the word that comes naturally); unfortunately it was not simpler, but it
gave important new information. The process of finding this proof felt
much more like discovery than invention because by the time I reached
the end, the structure of the argument included many elements that I
had not even begun to envisage when I started working on it. Moreover,
it became clear that there was a large body of closely related facts that
added up to a coherent and yet-to-be-discovered theory. (At this stage,
they were not proved facts, and not always even precisely stated facts.
It was just clear that “something was going on” that needed to be inves-
tigated.) I and several others have been Working to develop this theory,
and theorems have been proved that would not even have been stated as
conjectures 15 years ago.

Why did this work feel like discovery rather than invention? Once
again, it is connected with control: I was not selecting the facts I hap-
pened to like from a vast range of possibilities. Rather, certain state-
ments stood out as obviously natural and important. Now that the
theory is more developed, it is less clear which facts are central and
which more peripheral, and for that reason, the enterprise feels as
though it has an invention component as well.

A few years carlier, I had a different experience: 1 found a counter-
example to an old conjecture in the theory of Banach spaces. To do
this, I constructed a complicated Banach space. This construction felt
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partly like an invention—I did have arbitrary choices, and many other
counterexamples have subsequently been found—and partly like a dis-
covery—much of what I did was in response to the requirements of the
problem and felt like the natural thing to do, and a similar example was
discovered independently by someone else (and even the later examples
use similar techniques). So this is another complicated situation to ana-
lyze, but the reason it is complicated is simply that the question of how
much control I had is a complicated one.

What conclusion should we draw from all these examples and from
how we naturally seem to regard them? First, it is clear that the ques-
tion with which we began is rather artificial. For a start, the idea that
either all of mathematics is discovered or all of mathematics is invented
is ridiculous. But even if we look at the origins of individual pieces of
mathematics, we are not forced to use the word “discover” or “invent,”
and we often don’t.

Nevertheless, there does seem to be a spectrum of possibilities, with
some parts of mathematics feeling more like discoveries and others
more like inventions. It is not always easy to say which are which, but
there does seem to be one feature that correlates strongly with whether
we prefer to use a discovery—type word or an invention—type word.
That feature is the control that we have over what is produced. This
feature, as I have argued, even helps to explain why the doubtful cases
are doubtful.

If this difference is correct (perhaps after some refinement), what
philosophical consequences can we draw from it? I suggested at the
beginning that the answer to the question did not have any bearing on
questions such as “Do numbers exist?” or “Are mathematical statements
true because the objects they mention really do relate to each other
in the ways described?” My reason for that suggestion is that pieces of
mathematics have objective features that explain how much control we
have over them. For instance, as | mentioned earlier, the proof of an ex-
istential statement may well be far from unique, for the simple reason
that there may be many objects with the required properties. But this
statement is a straightforward mathematical phenomenon. One could
accept my analysis and believe that the objects in question “really exist,”
or one could view the statements that they exist as moves in games
played with marks on paper, or one could regard the objects as conve-
nient fictions. The fact that some parts of mathematics are unexpected



