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Introduction

MircEea PiTICI

This is the sixth anthology in our series of recent writings on mathemat-
ics selected from professional journals, general interest publications,
and Internet sources. All pieces were first published in 2014, roughly
in the form we reproduce (with one exception). Most of the volume is
accessible to readers who do not have advanced training in mathematics
but are curious to read well-informed commentaries about it.

What do I want by sending this book into the world? What kind of
experience I want the readers to have? On previous occasions I answered
these questions in detail. To summarize anew my intended goal and my
vision underlying this series, [ use an extension of Lev Vygotsky’s con-
cept of “zone of proximate development.” Vygotsky thought that a child
learns optimally in the twilight zone where knowing and not know-
ing meet—where she builds on already acquired knowledge and skills,
through social interaction with adults who impart new knowledge and
assist in honing new skills. Adapting this idea, I can say that I aspire to
make the volumes in this series ripe for an optimal impact in the imagi-
nary zone of proximal reception of their prospective audience. This
means that the topics of some contributions included in these books
might be familiar to some readers but novel and instructive for others.
Every reader will find intriguing pieces here.

Besides offering a curated collection of articles, each book in this
series doubles into a reference work of sorts, for the recent nontechni-
cal writings on mathematics—with the caveat that I decline any claim
to being comprehensive in this attempt. The list of book titles I give at
the end of the introduction and the list of notable writings at the end of
the volume contain a few entries published prior to the 2014 calendar
year, in an acknowledgment that in previous volumes I overlooked ma-
terials worth mentioning. The same is surely the case for this year. The
fast pace of the series, the immense quantity of literature I survey, and
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the convention subtly ensconced in calling a “year” the interval from
January 1 to December 31 not only make such lapses inevitable but to
a high degree determine the content of the book(s). Were we to look
at the same literature from July 1 of one year until June 30 of the next
year, the books in this series would look very different from what you
can read between these covers. That is why each volume should be seen
in conjunction with the others, part of a serialized enterprise meant to
facilitate the access to and exchange of ideas concerning diverse aspects
of the mathematical experience.

In this volume a greater number of contributions than in the previ-
ous volumes concern mathematical games and puzzles. For many cen-
turies and in many cultures, recreational mathematics used to be seen
as a benign amusement of no immediate utility. That enduring but now
old-fashioned perception has gradually changed over the past century
because of at least two broad phenomena. First, the history of the most
salient branches of contemporary mathematics (algebra, modern alge-
bra, geometry, probability, number theory, graph theory, knot theory,
topology, combinatorics, and even calculus) has been either rooted into
or decisively influenced by “recreational” problems. Second, talented
writers and popularizers of recreational mathematics (the most famous
of whom was Martin Gardner) found a large audience in the public,
enjoyed appreciation from select but remarkable mathematicians, and
built a devoted following of like-minded authors who carry on work-
ing in the same vein, encouraged by the lasting impact of their prede-
cessors. Recreational mathematics has a rich and sophisticated history
studied in the past by a few authors who contributed brief works (nota-
bly David Singmaster); recently the scholarship is growing rapidly, as il-
lustrated by a special issue of the journal Historia Mathematica dedicated
entirely to recreational mathematics. Nowadays good recreational
mathematics is placed midway between the intelligent but mathemati-
cally untrained public and the mathematics professionals, by virtue of
linking easy-to-understand problems to serious mathematics. In other
words the problems posed in high-quality recreational mathematics are
comprehensible to the layperson, while pursuing and understanding
the ideas developed in the solutions occasioned by the problems might
require an independent learning effort the reader is free to undertake
or not. Thus the context of good recreational mathematics straddles
the popular and the pedagogical, having the dual value of intellectual
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the one administered by courts under the slogan “in the best interest of
the child.”) Since then I became a lot more cautions with my suggestions
concerning mathematics; I learn from my errors, the hard way.

Yet I still venture a bit in talking about mathematics, here and
there—now prudent, aware that attempting to crack the thought es-
tablishments is fraught with dangers. As an example, I can say that the
process of editing each volume in this series is a lesson in working with
uncertainty while at the same time interpreting mathematics. The
contrast between my limited knowledge and the limitless possibilities
available to all the people who gloss on mathematics offers me palpable
practice for a general mnemonic that serves well in other endeavors.
I generalized it into a theoretical and practical principle, which I call
“the paradox of reward.” The paradox of reward says that in a competi-
tive, fair, unpredictable, and infinitely complex environment, the most
valuable knowledge is to know how to be rewarded for ignorance; in
other words, more reward is available for taking advantage of igno-
rance (if one finds such a path to reward) than it is for taking advantage
of knowledge. Of course I am not saying that ignorance is preferable
to knowledge; it is not. I am saying that in certain environments har-
vesting rewards off ignorance is (by far) more valuable than seeking
rewards for knowledge. This might seem to have little to do with math-
ematics; yet to my mind it is nothing else but interpreting mathematics,
in a world so complex that ignorance is unavoidable but ignoring its
benefits is avoidable. This subject is a lot vaster than I sketched in these
tew sentences, and it has consequences not only for learning and teach-
ing mathematics but also for incorporating the private interpretation of
mathematics in strategic thinking, Yet I am mindful of the dangers of
venturing too far in speaking unconventionally about mathematics and
interpreting mathematics, so I leave it for another occasion.

Overview of the Volume

I feel rewarded to collect in this book thoughts and perspectives on
mathematics | could never think up myself.

Michael Barany and Donald MacKenzie locate the center of the
mathematical activity done in institutional settings (and occasionally
in private homes) at the blackboard; they note that blackboards are
key objects that influence the organizing of the research and teaching
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spaces, while chalk-writing on blackboards influences the logistics and
the overall manner of mathematical communication.

Pradeep Mutalik finds that the repeated experience of feeling right
when we suddenly comprehend the solution to a problem or a puzzle
has had a positive evolutionary role in defining us as humans, both cog-
nitively and emotionally.

Colm Mulcahy and Dana Richards write an informed centennial
appreciation of the life and work of Martin Gardner, that remarkable
polymath who inspired many mathematicians and laypersons to take up
mathematical games and similar challenges.

Arthur Benjamin and Ethan Brown teach us how to construct an
unlimited number of customized magic squares by improvising on a
few ingenious templates.

Toby Walsh starts with the popular Candy Crush game as a guide-
post for his discussion of the factors that determine the difficulty of
solving computational problems in mathematics.

Marianne Freiberger takes us to the billiard room; she explains how
the trajectory of a ball rolling on the pool table leads to mathematically
complex problems related to chaos theory, the conductivity of metals,
and other . . . infinite surprises.

Erik R. Tou models juggling numerically, to show that it is math-
ematically similar to the morphing game of transtorming one word into
a very different one by incremental steps that admit changes of only one
letter at a time.

Scott Aaronson dissects the intricacies of the notion of randomness
and connects it to the study of paradoxes, complexity, and quantum
mechanics.

Dana Mackenzie describes how biologists, physicists, and mathema-
ticians interact(ed) to overcome theoretical obstacles encountered in
the birth and growth of synthetic biology.

In a similar vein, Natalie Wolchover describes the interdisciplin-
ary efforts undertaken by researchers interested in the Tracy-Widom
distribution associated with phase transitions in interactive systems of
various types.

Eli Maor and Eugen Jost present (and illustrate beautifully) the basic
geometric properties of the logarithmic spiral, cycloid, epicycloids, and
hypocycloids—some of the best-known curves studied, over the cen-
turies, in connection to natural phenomena and physical motions.
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Burkard Polster analyzes the mathematical properties of several non-
circular shapes of constant width and shows us how they have been ap-
plied to various gadgets and playful devices.

The quickest way to summarize the brief article by Annalisa Cran-
nell, Marc Frantz, and Fumiko Futamura is to say that they look at
Diirer’s perspective drawing from several different perspectives!

Vi Hart and Henry Segerman ask whether there are groups of sym-
metries that can be visualized using real-life objects but have never been
represented as such—and propose a novel modeling of the quaternion
group.

John Conway and Alex Ryba use wordplay and a humorous ingenuity
to discuss the merits of several different proofs they give to an old ge-
ometry problems that looks deceptively easy (until you try to solve it).

Gila Hanna and John Mason discuss the many facets, relative merits,
and theoretical pedigrees of various terms used by mathematicians or
mathematics educators to qualify the worthiness of proofs—with the
main reference to a similar attempt by Timothy Gowers.

Jim Fey, Sol Garfunkel, and their coauthors formulate five tenets
they consider important to be taken as guiding principles for the math-
ematics education reform at high school level (in the United States).

Guili Zhang and Miguel A. Padilla compare multiple aspects of
mathematics instruction in China and the United States, based on pre-
vious theoretical and empirical studies.

Against commonly held wisdom, Benoit Rittaud and Albrecht Heef-
ter argue that the pigeconhole principle, usually attributed to Dirichlet,
was stated in writing at least two centuries earlier in Selectae Propositio-
nes, a book by Jean Leurechon.

Lisa Rougetet traces the earliest written descriptions of the popular
game of Nim to a treatise written at the beginning of the sixteenth
century by Luca Pacioli and follows the subsequent European develop-
ments of the game since then.

Jan von Plato considers the context of mathematical ideas and the
personalities that shaped German mathematician Gerhard Gentzen’s
ordinal proof theory—and how this work relates (or does not!) with a
theorem by Reuben Goodstein.

James Franklin illustrates with several well-chosen examples the
local-global synergy in mathematics, one of the many conceptual po-
larities that characterize mathematical thinking.
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Carlo Cellucci reviews many opinions on what constitutes mathe-
matical beauty and its role in mathematics; he concludes that aesthetic
factors play an indirect epistem()l()gical role in discovery via their selec-
tive role in choosing what hypotheses to consider.

Mark Balaguer argues that philosophers of mathematics are mainly
concerned with the meaning of mathematical discourse and that the
semantic theories they adhere to can lead to claims hardly acceptable
for the mathematicians.

Steven Strogatz discerns three broad types of rapport with math-
ematics in the general public and tells us how he honed his talent for
writing about mathematics by paying attention to the writing qualities
of masters in similar trades.

Domenico Napoletani, Marco Panza, and Daniele C. Struppa ex-
amine the methodological underpinnings and the philosophical im-
plications of using ever-more powerful computing techniques in the
modeling of complex phenomena.

Andrew Gelman and Eric Loken caution that evidential claims of
statistical significance in research journals are often spurious because of
multiple factors related to the gathering of data and its interpretation;
they give several suggestive examples.

Jeffrey S. Rosenthal tells the true story of how his statistical exper-
tise led to the discovery and prosecution of fraudulent lottery winnings
in Ontario, Canada.

David Hand explains a bias of expectations that precludes us from
perceiving the increased likelihood of coincidences following the rapid
combinatorial growth of possibilities that comes with the increase of
the number of simple events.

More Writings on Mathematics

Every year [ started this section by naming one book outstanding among
all others. This time I cannot decide on only one; I give two, both ex-
cellent and badly needed reference books: Lizhen Ji's Great Mathematics
Books of the Twentieth Century and Encyclopedia of Mathematics Education,
edited by Stephen Lerman.

Now, as usual, I roughly group the other titles by theme (full references
are at the end of the introduction); some of the books listed here are not
easy to categorize, but I made ad hoc choices for the sake of expediency.
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A handful of books blend mathematical ideas with describing the
world from nonmathematical viewpoints, sometimes with a strong
historical perspective—a growing trend I signaled previously in these
pages and picking up steam lately. Thus are Jeft Suzuki’s Constitutional
Calculus, Anders Engberg-Pedersen’s Empire of Chance, Keith Tribe’s The
Economy of the World, along with The Norm Chronicles by Michael Blastland
and David Spiegelhalter, and How Reason Almost Lost Its Mind by Paul
Erickson and colleagues. Less shy with giving mathematics a prominent
role in daily life are Grapes of Math by Alex Bellos and Mathematics and the
Real World by Zyi Artstein.,

In the history of mathematics I note Joseph Mazur’s Enlightening
Symbols, Alexander Amir’s Infinitesimal, Amir Aczel’s Finding Zero, [iri
Hudecek’s Reviving Ancient Chinese Mathematics, Vedveer Arya’s Indian
Contributions to Mathematics and Astronomy,David Reamer’s Count Like an
Egyptian, and, slightly more technical but with well-chosen historical
vignettes, From Mathematics to Generic Programming by Alexander Stepa-
nov and Daniel Rose. Books focused on personalities are john Napier
by John Havil, How Euler Did It Even More by Edward Sandifer, Beyond
Banneker by Erika Walker, and Peter Lax, Mathematician by Reuben
Hersh. A broad swipe of history is covered in Classical Mathematics from
Al-Khwarizmi to Descartes by Roshdi Rashed. Theme-based histories are
Whatever Happened to the Metric System? by John Marciano, The New Math
by Christopher Phillips, and The Palgrave Centenary Companion to “Prin-
cipia Mathematica” edited by Nicholas Griffin and Bernard Linsky. Fo-
cused on the formerly communist countries are Mathematics across the
Iron Curtain by Christopher Hollings and Pearls from a Lost City by Roman
Duda. Other (auto)biographical or celebratory volumes are Gordon
Welchman, Bletchley Park’s Architect of Ultra Intelligence by Joel Greenberg,
Wearing Gauss’s Jersey by Dean Hathout, My Life and Functions by Walter
Hayman, as well as the collective volumes Arnold edited by Boris Khesin
and Serge Tabachnikov, Alexandre Grothendieck edited by Leila Schneps,
and Four Lives [of Raymond Smullyan] edited by Jason Rosenhouse.

Some books on the interactions between mathematics and other dis-
ciplines: The Oxford Handbook of Computational and Mathematical Psychology
edited by Jerome Busemeyer and his collaborators; Biographical Encyclo-
pedia of Astronomers with Thomas Hockey as editor-in-chief; Scientific Vi-
sualization edited by Charles Hansen et al.; Bond Math by Donald Smith;
Measuring and Reasoning [in Life Sciences] by Fred Bookstein; Mathematics
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Finally, mathematicians and others who need to write mathematical
script can pick up Practical LATEX, the latest book by George Gratzer.

Qe

A few months ago I started to use Twitter (@mpitici). This led me to
find many online resources on mathematics. A supplementary section
of this introduction containing dozens of Internet links is available on-
line at http://press.princeton.edu/titles/10558 html.

5 )

I encourage you to send comments, suggestions, and materials I might
consider for future volumes to Mircea Pitici, P.O. Box 4671, Ithaca,
NY 14852; or electronic correspondence to mip7(@cornell.edu.
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A Dust)/ Discip]ine

MICHAEL |. BARANY AND

DoNnarLp MacKeNziE

How does one see a mathematical idea? Can it be heard, touched, or
smelled?” If you spend enough time around mathematicians in the heat
of research, you tend to believe more and more that when it comes to
mathematics, the materials matter. To many, mathematical ideas look
and sound and feel and smell a lot like a stick of chalk slapping and then
gliding along a blackboard, kicking up plumes of dust as it traces formu-
las, diagrams, and other mathematical tokens.

Chalk and blackboards first made their mark in higher education at
elite military schools, such as the Ecole Polytechnique in France and
West Point in the United States, at the start of the nineteenth century.
Decades of war and geopolitical turmoil, combined with sweeping
changes to the scale and social organization of governments, put a new
premium on training large corps of elite civil and mi]itary engineers.
Mathematics was their essential tool, and would also become a gateway
subject for efficiently sorting the best and brightest. Blackboards of-
fered instructors a way of working quickly and visibly in front of the
large groups of students who would now need to know mathematics to
a greater degree than ever before. They also furnished settings of disci-
pline, both literal and figurative, allowing those instructors to examine
and correct the work of many students at once or in succession as they
solved problems at the board.

In the two intervening centuries, the importance of chalk and black-
boards for advanced mathematics grew and grew. Blackboards reigned

" This essay is the authors’ adaptation of “Chalk: Materials and Concepts in Mathematics
Research,” in Catelijne Coopmans, Michael Lynch, Janet Vertesi, and Steve Woolgar (eds.),
Representation in Scientific Practice Revisited (Cambridge: MIT Press, 2014), pp. 107-29.
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as the dominant medium of teaching and lecturing for most of the
twentieth century, and continue to be an iconic presence in count-
less settings where mathematics is learned, challenged, and developed
anew. As, indeed, it routinely is. While schoolbook mathematics seems
as though it has been settled since time immemorial (it has not been,
but that is another story), the mathematics taking place in universities
and research institutes is changing at a faster rate than ever before. New
theorems and results emerge across the world at such a dizzying pace
that even the brightest mathematicians sometimes struggle to keep up
with breakthroughs in their own and nearby fields of study. Long gone
are the days when a single mathematician could even pretend to have a
command of the latest ideas of the entire discipline.

The problem of keeping up might seem to lead one toward high
technology, but to a surprising extent it leads back to the blackboard.
When Barany followed the day-to-day activities of a group of university
mathematicians, he found the blackboard was most prominent in their
weekly seminar, when they gather after lunch to hear a local or invited
colleague’s hour-long presentation on the fruits and conundrums of re-
cent and ongoing work. But blackboards are also present in offices,
and even the departmental tea room. Their most frequent use came
when mathematicians return to the seminar or other rooms to teach
mathematics to students, just as their predecessors did 200 years ago.
Wherever they are, blackboards serve as stages for learning, sharing,
and discussing mathematics.

Blackboards are still more pervasive when one searches for them in
unexpected places. The archetypal blackboard is a large rectangular
slab of dark gray slate mounted on a wall, but over their history most
blackboards have been made of other materials, some of which are not
even black. (This includes the dark green boards in the seminar room of
Barany’s subjects.) Characteristics of blackboard writing can be found
in the pen-and-paper notes researchers scribble for themselves or jot for
colleagues. Gestures and ways of referring to ideas in front of a board
translate readily to other locations. The blackboard is one part writing
surface and two parts state of mind. To understand the blackboard, we
realized, is to understand far more about mathematics than just semi-
nars, lectures, and the occasional chalk marking in an office.

Even as blank slates, blackboards are laden with meaning. Because
they are large and mostly immobile, they greatly atfect how other
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features of offices or seminar rooms can be arranged. Entering a semi-
nar room, one knows where to sit and look even when the speaker has
not yet arrived, and the same principle holds for the different kinds of
situations present in offices. We noted that when one arrangement of
desks and chairs did not quite work it was the desks and chairs, rather
than the blackboard, that were rearranged. Staring blankly at its po-
tential users, a blackboard promises a space for writing and discussion.
Depending on the context, too much writing on the board prompted
users to use an eraser long before anyone intended to use the newly
cleared space. Having a blank space available at just the right mo-
ment was important enough that mathematicians anticipated the need
far in advance, trading present inconvenience for future chalk-based
possibilities.

When blackboards are in use, more features come into play. They
are big and available: large expanses of board are visible and markable
at each point in a presentation, and even the comparatively small boards
in researchers’ offices are valued for their relative girth. Blackboards
are visually shared: users see blackboard marks in largely the same
way at the same time. They are slow and loud: the deliberate tapping
and sliding of blackboard writing slows users down and makes it dif-
ficult to write and talk at the same time, thereby shaping the kinds of
descriptions possible at the board. As anyone who has tussed with a
video projector or struggled with a dry-erase marker that was a bit too
dry appreciates, blackboards are robust and reliable, with very simple
means of adding or removing images.

As surfaces, blackboards do more than host writing. They provide
the backdrop for the waves, pinches, and swipes with which mathema-
ticians use their hands to illustrate mathematical objects and principles.
They also fix ideas to locations, so that instead of having to redescribe
a detailed idea from earlier in the talk a lecturer can simply gesture at
the location of the chalk writing that corresponded to the prior ex-
position. We were surprised to find that such gestures are used and
seem to work whether or not the chalk writing had been erased in the
interim—although sometimes the speaker had to pause after finding
that the relevant expression was no longer where it was expected to be.

In addition to these narrative uses in a lecture, locations on the
blackboard can have a specifically mathematical significance. Mathe-
matical arguments often involve substituting symbolic expressions for
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one another, and on the board this can be done by smudging out the
old expression and writing the new one in the now-cloudy space where
the old one had been. This ability to create continuity between old and
new symbols is so important in many cases that speakers frequently will
struggle to squeeze the new terms in the too-small space left by the
old ones rather than rewrite the whole formula, even when the latter
approach would have been substantially easier to read. Boards are also
large enough to let the speaker create exaggerated spaces between dif-
ferent parts of a formula, permitting the speaker to stress their concep-
tual distinctness or to leave room for substitutions and transformations.

And what of the chalk marks themselves? One rarely thinks of what
cannot be written with chalk, a tool that promises the ability to add
and remove marks from a board almost at will. The chalk’s shape, its
lack of a sharp point, and the angle and force with which it must be
applied to make an impression all conspire to make certain kinds of
writing impossible or impractical. Small characters and minute details
prove difficult, and it is hard to differentiate scripts or weights in chalk
text. Board users thus resort to large (sometimes abbreviated) marks,
borrow typewriter conventions such as underlining or overlining, or
employ board-specific notations such as “blackboard bold” characters
to denote certain classes of mathematical objects.

Not every trouble has a work-around. Similar to a ballpoint pen or
pencil on paper, chalk must be dragged along the board’s surface to
leave a trace. Entrenched mathematical conventions from the era of
fountain pens, such as “dotting” a letter to indicate a function’s de-
rivative, stymie even experienced lecturers by forcing them to choose
between a recognizable dotting gesture and the comparatively cumber-
some strokes necessary to leave a visible dot on the board.

These practical considerations have profound effects on how math-
ematics is done and understood. For one, blackboard writing does not
move very well. This means that whenever one makes an argument at a
blackboard one must reproduce each step of the argument at the board
from scratch. Nothing is pre-written, and (in the ideal of mathemati-
cal argument) nothing is pre-given as true. Proofs and constructions
proceed step by step, and can be challenged by the audience at each
point. It is not possible in a rigorous mathematical presentation, unlike
in other disciplines, to drop a mountain of data in front of an interlocu-
tor and then move straight to one’s interpretations and conclusions.
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In a blackboard lecture, those taking notes write along with the
speaker. In a classroom setting, lecturers can expect that most of their
board writing will be transcribed with little further annotation. Fewer
audience members take notes during a seminar, but the expectation of
transcription persists. In particular, what is written on the chalkboard is,
in a good lecture, largely self-contained. The division between the speak-
er’s writing and speech parallels a similar division in any mathematical ar-
gument. Such arguments combine commentary and explanation (like the
presenter’s speech) with a rigorous formal exposition that, mathemati-
cally, is supposed to stand on its own (like the presenter’s writing), even
if it might be difficult to understand without the commentary.

Going along step by step with an argument produced at a black-
board gives mathematicians the chance to break an argument that can
be extremely difficult to comprehend globally into smaller steps that
are possible to understand for many in the audience. This local-but-not-
global way of viewing colleagues’ work is indispensable in a discipline
as vast and quickly changing as mathematics. For while the basic steps
of mathematical arguments are often shared among specialists in re-
lated areas, the nuances and particularities of a single mathematician’s
work can be opaque even to recent collaborators. A proof may be true
or valid universally, but mathematicians must make sense of it in their
own particular ways. So blackboards ofter a means ot communication
in both the obvious sense—as things on which to write—and a more
subtle sense in terms of a step-by-step method of exposition.

The objects of that exposition also have certain features enforced
by blackboard writing. Any writing on the board can be corrected,
annotated, or erased at the board user’s will. It is common to see lec-
turers amend statements as new information becomes relevant, often
after a query from the audience. The blackboard lets speakers make
those amendments without a messy trail of scribbles or crossings-out,
preserving the visual integrity of the record that remains on the board.
In this way, speaker and audience alike can believe that the ultimate
mathematical objects and statements under consideration maintain
a certain conceptual integrity despite all the messy writing and re-
writing needed to understand and convey them. This view is a key part
of mathematical Platonism, which contends that mathematical objects
and truths exist independent of human activity, and represents a central
position in the philosophy of mathematics, albeit with many variations.
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To judge whether this seemingly grandiose claim is tenable, we need
to isolate what characteristics of humans are qualizatively different from
other intelligent animals and especially from our close ape relatives.

Does the difference lie in what we term our complex social human
emotions—love, empathy, shame, jealousy, political intrigue, and the
like? Not at all, as any pet lover knows—pets regularly exhibit such
emotions, and political intrigue is well known in apes. We share many
behaviors with animals, and although we execute them with greater
complexity and sophistication as a result of our greater intelligence,
they do not define us.

Is it tool use or problem solving that makes us different? No. The use
of simple tools and the ability to solve problems to obtain food or other
extrinsic rewards is well known in animals.

What is difterent about human beings is our underlying emotional artitude
to problem solving. We seek out puzzles and learning for fun. This makes us
learning machines in the area of our choice, whether it be tracking prey
or navigating difficult terrain. Aha! experiences help us master an area of
learning unique to our species: spontaneous syntactic language. We enjoy
art, music, and humor: cognitive experiences that scem to be without any
short-term practical purpose. And we can form models of the world and
understand it. “The most incomprehensible thing about the universe it
that it is comprehensible,” Albert Einstein famously declared. As we shall
see, it is the cognitive-emotional links in our brains, of which the Aha! ex-
perience is the most dramatic manifestation, that makes all this possible.

Our brains have cognitive modules for language, face recognition,
social interaction, numerical manipulations, motor planning, and so
on. But as we just saw, even disparate cognitive processes have the same
emotional concomitants when a solution is found. The modules all use
the same reward mechanism.

What exactly is this unifying Aha! experience? At its strongest, itisa
flash of insight that instantly shifts our worldview. It is accompanied by
intense pleasure and the confident realization that the answer is right:
No external validation is needed. There is a sense of rightness, of things
falling into place, like a puzzle piece that can fit only one way. There is
a strong memory of the insight, and the feeling is somewhat addictive:
You want to come back for more.

Another important characteristic is that this feeling is an intrin-
sic, impersonal reward—it is not related to the utility of the result.
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This is perhaps most extremely illustrated in a statement made by the
Cambridge mathematician G. H. Hardy to a friend, the philosopher
Bertrand Russell: “If I could prove by logic that you would die in five
minutes, I should be sorry you were going to die, but my sorrow would
be very much mitigated by pleasure in the proof!”

Math enthusiasts know that puzzle solving is intrinsically fun, but
seeking out puzzles is not a universal activity by any means. What rel-
evance does the Aha! experience have to the vast number of human be-
ings who don’t care for puzzles, mathematical or otherwise? Here's the
kicker: The same emotional reaction of joy and certainty is experienced
when the brain solves a puzzle that is subconscious—when a person is
not even aware that he or she has solved a puzzle!

Such puzzles are constantly being solved by the cognitive, visual,
and auditory systems of all humans in day-to-day activities. The cogni-
tive puzzles we need to solve all the time require abstraction, pattern
recognition, generalization, the solving of equations, and rule-based in-
duction—things that mathematicians do consciously. And when these
puzzles are solved, our brains reward themselves by a similar positive
emotional reaction.

As Gestalt psychology has shown, some functions of the brain are
global: common across modules. The brain has general algorithms that
can recognize good solutions to any kind of problem. Let’s look at some
examples to try to understand what these are.

Figure 1 shows a stereogram puzzle of the type popularized by the
Magic Eye book series. When you relax your eyes, allowing the two
guide circles at the top to come together, and staying focused on the
pattern, some hidden three-dimensional objects emerge. Finding this
image clicits the same emotional elements as the Aha! experience—
positive reinforcement with no doubts at all.

In fact, every act of recognition—whether visual, auditory, or con-
ceptual—is an Aha! experience. Cognitively, it is triggered by a change
in an initially disordered internal representation to one that makes
sense. Order is created out of disorder; the new representation is more
compact and coherent. It is much easier to have a bunch of splotches
coherently organized into the shape of a recognized object than to ac-
count for them individually.

Thus, what brings on the Aha! experience is something that can be
termed a decrease in cognitive entropy. Our brains appear to have a built-in
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Frcure 1. What mathematical objects do you see in this picture? (The answer

is at the end of the article.) See also color image.

algorithm that triggers the familiar emotional Aha! reaction whenever a
simple coherent explanation fits disorderly input. The famous principle
of parsimony in problem solving—Occam’s razor—is apparently built
in to our brains.

This powertul principle also helps us learn language. When a child
learns to speak, the number of words he or she knows grows slowly at
first, and then at around 18 months, suddenly takes off at an exponen-
tial rate. The reason seems to be that every child inductively discovers
the rule that every object has a name. From then on, the child hounds
its parents into feeding it names . . . and the rest is history.

The experience of discovering the name rule occurs too early for
most of us to remember, but Helen Keller had it at the age of seven and
here’s how she described it: “I knew then that ‘w-a-t-e-r’ meant the
wonderful cool something that was flowing over my hand. That living
word awakened my soul, gave it light, hope, joy, set it free!”

The certainty and joy she describes clearly identify this as a true
Aha! experience. This certitude and pleasure is extremely important to learn-
ing language because the child cannot turn to anyone else for validation of its
conclusions: It still has to learn language! Cognitively, the unification of
independent representations caused by this induced rule represents
a large decrease in cognitive entropy quite similar to the visual case.
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Ficure 2. Beautiful woodwork on the ceiling of the Alhambra in Granada,
Spain. See also color image.

Mini Aha! experiences continue to guide language learning and, in fact,
all independent learning throughout childhood.

This emotional reaction that favors low cognitive entropy in the so-
lution of unconscious problems gives a natural explanation for those
uniquely human aesthetic pursuits: art and music. We find regular
visual patterns like the one in Figure 2 pleasing. We love symmetry.
Our visual system makes recognized patterns pop out. Symmetry and
observed patterns reduce the representational requirement of a visual
object, triggering pleasurable reactions.

Music is pleasurable for the same reason. Musical scales consist of
notes in simple integer ratios: 1:2, 1:3, 5:4, and so on. The pleasure asso-
ciated with such ratios is based on the fact that sound-makers in the envi-
ronment essential to our survival, such as predators, prey, and vibrating
inanimate objects, give out resonant frequencies in integer ratios.

To parcel out environmental sounds accurately, the brain has to be
able to identity integer ratios in the mishmash of frequencies that we
hear. So in effect, our auditory system tries to solve Diophantine equa-
tions. When it does so, Aha! There is a reduction of cognitive entropy
and we feel pleasure. Also, musical rhythm is a compact organization
of time intervals, creating, essentially, symmetric patterns in time. Of
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course, there is a lot more to aesthetics than these basic elements, but
the underlying intrinsic pleasure of low cognitive entropy motivates us
to follow these pursuits.

The same drive to detect existing patterns in aesthetics extends to
finding hitherto unknown patterns in humor and creativity. As Arthur
Koestler outlined in his brilliant book The Act of Creation, humor and
creativity are linked because they both arise from finding new patterns
of reasoning that are intrinsically appealing: those that decrease cogni-
tive entropy. Once we find such new patterns, we can celebrate those
that are valid and weed out those that don’t quite work in the real world
and are therefore funny.

Koestler tells the joke about the man who came home to find his wife
in bed with a priest and, instead of reacting angrily, went out onto the
balcony and pretended to bless an imaginary congregation. His expla-
nation to the priest was “You are doing my job, so let me do yours.” This
creative pattern of thinking—reciprocity—is valid in many situations,
but not in this one. So we find it funny: Humor is the brain’s way of
saying, “Nice try, but you are reasoning on thin ice here.”

Neuroimaging studies confirm that both cognition and emotion are
involved in the Aha! effect. There is increased brain activity in the more
recently evolved brain structures of the cerebral cortex—specifically,
the anterior superior temporal gyrus and the right hemisphere—dur-
ing the Aha! effect. But there is also increased activation of the right
hippocampus, which is involved in memory, and of more primitive
brain structures that are powerfully involved in emotion, motivation,
and even addiction, such as the amygdala.

It is a signal achievement of human brain evolution that it has man-
aged to link the results of our most sophisticated cognitive processes
with our most primitive pleasure centers. It makes evolutionary sense:
If you were to make an animal with no imposing physical traits that
had to live off its wits, you would provide it an internal reward when it
solved a problem. And that’s exactly what evolution has done.

All primitive human societies have experts that excel in particu-
lar fields of knowledge: language, reckoning, navigating by the stars,
tracking, and so on. Unlike, say, insect societies, this expertise is not
innate but self-cultivated. Aha! experiences in childhood in a particular
field can accentuate variations in intrinsic ability, leading the child to
seek problems in, and master, a particular field. The almost addictive
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way to appreciate his groundbreaking columns may be simply to rercad
them—or to discover them for the first time, as the case may be. Per-
haps our celebration here of his work and the seeds it planted will spur
anew generation to understand just why recreational mathematics still
matters in 2015,

From Logic to Hexaﬂexagons

For all his fame in mathematical circles, Gardner was not a mathematician
in any traditional sense. At the University of Chicago in the mid-1930s, he
majored in philosophy and excelled at logic but otherwise ignored math-
ematics (although he did audit a course called “Elementary Mathematical
Analysis”). He was, however, well versed in mathematical puzzles. His fa-
ther, a geologist, introduced him to the great turn-of-the-century puzzle
innovators Sam Loyd and Henry Ernest Dudeney. From the age of 15, he
published articles regularly in magic journals, in which he often explored
the overlap between magic and topology, the branch of mathematics that
analyzes the properties that remain unchanged when shapes are stretched,
twisted, or deformed in some other way without tearing. For example, a
coffee mug with a handle and a doughnut (or bagel) are topologically the
same because both are smooth surfaces with one hole.

In 1948 Gardner moved to New York City, where he became friends
with Jekuthiel Ginsburg, a mathematics professor at Yeshiva Univer-
sity and editor of Scripta Mathematica, a quarterly journal that sought to

Six different pictures can be made to appear after a single decorated strip

of paper is folded into a flat hexagonal structure called a hexahexaflexagon
and then twisted and reflattened multiple times, as Gardner demonstrated in
Scientific American in December 1956. (For a cutout you can use to make your

own hexaflexagon, go to http://www.scientificamerican.com/editorial
/martin-gardner-centennial /)
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extend the reach of mathematics to the general reader. Gardner wrote
a series of articles on mathematical magic for the journal and, in due
course, seemed to fall under the influence of Ginsburg’s argument that
“a person does not have to be a painter to enjoy art, and he doesn’t have
to be a musician to enjoy good music. We want to prove that he doesn’t
have to be a professional mathematician to enjoy mathematical forms
and shapes, and even some abstract ideas.”

In 1952 Gardner published his first article in Scientific American about
machines that could solve basic logic problems. Editor Dennis Flana-
gan and publisher Gerard Piel, who had taken charge of the magazine
several years earlier, were eager to publish more math-related material
and became even more interested after their colleague James Newman
authored a surprise best seller, The World of Mathematics, in 1956. That
same year Gardner sent them an article about hexaflexagons—tfolding
paper structures with properties that both magicians and topologists
had started to explore. The article was readily accepted, and even be-
fore it hit newsstands in December, he had been asked write a monthly
column in the same vein.

Gardner’s carly entries were fairly elementary, but the mathematics
became deeper as his understanding—and that of his readers—grew.
In a sense, Gardner operated his own sort of social media network but
at the speed of the U.S. mail. He shared information among people
who would otherwise have worked in isolation, encouraging more re-
search and more findings. Since his university days, he had maintained
extensive and meticulously organized files. His network helped him to
extend those files and to garner a wide circle of friends, eager to con-
tribute ideas. Virtually anyone who wrote to him got a detailed reply,
almost as though they had queried a search engine. Among his cor-
respondents and associates were mathematicians John Horton Conway
and Persi Diaconis, artists M. C. Escher and Salvador Dali, magician
and skeptic James Randi, and writer Isaac Asimov.

Gardner’s diverse alliances reflected his own eclectic interests—
among them literature, conjuring, rationality, physics, science fiction,
philosophy, and theology. He was a polymath in an age of specialists.
In every essay, it seems, he found a connection between his main sub-
ject and the humanities. Such references helped many readers to relate
to ideas they might have otherwise ignored. For instance, in an essay
on “Nothing,” Gardner went far beyond the mathematical concepts of
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zero and the empty set—a set with no members—and explored the
concept of nothing in history, literature, and philosophy. Other readers
flocked to Gardner’s column because he was such a skillful storyteller.
He rarely prepared an essay on a single result, waiting instead until he
had enough material to weave a rich tale of related insights and future
paths of inquiry. He would often spend 20 days on research and writing
and felt that it he struggled to learn something, he was in a better posi-
tion than an expert to explain it to the public.

Gardner translated mathematics so well that his columns often
prompted readers to pursue topics further. Take housewife Marjorie
Rice, who, armed with a high school diploma, used what she learned
from a Gardner column to discover several new types of tessellating
pentagons, five-sided shapes that fit together like tiles with no gaps.
She wrote to Gardner, who shared the result with mathematician Doris
Schattschneider to verify it. Gardner’s columns seeded scores of new
findings—far too many to list. In 1993, though, Gardner himself iden-
tified the five columns that generated the most reader response: ones
on Solomon W. Golomb’s polyominoes, Conway’s Game of Life, the
nonperiodic tilings of the plane discovered by Roger Penrose of the
University of Oxford, RSA cryptography, and Newcomb'’s paradox [see
box entitled "An Unsolved Problem”).

Polyominoes and Life

Perhaps some of these subjects proved so popular because they were
easy to play with at home, using common items such as chessboards,
matchsticks, cards, or paper scraps. This was certainly the case when,
in May 1957, Gardner described the work by Golomb, who had re-
cently explored the properties of polyominoes, figures made by join-
ing multiple squares side by side; a domino is a polyomino with two
squares, a tromino has three, a tetromino has four, and so forth. They
turn up in all kinds of tilings, logic problems, and popular games, in-
cluding modern-day video games such as Tetris. Puzzlers were already
familiar with these shapes, but as Gardner reported, Golomb took
the topic further, proving theorems about what arrangements were
possible.

Certain polyominoes also appear as patterns in the Game of Life,
invented by Conway and featured in Scientific American in October 1970.
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PuzzLE SAMPLER

Test Yourself

Recreational math puzzles fall into many broad categories and solv-
ing them draws on a variety of talents, as the examples here, some
of which are classics, show. (For the answers, go to http://www
scientificamerican.com/editorial /martin-gardner-centennial /)

Some puzzles call for little more than basic reasoning,
For instance, consider this brain teaser: There are three on/off
switches on the ground floor of a building. Only one operates a
single lightbulb on the third floor. The other two switches are not
connected to anything. Put the switches in any on/off order you
like. Then go to the third floor to see the bulb. Without leaving
the third floor, can you figure out which switch is genuine? You
get only one try.

Cryptarithms serve up harder tests of SEVEN
a puzzler’s abilities. In these problems, each SEVEN
letter corresponds to a single digit. For in-
stance, can you figure out which digit each SEVEN
letter represents to make the sum at the right SEVEN
work? SEVEN
A knack for visualization is helpful for
solving geometric stumpers. Can you picture SEVEN
a solid pyramid consisting of a square base + SEVEN
and four equilateral triangles, alongside a FORTY9

solid tetrahedron with four faces identical to

those of the pyramid’s triangles? Now glue one triangle face of
the pyramid to a triangle on the tetrahedron. How many faces
does the resultant polyhedron have? It’s not seven!

Puzzlers, like mathematicians, must sometimes solve chal-
lenges that reflect general problems or require the construction of
1()gical pr()()fs. Think about the class of p()lyg()ns known as serial
isogons. All adjacent sides meet at 90 degrees, and the sides are
of increasing length: 1, 2, 3, 4, and so on. The simplest isogon,
with sides 1-8, is shown at the right. This is the only serial isogon
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known to tile the plane.

But there are more
isogons. Can you prove
that the number of their
sides must always be a

multiple of 8?
The properties of chess
pieces play a part in many chal-
lenges, including in a group of

problems about unattacked queens.

[magine three white queens and five
black queens on a 5 X 5 chessboard.
Can you arrange them so that no queen of one color can attack
a queen of the other color? There is only one solution, excluding
reflections and rotations.

The game involves “cells,” entries in a square array marked as “alive” or
“dead,” that live (and can thus proliferate) or die according to certain
rules—for instance, cells with two or three neighbors survive, whereas
those with no, one, or four or more neighbors die. “Games” start oft
with some initial configuration, and then these groupings evolve ac-
cording to the rules. Life was part of a fledgling field that used “cellular
automata” (rule-driven cells) to simulate complex systems, often in in-
tricate detail. Conway’s insight was that a trivial two-state automaton,
which he designed by hand, contained the ineffable potential to model
complex and evolutionary behavior.

After Gardner’s column appeared, the Game of Life quickly at-
tracted a cultlike following. “All over the world mathematicians with
computers were writing Life programs,” Gardner recalled. His dedi-
cated readership soon produced many surprising findings. Mathemati-
cians had long known that a short list of axioms can lead to profound
truths, but the Life community in the early 1970s experienced it first-
hand. Some 40 years later Life continues to spark discoveries: a new
self-constructing pattern known as Gemini—which copies itself and
destroys its parent pattern while innovatively moving in an oblique
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The community exploring the properties of Penrosc tilings has made
anumber of advances since, including finding that the patterns display a
property called self-similarity, also enjoyed by fractals, structures that
repeat at different scales. (Fractals, too, gained widespread popular-
ity in large part because of Gardner’s December 1976 column about
them.) And Penrose tiles have also led to the discovery of quasicrystals,
which have an orderly but aperiodic structure. Nobody was more de-
lighted about the connection than Gardner, who commented, “They
are wonderful examples of how a mathematical discovery, made with
no inkling of its applications, can turn out to have long been familiar to
Mother Nature!”

In August 1977 Gardner anticipated another modern-day develop-
ment: the use of electronic mail for personal communication “in a
few decades.” This prediction opened a column that introduced the
world to RSA cryptography, a public-key cryptosystem based on trap-
door functions—ones that are easy to compute in one direction but
not in the opposite direction. Such systems were not new in the mid-
1970s, but computer scientists Ron Rivest, Adi Shamir, and Leon-
ard Adleman (after whom RSA is named) introduced a different kind
of trapdoor using large prime numbers (those divisible only by one
and themselves). The security of RSA encryption stemmed from the
apparent difficulty of factoring the product of two sufticiently large
primes.

Before publishing their result in an academic journal, Rivest,
Shamir, and Adleman wrote to Gardner, hoping to reach a large au-
dience quickly. Gardner grasped the significance of their innovation
and uncharacteristically rushed a report into print. In the column, he
posed a challenge, asking readers to attempt to decode a message that
would require them to factor a 129-digit integer, an impossible task at
that time. Gardner wisely prefaced the challenge with an Edgar Allan
Poe quotation: “Yet it may be roundly asserted that human ingenuity
cannot concoct a cipher which human ingenuity cannot resolve.” And
indeed, only 17 years later, a large team of collaborators, relying on
more than 600 volunteers and 1,600 computers, cracked the code,
revealing that the secret message read: “The magic words are squea-
mish ossifrage.” RSA challenges continued for many years, ending

on]y in 2007.
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After Gardner

Gardner’s love of play went hand in hand with his impish sense of fun.
A 1975 April Fools’ Day column featured “six sensational discover-
ies that somehow or another have escaped public attention.” All were
plausible—and false. For instance, he claimed that Leonardo da Vinci
invented the flush toilet. Allusions to “Ms. Birdbrain” and the psychic-
powered “Ripoff rotor” were meant to alert readers to the gag nature
of the column, but hundreds failed to get the joke and sent Gardner
animated letters.

In 1980 Gardner decided to retire his column to concentrate on
other writing projects. Scientific American quickly introduced a succes-
sor: Douglas Hofstadter. He wrote 25 columns, entitled Metamagical

Penrose tiles are remarkable for producing “aperiodic” patterns: given an
infinite supply, they will fill the floor without gaps such that the initial con-
figuration never repeats exactly. Gardner wrote about Penrose tiles called
kites and darts in January 1977, To ensure aperiodicity, the tiles must be laid
according to certain rules. The starting grouping above is named “the infinite
star pattern.”
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Themas—an anagram of Mathematical Games—many of which dis-
cussed artificial intelligence, his own specialty. A. K. Dewdney fol-
lowed, penning seven years of Computer Recreations. lan Stewart’s
Mathematical Recreations column ran for the next decade. Later Den-
nis Shasha wrote a long series of Puzzling Adventures, based on com-
puting and algorithmic principles, subtly disguised. “Martin Gardner
was an impossible act to follow,” Stewart once commented. “What we
did try to do was replicate the spirit of the column: to present signifi-
cant mathematical ideas in a playful mood.”

For the past two decades the spirit of the column has lived on at
invitation-only, biennial Gathering 4 Gardner conferences, where
mathematicians, magicians, and puzzlers assemble to share what they
wish they could still share via Mathematical Games. Gardner himself
attended the first two. In recent years participants have ranged from
old friends, such as Golomb, Conway, Elwyn Berlekamp, Richard Guy,
and Ronald Graham, to rising stars, such as computer scientist Erik
Demaine and video maven Vi Hart, and some very young blood in
the form of talented teenagers Neil Bickford, Julian Hunts, and Ethan
Brown. Following Gardner’s death in 2010, spin-off Celebration of
Mind parties, which anyone can attend (or host), have been held all
over the world every October in his honor.

Although Gardner is gone, there are good reasons to take inspira-
tion from his work and to champion recreational mathematics today.
Noodling over puzzles and related activities often leads to important
discoveries, as shown, if only briefly, in this article. Almost every essay
Gardner wrote gave rise to communities of enthusiasts and specialists.
A great number of his columns could now be expanded into books—
entire shelves of books even. In addition, thinking about a problem
from a mathematical perspective can be enormously valuable for clarity
and rigor. Gardner never thought of recreational mathematics as a set
of mere puzzles. The puzzles were a gateway to a richer world of math-
ematical marvels.

In his final, retrospective Scientific American article in 1998, Gardner
reflected that the “line between entertaining math and serious math is a
blurry one. . . . For 40 years I have done my best to convince educators
that recreational math should be incorporated into the standard cur-
riculum. It should be regularly introduced as a way to interest young
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students in the wonders of mathematics. So far, though, movement in
this direction has been glacial.”

Today the Internet hosts scores of math-related apps, tutorials, and
blogs—including many different Game of Life apps of varying qual-
ity—and social media can connect like-minded aficionados faster than
Gardner ever could. But maybe that speed has a downside: Web-based
experiences are perfect for quick “Interesting!” responses, but it takes
careful reflection to reach revelatory “Aha!” moments. We believe that
part of the success of Gardner’s column was that he and his audience
took the trouble to exchange detailed ideas and craft thoughttul an-
swers. Only time will tell if a new community of puzzlers—in a less
patient era—will pick up Gardner’s mantle and propel future genera-

tions to fresh insights and discoveries.



Challenging Magic Squares ﬁ)r Magicians
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Magic squares are fascinating, and not just for mathematicians. Most
people are intrigued to see numbers arranged in a box where every
row, column, and diagonal have the same magical sum. Four-by-four
magic squares, like the one shown in Figure 1, are especially intriguing
because so many sets of four entries have the same magic total. Notice
how every row, column, diagonal, broken diagonal, 2 X 2 box, and
more, add up to 34.

Magic Squares with a Given Total

Many magicians, including the authors of this paper, create magic
squares as parts of their shows. Typically, an audience member is asked
for a number (say between 30 and 100) and the magician quickly cre-
ates a magic square and shows off the many ways that their total is
obtained. As described in many magic books (such as [5]), the quickest
and easiest way to create a magic square with total T is to modify the
square in Figure 1 to create the square in Figure 2.

13| 2 7 |12

10 ] 5 4 | 15

FiGure 1. A magic square with magic total 34.
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() A B C D (b) 6 |20 9 9
C—x | D+x | A—x | B+« 8 | 10| 5 |21
D+x| C+x | B—x | A—x 1010 195

B A—2x | D+ 2x C 200 4 |11} 9

Figure 5. Construction 2 for a double birthday magic square.

the numbers are repeated. Not only do the bottom corner squares (in-
tentionally) duplicate two of the numbers in the top row, but some of
the numbers in the second and third rows are duplicates as well.

Magic Squares with Three Random Digits

For the ultimate challenge, the authors thought it would be especially
impressive to allow members of the audience to choose the total and
three numbers to be placed in any three of the squares. (Naturally, ask-
ing the audience for four numbers and the total could lead to an impos-
sible problem.) The solution, as performed by the second author, takes
advantage of previous Constructions 1 and 2.

Ask members of the audience to choose any three squares, then ask
for any three numbers to go inside those squares (say between 1 and
20). Finally, ask another audience member to provide the total (say be-
tween 30 and 80). Note that the first three squares can be chosen in
('Y) = 560 ways. In 4* = 256 of those situations, the three chosen lo-
cations will correspond to three different letters from Figure 4(a), say
using letters A, B, and C.

For example, if the chosen numbers are 3, 11, and 13 in the squares
prescribed in Figure 6(a), then Construction 1 provides a solution by
letting A = 3, B= 14, and C = 15. If the prescribed total is T = 41, then
that would force D =T — (4 + B + C) = 9, and the square could be
completed as in Figure 6(b).

If the three locations do not correspond to different letters in Figure
4(a), then they often correspond to different letters when Figure 4(a)
is turned counterclockwise 90 degrees, as displayed in Figure 7(a). For
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@ | 3 by | 3 ]14]15]9
11 816 |6 |1
13 7 | 1316 |5

13 |8 4 16

Frigure 6. Constructing a magic square with total 41 with three prescribed
squares.

example, in Figure 7(b), the prescribed numbers 6, 5, and 18 all use B
numbers from Figure 4(a), but they correspond to A = 6, B = 8, and
D = 23 in Figure 7(a). So with a prescribed total of 49, the magician
need only “tilt his or her head” and apply the same process of Construc-
tion 1 to reach the completed square in Figure 7(b). We call this pro-
cess Construction 1R.

Conveniently, in the 4 = 16 situations when all three prescribed
squares use the same letter in Figure 4(a), those squares will correspond
to different letters in the square of Figure 7(a). (Indeed, that would be
true even if there were four prescribed squares with the same letter.)
Moreover, 4 * 6 * 6 = 144 situations are of the form YYZ (with Z # Y)
in Figure 4(a), that correspond to three different letters in Figure 7(a).
To see this, there are four choices for Y, then (1) = 6 ways to choose
which two squares in Figure 5(a) to use with that letter. Those will cor-
respond to two different letters in Figure 7(a), say A and B. Then there
are 8 — 2 = 6 choices for the remaining square corresponding to a C or

@ | D | B-3|A+2]|C+1 M |23 5| 8|13
C |A+3|B+2| D=5 1219 10|18
B | D-3|C-2]|4+5 8 [ 2010 | 11
A | c+3|D=-2|B-1 6 | 15|21 | 7

Figure 7. Constructing a magic square with total 49 with three prescribed
squares using Construction 1R.
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D in Figure 7(a) that is not one of the remaining ¥’s of Figure 4(a). Thus
using Construction 1 or 1R, we can handle 256 + 16 + 144 = 416 of
the 560 ways of choosing three locations for the prescribed numbers.
Note that if two locations were prescribed, instead of three, then Con-
struction 1 or 1R handles all ('y') = 120 possibilities.

CoMBINATORIAL ASIDE. The letters in Figure 4(a) and its rotation are
orthogonal Latin squares, in that their combined letters give all 16 pos-
sible ordered pairs, as shown in Figure 8. This allows us to count the
number of ways to choose three squares that will correspond to dif-
ferent letters in both matrices. The first square can be chosen 16 ways,
then the second square can be chosen 3* =9 ways (three choices for the
first coordinate, then three choices for the second coordinate), then
the third square can be chosen 2° = 4 ways. Since order does not mat-
ter, there are (16 - 9 - 4)/3] = 96 ways to select three squares that will
satisfy both conditions. Hence, by the principle of inclusion-exclusion,
the number that satisfies at least one condition is 256 + 256 — 96 =
416, as previously noted.

We are left with 560 — 416 = 144 situations like the one in Figure 9.
This can also be counted directly. To create a YYZ in Figures 4(a) and
7(a), there are four choices for Y to be used in Figure 4(a), and then
(3) = 6 ways to pick their locations. These will necessarily correspond
to different letters in Figure 7(a), say A4 and B, so there are 8 —2 = 6
ways to pick the other 4 or B square in Figure 7(a). The example in
Figure 9 can be extended to a magic square neither by Construction
1 (since it’s of type AAB) nor Construction IR (since it’s of type BBD).
When this happens, we resort to “plan x.”

AD | BB | CA | DC

CC | DA | AB | BD

DB | CD | BC | AA

BA | AC | DD | CB

Frcure 8. The letters of Figures 4(a) and 7(a) are orthogonal Latin squares.
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8 | 17

Ficure 9. A square that foils Constructions 1 and 1R.

When Constructions 1 and 1R fail us, we go back to the birthday
magic square of Figure 5(a), which we repeat in Figure 10(a). This has
the same letter pattern as Construction 1, but it also has a variable pa-
rameter x that can be exploited. For example, in the example of Figure
9, we can assign A = 8, B =17, and x = 3. We still have two degrees of
freedom, so after the total is assigned, say T = 52, we can arbitrarily
choose two numbers that add to T — (4 + B) = 27, say C = 21 and D
= 6, and the result is the magic square of Figure 10(b). We call this
process Construction 2.

This process successfully handles 4 - 4 - 6 = 96 of the 144 situations.
For these YYZ situations, there are four choices for Y, then (1) —2 = 4
choices for which pair we can use. (For example, with Y = A4, we disal-
low picking A with A — 2x or picking A — x twice.) Then the third square
can be chosen six ways to form YYZ in the rotated square. This can re-
sult in the occasional unaesthetic appearance of negative numbers. (For
instance, if in the last example, the number 17 was replaced by 1, then

the third number on the main diagonal would be B — x = —2)

(a) A B C D (b) 8 |17 | 21 | 6
C—x | D+x | A—x | B+x 181 9 5 |20
D+x | C+x | B—x | A—x 9 [ 24 | 14| 5

B A=2x | D+ 2x C 17 | 2 12 | 21

Figurk 10. “Completing the square” with Construction 2.
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Of the remaining 48 situations, 4 - 1 - 6 = 24 of them use two pre-
scribed squares in Construction 2 with a difference of 2x:

* Aand A — 2x,
* B+ xand B — x,
* C—xand C +x,
* Dand D + 2x.

In each case, six choices of the third square will not be satisfied by Con-
struction 1R. For example, suppose that the boxes C — x, C + x, and B
+ x are prescribed, as in Figure 11(a).

In order to apply Construction 2, the squares containing C — x and
C + x must differ by an even number. (While we are willing to put up
with negative numbers, we do not tolerate half-integers!) The simplest
remedy is to restrict the parity of one of the entries. For example, if
your volunteer chooses C — x to be 3 and B + x to be 14, then indicates
square C + x, the magician can say, “To make this really interesting,
give me any odd number between 1 and 20.” (A more complex remedy
without the parity restriction will be given in the final section.) Say
the volunteer chooses C + x = 15, then C =9, x = 6, and B = 8. If the
prescribed total is 72 and you freely choose 4 = 30 and D = 72 — (30
+ 8 + 9) = 25, then the square can be completed as in Figure 11(b).

The only remaining situation to consider, which occurs in just 4 -
1 - 6 = 24 of the 560 possible cases, is when two of the prescribed
squares are required to be equal by Construction 2. In other words,
among the three prescribed squares, two have label A — x or B or C or
D + x, where the labels are given in Figure 11(a). Conveniently, in all
24 of these situations, when the magician mentally rotates the matrix
180 degrees, we obtain the previously considered case where the two

@ | 4 B C D M [30] 8| 9|2
C—x | D+x| A—x | B+x 3 31| 24| 14
D+x| CHx| B—x | A—x 31| 15| 2 | 24

B |A—2x|D+2x| ¢ 8 | 18|37 9

Figure 11. An “even” more challenging situation.



