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Introduction

MIRCEA PITICI

The cighth volume of The Best Writing on Mathematics brings you a new
collection of diverse, surprising, and well-written pieces, all published
originally during 2016 in academic journals, scientific magazines, or
mass media. In addition to the selection, at the end of the book I offer
a copious reference section of notable writings and sources for those of
you who want to find out more about mathematics on your own; that
supplement is important for the goals of the series, serving the research
needs of interested readers,

I hope that this series illustrates the versatility of mathematics and
that of its interpretations; I also hope that the series helps readers gain
arich panoramic view of mathematics, as opposed to the impoverished
parochial view promoted at all levels by our education system. The
more facets of mathematics we discover, the more aware we are that
mathematics has become a behemoth of human thought, with tentacles
reaching into many of the ingenious innovations that fill our personal
and collective lives with technological wonders and with deadly peri]s.

In a memorable line from the movie Stand and Deliver (1988), the
mathematics teacher Jaime Escalante tells his students in a run-down
Los Angeles community that “math is the great equalizer”—mean-
ing, perhaps, that learning mathematics opens up life possibilities for
achievement to everyone, regardless of their ethnicity, social condi-
tion, and family status. My own avatars teach me that, like everything
else people say about mathematics, Escalante’s proclamation is both
true and untrue, depending on the perspective one takes and on the
life caprices one encounters. Against a long and parsimonious tradi-
tion that associates mathematics with recipes of ready-made cliches, I
aim to show with this series that mathematics is more interesting than
the most interesting writing about it—and, more, that this statement
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remains valid even if we replace the attribute “interesting” with one
of its antonyms, or even with most other attributes. Such a sweeping
statement will sound disconcerting to the unaware mind, but it is in-
triguing to the inquisitive mind. Mathematics is a domain of clarity
and obscurity, of enchantment and boredom, of unperturbed neatness
and of puzzling paradox, of apodictic truth and of arguable interpreta-
tion. The pieces collected in this volume once again demonstrate the
dynamic coexistence of opposite characteristics of mathematics—and
show that mathematics is anything but the dull subject serviced by an
increasingly powerful but stultifying educational bureaucracy unable
to grasp, appreciate, promote, and teach the creative and imaginative
sides of mathematics.

Overview of the Volume

In the same vein as the previous books in the series, this volume contains
both expository and interpretive picces on mathematics and aspects of
life in the mathematical community, historical and contemporary.

To open the selection, Philip Davis sees mathematicians as producers
and shows, with many examples from the past and from the present,
that treating mathematical results as “products” is neither far-fetched
nor outrageous; it is just an observation supported by abundant evi-
dence but still denied by many mathematicians.

Evelyn Lamb explains why it is useful to know that certain big num-
bers are primes—and why people are finding primes among a variety
of numbers of certain algebraic expression.

Kevin Hartnett describes the work of geometers and physicists who
attempt to discover similarities among various random processes.

Siobhan Roberts glosses on the idiosyncratic mathematical achieve-
ments of a peculiar centenarian, the recently celebrated Richard Guy.

Lloyd Trefethen shows that the precision of mathematical statements
obscures the multitude of contexts in which we can interpret such results.

Gerald Alexanderson reviews biographical contributions inspired by
Srinivasa Ramanujan’s life and work, and he tells us the intriguing cir-
cumstances under which he acquired a bronze bust of the famous Indian
mathematician.

Larry Riddle brings abstract algebra to the study of systems of func-
tions to create beautiful fractal images.
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Marc Frantz contributes with elements of projective geometry to the
wider context (within optics and perception) of the moon tilt illusion.

Mohammadhossein Kasraei, Yahya Nourian, and Mohammadjavad
Mahdavinejad study how the Persian architectural element Girih was
used in the construction of three Iranian domes; they also analyze the
relationship between dome curvature and the polygonal division of the
dome’s base circle.

Jo Boaler and Lang Chen summarize studies from several disciplines
to conclude that children’s degree of dexterity with “finger math” is
important to their mathematical development.

Sincad Breen and Ann O’Shea rethink the design of undergradu-
ate mathematics education, proposing that the central role held by the
pairing of content and techniques should be replaced by “threshold con-
cepts,” which they define and characterize in their piece.

John Mason pleads for a mathematics education attentive to the cir-
cumstantial elements that occasion learning—as opposed to the dog-
matism of normative theories so popular with researchers.

Viktor Blasjé exemplifies with a geometric-algebraic construction
taken from Leibniz’s work the changing meaning of mathematics and
mathematics notation over the past few centuries.

Carlo Séquin and Raymond Shiau examine a famous painting by Fra’
Luca Pacioli to determine whether the plane rendering of a spatial geo-
metric object is genuine, and they bring the topic to the present by of-
fering a computerized version of that representation.

Jeremy Gray asks what would have passed as most valuable math-
ematical research, most Worthy of award-winning consideration, a cen-
tury and a half ago and examines in that context the work of several
mathematicians prominent at the time.

Noson Yanofsky illustrates with an abundance of examples different
types of mathematical and scientific limitations, from logical and physi-
cal to mental and practical.

Jean-Pierre Marquis defines abstraction and “levels” of abstraction in
mathematics, distinguishing between the axiomatic method and the ab-
stract method. Then he infers the philosophical consequences of using
the latter.

Robert Bain considers pro and con arguments for the proposition
that human reasoning, beliefs, and decision making actively adjust
based on evidence and probability expectations.
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Speaking of expectations, in the last piece of the anthology, Graham
Southorn describes quantitative methods used in forecasting and ex-
plains why they never achieve certainty in our ever more complex world.

More Writings on Mathematics

Among recent books on mathematics deserving special mention are the
following: the Sourcebook in the Mathematics of Medieval Europe and North
Africa edited by Victor Katz; the path-opening Visualizing Mathematics
with 3D Printing by Henry Segerman; the book-and-catalogue Mathemat-
ics edited by David Rooney for the Science Museum of London; and two
interdisciplinary books reaching both close to and far away from math-
ematics, The Oxford Handbook of Generality in Mathematics and the Sciences
edited by Karine Chemla, Renaud Chorlay, and David Rabouin, and
the massive Handbook of Geomathematics edited by Willi Freeden, Zuhair
Nashed, and Thomas Sonar.

Expository books on mathematics are Elements of Mathematics by John
Stillwell, The Circle by Alfred Posamentier and Robert Geretschliger,
Algebra by Peter Higgins, Fractals by Kenneth Falconer, Combinatorics by
Robin Wilson, Measurement by David Hand, Some Applications of Geomet-
ric Thinking by Bowen Kerins et al., Thinking Geometrically by Thomas
Sibley, Geometry in Problems by Alexander Shen, Problem-Solving Strategies
in Mathematics by Alfred Posamentier and Stephen Krulik, An Interactive
Introduction to Knot Theory by Inga Johnson and Allison Henrich, Circu-
larity by Ron Aharoni, Can You Solve My Problems? by Alex Bellos, and
Summing It Up by Avner Ash and Robert Gross.

Mathematics in life (including gambling and games) is described and
interpreted in such books as The Calculus of Happiness by Oscar Fernan-
dez, Fluke by Joseph Mazur, Man vs. Mathematics by Timothy Revell and
Joe Lyward, In Praise of Simple Physics by Paul Nahin, The Mathematics that
Power Our World by Joseph Khoury and Gilles Lamothe, Living by Numbers
by Steven Connor, The Perfect Bet by Adam Kucharski, The Joy of SET by
Liz McMahon and her coauthors, That’s Maths by Peter Lynch, and Math
Squared by Rachel Thomas and Maryanne Freiberger; Daniel Levitin
takes a broad perspective in A Field Guide to Lies.

In the history of mathematics and biography, recently I noticed 4
Bn’gr History clfMathematical Thought by Luke Heaton, Iqﬁm'te Series in
a History of Analysis by Hans-Heinrich Korle, Turing by Jack Copeland,
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Mathematical Products

Puicip J. Davis

A prominent mathematician recently sent me an article he had writ-
ten and asked me for my reaction. After studying it, I said that he was
proposing a mathematical “product” and that as such it stood in the
scientific marketplace in competition with nearby products. He bri-
dled and was incensed by my use of the word “product” to describe his
work. Our correspondence terminated. What follows is an elaboration
of what I mean by mathematical products and how I situate them within
the mathematical enterprise.

Civilization has always had a mathematical underlay, often informal,
and not always overt. I would say that mathematics often lies deep in
formulaic material, procedures, conceptualizations, attitudes, and now
in chips and accompanying hardware. In recent years, the mathema-
tization of our lives has grown by leaps and bounds. A useful point of
view is to think of this growth in terms of products. Mathematical
products serve a purpose; they can be targeted to define, facilitate,
enhance, supply, explain, interpret, invade, complicate, confuse, and
create new requirements or environments for life.

What? Mathematical “products”? Products in an intellectual area
that is reputed to contain the finest result of pure reason and logic: a
body of material that in its early years was in the classical quadrivium
along with astronomy and music? How gross of me to bring in the lan-
guage of materialistic commerce and in this way sully or besmirch the
reputation of what are clean, crisp idealistic constructions! Products
are the routine output of factories, not of skilled craft workers whose
sharp minds frequently reside far above the usual rewards of life. The
notion that mathematics has products or that its content is merchandise
might tarnish both its image and the self-image of the creators of this
noble material.
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(plugs). On MATLAB's website, you can find a list of MATLAB’s avail-
able products, listed openly and labeled clearly as “products.” Invest-
ment and insurance schemes are called “products.”

A product can be sold, e.g., a handheld computer or the Handbook of
Mathematical Functions. A product can be licensed for usage, or it can be
made available as a freebie. In the case of taxes (qua mathematical prod-
uct), it is “promoted” by laws and threats of punishment. Rubik’s Cube,
amathematical product, caught the imagination and challenged the wits
of millions of people and has earned fortunes. Sudoku, a mathematical
puzzle, is sold in numerous formats. If a product is income producing,
its sellers can be taxed. A product can be copyrighted or patented; the
owners of such can be contested or sued for infringement.

1.4 COMPETITIVE ASPECTS OF MATHEMATICAL PRODUCTS

A mathematical product is often subject to competition from nearby
products. Think of the innumerable ways of solving a set of linear equa-
tions. Textbooks, a source of considerable income, compete in a math-
ematical marketplace that involves educationists, testing theorists and
outfits, unions, publishers, parents’ groups, and local state and national
governments.

1.5 SociaL ASPECTS OF MATHEMATICAL PRODUCTS

If a mathematical product finds widespread usage, it may have social,
economic, ethical, legal, or political implications or consequences. The
repugnant Nuremberg Racial Laws in Germany in 1935, with their
numerical criteria, caused incredible suffering. DNA sequencing and
its interpretations is a relatively new branch of applied mathematics,
resulting in a host of new products. In a number of states, the level of
mathematical tests for the lower school grades has been questioned.
The social consequences of mathematical products, benign or other-

wise, may not emerge for many years.

1.6 LEGAL ASPECTS OF MATHEMATICAL PrRODUCTS

There are innumerable examples of this. The U.S. Constitution is full

of number processes. Consider
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Representatives and direct Taxes shall be apportioned among the
several States which may be included within this Union, accord-
ing to their respective Numbers, which shall be determined by
adding to the whole Number of free Persons, including those
bound to Service for a Term of Years, and excluding Indians not
taxed, three fifths of all other Persons. (Later Amended!)

Some mathematical products have been subject to judicial review. As
an example, the mathematical scheme for the 2010 Census was vetted
and restricted by the U.S. Supreme Court.

An example of a statutory product is the method of least propor-
tions used to allocate representatives in Congress. It was approved by
the Supreme Court in Department of Commerce v. Montana, 503 U.S. 442
(1992). A multiple regression model used in an employment discrimi-
nation class action is another such example; it was approved by the Su-
preme Court in Bazemore v. Friday, 478 U.S. 385 (1986).

1.7 LoGICAL OR PHILOSOPHICAL ASPECTS
OF MATHEMATICAL PRODUCTS

A mathematical product, considered as such, is neither true nor false.
Of course, it may embody certain principles of deductive logic, but
these do not automatically make the employment of the product plau-
sible or advisable. A product can be made plausible, moot, or useless on
the basis of certain internal or external considerations. An interesting
historical example of this is the dethroning of Euclidean geometry as
the unique geometry by the discovery of non-Euclidean geometries.

A product may raise or imply philosophical questions, such as
the distinction between the subjective and the objective or between
the qualitative and the quantitative, between the deterministic and the
probabilistic, the tangible and the intangible, the hidden and the overt.

Numerical indexes of this thing and that thing abound. Cases of sub-
jectivity occur when a product asks a person or a group of people to
pass judgment on some issue: “On a scale of zero to ten, how much do
you like tofu?” The well-known Index of Economic Freedom embodies a
number of items, expressed numerically:

We measure ten components of economic freedom, assigning a
grade in each using a scale from 0 to 100, where 100 represents
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the maximum freedom. The ten component scores are then aver-
aged to give an overall economic freedom score for each country.
The ten components of economic freedom are: Business Free-
dom | Trade Freedom | Fiscal Freedom | Government Size |
Monetary Freedom | Investment Freedom | Financial Freedom
| Property Rights | Freedom from Corruption | Labor Freedom

1.8 MORAL ASPECTS OF MATHEMATICAL PRODUCTS

Society asks many questions. Does the manner of taking the U.S. Cen-
sus account properly for the homeless? Are tests in algebra slanted to-
ward certain subcultures? Does the tremendous role that mathematics
plays in war raise questions or angst in the minds of those who are
responsible for its application? Are results of IQ testing being misused?

2 Judgments of Mathematical Products

As mentioned, mathematical products serve a purpose; they can be tar-
geted to define, facilitate, enhance, or invade any of the requirements or
aspects of life. Ultimately, a mathematical product can be judged in the
same way that any product can be judged: by the response of its targeted
users or purchasers. In the case of a mathematical product, what criteria
are in play? The cheapest? The most convenient? The most useful? The
most comprehensive? The most accurate? The most original? The most
seminal? The most reassuring? The safest or least vulnerable? The most
esthetic? The most moral? Is the product unique? Are there pressures
from investors or the various foundations that support their production?

Is “survival of the fittest” a good description of the judgment pro-
cess? Probably not. There are fashions in the product world attracting
both excited consumers and producers. Time, chance, and what the
larger world requires, appreciates, or suffers from mathematizations
are always in play to determine survival.
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The Largest Known Prime Number

EVELYN LAMB

Earlier this week, BBC News reported an important mathematical
finding, sharing the news under the headline “Largest Known Prime
Number Discovered in Missouri.” That phrasing makes it sound a bit

like this new prime number—it’s 274,207,281

1, by the way—was found
in the middle of some road, underneath a street lamp. That’s actually
not a bad way to think about it.

We know about this enormous prime number thanks to the Great In-
ternet Mersenne Prime Search. The Mersenne hunt, known as GIMPS,
is a large distributed computing project in which volunteers run soft-
ware to search for prime numbers. Perhaps the best-known analogue is
SETI@home, which searches for signs of extraterrestrial life. GIMPS
has had a bit more tangible success than SETI, with 15 primes discovered
so far. The shiny new prime, charmingly nicknamed M74207281, is the
fourth found by University of Central Missouri mathematician Curtis
Cooper using GIMPS software. This one is 22,338,618 digits long.

A prime number is a whole number whose only factors are 1 and
itself. The numbers 2, 3, 5, and 7 are prime, but 4 is not because it can
be factored as 2 X 2. (For reasons of convenience, we don’t consider 1
to be a prime.) The M in GIMPS and in M74207281 stands for Marin
Mersenne, a 17th-century French friar who studied the numbers that
bear his name. Mersenne numbers are 1 less than a power of 2. Mer-
senne primes, logically enough, are Mersenne numbers that are also
prime. The number 3 is a Mersenne prime because it’s one less than 27,
which is 4. The next few Mersenne primes are 7, 31, and 127.

M74207281 is the 49th known Mersenne prime. The next largest
known prime, 2°>*>'®" — 1 s also a Mersenne prime. So is the one
after that. And the next one. And the next one. Allin all, the 11 largest
known primes are Mersenne.
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Why do we know about so many large Mersenne primes and so
few large non-Mersenne ones? It’s not because large Mersenne primes
are particularly common, and it’s not a spectacular coincidence. That
brings us back to the road and the street lamp. There are several dif-
ferent versions of the story. A man, perhaps he’s drunk, is on his hands
and knees underneath a streetlight. A kind passerby, perhaps a police
officer, stops to ask what he’s doing. “I'm looking for my keys,” the man
replies. “Did you lose them over here?” the officer asks. “No, I'lost them
down the street,” the man says, “but the light is better here.”

We keep finding large Mersenne primes because the light is better
there.

First, we know that only a few Mersenne numbers are even candi-
dates for being Mersenne primes. The exponent n in 2" — 1 needs to
be prime, so we don’t need to bother to check 2° — 1, for example.
There are a few other technical conditions that make certain prime
exponents more enticing to try. Finally, there’s a particular test of
primeness—the Lucas—Lehmer test—that can only be used on Mer-
senne numbers,

To understand why the test even exists, let’s take a detour to explore
why we bother finding primes in the first place. There are infinitely
many of them, so it’s not like we're going to eventually find the biggest
one. But aside from being interesting in a “math for math’s sake” kind
of way, finding primes is good business. RSA encryption, one of the
standard ways to scramble data online, requires the user (perhaps your
bank or Amazon) to come up with two big primes and multiply them
together. Assuming that the encryption is implemented Correctly, the
difficulty of factoring the resulting product is the only thing between
hackers and your credit card number.

This new Mersenne prime is not going to be used for encryption any
time soon. Currently, we only need primes that are a few hundred dig-
its long to keep our secrets safe, so the millions of digits in M74207281
are overkill, for now.

You can’t just look up a 300-digit prime in a table. (There are about
10" of them. Even if we wanted to, we physically could not write them
all down.) To find large primes to use in RSA encryption, we need to
test randomly generated numbers for primality. One way to do this is
trial division: Divide the number by smaller numbers and see if you
ever get a whole number back. For large primes, this takes way too
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Ficure 1. Randomness increases in a structure known as an “SLE curve.”
Photo by Jason Miller.

“You take the most natural objects—trees, paths, surfaces—and
you show they’re all related to each other,” Sheffield said. “And once
you have these relationships, you can prove all sorts of new theorems
you couldn’t prove before.”

In the coming months, Sheftield and Miller will publish the final part
of a thrcc-papcr series that for the first time provi(]cs a comprchcnsivc
view of random two-dimensional surfaces—an achievement not unlike
the Euclidean mapping of the plane.

“Scott and Jason have been able to implement natural ideas and not
be rolled over by technical details,” said Wendelin Werner, a professor
at ETH Zurich and winner of the Fields Medal in 2006 for his work in
probability theory and statistical physics. “They have been basically able
to push for results that looked out of reach using other approaches.”

A Random Walk on a Quantum String

In standard Euclidean geometry, objects of interest include lines, rays,
and smooth curves like circles and parabolas. The coordinate values
of the points in these shapes follow clear, ordered patterns that can be
described by functions. If you know the value of two points on a line,
for instance, you know the values of all other points on the line. The
same is true for the values of the points on each of the rays in Figure 2,
which begin at a point and radiate outward.
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FiGure 2. Rays constructed by a function that introduces no randomness.
Photo by Scott Sheffield.

One way to bcgin to picture what random two-dimensional geome-
tries look like is to think about airplanes. When an airplane flies a long-
distance route, like the route from Tokyo to New York, the pilot flies
in a straight line from one city to the other. Yet if you plot the route
on a map, the line appears to be curved. The curve is a consequence of
mapping a straight line on a sphere (Earth) onto a flat piece of paper.

If Earth were not round, but were instead a more complicated shape,
possibly curved in wild and random ways, then an airplane’s trajectory
(as shown on a flat two-dimensional map) would appear even more ir-
regular, like the rays in Figure 3.

Each ray represents the trajectory an airplane would take if it started
from the origin and tried to fly as straight as possible over a randomly
fluctuating geometric surface. The amount of randomness that charac-
terizes the surface is dialed up in Figures 4 and 5—as the randomness
increases, the straight rays wobble and distort, turn into increasingly
jagged bolts of lightning, and become nearly incoherent.

Yet incoherent is not the same as incomprehensible. In a random
geometry, if you know the location of some points, you can (at best)
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FIGURE 3. Rays with randomness set to a value of kappa = 4/101. Photo by
Scott Sheffield. See also color image.

assign probabilitics to the location of subscqucnt points. And just as a
loaded set of dice is still random, but random in a different way than a
fair set of dice, it’s possible to have different probability measures for
generating the coordinate values of points on random surfaces.

What mathematicians have found—and hope to continue to
find—is that certain probability measures on random geometries are
special and tend to arise in many different contexts. It is as though
nature has an inclination to generate its random surfaces using a very
particular kind of die (one with an uncountably infinite number of
sides). Mathematicians like Sheffield and Miller work to understand
the properties of these dice (and the “typical” properties of the shapes
they produce) just as precisely as mathematicians understand the or-
dinary sphere.

The first kind of random shape to be understood in this way was
the random walk. Conceptually, a one-dimensional random walk is the
kind of path you'd get if you repeatedly flipped a coin and walked one
way for heads and the other way for tails. In the real world, this type

of movement first came to attention in 1827 when the English botanist
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FiGurE 4. Rays with randomness set to a value of kappa = 4/5. Photo by
Scott Sheffield. See also color image.

FiGURE 5. Rays with randomness set to a value of kappa = 2. Photo by Scott
Shettield.
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Robert Brown observed the random movements of pollen grains sus-
pended in water. The seemingly random motion was caused by indi-
vidual water molecules bumping into each pollen grain. Later, in the
1920s, Norbert Wiener of MIT gave a precise mathematical description
of this process, which is called Brownian motion.

Brownian motion is the “scaling limit” of random walks—if you
consider a random walk where each step size is very small, and the
amount of time between steps is also very small, these random paths
look more and more like Brownian motion. It’s the shape that almost
all random walks converge to over time.

Two-dimensional random spaces, in contrast, first preoccupicd
physicists as they tried to understand the structure of the universe.

In string theory, one considers tiny strings that wiggle and evolve
in time. Just as the time trajectory of a point can be plotted as a one-
dimensional curve, the time trajectory of a string can be understood as
a two-dimensional curve. This curve, called a worldsheet, encodes the
history of the one-dimensional string as it wriggles through time.

“To make sense of quantum physics for strings,” said Sheffield, “you
want to have something like Brownian motion for surfaces.”

For years, physicists have had something like that, at least in part. In
the 1980s, physicist Alexander Polyakov, who’s now at Princeton Uni-
versity, came up with a way of describing these surfaces that came to
be called Liouville quantum gravity (LQG). It provided an incomplete
but still useful view of random two-dimensional surfaces. In particular,
it gave physicists a way of defining a surface’s angles so that they could
calculate the surface area.

In parallel, another model, called the Brownian map, provided a dif-
ferent way to study random two-dimensional surfaces. Where LQG
facilitates calculations about area, the Brownian map has a structure
that allows researchers to calculate distances between points. Together,
the Brownian map and LQG gave physicists and mathematicians two
complementary perspectives on what they hoped were fundamentally
the same object. But they couldn’t prove that LQG and the Brownian
map were in fact compatible with each other.

“It was this weird situation where there were two models for what
you’d call the most canonical random surface, two competing random
surface models, that came with different information associated with

them,” said Sheffield.
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FIGURE 6. Eden growth with gamma equal to 0.25. Photo by Jason Miller.

FiGure 7. Eden growth with gamma equal to 1.25. Photo by Jason Miller.
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FiGure 8. Eden growth with gamma equal to v8/3. Photo by Jason Miller.
See also color image.

pressure fluctuations in a hurricane. Yet Sheffield and Miller realized
that they needed to figure out how to model Eden growth on very ran-
dom LQG surfaces in order to establish a distance structure equivalent
to the one on the (very random) Brownian map.

“Figuring out how to mathematically make [random growth] rigor-
ous is a huge stumbling block,” said Sheffield, noting that Martin Hairer
of the University of Warwick won the Fields Medal in 2014 for work
that overcame just these kinds of obstacles. “You always need some kind

of amazing clever trick to do it.”

Random Exploration

Sheffield and Miller’s clever trick is based on a special type of random
one-dimensional curve that is similar to the random walk except that
it never crosses itself. Physicists had encountered these kinds of curves
for a long time in situations where, for instance, they were studying the
boundary between clusters of particles with positive and negative spin

(the boundary line between the clusters of particles is a one-dimensional
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FiGure 9. An example of an SLE curve. Photo by Jason Miller.

path that never crosses itself and takes shape randomly). They knew
these kinds of random, noncrossing paths occurred in nature, just as
Robert Brown had observed that random crossing paths occurred in
nature, but they didn’t know how to think about them in any kind of
precise way. In 1999, Oded Schramm, who at the time was at Micro-
soft Research in Redmond, Washington, introduced the SLE curve (for
Schramm—Loewner evolution) as the canonical noncrossing random
curve (Figure 9).

Schramm’s work on SLE curves was a landmark in the study of ran-
dom objects. It’s widely acknowledged that Schramm, who died in a
hiking accident in 2008, would have won the Fields Medal had he been
a few weeks younger at the time he’d published his results. (The Fields
Medal can be given only to mathematicians who are not yet 40.) As it
was, two people who worked with him built on his work and went on
to win the prize: Wendelin Werner in 2006 and Stanislav Smirnov in
2010. More fundamentally, the discovery of SLE curves made it pos-
sible to prove many other things about random objects.

“As a result of Schramm’s work, there were a lot of things in physics
they’d known to be true in their physics way that suddenly entered the
realm of things we could prove mathematically,” said Sheffield, who
was a [riend and collaborator of Schramm’s.

For Miller and Sheffield, SLE curves turned out to be valuable in an
unexpected way. In order to measure distance on LQG surfaces, and
thus show that LQG surfaces and the Brownian map were the same,
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FiGure 10. An SLE curve with kappa equal to 0.5. Photo by Jason Miller.
See also color image.

they needed to find some way to model random growth on a random
surface. SLE proved to be the way.

“The ‘aha’ moment was [when we realized] you can construct [ran-
dom growth] using SLEs and that there is a connection between SLEs
and LQG,” said Miller.

SLE curves come with a constant, kappa, which plays a similar role
to the one gamma plays for LQG surfaces. Where gamma describes the
roughness of an LQG surface, kappa describes the “windiness” of SLE
curves. When kappa is low, the curves look like straight lines. As kappa
increases, more randomness is introduced into the function that con-
structs the curves and the curves turn more unruly, while obeying the
rule that they can bounce off of, but never Cross, themselves. Figure 10
is an SLE curve with kappa equal to 0.5, and Figure 11 is an SLE curve
with kappa equal to 3.

Sheffield and Miller noticed that when they dialed the value of kappa
to 6 and gamma up to the square root of cight-thirds, an SLE curve
drawn on the random surface followed a kind of exploration process.
Thanks to works by Schramm and by Smirnov, Sheftield and Miller
knew that when kappa equals 6, SLE curves follow the trajectory of
a kind of “blind explorer” who marks her path by constructing a trail
as she goes. She moves as randomly as possible, except that whenever
she bumps into a picce of the path she has already followed, she turns
away from that piece to avoid crossing her own path or getting stuck in

a dead end.
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FiGure 11. An SLE curve with kappa equal to 3. Photo by Jason Miller. See
also color image.

“[The explorer] finds that each time her path hits itself, it cuts off a
little piece of land that is completely surrounded by the path and can
never be visited again,” said Shefficld.

Sheffield and Miller then considered a bacterial growth model, the
Eden model, that had a similar effect as it advanced across a random
surface: It grew in a way that “pinched off” a plot of terrain that, after-
ward, it never visited again. The plots of terrain cut off by the growing
bacteria colony looked exactly the same as the plots of terrain cut off
by the blind explorer. Moreover, the information possessed by a blind
explorer at any time about the outer unexplored region of the random
surface was exactly the same as the information possessed by a bacterial
Colony. The only difference between the two was that while the bacte-
rial colony grew from all points on its outer boundary at once, the blind
explorer’s SLE path could grow only from the tip.

In a paper posted online in 2013, Sheffield and Miller imagined what
would happen if, every few minutes, the blind explorer were magi-
cally transported to a random new location on the boundary of the
territory she had already visited. By moving all around the boundary,
she would be effectively growing her path from all boundary points
at once, much like the bacterial colony. Thus they were able to take
something they could understand—how an SLE curve proceeds on a
random surface—and show that with some special configuring, the
curve’s evolution exactly described a process they hadn’t been able to
understand, random growth. “There’s something special about the



