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Introduction

MiIrcEA PiTICI

This volume is the tenth in our annual series of The Best Writing on
Mathematics. For me, the editor, the series is a continuous enterprise of
reading and curating the vast literature on mathematics (published in
research journals, books, magazines, and online) fragmented yearly by
our time—measuring conventions. | encourage the readers who want to
enjoy fully the results of this endeavor and the reviewers who judge its
merits to consult the series in its entirety, not only the current (or any
other one) volume. In the introductions to the previous volumes in the
series I detailed the procedure we follow to reach the selection; I will
not repeat it here. The ten volumes available so far contain more than
200 pieces.

I selected the contents of this anthology from mostly 2018 materials.
That, and the circumstance of appearing here together, might be the
only characteristics common to the pieces in the book. The collection
is once again purposefully eclectic, guiding the reader toward a non-
dogmatic understanding of mathematics—panoramic, diverse, open
to interpretive possibilities, and conducive to pertinent connections.
Mathematics is unique in the asymmetry between its apparent singu-
larity of method, circumscribed to the rigors of syllogistic reasoning,
and the disconcerting multiplicity of its reverberations into other do-
mains. Somehow disturbing is yet another asymmetry, between math-
ematicians’ attempts to establish unambiguous, clear statements of
facts, and the wide range of potentially harmful applications to which
mathematical notions, methods, results, and conclusions are used, in-
discriminately and independent of context. Discerning the proper use
of mathematics in applications from the improper one is no trifling
matter, as some of the contributors to this series of anthologies have
pointed out over the years.
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Before I present the articles you can find in the book, I remind you
that this is not only an anthology of intriguing and stimulating readings
but also a reference work meant to facilitate an easy orientation into the
valuable literature on mathematics currently published in a broad array
of sources. The list of books I give in this introduction and the additional
lists grouped at the end of the book under the title “Notable Writings”

are the main components of the bibliographic aspects of the series.

Overview of the Volume

To start the selection, Moon Duchin explains that the Markov chain
Monte Carlo method, a geometric-statistical approach to the analysis
of political districting, guards against the worst of many possible abuses
currently taking place within elective political processes.

Theodore Hill describes the recent history of the fair division of
a domain problem, places it in wider practical and impractical con-
texts, and traces the contributions of a few key mathematicians who
studied it,

Paul Campbell examines some of the claims commonly made on be-
half of learning mathematics and finds that many of them are wanting
in the current constellation of teaching practices, curricula, and com-
peting disciplines.

Roice Nelson introduces several puzzles whose ancestry goes back to
the famous cube invented and commercialized by Erné Rubik.

Kokichi Sugihara analyzes the geometry, the topology, and the con-
struction of versatile three-dimensional objects that produce visual il-
lusions when looked at from different viewpoints.

Kevin Hartnett traces the recent developments and the prospects of
mathematical results that establish mirror symmetry between algebraic
and simplectic geometry—an unexpected and only partly understood
correspondence revealed by physicists.

James Propp presents a fresh approach to problems of discrete prob-
ability and illustrates it with examples of various difficulties.

Neil Sloane details some of the remarkable numerical sequences he
included in the vast collection of integers he has organized and made
available over the past several decades.

Alessandro Di Bucchianico, Laura lapichino, Nelly Litvak, Frank van
der Meulen, and Ron Wehrens point out specific theoretical advances
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in various branches of mathematics, which have contributed powerful
applications to recent technologies and services.

Toby Cubitt, David Pérez-Garcia, and Michael Wolf tell us how they
explored the connections between certain open questions in quantum
physics and classical results on undecidable statements in mathematics
formulated by Kurt Gédel and Alan Turing.

Jeremy Avigad places in historical context and illustrates with recent
examples the growing use of computation, not only in proving math-
ematical results but also in making hypotheses, veritying them, and
searching for mathematical objects that satisfy them.

With compelling examples and well-chosen arguments, Reuben
Hersh makes the case that mathematics is pluralistic on multiple levels:
in content, in philosophical interpretation, and in practice.

Mary Leng subtly defends a position highly unpopular among math-
ematicians and in a small minority among the philosophers of math-
ematics, namely, the thesis that certain mathematical statements are
questionable on the ground that they imply the existence of objects that
might not exist at all—for instance abstract numbers,

Tiziana Bascelli and her collaborators (listed in alphabetical order),
Piotr Blaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz,
Semen S. Kutateladze, Tahl Nowik, David M. Schaps, and David
Sherry, discuss an episode of 17th-century nonstandard analysis to
argue that clarifying both the historical ontology of mathematical no-
tions and the prevalent procedures of past times is essential to the his-
tory of mathematics.

Noson Yanofsky invokes two paradoxes from the realm of numbers
and a famous result from the mathematical theory of complexity to spec-
ulate about their potential to inform our understanding of daily life.

Andrew Gelman recommends several practices that will make the
communication of statistical research, of the data, and of their conse-
quences more honest (and therefore more informative) to colleagues
and to the public.

Michael Barany narrates a brief history of the early Fields Medal and re-
flects on the changes that have taken place over the decades in the award’s
stated aims, as well as in the manner in which awardees are selected.

To conclude the selection for this volume, Melvyn Nathanson re-
calls some originalities of one of the most peculiar mathematicians,

Paul Erdés.
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More Writings on Mathematics

Besides the pieces included in the anthology, every year I suggest other
readings, offering a quick overview of books that came to my attention
recently, loosely grouped in several thematic categories. This list is la-
cunaryj; it consists only of books I consulted myself, either in the two
excellent libraries accessible to me (at Syracuse University and Cornell
University—thank you!) or sent to me by authors and publishers. Full
references are included at the end of the introduction.

A direct marketplace competitor to this volume deserves a special
mention: the outstanding anthology The Prime Number Conspiracy—in
which the editor Thomas Lin included pieces previously published by
the online magazine Quanta. An original celebration of fertile problems
in mathematics, abundantly supplemented with theoretical introduc-
tions (sometimes quite technical for the general reader) is 100 Years of
Math Milestones by Stephan Ramon Garcia and Steven Miller.

Among books exploring the presence of mathematics in daily life,
human activities, and the natural world, some titles are The Beauty of
Numbers in Nature by lan Stewart, Humble Pi by Matt Parker, Weird Math
by David Darling and Agnijo Banerjee, Outnumbered by David Sumpter,
and The Logic of Miracles by Laszlo Mér6. A somehow more technical
expository book but widely accessible is Exercises in (Mathematical) Style
by John McCleary.

Some books about data, statistics, and probability are Using and In-
terpreting Statistics in the Social, Behavioral, and Health Sciences by Wil-
liam Wagner I11 and Brian ]oseph Gillespie, Narrative by Numbers by Sam
Knowles, The Essentials of Data Science by Graham Williams, and The
Politics of Big Data edited by Ann Rudinow Satnan, Ingrid Schneider,
and Nicola Green.

Two interesting books about mathematics in past cultures are Scale
and the Incas by Andrew James Hamilton and Early Rock Art of the Ameri-
can West by Ekkehart Malotki and Ellen Dissanayake. Other books on
the history of mathematics or on the role of mathematics in past so-
cieties are A History of Abstract Algebra by Jeremy Gray, Reading Popular
Newtonianism by Laura Miller, A People’s History of Computing in the United
States by Joy Lisi Rankin, Exact Thinking in Demented Times by Karl Sig-
mund, and Calculated Values by William Deringer. Two recent histories
of calendars, including the mathematics of calendars, are Scandalous
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Hossenfelder, Sabine. Lost in Math: How Beauty Leads Physics Astray. New York: Basic Books,
2018.

Johnson, Eric. Anxiety and the Equation: Understanding Boltzmann’s Entropy. Cambridge, MA:
MIT Press, 2018.

Knowles, Sam. Narrative by Numbers: How to Tell Powerful and Purposeful Stories with Data. Abing-
don, U.K.: Routledge, 2018,

Kolis, Mickey, and Cassandra Meinholz. Brainball: Teaching Inquiry Math as a Team Sport. Lan-
ham, MD: Rowman & Littlefield, 2018.

Lapointe, Sandra. (Ed.) Logic from Kant to Russell: Laying the Foundations for Analytic Philosophy.
New York: Routledge, 2019.

Lewis, Harry, and Rachel Zax. Essential Discrete Mathematics_for Computer Science. Princeton,
NJ: Princeton University Press, 2019.

Lin, Thomas. (Ed.) Alice and Bob Meet the Wall of Fire: The Biggest Ideas in Science from Quanta.
Cambridge, MA: MIT Press, 2018.

Lin, Thomas. (Ed.) The Prime Number Conspiracy: The Biggest Ideas in Math from Quanta. Cam-
bridge, MA: MIT Press, 2018.

Lindblad, Sverker, Daniel Pettersson, and Thomas S. Popkewitz. (Eds.) Education by the Num-
bers and the Making of Society: The Expertise of International Assessments. New York: Routledge,
2018.

Malotki, Ekkehart, and Ellen Dissanayake. Early Rock Art of the American West: The Geometric
Enigma. Seattle: University of Washington Press, 2018.

Mancosu, Paolo. Abstraction and Infinity. Oxford, U.K.: Oxford University Press, 2016.

McCall, Grant S. Strategies for Quantitative Research: Archaeology by Numbers. Abingdnn, U.K.:
Routledge, 2018.

McCleary, John. Exercises in (Mathematical) Style: Stories of Binomial Coefficients. Washington,
DC: Mathematical Association of America, 2018.

Meér6, Laszlo. The Logic of Miracles: Making Sense of Rare, Really Rare, and Impossibly Rare Events.
New Haven, CT: Yale University Press, 2018.

Miller, Laura. Reading Popular Newtonianism: Print, the Principia, and the Dissemination of Newto-
nian Science. Charlottesville, VA: University of Virginia Press, 2018.

Moss, Sarah. Probabilistic Knowledge. Oxford, U.K.: Oxford University Press, 2018.

Neumayer, Eric, and Thomas Plimper. Robustness Tests for Quantitative Research. Cambridge,
U.K.: Cambridge University Press, 2017.

Nothaft, C. Philipp E. Scandalous Error: Calendar Reform and Calendrical Astronomy in Medieval
Europe. Oxford, U.K.: Oxtord University Press, 2018.

Ornes, Stephen. Math Are: Truth, Beauty, and Equations. New York: Sterling Publishing, 2019.

Parker, Matt. Humble Pi: A Comedy of Maths Errors. London: Penguin Random House, 2019.

Peschard, Isabelle F., and Bas C. van Fraassen. (Eds.) The Experimental Side of Modeling. Min-
neapolis: University of Minnesota Press, 2018.

Piazza, Mario, and Gabriele Pulcini. (Eds.) Truth, Existence, and Explanation. Cham, Switzer-
land: Springer International Publishing, 2018.

Pleitz, Martin. Logic, Langudage, and the Liar Paradox. Miinster, Germany: Mentis Verlag, 2018.

Quine, Willard Van Orman. The Significance of the New Logic. Cambridge, U.K.: Cambridge
University Press, 2018.

Rankin, Joy Lisi. A People’s History of Computing in the United States. Cambridge, MA: Harvard
University Press, 2018.

Reingold, Edward M., and Nachum Dershowitz. Calendrical Calculations: The Ultimate Edition.
Cambridge, U.K.: Cambridge University Press, 2018.
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Geometry v. Gen')/mandering

Moo~ DucHIN

Gerrymandering is clawing across courtrooms and headlines nation-
wide. The U.S. Supreme Court recently heard cases on the constitu-
tionality of voting districts that allegedly entrenched a strong advantage
for Republicans in Wisconsin and Democrats in Maryland but dodged
direct rulings in both. Another partisan gerrymandering case from
North Carolina is winding its way up with a boost from an emphatic
lower court opinion in August. But so far, it has been impossible to
satisfy the justices with a legal framework for partisan gerrymander-
ing. Part of the problem, as former Justice Anthony Kennedy noted in
a 2004 case, is that courts high and low have yet to settle on a “work-
able standard” for identifying a partisan gerrymander in the first place.
That is where a growing number of mathematicians around the country
think we can help.

Two years ago, with a few friends, I founded a working group to
study the applications of geometry and computing to redistricting in the
United States. Since then, the Metric Geometry and Gerrymandering
Group has expanded its scope and mission, becoming deeply engaged in
research, outreach, training, and consulting. More than 1,200 people
have attended our workshops around the country, and many of them
have become intensely involved in redistricting projects. We think the
time is right to make a computational intervention. The mathematics
of gerrymandering is surprisingly rich—enough to launch its own
subfield—and computing power is arguably just catching up with the
scale and complexity of the redistricting problem. Despite our group’s
technical orientation, our central goal is to reinforce and protect civil
rights, and we are working closely with lawyers, political scientists, ge-
ographers, and community groups to build tools and ideas in advance of
the next U.S. Census and the round of redistricting to follow it.
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In a country that vests power in elected representatives, there will al-
ways be skirmishes for control of the electoral process. And in a system
such as that of our House of Representatives—where winner takes all
within each geographical district—the delineation of voting districts
is a natural battleground. American history is chock-full of egregious
line-drawing schemes, from stuffing a district with an incumbent’s
loyalists to slicing a long-standing district three ways to suppress the
political power of black voters. Many varieties of these so-called pack-
ing and cracking strategies continue today, and in the big data moment,
they have grown enormously more sophisticated. Now more than ever,
abusive redistricting is stubbornly difficult to even identify definitively.
People think they know gerrymandering by two hallmarks—Dbizarre
shapes and disproportionate electoral outcomes—ryet neither one is re-
liable. So how do we determine when the scales are unfairly tipped?

The Eyeball Test

The 1812 episode that gave us the word “gerrymander” sprang from
the intuition that oddly shaped districts betray an illegitimate agenda.
It is named for Elbridge Gerry, who was governor of Massachusetts at
the time. Gerry had quite a Founding Father pedigree—signer of the
Declaration of Independence, major player at the U.S. Constitutional
Convention, member of Congress, James Madison’s vice president—so
it is amusing to consider that his enduring fame comes from nefari-
ous redistricting. “Gerry-mander,” or Gerry’s salamander, was the sa-
tirical name given to a curvy district in Boston’s North Shore that was
thought to favor the governor’s Democratic-Republican party over the
rival Federalists. A woodcut political cartoon ran in the Salem Gazette
in 1813; in it, wings, claws, and fangs were suggestively added to the
district’s contours to heighten its appearance of reptilian contortions.
So the idea that erratic districts tip us off to wrongdoing goes a long
way back, and the converse notion that close-knit districts promote
democratic ideals is as old as the republic. In 1787, Madison wrote in
The Federalist Papers that “the natural limit of a democracy is that dis-
tance from the central point which will just permit the most remote
citizens to assemble as often as their public functions demand.” In other
words, districts should be transitable. In 1901, a federal apportionment
act marked the first appearance in U.S. law of the vague desideratum
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that districts should be composed of “compact territory.” The word
“compact” then proliferated throughout the legal landscape of redis-
tricting but almost always without a definition.

For instance, at a 2017 meeting of the National Conference of State
Legislatures, I learned that after the last census, Utah’s lawmakers took
the commendable time and effort to set up a website, Redistrict Utah,
to solicit proposed districting maps from everyday citizens. To be con-
sidered, maps were required to be “reasonably compact.” I jumped at
the opportunity to find out how exactly that quality was being tested
and enforced, only to learn that it was handled by just tossing the funny-
looking maps. If that sounds bad, Utah is far from alone. Thirty-seven
states have some kind of shape regulation on the books, and in almost
every case, the eyeball test is king.

The problem is that the outline of a district tells a partial and often
misleading story. First, there can certainly be benign reasons for ugly
shapes. Physical geography or reasonable attempts to follow county
lines or unite communities of interest can influence a boundary, al-
though just as often, legitimate priorities such as these are merely
scapegoated in an attempt to defend the worst-offending districts. On
the other hand, districts that are plump, squat, and symmetrical offer
no meaningful seal of quality. Just this year, a congressional redistrict-
ing plan in Pennsylvania drafted by Republicans in the state legislature
achieved strong compactness scores under all five formulas specified by
Pennsylvania’s supreme court. Yet mathematical analysis revealed that
the plan would nonetheless lock in the same extreme partisan skew as
the contorted plan, enacted in 2011, that it was meant to replace. So
the justices opted for the extraordinary measure of adopting an inde-
pendent outsider’s plan.

Lopsided Outcomes

[f shape is not a reliable indicator of gerrymandering, what about study-
ing the extent to which elected representatives match the voting pat-
terns of the electorate? Surely lopsided outcomes provide prima facie
evidence of abuse. But not so fast. Take Republicans in my home state
of Massachusetts. In the 13 federal elections for president and Senate
since 2000, GOP candidates have averaged more than one third of the
votes statewide. That is six times the level needed to win a seat in one
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The issue is that the best counting techniques often rely on
recursion—that is, solving a problem using a similar problem that is a
step smaller—but two-dimensional spatial counting problems just do
not recurse well without some extra structure. So complete enumera-
tions must rely on brute force. Whereas a cleverly programmed laptop
can classify partitions of small grids nearly instantly, we see huge jumps
in complexity as the grid size grows, and the task quickly zooms out
of reach. By the time you get to a grid of nine-by-nine, there are more
than 700 trillion solutions for equinumerous rook partitions, and even
a high-performance computer needs a week to count them all. This
seems like a hopeless state of affairs. We are trying to assess one way of
cutting up a state without any ability to enumerate—Iet alone mean-
ingfully compare it against—the universe of alternatives. This situation
sounds like groping around in a dark, infinite wilderness.

The good news is that there is an industry standard used across sci-
entific domains for just such a colossal task: Markov chain Monte Carlo
(MCMC). Markov chains are random walks in which where you go
next is governed by probability, depending only on where you are now
(at every position, you roll the dice to choose a neighboring space to
move to). Monte Carlo methods are just estimation by random sam-
pling. Put them together, and you get a powerful tool for searching
vast spaces of possibilities. MCMC has been successfully used to decode
prison messages, probe the properties and phase transitions of liquids,
find provably accurate fast approximations for hard computational
problems, and much more. A 2009 survey by the eminent statistician

How to ComPARE COUuNTLESS DISTRICTING PLANS

Markov chains are random walks around a graph or network in
which the next destination is determined by a probability, like a
roll of the dice, depending on the current position. Monte Carlo
methods use random sampling to estimate a distribution of prob-
abilities. Combined, Markov chain Monte Carlo (MCMC) is a
powerful tool for searching and sampling from a vast space of
scenarios, such as all the possible districting plans in a state. At-
tempts to use computational analysis to spot devious districting
go back several decades, but efforts to apply MCMC to the prob-
lem are much more recent.
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District Sizes Can

9x9 grid; 9 districts 706,152,947,468,301

Dimensions; Districts Equal-Size Districts Be Unequal (£1)
2x2 grid; 2 districts 2 6
3x3 grid; 3 districts 10 58
4x4 grid; 2 districts 70 206
4x4 grid; 4 districts 117 1,953
4x4 grid; 8 districts 36 34,524
5%5 grid; 5 districts 4,006 193,152
6x6 grid; 2 districts 80,518 Px
6x6 grid; 3 districts 264,500 ?
6x6 grid; 4 districts 442791 ?
606 grid; 6 districts 451,206 ?
6x6 grid; 9 districts 128,939 ?
6x6 grid; 12 districts 80,092 !
6x06 grid; 18 districts 6,728 !
7x7 grid; 7 districts 158,753,814 ?
8x8 grid; 8 districts 187,497,290,034 !

2

Www.mggga.org.

Equal-size District size
districts: can be +/-1:
2 solutions 6 solutions

*Mathematicians have not yet enumerated these solutions, which can require a week

of computing or more. To find out more about the hunt for these numbers, visit

N

L]

I_

-

SimpLe Cast. It is easy to enumerate all the ways to partition a
small grid into equal-size districts. For a two-by-two grid with
two districts of equal size, there are only two solutions. But if
districts can vary in size, the number of solutions jumps to six.

Persi Diaconis estimated that MCMC drives 10 to 15% of the statistical
work in science, engineering, and business, and the number has prob-
ably only gone up since then. Although computational analysis in redis-
tricting goes back several decades, serious attempts to apply MCMC in

that effort only started to appear publicly around 2014.
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Imagine that officials in the state of Gridlandia hire you to decide
if their legislature’s districting plan is reasonable. If Gridlandia is a
four-by-four grid of squares, and its state constitution calls for rook-
contiguous districts, then you are in luck: There are exactly 117 ways
to produce a compliant plan, and you can examine them all. You can
set up a perfectly faithful model of this universe of districting plans by
using 117 nodes to represent the valid plans and adding edges between
the nodes to represent simple moves in which two squares in the grid
swap their district assignments. The edges give you a way of concep-
tualizing how similar two plans are by simply counting the number
of swaps needed to transform one to the other. (I call this structure a
metagraph because it is a graph of ways to cut up another graph.) Now
suppose that the state legislature is controlled by the Diamond party,
and its rivals suspect that it has rigged the seats in its favor. To deter-
mine if that is true, one may turn to the election data. If the Diamond
plan would have produced more seats for the party in the last election
than, say, 114 out of 117 alternatives and if the same is true for several
previous elections, the plan is clearly a statistical outlier. This is persua-
sive evidence of a partisan gerrymander—and you do not need MCMC
for such an analysis.

The MCMC method kicks in when you have a full-sized problem
in place of this small toy problem. As soon as you get past 100 or so
nodes, there is a similar metagraph, but you cannot completely build it
because of its forbidding complexity. That is no deal breaker, though.
From any single plan, it is still easy to build out the local neighborhood
by performing all possible moves. Now you can take a million, bil-
lion, or trillion steps and see what you find. There is mathematics in
the background (ergodic theory, to be precise) guaranteeing that if you
random-walk for long enough, the ensemble of maps you collect will
have properties representative of the overall universe, typically long
before you have visited even a modest fraction of nodes in your state
space. This procedure lets you determine if the map you are evaluating
is an extreme outlier according to various partisan metrics.

The cutting edge of scientific inquiry is to build more powerful al-
gorithms and, at the same time, to devise new theorems that certify
that we are sampling well enough to draw robust conclusions. There is
an emerging scientific consensus around this method but there are also
many directions of ongoing research.
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RIP Governor Gerry

Sofar, courtsseem tobe smiling on thisapproach. Twomathematicians—
Duke University’s Jonathan Mattingly and Carnegie Mellon Universi-
ty’s Wes Pegden—have recently testified about MCMC approaches for
the federal case in North Carolina and the state-level case in Pennsyl-
vania, respectively.

Mattingly used MCMC to characterize the reasonable range one
might observe for various metrics, such as seats won, across ensembles
of districting plans. His random walk was weighted to favor plans that
were deemed closer to ideal, along the lines of North Carolina state
law. Using his ensembles, he argued that the enacted plan was an ex-
treme partisan outlier. Pegden used a different kind of test, appealing
to a rigorous theorem that quantifies how unlikely it is that a neutral
plan would score much worse than other plans visited by a random
walk. His method produces p-values, which constrain how improbable
it is to find such anomalous bias by chance. Judges found both argu-
ments credible and cited them favorably in their respective decisions.

For my part, Pennsylvania governor Tom Wolf brought me on earlier
this year as a consulting expert for the state’s scramble to draw new
district lines following its supreme court’s decision to strike down the
2011 Republican plan. My contribution was to use the MCMC frame-
work to evaluate new plans as they were proposed, harnessing the
power of statistical outliers while adding new ways to take into account
more of the varied districting principles in play, from compactness, to
county splits, to community structure. My analysis agreed with Peg-
den’s in flagging the 2011 plan as an extreme partisan outlier—and I
found the new plan floated by the legislature to be just as extreme, in a
way that was not explained away by its improved appearances.

As the 2020 Census approaches, the nation is bracing for another
wild round of redistricting, with the promise of litigation to follow.
[ hope the next steps will play out not just in the courtrooms but also
in reform measures that require a big ensemble of maps made with
open source tools to be examined before any plan is signed into law.
In that way, the legislatures preserve their traditional prerogatives to
commission and approve district boundaries, but they have to pro-
duce some guarantees that they are not putting too meaty a thumb on

the scale.
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Equal-size districts: 117 solutions “x2" means that each of the configurations on the left has exactly
one distinct variation that can be produced by rotation and
flipping. Thase variants are shown ghosted to the right. Every
configuration of a grid belongs to a family of 1, 2, 4 or 8 variants.

BiGGEr Cask. As the size of the grid grows, the number of possibili-
ties for carving it up skyrockets. Dividing a four-by-four grid into
four districts of equal size has 117 solutions. If the districts can vary
in size by even one unit, there are 1,953 solutions. It does not take
long before even the most powerful computers struggle to enumer-
ate the possibilities for more complex grids. That situation presents a
problem for anyone trying to detect manipulative maps by comparing
the myriad ways to district a U.S. state. But MCMC can help.

We can efficiently explore valid districting plans by traveling ran-
domly around a metagraph, defined by moves such as the unit swaps pic-
tured. In the highlighted inset, each pattern has squares marked a and b
whose district assignments are exchanged to arrive at the configuration
of the pattern shown. The edges in the network represent these simple
swap moves. The metagraph models the space of all valid districting
plans and can be used to sample many billions of plans. Geometers are
trying to understand the shape and structure of that universe. See also
color images.

Computing will never make tough redistricting decisions for us and
cannot produce an optimally fair plan. But it can certify that a plan be-
haves as though selected just from the stated rules. That alone can rein
in the worst abuses and start to restore trust in the system.
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general and aesthetically beautiful abstract concepts, soon to prove ex-
tremely powerful in a wide variety of mathematical and scientific fields.

The café tables had marble tops and could easily be written on in
pencil and then later erased like a slate blackboard. Since the group
often returned to ideas from previous meetings, they soon realized the
need for a written record of their results and purchased a large note-
bocok for documenting the problems and answers. The book, kept ina
safe place by the cafe headwaiter and produced by him upon the group’s
next visit, was a collection of these mathematical questions, both solved
and unsolved, that decades later became known in international math-
ematical circles as the Scottish Book.

The Ham Sandwich Problem

Problem No. 123 in the book, posted by Hugo Steinhaus, a senior
member of the café mathematics group and a professor of mathematics
at the University of Lemberg (now the University of Lviv), was stated
as follows:

Given are three sets A, A,, A,, located in the three-dimensional
Euclidean space and with finite Lebesgue measure. Does there
exist a plane cutting each of the three sets A, A, A;, into two
parts of equal measure?

To bring this question to life for his companions, Steinhaus illus-
trated it with one of his trademark vivid examples, one that reflected
the venue of their meetings, and also perhaps their imminent preoccu-
pation with daily essentials: Can every ordinary ham sandwich consist-
ing of three ingredients, say bread, ham, and cheese, be cut by a planar
slice of a knife so that each of the three is cut exactly in half?

A Simpler Problem

At the meeting where Steinhaus introduced this question, he reported
that the analogous conclusion in two dimensions was true: Any two
areas in a (flat) plane can always be simultancously bisected by a single
straight line, and he sketched out a solution on the marble tabletop.
In the spirit of Steinhaus’s food theme, let’s consider the case where
the two areas to be bisected are the crust and sausage on a pepperoni
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pizza. If the pizza happens to be a perfect circle, then every line passing
through its center exactly bisects the crust.

To see that there is always a line that bisects both crust and sausage
simultaneously, start with the potential cutting line in any fixed direc-
tion and rotate it about the center slowly, say, clockwise. If the propor-
tion of sausage on the clockwise side of the arrow-cut happened to be
40% when the rotation began, then after the arrow-cut has rotated
180 degrees, the proportion on the clockwise side of the arrow-cut is
now 60%. Because this proportion changed continuously from 40% to
60%, at some point it must have been exactly 50%, and at that point
both crust and sausage have been exactly bisected (Figure 1).

On the other hand, if the pizza is not a perfect circle, as no real pizza
is, then there may not be an exact center point such that every straight
line through it exactly bisects the crust. But in this general noncircular
case, again move the cutting line so that it always bisects the crust as
it rotates, and note that even though the cutting line may not rotate
around a single point as it did with a circular pizza, the same continuity

Figure 1. If a pizza is a perfect circle, then every line through the center
bisects the crust. If the cut starts with 40% of the sausage clockwise from
the arrow, after rotating 180 degrees, 60% of the sausage is clockwise from
the arrow. So somewhere in between, the line hits 50% and the same cut-
ting line bisects both crust and sausage. If the pizza is not a perfect circle,
the crust-bisecting lines may not all pass through the same point, but the
same argument applies.
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argument applies. If the proportion clockwise of the north cut started
at 40%, then when the cut arrow points south, that proportion will be
60%, which again completes the argument using the simple fact that to
go continuously from 40 to 60, one must pass through 50. This simple
but powerful observation, formally known as the intermediate value
theorem, also explains why if the temperature outside your front door
was 40 degrees Fahrenheit yesterday at noon and 60 degrees today at
noon, then at some time in between, perhaps several times, the tem-
perature must have been exactly 50 degrees.

Steinhaus’s two-dimensional (pizza) version of the ham sandwich
theorem may be used for gerrymandering. Instead of a pizza, imagine a
country with two political parties whose voters are sprinkled through
it in any arbitrary way. The pizza theorem implies that there is a straight
line bisecting the country so that exactly half of each party is on each
side of the line. Suppose, for example, that 60% of the voters in the
United States are from party Purple and 40% are from party Yellow.
Then there is a single straight line dividing the country into two re-
gions, each of which has exactly 30% of the Purple on each side, and
exactly 20% of the Yellow on each side, so the Purple have the strict
majority on both sides. Repeating this procedure to each side yields
four districts with exactly 15% Purple and exactly 10% Yellow in each.
Again the majority party (in this case, Purple) has the majority in each
district. Continuing this argument shows that whenever the number of
desired districts is a power of two, there is always a straight-line parti-
tion of the country into that number of districts so that the majority
party also has the majority of votes in every single district (Figure 2).

This repeated-bisection argument may fail, however, for odd num-
bers of desired districts. On the other hand, Sergei Bespamyatnikh,
David Kirkpatrick, and Jack Snoeyink of the University of British Co-
lumbia found a generalization of the ham sandwich theorem that does
the trick for any number of districts, power of two or not. They showed
that for a given number of Yellow and Purple points in the plane (no
three of which are on a line), there is always a subdivision of the plane
into any given number of convex polygons (districts), each containing
exactly the same numbers of Yellow points in each district, and the
same number of Purple (Figure 3).

In his application of this theorem to gerrymandering, Soberén ob-
served that for any desired number of districts, this theorem implies



30 percent Purple
20 percent Yellow

30 percent Purple
20 percent Yellow

15 percent Purple
10 percent Yellow

15 percent Purple
10 percent Yellow

10 percent
Yellow

15 percent Purple
10 percent Yellow

FiGurE 2. According to the two-dimensional (pizza) version of the ham
sandwich theorem, there is a straight line across the United States so that
exactly half of the Purple and half of the Yellow party voters are on either
side (top). Bisecting each of those (bottom), the same argument shows that
there are four regions with equal numbers of Purple and equal numbers of
Yellow in each of them. Thus, the party with the overall majority also has
the majority in each of the districts. See also color images.
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12 percent Purple
8 percent Yellow

12 percent Purple
8 percent Yellow

12 percent Purple
8 percent Yellow

12 percent Purple
8 percent Yellow

Ficure 3. For odd numbers of desired districts, the repeated-bisection argu-
ment of the two-dimensional version of the ham sandwich theorem may fail.
However, a generalization of the theorem works for any number of districts, by
showing that for a given number of Purple or Yellow points in a plane (no three
of which are on a line), there is always a subdivision of the plane into any given
number of convex polygons, each of which contains exactly the same number
of Yellow, and the same number of Purple, points. See also color images.

that there is always a subdivision into that number of polygonal districts
so that each district has exactly the same number of Purple and exactly
the same number of Yellow. Whichever party has the overall major-
ity in the country also has the majority in every district. Thus, as he
found, a direct application of the ham sandwich theory would not help
fix the problem, but would actually make it worse, and the electorate
should be wary if the person drawing congressional maps knows any-
thing about that theory. No wonder the Supreme Court balked on all
three of the most recent cases it has heard on partisan gerrymandering.

The Scottish Café

After giving his argument for the two-dimensional case of the ham sand-
wich theorem, Steinhaus then challenged his companions to prove the
three-dimensional version. The same basic intermediate value theorem
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Frcurk 4. Mathematicians Arthur Stone and John Tukey of Princeton Univer-
sity extended the ham sandwich theorem to nonuniform distributions, higher
dimensions, and a variety of other cutting surfaces and objects. One of their
examples showed that a single circle simultaneously can bisect any three shapes
in the plane. For instance, it is always possible to design the power and location
of a telecommunications satellite so that its broadcasts reach exactly half the
Yellow, half the Purple, and half the Teal (Independents). See also color images.

median planes, and median hyperplanes in higher dimensions. Using
the Borsuk—Ulam theorem again, but this time applied to a different
“midpoint median” function, it was straightforward to show that for any
two arbitrary random distributions in the plane, or any three in space,
there is always a line median or plane median, respectively, that has no
more than half of each distribution on cach side.

Some 20 years later, Columbia University economist Macartan
Humphreys used this result to solve a problem in cooperative game
theory. In a setting where several groups must agree on allocations of a
fixed resource (say, how much of a given disaster fund should be allo-
cated to medical, power, housing, and food), the objective is to find an
allocation that no winning coalition could override in favor of another
allocation. He showed that such equilibrium allocations exist precisely
when they lie on “ham sandwich cuts.”
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Touching Planes

In explaining the beauties of the ham sandwich theorem to nonmath-
ematician friends over beer and pizza, one of my companions noticed
that often there is more than one bisecting line (or plane), and we saw
that some bisecting lines might touch each of the objects, whereas
others may not. I started looking at this observation more closely and
discovered that in every case, I could always find a bisecting line or
plane that touched all the objects. When I could not find a reference
or proof of this concept, I posed the question to my Georgia Tech
friend and colleague John Elton, who had helped me crack a handful
of other mathematical problems: Is there always a bisecting plane (or
hyperplane, in dimensions greater than 3) that also touches each of
the objects?

Together, he and I were able to show that the answer is yes, which
strengthens the conclusion of the classical ham sandwich theorem. For
example, this improved version implies that at any instant in time in
our solar system, there is always a single plane passing through three
bodies—one planet, one moon, and one asteroid—that simultaneously
bisects the planetary, the lunar, and the asteroidal masses in the solar
system (Figure 6).

FIGuRrE 6. Some bisecting lines or planes may touch each of the objects,
whereas others may not, as shown on the pizza above. Nevertheless, there is
always a single bisecting line or plane (or hyperplane, in higher dimensions)
that touches all of the objects. For example, at any instant in time in our
solar system, there is always a single plane passing through three bodies—
one planet, one moon, and one asteroid—that simultancously bisects the
planetary, the lunar, and the asteroidal masses in the solar system.
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Diverse Divisions

The ideas underlying the ham sandwich theorem have also been used
in diverse fields, including computer science, economics, political
science, and game theory. When I asked my friend Francis Su, Har-
vey Mudd College mathematician and fair-division expert, about his
own applications of the ham sandwich theorem, he explained how he
and Forest Simmons of Portland Community College had used ham
sandwich results to solve problems in consensus halving. In particular,
they used it to show that given a territory and 2n explorers, two each
of n different specialties (e.g., two zoologists, two botanists, and two
archaeologists), there always exists a way to divide the territory into
two regions and the people into two teams of n explorers (one of
each type) such that each explorer is satistied with their half of the
territory.

As a more light-hearted application during a keynote lecture at Geor-
gia Tech, Tel Aviv University mathematician Noga Alon described a
discrete analog of the ham sandwich theorem for splitting a necklace
containing various types of jewels, as might be done, he said, by math-
ematically oriented thieves who steal a necklace and wish to divide
it fairly between them. Even though it had been offered as an amuse-
ment, his result had applications, including to very large scale integrated
(VLSI) circuit designs where an integrated chip composed of two differ-
ent types of nodes is manufactured in the shape of a closed circuit (much
like a necklace), and may be restructured after fabrication by cutting and
regrouping the pieces. Alon’s theorem answers this question: How many
cuts need to be made of the original circuit in order to bisect it into two
parts, each containing exactly half of each type of node?

Revisiting the Café

Steinhaus published the proof of the ham sandwich theorem in the local
Polish mathematical journal Mathesis Polska in 1938, the year of the in-
famously violent Kristallnacht. The Scottish Cafe mathematics gather-
ings continued for a few more years, despite the invasion of western
Poland by the German army and the Soviet occupation of Lwow from
the east, but the difficult times would soon disperse both scholars and
their works. Ulam, a young man in his 20s and, like Steinhaus, also of
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Jewish roots, had left with his brother on a ship for America just two
weeks before the German invasion.

Banach, nearing 50 and already widely known for his discoveries in
mathematics, was appointed dean of the University of Lwow’s depart-
ment of mathematics and physics by the Soviets after they occupied that
city, under the condition that he promised to learn Ukrainian. When
the Nazis in turn occupied Lwow, they closed the universities, and Ban-
ach was forced to work feeding lice at a typhus research center, which
at least protected him from being sent into slave labor. (Banach, like
many others, was made to wear cages of lice on his body, so that they
could feed on his blood. The lice, which are carriers of typhus, were
used in research efforts to create a vaccine against the disease.) Banach
was able to help reestablish the university after Lwow was recaptured
by the Soviets in 1944, but he died of lung cancer in 1945.

Although the correct statement of the crisp ham sandwich theorem
had made it through the World War II mathematical grapevine per-
fectly, the proper credit for its discoverers was garbled en route, and
Stone and Tukey mistakenly attributed the first proof to Ulam. Sixty
years later, the record was set straight when a copy of Steinhaus’s ar-
ticle in Mathesis Polska was finally tracked down, and we now know that
Steinhaus posed the problem and published the first paper on it, but it
was Banach who actually solved it first, using a theorem of Ulam’s.

Today Banach is widely recognized as one of the most important and
influential mathematicians of the twentieth century, and many funda-
mental theorems, as well as entire basic fields of mathematics, that are
based on his work are now among the most extensively used tools in
physics and mathematics.

Ulam went on to work as one of the key scientists on the Manhattan
Project in Los Alamos, New Mexico, achieving fame in particular for
the Teller—Ulam thermonuclear bomb design and for his invention of
Monte Carlo simulation, a ubiquitous tool in economics, physics, math-
ematics, and many other areas of science, which is used to estimate
intractable probabilities by averaging the results of huge numbers of
computer simulations of an experiment.

After the war, Steinhaus would have been welcomed with a profes-
sorship at almost any university in the world, but he chose to stay in Po-
land to help rebuild Polish mathematics, especially at the university in
Wroclaw, which had been destroyed during the war. During those years
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in hiding, Steinhaus had also been breaking ground on the mathemat-
ics of fair division—the study of how to partition and allocate portions
of a single heterogeneous commodity, such as a cake or piece of land,
among several people with possibly different values. One of Steinhaus’s
key legacies was his insight to take the common vague concept of “fair-
ness” and put it in a natural and concrete mathematical framework.
From there, it could be analyzed logically, and it has now evolved into
common and powerful tools. For example, both the website Spliddit,
which provides free mathematical solutions to complicated everyday
fair division problems from sharing rent to dividing estates, and the
eBay auction system, which determines how much you pay—often
below your maximum bid—are direct descendants of Steinhaus’s in-
sights on how to cut a cake fairly.

These ideas, born of a mathematician living and working clandes-
tinely with little contact with the outside world for long periods of time
and undoubtedly facing fair-allocation challenges almost daily, have in-
spired hundreds of research articles in fields from computer and politi-
cal science to theoretical mathematics and physics, including many of
my own. Steinhaus eventually became the first dean of the department
of mathematics in the Technical University of Wroclaw. Although I
never met him in person, I had the good fortune to be invited to visit
that university in December 2000, and it was my privilege to lodge in a
special tower suite right above the mathematics department and to give
a lecture in the Hugo Steinhaus Center.

Steinhaus had made the last entry in the original Scottish Book in 1941,
just before he went into hiding with a Polish farm family, using the as-
sumed name and papers of a deceased forest ranger. The Scottish Book itself
also disappeared then, and when he came out of hiding and was able to
rediscover the book, Steinhaus sent a typed version of it in Polish to Ulam
at Los Alamos, who translated it into English. Mathematician R. Daniel
Mauldin at the University of North Texas, a friend of Ulam, published
a more complete version of the Scottish Book, including comments and
notes by many of the problems’ original authors. Their Problem 123,
which evolved into the ham sandwich theorem, continues to fascinate and
inspire researchers, and Guogle Scholar shows that cight decades later,
several dozen new entries on the topic still appear every few months.

But what about that pesky gerrymandering problem? Negative re-
sults in science can also be very valuable; they can illuminate how a

certain line of reasoning is doomed to failure and inspire searches in



Does Mathematics Teach How to Think?

Paur J. CAMPBELL

What are the larger benefits of learning mathematics? We are not refer-
ring to what is variously termed number sense, numeracy, quantitative
literacy, or quantitative reasoning.

In a tradition that goes back to Plato in his Republic, educators have
maintained that mathematics beyond arithmetic is an essential compo-
nent of an education: It “trains the mind,” by teaching logical thinking
and abstraction.

Mathematics . . . teaches . . . how to think . . . . Reasoning is learned
by practice and there is no better practice than mathematics. We
have problems that can be solved by reasoning and we can see that
our reasoning leads to correct answers. This is an advantage over
any other subject . . ..

[Dudley 2008, 2]

Hence, in an earlier era, students studied geometry from Euclid,
memorizing and understanding proofs of theorems about idealized geo-
metrical objects.

What habits of mind are ascribed to the learning of mathematics?
Some are broadly based: identifying significant information; attention
to appropriate detail and exactness; inculcating the discipline of com-
mitting to memory definitions, terminology, important facts, and fre-
quently used techniques; following patterns and systematically applying
rules; and constructing and evaluating logical arguments.

Others are more specific to mathematics: deduction and argument
specifically from precise definitions and principles; discerning patterns
from concrete examples; a spirit of generalizing; abstraction to remove
less relevant detail; searching for justifying and/or falsifying argu-
ments about conjectures; translation among domains (words, symbols,
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figures); reasoning with symbols; algorithmic approaches to calcula-
tion; investigation of exceptions, boundary situations, and limiting
cases; and emphasis on numerical accuracy with suitable approximation.

We examine the claims about mathematics teaching how to think,
considering the merits of some alternatives to mathematics, and then
ask how mathematics as taught can realize those goals.

Alternatives to Mathematics

WHAT ABoUuT LATIN? OR CLASSICAL GREEK?
OR EvVEN Puzzigs?

Claims of training the mind were traditionally made for learning Latin
(and Greek) as part of a “classical” education. Some emphasis derived
from the practicality of Latin as the medium of scholarly communica-
tion in the Middle Ages, and some from the desirability for clergy to
read scripture in those languages. Today—in Germany, for example—
Latin is still seen in applied terms, as a prerequisite for students aspir-
ing to careers in law or medicine.

The study of any language involves categorization of parts of speech,
declension of nouns and conjugation of verbs, memorization of vocab-
ulary and terminology, learning numerous syntax rules and patterns
(and their exceptions), and developing precision in expression—not to
mention the language’s oral component and translation between the
oral and written components. Thus, language study involves and devel-
ops many of the broad-based habits of mind delineated above. Study of
an accompanying culture has other humanistic values, which we do not
consider here.

The claims for both mathematics and classical languages partake
of the Theory of Formal Discipline (TFD), which asserts that certain
fields of study develop general mental faculties, such as observation,
attentiveness, discrimination, and reasoning [Aleven 2012], and these
faculties have general applicability and transfer to other domains. TFD
formalizes the hunches of Plato and similar notions of Locke.

Burger [2019] makes a case for puzzle solving to teach thinking. Part
of the rationale is that because solving imaginative puzzles is scarcely a
field of study and has no obvious applications, it is easier to focus on the
thinking processes and their development.
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Way Not CODING?

Since the purpose of mathematics education is to improve the
mind, it does not matter much what mathematics is taught . . . . [W]e
must teach them something, so we teach them to follow rules to
solve problems.

[Dudley 2008, 2-3]

If the subject matter in which one develops and practices habits of
mind does not matter, why not Latin? or chess? or coding, the writing of
instructions for computers? “Coding for all!” meaning that all students
should learn to program computers, has become a meme of contempo-
rary U.S. culture. Why coding? Several rationales present themselves.

Coding as Social Welfare: Jobs in information technology (IT)
pay well, hence coding could provide a socioeconomic “escalator” for
upward mobility of students from disadvantaged backgrounds.

Coding as Career Insurance: In the wake of the Great Reces-
sion, STEM (science, technology, engineering, mathematics) jobs pro-
vide the living standard that Americans expect, and most such jobs are
computer-related.

Coding as Educational Fad: Coding is the new literacy.

Coding as Competition: Since other countries have adopted
“coding for all” (e.g., the United Kingdom in 2014), the United States
needs to do so too, in order to be competitive in world markets of
labor, technology, and commerce.

There are potential benefits to learning coding. Coding is an attrac-
tive opportunity that can enthuse some students. Coding for all fits well
with the prevailing American business model for education as primarily
job training: “Computer skills,” like “math skills,” are valued job skills.

Relevant to habits of mind, coding involves basic logic (e.g., Boolean
logic and conditionals), demands attention to syntactical detail, and in-
volves planning ahead—which, if not one of the habits of mind above,
is a valuable trait in life.

CobpING: DrRAWBACKS AND PrACTICAL CONSIDERATIONS

Do we need so many coders, when the demand for computer pro-
grammers is projected to decrease 8% by 2024 [Galvy 2016]? Would
a career in coding be meaningful to many students? Can all students



30 Paul J. Campbell

succeed at coding, or would it become just another resented obstacle
(much as mathematics is now)? How low a standard would any mea-
sure of success have to meet? Would achievement gaps widen, with—
just as with mathematics—some students considered “born to it” and
others deemed hopeless? What other educational opportunities would
instruction in coding replace? In most states, “computer science” can
replace mathematics or science as a high school graduation requirement
[Code.org 2016]; at some colleges, computer programming can satisty
arequirement to study a foreign language [Galvy 2016].

Because of fast obsolescence, learning the specifics of a particular
programming language or computing platform today will not be good
job training for tomorrow.

Anyway, there are nowhere near enough teachers for implementing
coding for all (and there won’t be enough as long as teachers’ salaries re-
main far lower than those of coders and others in I'T). Where could the
needed money come from? (Hint: Not from a school’s sports programs.)

Computer science is a liberal art [Jobs 1995] because to write a com-
puter program involves managing complexity, much as the author of a
book or the manager of a project must. You don’t write a million-line
computer program by writing the first line, then the second, and so
on; and you don’t do it all by yourself. What we emphasize in teach-
ing computer science is not learning the ins and outs of the syntax and
semantics of a particular programming language, but rather cultivat-
ing the art of solving a problem by breaking it down into manageable
chunks that work together. But that’s not simple coding.

Students find learning computer programming to be demanding
(logic and syntax must be correct); frustrating (the logic can be wrong,
and the computer demands perfect syntax); time-consuming (unlike a
term paper that is written the night before it is due, a program is rarely
“done” on the first try); but potentially fun (thanks to toy robots and
easy-to-program graphics and animation).

Computer science is the science of information transfer. Its key
question is, what can information-transfer machines do? Programming
(coding) is making machines do those tasks. So, what students really
need to learn is how to get machines to do what they want—even as the
machines change with advances in technology.

What makes for a good programmer—and what should go into
coding for all—may indeed be educationally valuable for all: logical



