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Introduction

MiIrcEA PiTICI

This anthology is the 11th in the annual series of The Best Writing on Mathe-
matics. It contains pieces originally published in late 2018 and throughout
2019 in various venues, including specialized print and online maga-
zines, research journals, newspapers, books, and collections of confer-
ence proceedings. The volume should be considered by the readers in
conjunction with the other ten previously published in the series.

Overview cf the Volume

In a piece eerily reminding us of the current coronavirus health crisis,
Steven Strogatz recounts the little-known contribution of differential
equations to virology during the HIV crisis and makes the case for con-
sidering calculus among the heroes of modern life.

Peter Denning and Ted Lewis examine the genealogy, the progress,
and the limitations of complexity theory—a set of principles developed
by mathematicians and physicists who attempt to tame the uncertainty
of social and natural processes.

In yet another example of fusion between ideas from mathematics
and physics, Bruce Boghosian describes how a series of simulations
carried out to model the long-term outcome of economic interactions
based on free-market exchanges inexorably leads to extreme inequality
and to the oligarchical concentration of wealth.

Stan Wagon points out the harmonic—average intricacies, the practi-
cal paradoxes, and the policy implications that result from using the
miles-per-gallon measure for the fuel economy of hybrid cars.

Jorgen Veisdal details some of the comparative reasoning supposed
to take place in majoritarian democracies—resulting in electoral strat-
egies that lead candidates toward the center of the political spectrum.
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In an autobiographical piece, John Baez narrates the convoluted pro-
fessional path that took him, over many years, closer and closer to al-
gebraic geometry—a branch of mathematics that offers insights into
the relationship between the classical mechanics and quantum physics.

Erica Klarreich explains how Hao Huang used the combinatorics of
cube nodes to give a succinct proof to a long-standing computer sci-
ence conjecture that remained open for several decades, despite many
repeated attempts to settle it.

A graph-based explanation, combined with a stereographic projec-
tion, also helped Richard Montgomery solve one of the questions posed
by the dynamical system formed by three masses moving under the re-
ciprocal influences of their gravitational pulls, also known as the three-
body problem.

Chris King, who created valuable online resources freely available
to everyone, describes the algebraic iterations that lead to families of
fractal-like, visually stunning geometric configurations and stand at the
confluence of multiple research areas in mathematics.

In the next contribution to our volume, Jim Henle presents several
paper-and-pencil games selected from the vast collection invented by
Sid Sackson.

Dave Linkletter breaks the classic Rubik’s cube apart and, using the
mechanics of the cube’s skeleton, counts for us the total number of
possible configurations; then he reviews a collection of mathematical
questions posed by the toy—some answered and some still open.

Colin Adams introduces with examples, defines, and discusses sev-
eral important properties of the hyperbo]ic 3-manifold, a geometric
notion both common to our physical environment and difficult to
understand in its full generality.

In a similar geometric vein, with yet more examples, physical models,
and definitions, followed by applications, Boris Odehnal presents an
overview of higher dimensional geometries.

With linguistic flourishes recalling Fermat’s cryptic style, James
Propp traces the history of two apparently disconnected results in the
theory of numbers—which, surprisingly, turned out to be strongly
related—and tells us how an amateur mathematician used the parallel-
ism to prove one of them.

Patrick Honner works out in several different ways a simple multi-
plication example to compare the computational efforts required by the
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algorithms used in each case and to illustrate the significant benefits
that result when the most efficient method is scaled up to multiply big
numbers.

Ben Orlin combines his drawing and teaching talents to prove that
ignorance of widely known mathematics can be both hilariously ridicu-
lous and academically rewarding!

Donald Teets’s piece is entirely concerned with the young Karl
Friedrich Gauss’s contribution to the history of the Christian calendar.

Paul Thagard proposes five conjectures (and many more puzzling
questions) on the working of mathematics in mind and society and for-
mulates an eclectic metaphysics that atfirms both realistic and fictional
qualities for mathematics.

Mark Colyvan asserts that explanation in mathematics—unlike ex-
planation in sciences and in general—is neither causal nor deductive;
instead, depending on the context, mathematical explanation provides
either local insights that connect similar mathematical situations or
global answers that arise from non-mathematical phenomena.

Gerry Hahn, Necip Doganaksoy, and Bill Mecker call (as they have
done over a long period of time) for improving statistical inquiry and
analysis by using new tools—such as tolerance and prediction intervals,
as well as a refined analysis of the role of sample size in experiments.

More Writings on Mathematics

Readers of this series of anthologies know that in each volume T offer
many other reading suggestions from the recent literature on math-
ematics: book titles in the Introduction and articles in the section on
Notable Writings, toward the end of the volume. As a matter of prin-
ciple, I never included in these lists materials I have not seen; thus, my
ability to keep up with the literature has been considerable affected by
the health crisis that closed university campuses and libraries during
the spring of 2020. I thank the authors and the publishers who sent
me books over the last year; complete references are at the end of this
introduction.

To start my book recommendation list, special mention deserves—
for exceptional illustrations and insightful contributions—the collec-
tive volume published by the Bodleian Library with the title Thinking
3D, edited by Daryl Green and Laura Moretti. Also—for visual aspect,
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inspired humor, and teaching insights—Ben Orlin’s books Math with
Bad Drawings and Change Is the Only Constant.

Excellent expository introductions to specific topics are Julian
Havil’s Curves for the Mathematically Curious, Steven Strogatz’s Infinite
Powers, and (slightly more technical) David Feldman’s Chaos and Dynami-
cal Systems.

In applied mathematics and connections to other domains, we have
The Mathematics of Politics by Arthur Robinson and Daniel Ullman, Mod-
elling Nature by Edward and Michael Gillman, Data Analysis for the Social
Sciences by Douglas Bors, Islands of Order by Stephen Lansing and Mur-
ray P. Cox, Producers, Consumers, and Partial Equilibrium by David Mandy,
and Ranking: The Unwritten Rules of the Social Game We All Play by Péter
Erdi. Featuring mathematics in astronomy are Finding Our Place in the
Solar System by Todd Timberlake and Paul Wallace and Our Universe by
Jo Dunkley; on mathematics in military affairs, The (Real) Revolution in
Military Affairs by Andrei Martyanov. Two expository statistics books
are The Art of Statistics by David Spiegelhalter and Statistics in Social Work
by Amy Batchelor; and an excursion into computer science is Computa-
tional Thinking by Peter Denning and Matti Tedre.

Interdisciplinary with historical elements but also with ramifications
in contemporary affairs are Proof! How the World Became Geometrical by
Amir Alexander and How Charts Lie by Alberto Cairo. Several books last
year were dedicated to the increasing role of algorithms in daily social
affairs, including Algorithmic Regulation edited by Karen Yeung and Mar-
tin Lodge, The Ethical Algorithm by Michael Kearns and Aaron Roth, and
The Information Manifold by Antonio Badia.

A few recent books on the history of mathematics are Power in Num-
bers by Talithia Williams, Bernard Bolzano by Paul Rusnock and Jan
gcbcst{k, and David Hume on Miracles, Evidence, and Probability by William
Vanderburgh. Also historical, with strong reciprocal influences be-
tween mathematics and the cultural, social, and linguistics contexts are
Disharmony of the Spheres by Jennifer Nelson, Republic of Numbers by David
Lindsay Roberts, and Roads to Reference by Mario Gomez-Torrente. In
logic and philosophy of mathematics is Reflections on the Foundations of
Mathematics edited by Stefania Centrone, Deborah Kant, and Deniz
Sarikaya. Mathematical notions in practical philosophy appear in Mea-
surement and Meaning by Ferenc Csatari and in Conscious Action Theor}f by

Wolfgang Baer.
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Outsmarting a Virus with Math

STEVEN STROGATZ

In the 1980s, a mysterious discase began killing tens of thousands of
people a year in the United States and hundreds of thousands world-
wide. No one knew what it was, where it came from, or what was
causing it, but its effects were clear—it weakened patients” immune
systems so severely that they became vulnerable to rare kinds of cancer,
pneumonia, and opportunistic infections. Death from the disease was
slow, painful, and disfiguring. Doctors named it acquired immuno-
deficiency syndrome (AIDS). No cure was in sight.

Basic research demonstrated that a retrovirus was the culprit. Its
mechanism was insidious: The virus attacked and infected white blood
cells called helper T cells, a key component of the immune system.
Once inside, the virus hijacked the cell’s genetic machinery and co-
opted it into making more viruses. Those new virus particles then es-
caped from the cell, hitched a ride in the bloodstream and other bodily
fluids, and looked for more T cells to infect. The body’s immune sys-
tem responded to this invasion by trying to flush out the virus particles
from the blood and kill as many infected T cells as it could find. In so
doing, the immune system was killing an important part of itself.

The first antiretroviral drug approved to treat HIV appeared in 1987.
It slowed the virus down by interfering with the hijacking process, but
it was not as effective as hoped, and HIV often became resistant to it.
A different class of drugs called protease inhibitors appeared in 1994.
They thwarted HIV by interfering with the newly produced virus par-
ticles, keeping them from maturing and rendering them noninfectious.
Though also not a cure, protease inhibitors were a godsend.

Soon after protease inhibitors became available, a team of research-
ers led by David Ho (a former physics major at the California Institute
of Technology and so, presumably, someone comfortable with calculus)
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and a mathematical immunologist named Alan Perelson collaborated on
a study that changed how doctors thought about HIV and revolutionized
how they treated it. Before the work of Ho and Perelson, it was known
that untreated HIV infection typically progressed through three stages:
an acute primary stage of a few weeks, a chronic and paradoxically
asymptomatic stage of up to 10 years, and a terminal stage of AIDS.

In the first stage, soon after a person becomes infected with HIV, he
or she displays flulike symptoms of fever, rash, and headaches, and the
number of helper T cells (also known as CD4 cells) in the bloodstream
plummets. A normal T cell count is about 1,000 cells per cubic milli-
meter of blood; after a primary HIV infection, the T cell count drops to
the low hundreds. Because T cells help the body fight infections, their
depletion severely weakens the immune system. Meanwhile, the num-
ber of virus particles in the blood, known as the viral load, spikes and
then drops as the immune system begins to combat the HIV infection.
The flulike symptoms disappear, and the patient feels better.

At the end of this first stage, the viral load stabilizes at a level that
can, puzzlingly, last for many years. Doctors refer to this level as the
set point. A patient who is untreated may survive for a decade with no
HIV-related symptoms and no lab findings other than a persistent viral
load and a low and slowly declining T cell count. Eventually, however,
the asymptomatic stage ends and AIDS sets in, marked by a further
decrease in the T cell count and a sharp rise in the viral load. Once an
untreated patient has full-blown AIDS, opportunistic infections, can-
cers, and other complications usually cause the patient’s death within
two to three years.

The key to the mystery was in the decade-long asymptomatic stage.
What was going on then? Was HIV lying dormant in the body? Other
viruses were known to hibernate like that. The genital herpesvirus, for
example, hunkers down in nerve ganglia to evade the immune system.
The chicken pox virus also does this, hiding out in nerve cells for years
and sometimes awakening to cause shingles. For HIV, the reason for
the latency was unknown.

In a 1995 study, Ho and Perelson gave patients a protease inhibitor,
not as a treatment but as a probe. Doing so nudged a patient’s body off
its set point and allowed the researchers—for the first time ever—to
track the dynamics of the immune system as it battled HIV. They found
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that after each patient took the protease inhibitor, the number of virus
particles in the bloodstream dropped exponentially fast. The rate of
decay was incredible: half of all the virus particles in the bloodstream
were cleared by the immune system every two days.

Finding the Clearance Rate

Calculus enabled Perelson and Ho to model this exponential decay and
extract its surprising implications. First, they represented the chang-
ing concentration of virus in the blood as an unknown function, (),
where ¢ denotes the elapsed time since the protease inhibitor was ad-
ministered. Then they hypothesized how much the concentration of
virus would change, dV, in an infinitesimally short time interval, dt.
Their data indicated that a constant fraction of the virus in the blood
was cleared each day, so perhaps the same constancy would hold when
extrapolated down to dt. Because dV/V represented the fractional
change in the virus concentration, their model could be translated into
symbols as the following equation:

dV/V = —cdt

Here the constant of proportionality, c, is the clearance rate, a measure
of how fast the body flushes out the virus.

The equation above is an example of a differential equation. It relates
the infinitesimal change of V (which is called the differential of V' and
denoted dV') to Vitself and to the differential dt of the elapsed time. By
applying the techniques of calculus to this equation, Perelson and Ho
solved for ¥(r) and found it satisfied:

In [V(e)/ V] = —ct

Here V) is the initial viral load, and In denotes a function called the
natural logarithm. Inverting this function then implied:

Mo = Ve

In this equation, e is the base of the natural logarithm, thus confirm-
ing that the viral load did indeed decay exponentially fast in the model.
Finally, by fitting an exponential decay curve to their experimental
data, Ho and Perelson estimated the previously unknown value of c.
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The discovery that HIV replication was so astonishingly rapid
changed the way that doctors treated their HIV-positive patients. Pre-
viously physicians waited until HIV emerged from its supposed hiber-
nation before they prescribed antiviral drugs. The idea was to conserve
forces until the patient’s immune system really needed help because the
virus would often become resistant to the drugs. So it was generally
thought wiser to wait until patients were far along in their illness.

Ho and Perelson turned this picture upside down. There was no
hibernation. HIV and the body were locked in a pitched struggle every
second of every day, and the immune system needed all the help it could
get and as soon as possible after the critical early period of infection.
And now it was obvious why no single medication worked for very long.
The virus replicated so rapidly and mutated so quickly, it could find a
way to escape almost any therapeutic drug.

Perelson’s mathematics gave a quantitative estimate of how many
drugs had to be used in combination to beat HIV down and keep it
down. By taking into account the measured mutation rate of HIV, the
size of its genome, and the newly estimated number of virus particles
that were produced daily, he demonstrated mathematically that HIV
was generating every possible mutation at every base in its genome
many times a day. Because even a single mutation could confer drug re-
sistance, there was little hope of success with single-drug therapy. Two
drugs given at the same time would stand a better chance of working,
but Perelson’s calculations showed that a sizable fraction of all possible
double mutations also occurred each day. Three drugs in combination,
however, would be hard for the HIV virus to overcome. The math sug-
gested that the odds were something like 10 million to one against HIV
being able to undergo the necessary three simultancous mutations to
escape triple-combination therapy.

When Ho and his colleagues tested a three-drug cocktail on HIV-
infected patients in clinical studies in 1996, the results were remark-
able. The level of virus in the blood dropped about 100-fold in two
weeks. Over the next month, it became undetectable.

This is not to say that HIV was eradicated. Studies soon afterward
showed that the virus can rebound aggressively if patients take a break
from therapy. The problem is that HIV can hide out. It can lic low in
sanctuary sites in the body that the drugs cannot readily penetrate or
lurk in latently infected cells and rest without replicating, a sneaky way
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of evading treatment. At any time, these dormant cells can wake up
and start making new viruses, which is why it is so important for HIV-
positive people to keep taking their medications, even when their viral
loads are undetectable.

In 1996, Ho was named Time magazine’s Man of the Year. In 2017,
Perelson received a major prize for his “profound contributions to the-
oretical immunology.” Both are still saving lives by applying calculus to
medicine: Ho is analyzing viral dynamics, and some of Perelson’s latest
work helped to create treatments for hepatitis C that cure the infection
in ncarly every patient.

The calculus that led to triple-combination therapy did not cure
HIV. But it changed a deadly virus into a chronic condition that could
be managed—at least for those with access to treatment. It gave hope
where almost none had existed before.

More to Explore

Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection.
David D. Ho et al. in Nature, Vol. 373, pp. 123—-126, January 12, 1995.

Modelling Viral and Immune System Dynamics. Alan S. Perelson in Nature Reviews
Immunology, Vol. 2, pp. 28—36, January 2002.
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PETER J. DENNING AND TED G. LEWIs

In a famous episode in the “I Love Lucy” television series—“Job Switch-
ing,” better known as the chocolate factory episode—Lucy and her
best-friend coworker Ethel are tasked to wrap chocolates flowing by on
a conveyor belt in front of them. Each time they get better at the task,
the conveyor belt speeds up. Eventually they cannot keep up, and the
whole scene collapses into chaos.

The threshold between order and chaos seems thin. A small
perturbation—such as a slight increase in the speed of Lucy’s conveyor
belt—can either do nothing or it can trigger an avalanche of disor-
der. The speed of events within an avalanche overwhelms us, sweeps
away structures that preserve order, and robs our ability to function.
Quite a number of disasters, natural or human-made, have an avalanche
character—earthquakes, snow cascades, infrastructure collapse during
a hurricane, or building collapse in a terror attack. Disaster-recovery
planners would dearly love to predict the onset of these events so that
people can safely flee and first responders can restore order with recov-
ery resources standing in reserve.

Disruptive innovation is also a form of avalanche. Businesses hope
their new products will “go viral” and sweep away competitors. Com-
petitors want to anticipate market avalanches and side-step them.
Leaders and planners would love to predict when an avalanche might
occur and how extensive it might be.

In recent years, complexity theory has given us a mathematics to
deal with systems where avalanches are possible. Can this theory make
the needed predictions where classical statistics cannot? Sadly, com-
plexity theory cannot do this. The theory is very good at explaining
avalanches after they have happened, but generally useless for predict-
ing when they will occur.
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Complexity Theory

In 1984, a group of scientists founded the Santa Fe Institute to see if
they could apply their knowledge of physics and mathematics to give
a theory of chaotic behavior that would enable professionals and man-
agers to move productively amid uncertainty. Over the years, the best
mathematical minds developed a beautiful, rich theory of complex
systems.

Traditional probability theory provides mathematical tools for deal-
ing with uncertainty. It assumes that the uncertainty arises from ran-
dom variables that have probability distributions over their possible
values. It typically predicts the future values of the variable by comput-
ing a mean of the distribution and a confidence interval based on its
standard deviation. For example, in 1962 Everett Rogers studied the
adoption times of the members of a community in response to a pro-
posed innovation (5). He found they follow a normal (bell) curve that
has a mean and a standard deviation. A prediction of adoption time is
the mean time bracketed by a confidence interval: for example, 68% of
the adoption times are within one standard deviation of the mean, and
95% are within two standard deviations.

In 1987, researchers Per Bak, Chao Tang, and Kurt Wiesenfeld pub-
lished the results of a simple experiment that demonstrated the essence
of complexity theory (4). They observed a sand pile as it formed by
dropping grains of sand on a flat surface. Most of the time, each new
grain would settle into a stable position on the growing cone of sand.
But at unpredictable moments, a grain would set off an avalanche of
unpredictable size that cascaded down the side of the sand pile. The re-
searchers measured the time intervals between avalanche starts and the
sizes of avalanches. To their surprise, these two random variables did
not fit any classical probability distribution, such as the normal or Pois-
son distributions. Instead, their distributions followed a “power law,”
meaning the probability of a sample of length x is proportional to x™*,
where k is a fixed parameter of the random process. Power law distri-
butions have a finite mean only if k > 2 and variance only if k > 3. This
means that a power law with k < 2 has no mean or variance. Its future
is unpredictable. When 2 < k < 3, the mean is finite but not the confi-
dence interval. Bak et al. had discovered something different—a ran-
dom process whose future could not be predicted with any confidence.
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This was not an isolated finding. Most of the random processes tied
to chaotic situations obey a power law with k < 3. For example, the
appearance of new connections among web pages is chaotic. The num-
ber of web pages with x connections to other pages is proportional to
1/x*—the random process of accumulating links produces 1/4 as many
pages with 2x connections as with x connections. This was taken as
both bad and good news for the Internet. The bad news is that be-
cause there are a very few “hubs”™—servers hosting a very large number
of connections—an attacker could shatter the network into isolated
pieces by bringing down the hubs. The good news is that the vast ma-
jority of servers host few connections and thus random server failures
are unlikely to shatter the network. What makes this happen is “prefer-
ential attachment”™—when a new web page joins the network, it tends
to connect with the most highly connected nodes already in the net-
work. Start-up company founders try to plot strategies to bring about
rapid adoption of their technologies and transform their new services
into hubs.

Hundreds of processes in science and engineering follow power
laws, and their key variables are unpredictable. Innovation experts
believe that innovations follow a power law—the number of innova-
tions adopted by communities of size x is proportional to x*—not
good news for start-up companies hoping to predict that their innova-
tions will take over the market.

Later Bak (1) developed a theory of unpredictability that has subse-
quently been copied by popular writers like Nassim Nicholas Taleb (6)
and others. Bak called it punctuated equilibrium, a concept first proposed
by Stephen Jay Gould and Niles Eldredge in 1972 (3). The idea is that
new members can join a complex system by fitting into the existing
structure; but occasionally, the structure passes a critical point and
collapses and the process starts over. The community order that has
worked for a long time can become brittle. Avalanche is an apt term for
the moment of collapse. In the sand pile, for example, most new grains
lodge firmly into a place on the pile, but occasionally one sets oft an
avalanche that changes the structure. On the Internet, malware can
quickly travel via a hub to many nodes and cause a large-scale avalanche
of disruption. In an economy, a new technology can suddenly trigger
an avalanche that sweeps away an old structure of jobs and professions
and establishes a new order, leaving many people stranded. Complexity
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location than further away. The preparedness strategies include rapid
mobilization of law enforcement just after an attack to counter the
tendency for a new attack and identifying optimal geographic locations
for positioning recovery resources and supplies. Resilience strategies
include rapidly mobilizing technicians and artisans to restore broken
communications and facilities. Adaptiveness strategies include sce-

narios and war games.

Uncertainty in Professional Work

What can we do when we find ourselves in chaotic situations and must
still navigate through the uncertainty to achieve our goals?

One of the most difficult environments to navigate is the social space
in which we perform our work. This space is dominated by choices that
other people make beyond our control. When we propose innovations,
we are likely to encounter resistance from some sectors of our com-
munity that do not want the innovation; they can be quite inventive in
finding ways to block our proposals (2). When we start new projects
or even companies, we do not know whether our plans are going to
take off or just wither away. Even in normal everyday working environ-
ments, conflicts and contingencies suddenly arise and we must resolve
them to keep moving forward.

The analogy of a surfer is useful in approaching these situations. A
surfer aims to ride the waves to the shore without losing balance and
being swept under. The waves can be turbulent and unpredictable. The
surfer must maintain balance, ride the crests moving toward the shore,
and dodge side waves and cross currents. The surfer may need to jump
to a new wave when the time is right, or quickly tack to avoid an unfa-
vorable current or wind. Thus, the surfer generates a path through the
fast-changing waves.

In the social space, waves manifest as groups of people disposed to
move in certain directions and not in others—sometimes the waves
appear as fads or “memes,” and they have a momentum that is difficult
to divert. As professionals, we become aware of these waves and try
to harness them to carry us toward our goals. As each surprise pops
up, we instinctively look for openings into which we can move—and,
more importantly, we create openings by starting conversations that
assuage the concerns of those whose resistance threatens to block us.
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These little deals cut a path through the potential resistance and get us
to our goal.

The lesson here is that we listen for the waves, ride their momen-
tum toward our goals, and make adjustments by creating openings in
our conversations with other people. At its best, the complexity theory
helps us understand when a process is susceptible to unpredictable ava-
lanches. We move beyond the limitations of the theory by generating
openings in our conversations with other people.
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The Inescapable Casino

Bruce M. BOGHOSIAN

Wealth inequality is escalating at an alarming rate, not only within the
United States, but also in countries as diverse as Russia, India, and Bra-
zil. According to investment bank Credit Suisse, the fraction of global
household wealth held by the richest 1% of the world’s population in-
creased from 42.5 to 47.2% between the financial crisis of 2008 and
2018. To put it another way, as of 2010, 388 individuals possessed as
much household wealth as the lower half of the world’s population com-
bined—about 3.5 billion people; today Oxfam estimates that number
as 26 individuals. Statistics from almost all nations that measure wealth
in their household surveys indicate that wealth is becoming increasingly
concentrated.

Although the origins of inequality are hotly debated, an approach de-
veloped by physicists and mathematicians, including my group at Tufts
University, suggests that they have long been hiding in plain sight—in
a well-known quirk of arithmetic. This method uses models of wealth
distribution Collectively known as agent-based, which begin with an
individual transaction between two “agents” or actors, cach trying
to optimize his or her own financial outcome. In the modern world,
nothing could seem more fair or natural than two people deciding to
exchange goods, agreeing on a price and shaking hands. Indeed, the
seeming stability of an economic system arising from this balance of
supply and demand among individual actors is regarded as a pinnacle of
Enlightenment thinking—to the extent that many people have come
to conflate the free market with the notion of freedom itself. Our de-
ceptively simple mathematical models, which are based on voluntary
transactions, suggest, however, that it is time for a serious reexamina-
tion of this idea,
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In particular, the affine wealth model (called thus because of its mathe-
matical properties) can describe wealth distribution among households
in diverse developed countries with exquisite precision while revealing
a subtle asymmetry that tends to concentrate wealth. We believe that
this purely analytical approach, which resembles an x-ray in that it is
used not so much to represent the messiness of the real world as to strip
it away and reveal the underlying skeleton, provides deep insight into
the forces acting to increase poverty and inequality today.

Oh'garcby

In 1986, social scientist John Angle first described the movement and
distribution of wealth as arising from pairwise transactions among a
collection of “economic agents,” which could be individuals, house-
holds, companies, funds, or other entities. By the turn of the century,
physicists Slava Ispolatov, Pavel L. Krapivsky, and Sidney Redner, then
all working together at Boston University, as wel as Adrian Dragulescu,
now at Constellation Energy Group, and Victor Yakovenko of the Uni-
versity of Maryland, had demonstrated that these agent-based mod-
els could be analyzed with the tools of statistical physics, leading to
rapid advances in our understanding of their behavior. As it turns out,
many such models find wealth moving inexorably from one agent to
another—even if they are based on fair exchanges between equal ac-
tors. In 2002, Anirban Chakraborti, then at the Saha Institute of Nu-
clear Physics in Kolkata, India, introduced what came to be known
as the “yard sale model,” called thus because it has certain features of
real one-on-one economic transactions. He also used numerical simula-
tions to demonstrate that it inexorably concentrated wealth, resulting
in oligarchy.

To understand how this happens, suppose you are in a casino and
are invited to play a game. You must place some ante—say, $100—on
a table, and a fair coin will be flipped. If the coin comes up heads, the
house will pay you 20% of what you have on the table, resulting in $120
on the table. If the coin comes up tails, the house will take 17% of what
you have on the table, resulting in $83 left on the table. You can keep
your money on the table for as many flips of the coin as you would like
(without ever adding to or subtracting from it). Each time you play, you
will win 20% of what is on the table if the coin comes up heads, and
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you will lose 17% of it if the coin comes up tails. Should you agree to
play this game?

You might construct two arguments, both rather persuasive, to help
you decide what to do. You may think, “I have a probability of + of
gaining $20 and a probability of + of losing $17. My expected gain is
therefore:

T % (+$20) + 5 x (—$17) = $1.50

which is positive. In other words, my odds of winning and losing are
even, but my gain if I win will be greater than my loss if I lose.” From
this perspective, it seems advantageous to play this game.

Or, like a chess player, you might think further: “What if I stay for
10 flips of the coin? An extension of the above argument indicates
that my expected winning will be (1 +0.015)"" x $100 = $116.05.
This is correct, and it seems promising until I realize that I would
need at least six wins to avoid a loss. Five wins and five losses will not
be good enough, since the amount of money remaining on the table
in that case would be

1.2x1.2x1.2x1.2x1.2x0.83x0.83 x0.83
% 0,83 x0.83 x $100 = $98.02

so | will have lost about $2 of my original $100 ante. The trouble is that,
of the 2'” = 1,024 possible outcomes of 10 coin flips, only 386 of them
result in my winning six or more times, so the probability of that hap-
pening is only 386/1024 = 0.377. Hence, while my reward for winning
Is increasing, the probability of my winning is simultaneously decreas-
ing.” As the number of coin flips increases, this problem only worsens
as the following table makes clear:

Number of Wins
Number of Expected Required to Probability of
Coin Flips Gain Avoid Loss Avoiding a Loss
10 0.1605 6 0.377
100 3.432 51 0.460
1,000 2.924 x 10° 506 0.364
10,000 4,575 x 10°* 5,055 0.138

100,000 4.020 x 10846 50,544 0.000294
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TuEe PHYSICS OF INEQUALITY

When water boils at 100 degrees Celsius and turns into water
vapor, it undergoes a phase transition—a sudden and dramatic
change. For example, the volume it occupies (at a given pres-
sure) increases discontinuously with temperature. Similarly, the
strength of a ferromagnet falls to zero (line in Figure A) as its tem-
perature increases to a point called the Curie temperature, T .
At temperatures above T, the substance has no net magnetism.
The fall to zero magnetism is continuous as the temperature ap-
proaches T_ from below, but the graph of magnetization versus
temperature has a sharp kink at T.

() Phase Change in a Ferromagnet
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Conversely, when the temperature of a ferromagnet is reduced
from above to below T, magnetization spontancously appears
where there had been none. Magnetization has an inherent spa-
tial orientation—the direction from the south pole of the magnet
to the north pole—and one might wonder how it develops. In
the absence of any external magnetic field that might indicate
a preferred direction, the breaking of the rotational symmetry
is “spontaneous.” (Rotational symmetry is the property of being
identical in every orientation, which the system has at tempera-
tures above T.) That is, magnetization shows up suddenly, and
the direction of the magnetization is random (or, more precisely,
dependent on microscopic fluctuations beyond our idealization of
the férromagnet as a continuous macroscopic system).
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Economic systems can also exhibit phase transitions. When
the wealthbias parameter ( of the affine wealth model is less than
the redistribution parameter y, the wealth distribution is not
even partially oligarchical (area on the right in Figure B). When (
exceeds y, however, a finite fraction of the wealth of the entire
population “condenses” into the hands of an infinitesimal fraction
of the wealthiest agents. The role of temperature is played by the
ratio /¢, and wealth condensation shows up when this quantity
falls below 1. (See also color insert.)

9 Phase Transition in Economic Systems
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Another subtle symmetry exhibited by complex macroscopic
systems is “duality,” which describes a one-to-one correspon-
dence between states of a substance above and below the critical
temperature, at which the phase transition occurs. For ferromag-
netism, it relates an ordered, magnetized system at temperature
T below T, to its “dual”—a disordered, unmagnetized system at
the socalled inverse temperature, (T.)’/T, which is above T. The
critical temperature is where the system’s temperature and the
inverse temperature cross (that is, T = (T))*/T). Duality theory
p]ays an increasingly important role in theoretical physics, in-
cluding in quantum gravity.

Like ferromagnetism, the affine wealth model exhibits dual-
ity, as proved by Jie Li and me in 2018. A state with { < y is
not a partial oligarchy, whereas a corresponding state with this
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relation reversed—that is, with the “temperature” % /¢ inverted
to {/x—is. Interestingly, these two dual states have exactly the
same wealth distribution if the oligarch is removed from the
wealth-condensed economy (and the total wealth is recalculated
to account for this loss).

Significantly, most countries are very close to criticality. A
plot of 14 of the countries served by the European Central Bank
in the y, — { plane in Figure B shows that most countries lie near
the diagonal. All except one (the Netherlands) lie just above the
diagonal, indicating that they are just slightly oligarchical. It may
be that inequality naturally increases until oligarchies begin to
form, at which point political pressures set in, preventing further
reduction of equality.

casino—you win some and you lose some, but the longer you stay in
the casino, the more likely you are to lose. The free market is essentially
a casino that you can never leave. When the trickle of wealth described
earlier, flowing from poor to rich in each transaction, is multiplied by
7.7 billion people in the world conducting countless transactions every
year, the trickle becomes a torrent. Inequality inevitably grows more
pronounced because of the collective effects of enormous numbers of
seemingly innocuous but subtly biased transactions.

The Condensation of Wealth

You might, of course, wonder how this model, even if mathematically
accurate, has anything to do with reality. After all, it describes an en-
tirely unstable economy that inevitably degenerates to complete oligar-
chy, and there are no complete oligarchies in the world. It is true that,
by itself, the yard sale model is unable to explain empirical wealth dis-
tributions. To address this deficiency, my group has refined it in three
ways to make it more realistic.

In 2017, Adrian Devitt-Lee, Merek Johnson, Jie Li, Jeremy Marcq,
Hongyan Wang, and I, all at Tufts, incorporated the redistribution of
wealth, In keeping with the simplicity desirable in applied mathematics
models, we did this by having each agent take a step toward the mean
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wealth in the society after each transaction. The size of the step was
some fraction y, (or “chi”) of his or her distance from the mean. This is
equivalent to a flat wealth tax for the wealthy (with tax rate y per unit
time) and a complementary subsidy for the poor. In effect, it transfers
wealth from those above the mean to those below it. We found that this
simple modification stabilized the wealth distribution so that oligarchy
no longer resulted. And astonishingly, it enabled our model to match
empirical data on U.S. and European wealth distribution between 1989
and 2016 to better than 2%. The single parameter y seems to subsume
a host of real-world taxes and subsidies that would be too messy to in-
clude separately in a skeletal model such as this one.

In addition, it is well documented that the wealthy enjoy systemic
economic advantages, such as lower interest rates on loans and better
financial advice, whereas the poor suffer systemic economic disadvan-
tages, such as payday lenders and a lack of time to shop for the best
prices. As James Baldwin once observed, “Anyone who has ever strug-
gled with poverty knows how extremely expensive it is to be poor.” Ac-
cordingly, in the same paper mentioned above, we factored in what we
call wealth-attained advantage. We biased the coin flip in favor of the
wealthier individual by an amount proportional to a new parameter,
¢, (or “zeta”), times the wealth difference divided by the mean wealth.
This rather simple refinement, which serves as a proxy for a multitude
of biases favoring the wealthy, improved agreement between the model
and the upper tail (representing very wealthy people) of actual wealth
distributions.

The inclusion of wealth-attained advantage also yields—and gives a
precise mathematical definition to—the phenomenon of partial oligar-
chy. Whenever the influence of wealth-attained advantage exceeds that
of redistribution (more precisely, whenever { exceeds y), a vanishingly
small fraction of people will possess a finite fraction, 1 —x/C, of socictal
wealth. The onset of partial oligarchy is in fact a phase transition for
another model of economic transactions, as first described in 2000 by
physicists Jean-Philippe Bouchaud, now at Ecole Polytechnique, and
Marc Mézard of the Ecole Normale Supérieure. In our model, when ( is
less than y, the system has only one stable state with no oligarchy; when
¢ exceeds x, a new, oligarchical state appears and becomes the stable
state [see box “Winners, Losers”]. The two-parameter (y and () ex-
tended yard sale model thus obtained can match empirical data on U.S.
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MEASURING INEQUALITY

In the carly twentieth century, American economist Max O.
Lorenz designed a useful way to quantify wealth inequality. He
proposed plotting the fraction of wealth held by individuals with
wealth less than w against the fraction of individuals with wealth
less than w. Because both quantities are fractions ranging from
0 to 1, the plot fits neatly into the unit square. Twice the area
between Lorenz’s curve and the diagonal is called the Gini coef-
ficient, a commonly used measure of inequality.

Let us first consider the egalitarian case. If every individual
has exactly the same wealth, any given fraction of the popula-
tion has precisely that fraction of the total wealth. Hence, the
Lorenz curve is the diagonal (green line in Figure A), and the Gini
cocfficient is 0. In contrast, if one oligarch has all the wealth and
everybody else has nothing, the poorest fraction f of the popula-
tion has no wealth at all for any value of f that is less than 1, so
the Lorenz curve is pcggcd to 0. But thnfcquals 1, the oligarch
is included, and the curve suddenly jumps up to 1. The area be-
tween this Lorenz curve (orange line on the right of the x-y axis) and
the diagonal is half the area of the square, or %2, and hence the
Gini coefficient is 1. (See also color insert.)
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