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Preface

This book is a collection of my recent essays on the cognitive science of
science that illustrate ways of combining philosophical, historical, psycho-
logical, computational, and neuroscientific approaches to explaining sci-
entific development. Most of the chapters have been or will be published
elsewhere, but the introductions are brand new (chapters 1, 2, 7, 12), as
are the last two chapters, which take the cognitive science of science in
new directions related to values and concepts. The reprinted chapters
reproduce the relevant articles largely intact, but I have done some light
editing to coordinate references and remove redundancies. Origins of the
articles and coauthors are indicated in the acknowledgments.

Early in my career, I wandered into the cognitive science of science
through a series of educational accidents, and have enthusiastically pursued
research that is variously philosophical, historical, psychological, compu-
tational, and neurobiological. In high school, T did very well in physics
and chemistry, but only because I was adept at solving math problems,
not because | found science very interesting. As an undergraduate at the
University of Saskatchewan, 1 avoided serious science courses, although
[ did get a good sampling of mathematics and logic. My interest in science
was sparked during my second undergraduate degree at Cambridge

University, where the philosophy course I took required a paper in phi-

losophy of science. Through lectures by lan Hacking and Gerd Buchdahl,
along with books by Russell Hanson and Thomas Kuhn, I started to
appreciate the value of understanding the nature of knowledge by atten-
tion to the history of science. I was struck by how much more rich and
interesting the scientific examples of knowledge were compared to the
contrived thought experiments favored by epistemologists working in

the tradition of analytic philosophy. Accordingly, my Ph.D. work at the
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University of Toronto focused on scientific reasoning enriched by historical
case studies.

My move into cognitive science was also serendipitous. In 1978, in the
second term of my first teaching job at the University of Michigan-Dear-
born, [ decided to sit in on a graduate epistemology course taught by Alvin
Goldman at the main Michigan campus in Ann Arbor. It turned out that
this course was coordinated with one on human inference taught by the
social psychologist Richard Nisbett. The combination of these two courses
was amazing: Goldman was pioneering an approach to epistemology that
took experimental research on psychology seriously, and Nisbett was pre-
senting a draft of his path-breaking book with Lee Ross, Human Inference.
[ started reading avidly in cognitive psychology, which quickly led me to
the field of artificial intelligence. I was attracted by the theoretical ideas of
visionaries such as Marvin Minsky, and also by the prospects of a new
methodology—computer modeling—for understanding the structure and
growth of scientific knowledge.

Accordingly, I did an MS in computer science at Michigan and started
building my own computational models of various aspects of scientific
thinking. My early models of analogical thinking were somewhat crude,
but became much more powertul when my collaborator Keith Holyoak
came up with the idea of modeling analogy using connectionist ideas
about parallel constraint satisfaction. I quickly realized that theory choice
based on the explanatory power of competing theories could also be simu-
lated using neural networks.

My interest in neuroscience also came about indirectly. After I moved
to Waterloo in 1992, one of my graduate students, Allison Barnes, was
investigating empathy as a kind of analogy, which led me to general
concern with emotions. The work of Antonio Damasio revealed how
crucial neuroscience was to understanding emotions, and since [ was
already building artificial neural network models, it was natural to try to
undertake more realistic neural models of emotion and decision making.
Happily, this line of work has turned back around to scientific applications,
described in some of the chapters below.

I remain convinced that understanding the growth of knowledge
requires the kind of interdisciplinary approach found in cognitive science.
[ hope this collection will appeal to anyone interested in the structure and
growth of scientific knowledge, including scientists, philosophers, histori-

ans, psychologists, sociologists, and educators.
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1 What Is the Cognitive Science of Science?

Explaining Science

Science is one of the greatest achievements of human civilization, contrib-
uting both to the acquisition of knowledge and to people’s well-being
through technological advances in areas from medicine to electronics.
Without science, we would lack understanding of planetary motion, chem-
ical reactions, animal evolution, infectious disease, mental illness, social
change, and countless other phenomena of great theoretical and practical
importance. We would also lack many valuable applications of scientific
knowledge, including antibiotics, airplanes, and computers. Hence it is

appropriate that many disciplines such as philosophy, history, and sociol-

ogy have attempted to make sense of how science works.

This book endeavors to understand scientific development from the
perspective of cognitive science, the interdisciplinary investigation of
mind and intelligence. Cognitive science encompasses at least six fields:
psychology, neuroscience, linguistics, anthropology, philosophy, and
artificial intelligence (for overviews, see Bermudez, 2010; Gardner, 198S;
Thagard, 2005a). The main intellectual origins of cognitive science are in
the 1950s, when thinkers such as Noam Chomsky, George Miller, Marvin
Minsky, Allan Newell, and Herbert Simon began to develop new ideas
about how human minds and computer programs might be capable of
intelligent functions such as problem solving, language, and learning. The
organizational origins of cognitive science are in the 1970s, with the estab-
lishment of the journal Cognitive Science and the Cognitive Science Society,
and the first published uses of the term “cognitive science” (e.g., Bobrow
& Collins, 1975).
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Cognitive science has thrived because the problem of understanding
how the mind works is far too complex to be approached using ideas and
methods from only one discipline. Many researchers whose primary back-
grounds are in psychology, philosophy, neuroscience, linguistics, anthro-
pology, and computer science have realized the advantages of tracking
work in some of the other fields of cognitive science. Many successful
projects have fruitfully combined methodologies from multiple fields, for
example, research on inference that is both philosophical and computa-
tional, research on language that is both linguistic and neuroscientific, and
research on culture that is both anthropological and psychological.

Naturally, cognitive science has also been used to investigate the mental
processes required for the practice of science. The prehistory of the cogni-
tive science of science goes back to philosophical investigation of scientific
inference by Francis Bacon, David Hume, William Whewell, John Stuart
Mill, and Charles Peirce. Modern cognitive science of science began only
in the 1980s when various psychologists, philosophers, and computer
scientists realized the advantages of taking a multidisciplinary approach
to understanding scientific thinking. Pioneers include: Lindley Darden,
Ronald Giere, and Nancy Nersessian in philosophy; Bruce Buchanan, Pat
Langley, and Herbert Simon in computer modeling; and William Brewer,
Susan Carey, Kevin Dunbar, David Klahr, and Ryan Tweney in experimen-
tal psychology. Extensive references are given in the next section. The
carliest occurrence of the phrase “cognitive science of science” that I have
been able to find is in Giere (1987), although the idea of applying cognitive
psychology and computer modeling to scientific thinking goes back at least
to Simon (1966).

This chapter provides a brief overview of what the component fields of
cognitive science bring to the study of science, along with a sketch of the
merits of combining methods. It also considers alternative approaches to
science studies that are often antagonistic to the cognitive science of
science, including formal philosophy of science and postmodernist history
and sociology of science. I will argue that philosophy, history, and sociol-
ogy of science can all benefit from ideas drawn from the cognitive sciences.
Finally, I give an overview of the rest of the book by sketching how the
cognitive science of science can investigate some of the most important
aspects of the development of science, especially explanation, discovery,

and conceptual change.
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Approaches to the Cognitive Science of Science

It would take an encyclopedia to review all the different approaches to
science studies that have been pursued. Much more narrowly and con-
cisely, this section reviews what researchers from various fields have sought
to contribute to the cognitive science of science.

My own original field is the philosophy of science, and I described in
the preface how concern with the structure and growth of scientific knowl-
edge led me to adopt ideas and methods from psychology and artificial
intelligence, generating books and articles that looked at different aspects
of scientific thinking (e.g., Thagard, 1988, 1992, 1999, 2000). Indepen-
dently, other philosophers have looked to cognition to enhance under-
standing of science, including Lindley Darden (1983, 1991, 2006), David
Gooding (1990), Ronald Giere (1988, 1999, 2010), and Nancy Nersessian
(1984, 1992, 2008). Andersen, Barker, and Cheng (2006), Magnani (2001,
2009), and Shelley (2003) also combine philosophy of science, history of

science, and cognitive psychology. Collections of work on philosophical
approaches to the cognitive science of science include Giere (1992) and
Carruthers, Stich, and Siegal (2002).

Philosophy of science is not just a beneficiary of cognitive science but
also a major contributor to it. Since the 1600s work of Francis Bacon
(1960), philosophers have investigated the nature of scientific reasoning
and contributed valuable insights on such topics as explanation (Whewell
1967), causal reasoning (Mill 1970), and analogy (Hesse 1966). Philosophy
of science was sidetracked during the logical positivist era by (1) a focus
on formal logic as the canonical way of representing scientific information
and (2) a narrow empiricism incapable of comprehending the theoretical
successes of science. Logical positivism was as inimical to understanding
scientific knowledge as behaviorism was to understanding thinking in
general.

In response to logical positivism, Russell Hanson (1958), Thomas Kuhn
(1962), and others spurred interest among philosophers in the history of
science, but there was a dearth of tools richer than formal logic for
examining science, although Hanson and Kuhn occasionally drew on
insights from Gestalt psychology. In the 1980s, when philosophers looked
to cognitive science for help in understanding historical developments, we

brought to the cognitive science of science familiarity with many aspects
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To complete this review of how the ditferent fields of cognitive science
contribute to the understanding of science, I need to include linguistics
and anthropology. Unfortunately, I am not aware of much relevant
research, although I can at least point to the work of Kertesz (2004) on the
cognitive semantics of science, and to the work of Atran and Medin (2008)
on folk concepts in biology across various cultures. Let me now return to

why computer modeling is important for the cognitive science of science.

Methodology of Computational Modeling

What is the point of building computational models? One answer might
come from the hypothetico-deductive view of scientific method, according
to which science proceeds by generating hypotheses, deducing experimen-
tal predictions from them, and then performing experiments to see if the
predicted observations occur. On this view, the main role of computational
models is to facilitate deductions. There are undoubtedly fields such as
mathematical physics and possibly economics where computer models
play something like this hypothetico-deductive role, but their role in the
cognitive sciences is much larger.

The hypothetico-deductive method is rarely applicable in biology, medi-
cine, psychology, neuroscience, and the social sciences, where mathemati-
cally exact theories and precise predictions are rare. These sciences are
better described by what I shall whimsically call the mechanista view of
scientific method. Philosophers of science have described how many sci-
ences aim for the discovery of mechanisms rather than laws, where a
mechanism is a system of interacting parts that produce regular changes
(e.g., Bechtel, 2008; Bechtel & Richardson, 1993; Bunge, 2003; Craver,
2007; Darden, 2006; Machamer, Darden, & Craver, 2000; Thagard, 2006a;
Wimsatt, 2007). Biologists, for example, can rarely derive predictions from
mathematically expressed theories, but they have been highly successful
in describing mechanisms such as genetic variation and evolution by
natural selection that have very broad explanatory scope. Similarly, I see
cognitive science as primarily the search for mechanisms that can explain
many kinds of mental phenomena such as perception, learning, problem
solving, emotion, and language.

Computer modeling can be valuable for expressing, developing, and

testing descriptions of mechanisms, at both psychological and neural levels
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of explanation. In contemporary cognitive science, theories at the psycho-
logical level postulate various kinds of mental representations and pro-
cesses that operate on them to generate thinking. For example, rule-based
theories of problem solving, from Newell and Simon (1972) to Anderson
(2007), postulate (1) representations of goals and if-then rules and
(2) search processes involving selection and firing of rules. The representa-
tions are the parts and the processes are the interactions that together
provide a mechanism that explains mental changes that accomplish tasks.
Other cognitive science theories can also be understood as descriptions of
mechanisms, for example, connectionist models that postulate simple
neuronlike parts and processes of spreading activation that produce mental
changes (Rumelhart & McClelland, 1986). Computational neuroscience
now deals with much more biologically realistic neural entities and pro-

cesses than connectionism, but the aim is the same: to describe the mecha-

nisms that explain neuropsychological phenomena.

Expressing and developing such theoretical mechanisms benefits enor-
mously from computational models. It is crucial to distinguish between
theories, models, and programs. On the mechanista view, a theory is a
description of mechanisms, and a model is a simplified description of the
mechanisms postulated to be responsible for some phenomena. In com-
putational models, the simplifications consist of proposing general kinds
of data structures and algorithms that correspond to the parts and interac-
tions that the theory postulates. A computer program produces a still more
specific and idealized account of the postulated parts and interactions
using data structures and algorithms in a particular programming lan-
guage. For example, the theory of problem solving as rule application using
means-ends reasoning gets a simplified description in a computational
model with rules and goals as data structures and means-ends search as
interactions. A computer program implements the model and theory in a
particular programming language such as LISP or JAVA that makes it pos-
sible to run simulations. Theoretical neuroscience uses mathematically
sophisticated programming tools such as MATLAB to implement compu-
tational models of neural structures and processes that approximate to
mechanisms that are hypothesized to operate in brains.

Rarely, however, do computer modelers proceed simply from theory
to model to program in the way just suggested. Rather, thinking about

how to write a computer program in a familiar programming language
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enables a cognitive scientist to express and develop ideas about what
parts and interactions might be responsible for some psychological phe-
nomena. Hence the development of cognitive theories, models, and pro-
grams is a highly interactive process in which theories stimulate the
production of programs and vice versa. It is a mistake, however, to identity
theories with programs, because any specific program will have many
details arising from the peculiarities of the programming language used.
Nevertheless, writing computer programs helps enormously to develop
theoretical ideas expressed as computer models. The computer model
provides a general analogue of the mechanisms postulated by the theory,
and the program provides a specific, concrete, analogical instantiation of
those mechanisms.

In the biological, social, and cognitive sciences, descriptions of mecha-
nism are rarely so mathematical that predictions can be deduced, but
running computer programs provides a looser way of evaluating theories
and models. A computer program that instantiates a model that simplifies
a theory can be run to produce simulations whose performance can be
compared to actual behaviors, as shown in systematic observations, con-
trolled behavioral experiments, or neurological experiments.

There are three degrees of evaluation that can be applied, answering the

following questions about the phenomena to be explained:

1. Is the program capable of performing tasks like those that people have

been observed doing?

2. Does the behavior of the program qualitatively fit with how people

behave in experiments?

3. Does the behavior of the program quantitatively fit numerical data

acquired in experiments?

Ideally, a computer program will satisfy all three of these tests, but often
computer modeling is part of a theoretical enterprise that is well out
in front of experimentation. In such cases, the program (and the model
and theory it instantiates) can be used to suggest new experiments whose
resulting data can be compared against the computer simulations. In
turn, data that are hard to explain given currently available mechanisms
may suggest new mechanisms that can be simulated by computer pro-
grams whose behaviors can once again be compared to those of natural

systems. The three questions listed above apply to models of psychological
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Figure 1.1

The role of computer models in developing and testing theories about mechanisms.
Lines with arrows indicate causal influences in scientific thinking. The dashed line
indicates the comparison between the results of experiments and the results of
simulations.

behavior, but analogous questions can be asked about computational simu-
lations of neural data.

The general interactive process of mechanism-based theory develop-
ment using computational models is shown in figure 1.1, which portrays
an interactive process with no particular starting point. Note that the
arrows between mechanisms and models, and between models and simula-
tions, are symmetrical, indicating that models can suggest mechanisms
and programs can suggest models, as well as vice versa. In one typical
pattern, experimental results prompt the search for explanatory mecha-
nisms that can be specified using mathematical-computational models
that are then implemented in computer programs. Simulations using these
programs generate results that can be compared with experimental results.
This comparison, along with insights gained during the whole process of
generating mechanisms, models, and simulations, can in turn lead to ideas

for new experiments that produce new experimental results.

Unified Cognitive Science Research

[ have described philosophical, psychological, computational, and neuro-
scientific contributions to the understanding of science, but cognitive

science at its best combines insights from all of its fields. We can imagine
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what an ideal research project in the cognitive science of science would be
like, one beyond the scope of any single researcher except perhaps Herbert
Simon. Consider a team of researchers operating with a core set of theoreti-
cal ideas and multiple methodologies. Let “"ASPECT" stand for some aspect
of scientific thinking that has been little investigated. We can imagine a
joint enterprise in which philosophers analyze historical cases of ASPECT,
psychologists perform behavioral experiments on how adults and children
do ASPECT, neuroscientists perform brain scans of people doing ASPECT,
and computational modelers write programs that can simulate ASPECT.
Linguists and anthropologists might also get involved by studying whether
ASPECT varies across cultures. Representatives of all six fields could work
together to generate and test theories about the mental structures and
processes that enable people to accomplish ASPECT. My own investigations
into the cognitive science of science do not have anything like the scope
of this imaginary investigation of ASPECT, but they variously combine
different parts of the philosophical, historical, psychological, computa-
tional, and neuroscientific investigation of scientific thinking.

Unified investigations in the cognitive science of science can be norma-
tive as well as descriptive. It is sometimes said that philosophy is norma-
tive, concerned with how things ought to be, in contrast to the sciences
which are descriptive, concerned with how things are. This division is far
too simple, because there are many applied sciences, from engineering to
medicine to clinical and educational psychology, that aim to improve the
world, not just to describe it (Hardy-Vallée & Thagard, 2008). Conversely,
if the norms that philosophy seeks to develop are to be at all relevant to
actual human practices, they need to be tied to descriptions of how the
world, including the mind, generally works. [ have elsewhere defended the
naturalistic view that philosophy is continuous with science, differing in
having a greater degree of generality and normativity (Thagard, 2009,
2010a). This book assumes the priority of scientific evidence and reasoning
over alternative ways of fixing beliefl such as religious faith and philosophi-
cal thought experiments, but I argue for that assumption in Thagard
(2010a, ch. 2).

The cognitive science of science can take from its philosophical com-
ponent and also from its applied components a concern to be normative
as well as descriptive. An interdisciplinary approach to science can aim not

only to describe how science works, but also to develop norms for how it
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alternative movement arose that managed to take over science studies
programs at many universities. Sociologists of science produced a research
program called the Sociology of Scientific Knowledge that abandoned the
normative assessment of science in favor ol purely sociological explana-
tions of how science develops (e.g., Barnes, Bloor & Henry, 1996). Latour
and Woolgar (1986) even called for a ten-year moratorium on cognitive
explanations of science until sociologists had had a chance to explain all
aspects of scientific development. That moratorium has long expired, and
sociologists have obviously left lots of science to be explained. Moreover,
some prominent proponents of postmodern sociology of science have
made the shocking discovery that science and technology might even have
something to do with reality (Latour, 2004).

In contrast to the imperialism of sociologists who think they can explain
everything about scientific development, the cognitive science of science
is friendly to sociological explanations. Power relations are undoubtedly
an important part of scientific life, from the local level of laboratory poli-

tics to the national level of funding decisions. Like some analytic philoso-

phers, some sociologists suffer from psychophobia, the fear of psychology,
but cognitive approaches to science are compatible with the recognition
of important social dimensions of science. For example, in my study of the
development and acceptance of the bacterial theory of ulcers, I took into
account social factors such as collaboration and consensus as well as psy-
chological processes of discovery and evaluation (Thagard, 1999). Other
works in the cognitive science of science have similarly attended to social
dimensions (e.g., Dunbar, 1997; Giere, 1988). The cognitive and the social

sciences should be seen as complements, not competitors, in a unified
enterprise that might be called cognitive social science. Anthropology, sociol-
ogy, politics, and economics can all be understood as requiring the inte-
gration of psychological and social mechanisms, as well as neural and
molecular ones (Thagard, 2010d, forthcoming-c). Novel kinds of computer
models are needed to explore how the behavior of groups can depend
recursively on the behavior of individuals who think of themselves as
members of groups. Agent-based models of social phenomena are being
developed, but they are only just beginning to incorporate psychologically
realistic agents (Sun, 2008a; Thagard, 2000, ch. 7, presents a cognitive-
social model of scientific consensus). The aim of these models is not to

reduce the social to the psychological and neural, but rather to show rich
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interconnections among multiple levels of explanation. My hope is that
future work on cognitive-social interactions will provide ways of simulat-

ing social aspects of science using techniques under development (Thagard,

forthcoming-c).

Studies in the Cognitive Science of Science

[n the rest of this book, however, I largely neglect social factors in science
in order to concentrate on its philosophical, psychological, computational,
and neural aspects. Even within the cognitive realm, the investigations
reported here are selective, dealing primarily with explanation, discovery,
and conceptual change. [ understand science broadly to include medicine
and technology, which are discussed in several of the chapters.

Part II considers cognitive aspects of explanation and related scientific
practices concerned with the nature of theories and theory choice. After a
brief overview that makes connections to related work, four chapters
develop cognitive perspectives on the nature ol explanation, mental
models, theory choice, and resistance to scientific change. Climate change
provides a case study where normative models of theory acceptance based
on explanatory coherence are ignored because of psychological factors.
This part also includes the most philosophical chapter in the book, arguing
that coherence in science sometimes leads to truth.

Part III concerns scientific discovery understood as a psychological and
neural process. Formal philosophy of science and sociological approaches
have had little to say about how discoveries are made. In contrast, this part
contains a series of studies about the psychological and neural processes
that lead to breakthroughs in science, medicine, and technology.

Part IV shows how discoveries of new theories and explanations lead to
conceptual change, ranging from the mundane addition of new concepts
to the dramatic reorganizations required by scientific revolutions. Four
chapters describe conceptual change in the fields of biology, psychology,
and medicine.

Finally, Part V presents two new essays concerned with the nature of
values and with the neural underpinnings of scientific thinking. The
chapter on values shows how the cognitive science of science can integrate
descriptive questions about how science works with normative questions

about how it ought to work. The final chapter builds on Chris Eliasmith’s
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recent theory of semantic pointers to provide a novel account of the nature
of scientific concepts such as force, water, and cell. (Please note that this
book uses the following conventions: items in italics stand for concepts
and items in quotes stand for words. For example, the concept car is
expressed in English by the word “car” and applies to many things in the
world, including my 2009 Honda Civic.)

The cognitive science of science inherits from the philosophy of science
the problem of characterizing the structure and growth of scientific knowl-
edge. It greatly expands the philosophical repertoire for describing the
structure of knowledge by introducing much richer and empirically sup-
ported accounts of the nature of concepts, rules, mental models, and other
kinds of representations. Even greater is the expansion of the repertoire of
mechanisms for explaining the growth of scientific knowledge, through
computationally rich and experimentally testable models of the nature of
explanation, coherence, theory acceptance, inferential bias, concept for-
mation, hypothesis discovery, and conceptual change. Adding an under-
standing of the psychological and neural processes that help to generate
and establish scientific knowledge does not undercut philosophical con-
cerns about normativity and truth, nor need it ignore the social processes
that are also important for the development of scientific knowledge.
Although the cognitive science of science is only a few decades old, [ hope
that the essays in this book, along with allied work by others, show its

potential for explaining science.
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Second, explanation is an important part of science education. Teachers
need to convey to students how science provides explanations and give
them a taste of how scientific explanations work. Cognitive science should
be able to integrate insights from philosophy, psychology, neuroscience,
and computer modeling to elucidate what needs to go on in the minds of
students as they learn at least to appreciate scientific explanations and at
best to be able to develop new ones of their own.

Third, explanation is not only an intrinsic goal of science, but is inti-
mately connected with another important goal—truth. Nowadays, people,
especially social scientists, are sometimes embarrassed by the suggestion
that science can achieve truth, interpreting talk of reality as a vestige of
naive philosophical ideas that expired with Kant or with twentieth-century
postmodernism. At the other extreme, some philosophers assume that
science is primarily aimed just at truth, with explanation at best a side-
show. I reject both these views, and the chapters in Part II present a picture
in which explanation is a key aspect of justifying the acceptance of hypo-
theses and theories. If theory choice is governed by inference to the best
explanation, as chapter 5 assumes, then explanation is directly relevant to
the question of what theories we should accept as true. Whether such
theories really are true is a matter for discussion, as it is clear that many
theories have been accepted by scientific communities that were later
found to be defective. Chapter 6 provides a stronger connection between
explanation, justification, and truth.

Of the fields of cognitive science, philosophy has the most ancient
concern with the nature of explanation, going back at least to Aristotle.
The philosophy of science took off in the 1800s with incisive discussions
of explanation and explanatory reasoning by William Whewell, John
Stuart Mill, and Charles Peirce. Peirce (1992) coined the term “abduction”
for a kind of inference that generates and/or evaluates explanatory hypo-
theses. In the middle of the 1900s, the logical positivists developed a
theory of explanation as deduction from laws that is still influential in
philosophical circles (Hempel, 1965). More recently, many philosophers
concerned with explanation in biology and cognitive science have high-
lighted the role that descriptions of mechanisms play in scientific explana-
tions, as [ reviewed in discussing the mechanista approach in chapter 1;
see also Bechtel and Abrahamsen (2005). Woodward (2009) gives a good,
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brief overview of philosophical work on explanation. Kitcher and Salmon
(1989) provide a useful older collection on the philosophy of scientific
explanation.

Explanation has been an important concern for cognitive, developmen-
tal, and social psychologists. Cognitive psychologists have seen the rele-
vance of explanation to the general theory of concepts, with some arguing
that the functions of concepts include not just classification of objects but

also explanation of why things happen (e.g., Lombrozo, 2009; Medin,

1989; Murphy, 2002). For example, saying that something is a bear can
explain why it eats fish. Developmental psychologists have interpreted
concept acquisition in children as partly aimed at providing explanations
of why things happen (Gopnik, 1998; Keil, 2006). Social psychologists have
long been concerned with how people explain the actions of others, a
process they call attribution (Kelley, 1973). All of these investigations are
relevant to scientific explanation, assuming some commonality between
it and explanation in everyday life. See Keil and Wilson (2000) for a col-
lection on the psychology of explanation.

Explanation was an important topic in artificial intelligence in the
1980s and 1990s (e.g., Minton et al., 1989), but it seems to have declined
in importance as researchers moved to more statistical approaches. This
decline is unfortunate, because Al needs to replicate the most sophisticated
kinds of thinking, including what scientists do when they explain things.
As chapter 3 describes, much work in Al has been limited to a deductive
view of explanation, which at best captures only some Kkinds of scientific
explanation.

Anthropologists and linguists have not, to my knowledge, done much
to investigate the nature of scientific explanation. Nor has experimental
and theoretical neuroscience yet said much about explanation, but some
of the chapters below begin to fill this gap.

For Part II, I have chosen four recent papers as contributions to the
cognitive science of explanation. Chapter 3 provides an overview of com-
putational models of explanation, reviewing ones based on deduction,
schemas, analogy, probability, and neural networks. It presents a model
of how a simple form of abductive inference can be performed in a bio-
logically plausible neural network. Chapter 4 shows how the same kind

of neural network approach is relevant to explaining how high-level
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cognitive processes involving mental models can be understood neuro-
computationally. This chapter also addresses the question of the extent to
which cognition is embodied.

The next two chapters are concerned with philosophical questions
about justification and truth, but they approach these from the cognitive
perspective that explanation and inference are mental processes. Chapter
S uses computational models of both correct and biased explanatory coher-
ence to explain the nature of current debates about climate change. Ideally,
claims about whether there is global warming and whether it is the result
of human activities should be based solely on whether the hypotheses in
question explain the evidence. These issues, however, are fraught with
economic and political problems, so it is not surprising that people’s think-
ing can be biased by their motivations. Cognitive science can explain not
only how people think when they are doing it right, but also how thinking
is often distorted by goals extraneous to the scientific aims of explanation
and truth. Later, chapter 14 provides a similar account of resistance to
Darwin’s theory of evolution.

Finally, chapter 6, the most philosophical one in this book, argues
that, under certain conditions, it is legitimate to conclude that theories
that provide the best available evidence do indeed approximate the truth.
This chapter provides a justification for the philosophical position called
scientific realism, according to which science aims and sometimes succeeds
in achieving truth. Thagard (2010a) provides a more general defense of

realism.



3 Models of Scientific Explanation

Paul Thagard and Abninder Litt

Explanation

Explanation of why things happen is one of humans’ most important
cognitive operations. In everyday life, people are continually generating
explanations of why other people behave the way they do, of why they
get sick, of why computers or cars are not working properly, and of many
other puzzling occurrences. More systematically, scientists develop theories
to provide general explanations of physical phenomena such as why
objects fall to Earth, chemical phenomena such as why elements combine,
biological phenomena such as why species evolve, medical phenomena
such as why organisms develop diseases, and psychological phenomena

such as why people sometimes make mental errors.

-

'his chapter reviews computational models of the cognitive processes
that underlie these kinds of explanations of why events happen. It is not
concerned with another sense of explanation that just means clarification,
as when someone explains the U.S. Constitution. The focus will be on
scientific explanations, but more mundane examples will occasionally be
used, on the grounds that the cognitive processes for explaining why
events happen are much the same in everyday life and in science, although
scientific explanations tend to be more systematic and rigorous than every-
day ones. In addition to providing a concise review of previous computa-
tional models of explanation, this chapter describes a new neural network
model that shows how explanations can be performed by multimodal
distributed representations.

Before proceeding with accounts of particular computational models of
explanation, let us characterize more generally the three major processes

involved in explanation and the four major theoretical approaches that



26 Chapter 3

have been taken in computational models of it. The three major processes
are: providing an explanation from available information, generating new
hypotheses that provide explanations, and evaluating competing explana-
tions. The four major theoretical approaches are: deductive, using logic or
rule-based systems; schematic, using explanation patterns or analogies;
probabilistic, using Bayesian networks; and neural, using networks of arti-
ficial neurons. For each of these theoretical approaches, it is possible to
characterize the different ways in which the provision, generation, and
evaluation of explanations are understood computationally.

The processes of providing, generating, and evaluating explanations can
be illustrated with a simple medical example. Suppose you arrive at your
doctor’s office with a high fever, headache, extreme fatigue, a bad cough,
and major muscle aches. Your doctor will probably tell you that you have

been infected by the influenza virus, with an explanation like:

People infected by the flu virus often have the symptoms you describe.
You have been exposed to and infected by the flu virus.
50, you have these symptoms.

If influenza is widespread in your community and your doctor has been
seeing many patients with similar symptoms, it will not require much
reasoning to provide this explanation by stating the flu virus as the likely
cause of your symptoms.

Sometimes, however, a larger inferential leap is required to provide an
explanation. If your symptoms also include a stitf neck and confusion,
your doctor may make the less common and more serious diagnosis of
meningitis. This diagnosis requires generating the hypothesis that you
have been exposed to bacteria or viruses that have infected the lining
surrounding the brain. In this case, the doctor is not simply applying
knowledge already available to provide an explanation, but generating a
hypothesis about you that makes it possible to provide an explanation.
This hypothesis presupposes a history of medical research that led to the
identification of meningitis as a disease caused by particular kinds of
bacteria and viruses, research that required the generation of new general
hypotheses that made explanation of particular cases of the disease
possible.

In addition to providing and generating explanations, scientists and
ordinary people sometimes need to evaluate competing explanations. If
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Many computational models in artificial intelligence have presupposed
that explanation is deductive, including ones found in logic programming,
truth maintenance systems, explanation-based learning, qualitative rea-
soning, and in some approaches to abduction (a form of inference that
involves the generation and evaluation of explanatory hypotheses). See,
for example, Russell and Norvig (2003), Bylander et al. (1991), and Kono-
lige (1992). These Al approaches are not intended as models of human
cognition, but see Bringsjord (2008) for discussion of the use of formal
logic in cognitive modeling.

Deductive explanation also operates in rule-based models, which have
been proposed for many Kinds of human thinking (Anderson, 1983, 1993,
2007; Holland et al., 1986; Newell & Simon, 1972; Newell, 1990). A rule-
based system is a set of rules with an “if” part consisting of conditions
(antecedents) and a “then” part consisting of actions (consequents). Rule-
based systems have often been used to model human problem solving in
which people need to figure out how to get from a starting state to a goal
state by applying a series of rules. This is a kind of deduction, in that the
application of rules in a series of if-then inferences amounts to a series of
applications of the rule of deductive inference, modus ponens, which
licenses inferences from p and if p then g to g. Most rule-based systems,
however, do not always proceed from starting states to goal states, but can
also work backward from a goal state to find a series of rules that can be
used to get from the starting state to the goal state.

Explanation can be understood as a special kKind of problem solving, in
which the goal state is a target to be explained. Rule-based systems do not
have the full logical complexity to express the laws required for Hempel’s
model of explanation, but they can perform a useful approximation. For
instance, the medical example used in the introduction can be expressed

by a rule like:

It X has influenza, then X has fever, cough, and aches.

Paul has influenza.

Paul has fever, cough, and aches.

Modus ponens provides the connection between the rule and what is to
be explained. In more complex cases, the connection would come from a
sequence ol applications of modus ponens as multiple rules get applied.

In contrast to Hempel's account in which an explanation is a static
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argument, rule-based explanation is usually a dynamic process involving
application of multiple rules. For a concrete example of a running program
that accomplishes explanations in this way, see the Pl (“processes of
induction”) model of Thagard (1988; code is available at http://cogsci
.uwaterloo.ca). The main scientific example to which Pl has been applied
is the discovery of the wave theory of sound, which occurs in the context
of an attempt to explain why sounds propagate and reflect.

Thus rule-based systems can model the provisions of explanations con-
strued deductively, but what about the generation and evaluation of expla-
nations? A simple form of abductive inference that generates hypotheses
can be modeled as a kind of backward chaining. Forward chaining involves
running rules forward in the deductive process that proceeds from the
starting state toward a goal to be solved. Backward chaining occurs when
a system works backward from a goal state to find rules that could produce
it from the starting state. Human problem solving on tasks such as solving
mathematics problems often involves a combination of forward and back-
ward reasoning, in which a problem solver looks both at the how the

problem is described and the answer that is required, attempting to make

them meet. At the level of a single rule, backward chaining has the form:
goal G is to be accomplished; there is the rule it A then G, that is, action
A would accomplish G; so set A as a new subgoal to be accomplished.
Analogously, people can backchain to find a possible explanation: fact F is
to be explained; there is a rule if H then F, that is, hypothesis H would
explain F; so hypothesize that H is true. Thus, if you know that Paul has
fever, aches, and a cough, and you know the rule that if X has influenza,
then X has fever, cough, and aches, then you can run the rule backward
to produce the hypothesis that Paul has influenza.

The computational PI model performs this simple kind of hypothesis
generation, but it also can generate other kinds of hypotheses (Thagard,
1988). For example, from the observation that the orbit of Uranus is per-
turbed, and the rule that if a planet has another planet near it then its
orbit is perturbed, PI infers that there is some planet near Uranus; this is
called “existential abduction.” PI also performs abduction to rules that
constitute the wave theory of sound: the attempt to explain why an arbi-
trary sound propagates generates not only the hypothesis that it consists

of a wave but the general theory that all sounds are waves. PI also performs
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a kind of analogical abduction, a topic discussed in the next section on
schemas.

Abductive inference that generates explanatory hypotheses is an inher-
ently risky form of reasoning because of the possibility of alternative
explanations. Inferring that Paul has influenza because it explains his fever,
aches, and cough is risky because other diseases such as meningitis can
cause the same symptoms. People should only accept an explanatory
hypothesis if it is better than its competitors, a form of inference that
philosophers call “inference to the best explanation” (Harman, 1973;
Lipton, 2004). The PI cognitive model performs this kind of inference by
taking into account three criteria for the best explanation: consilience,
which is a measure of how much a hypothesis explains; simplicity, which
is a measure of how few additional assumptions a hypothesis needs to carry
out an explanation; and analogy, which favors hypotheses whose explana-
tions are analogous to accepted ones. A more psychologically elegant way
of performing inference to the best explanation, the ECHO model, is
described below in the section on neural networks. Neither the PI nor the
ECHO way of evaluating competing explanations requires that explana-
tions be deductive.

In artificial intelligence, the term "abduction” is often used to describe
inference to the best explanation as well as the generation of hypotheses.
[n actual systems, these two processes can be continuous, for example in
the PEIRCE tool for abductive inference described by Josephson and
Josephson (1994, p. 95). This is primarily an engineering tool rather than
a cognitive model, but we mention it here as another approach to generat-
ing and evaluating scientific explanations, in particular medical ones
involving interpretation of blood tests. The PEIRCE system accomplishes
the goal of generating the best explanatory hypothesis by achieving three

subgoals:

1. generation of a set of plausible hypotheses;

2. construction of a compound explanation for all the findings; and

3. criticism and improvement of the compound explanation.

PEIRCE employs computationally effective algorithms for each of these

subgoals, but it does not attempt to do so in a way that corresponds to

how people accomplish them.
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Schema and Analogy Models

In ordinary life, and in many areas ol science less mathematical than
physics, the relation between what is explained and what does the explain-
ing is usually looser than deduction. An alternative conception of this
relation is provided by understanding an explanation as the application of
a causal schema, which is a pattern that describes the relation between
causes and effects. For example, cognitive science uses a general explana-

tion schema with the following structure (Thagard, 2005a):

Explanation target: Why do people have a particular Kind of intelligent
behavior?

Explanatory pattern:

People have mental representations.

People have algorithmic processes that operate on those representations.

The processes, applied to the representations, produce the behavior.

This schema provides explanations when the terms shown in boldface are

filled in with specifics, and subsumes schemas that describe particular
Kinds of mental representations such as concepts, rules, and neural net-
works. Philosophers of science have discussed the importance of explana-
tion schemas or patterns (Kitcher, 1993; Thagard, 1999).

A computational cognitive model of explanation schemas was devel-
oped in the SWALE project (Schank, 1986; Leake, 1992). This project
modeled people’s attempts to explain the unexpected 1984 death of a
racehorse, Swale. Given an occurrence, the program SWALE attempts to fit
it into memory. If a problem arises indicating an anomaly, then the
program attempts to find an explanation pattern stored in memory. The
explanation patterns are derived from previous cases, such as other unex-
pected deaths. It SWALE finds more than one relevant explanation pattern,
it evaluates them to determine which is most relevant to the intellectual
goals of the person seeking understanding. If the best-explanation pattern
does not quite fit the case to be explained, it can be tweaked (adapted) to
provide a better fit, and the tweaked version is stored in memory for future
use. The explanation patterns in SWALE's database included both general
schemas such as exertion + heart defect causes fatal heart attack and particular
examples, which are used for case-based reasoning, a kind of analogical

thinking. Leake (1992) describes how competing explanation patterns can
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be evaluated according to various criteria, including a reasoner’s pragmatic
goals.

Explaining something by applying a general schema involves the same
processes as explaining using analogies. In both cases, reasoning proceeds

as follows:

[dentify the case to be explained.

Search memory for a matching schema or case.

Adapt the found schema or case to provide an explanation of the case to

be explained.

In deductive explanation, there is a tight logical relation between what is

explained and the sentences that imply it, but in schematic or analogical

explanation there need only be a roughly specified causal relation.

Falkenhainer (1990) describes a program, PHINEAS, that provides
analogical explanations of scientific phenomena. The program uses
Forbus’s (1984) qualitative process theory to represent and reason about
physical change, and is provided with knowledge about liquid flow.
When presented with other phenomena to be explained such as osmosis
and heat flow, it can generate new explanations analogically by computing
similarities in relational structure, using the Structure Mapping Engine
(Falkenhainer, Forbus & Gentner, 1989). PHINEAS operates in four
stages: access, mapping/transter, qualitative simulation, and revision. For
example, it can generate an explanation of the behavior of a hot brick
in cold water by analogy to what happens when liquid flows between
two containers. Another computational model that generates analogical
explanations is the PI system (Thagard, 1988), mentioned above, which
simulates the discovery of the wave theory of sound by analogy to water
waves.

Thus computational models of explanation that rely on matching sche-
matic or analogical structures based on causal fit provide alternatives to
models of deductive explanation. These two approaches are not competing
theories of explanation, because explanation can take different forms in
different areas of science. In areas such as physics that are rich in mathe-
matically expressed knowledge, deductive explanations may be available.
But in more qualitative areas of science and everyday life, explanations are
usually less exact and may be better modeled by application of causal

schemas or as a kind of analogical inference.
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of feedback loops. For example, marriage breakdown often occurs because
of escalating negative affect, in which the negative emotions of one partner
produce behaviors that increase the negative emotions of the other, which
then produce behavior that increases the negative emotions of the first
partner (Gottman et al., 2003). Such feedback loops are also common in

biochemical pathways needed to explain disease (Thagard, 2003). Fourth,

probability by itself is not adequate to capture people’s understanding of
causality, as argued in the last section of this chapter. Hence it is not at all
obvious that Bayesian networks are the best way to model explanation by
human scientists. Even in statistically rich fields such as the social sciences,
scientists rely on an intuitive, nonprobabilistic sense of causality of the

sort discussed below.

Neural Network Models

The most important approach to cognitive modeling not yet discussed here
employs artificial neural networks. Applying this approach to high-level
reasoning faces many challenges, particularly in representing the complex
kKinds of information contained in scientific hypotheses and causal rela-
tions. Thagard (1989) provided a neural network model of how competing
scientific explanations can be evaluated, but did so using a localist network
in which entire propositions were represented by single artificial neurons
and in which relations between propositions are represented by excitatory
and inhibitory links between the neurons. Although this model provides
an extensive account of explanation evaluation, which is reviewed below,
it reveals nothing about what an explanation is or how explanations are
generated. Neural network modelers have been concerned mostly with
applications to low-level psychological phenomena such as perception,
categorization, and memory, rather than high-level ones such as problem
solving and inference (O'Reilly & Munakata, 2000). However, this section
shows how we can construct a neurologically complex model of explana-
tion and abductive inference.

One benefit of attempting neural analyses of explanation is that it
becomes possible to incorporate multimodal aspects of cognitive process-
ing that tend to be ignored by the deductive, schematic, and probabilistic
perspectives. Thagard (2007a) describes how both explainers and expla-

nation targets are sometimes represented nonverbally. In medicine, for
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Figure 3.2
The process of abductive inference. (From Thagard, 2007a.)

example, doctors and researchers may employ visual hypotheses (say,
about the shape and location of a tumor) to explain observations that can
be represented using sight, touch, and smell as well as words. Moreover,
the process of abductive inference has emotional inputs and outputs,
because it is usually initiated when an observation is found to be surprising
or puzzling, and it often results in a sense of pleasure or satisfaction when
a satistactory hypothesis is used to generate an explanation. Figure 3.2
provides an outline of this process. Let us now look at an implementation
of a neural network model of this sketch.

The model of abduction described here follows the Neural Engineering
Framework (NEF) outlined by Eliasmith and Anderson (2003), and is
implemented using the MATLAB-based NEF simulation software NLESim.
The NEF proposes three basic principles of neural computation (Eliasmith
& Anderson, 2003, p. 15):

1. Neural representations are defined by a combination of nonlinear encoding and
linear decoding.
2. Transtormations of neural representations are linearly decoded functions of vari-

ables that are represented by a neural population.

3. Neural dynamics are characterized by considering neural representations as
control theoretic state variables.

These principles are applied to a particular neural system by identilying
the interconnectivity of its subsystems, neuron response functions, neuron
tuning curves, subsystem functional relations, and overall system behavior.
For cognitive modeling, the NEF is useful because it provides a mathemati-
cally rigorous way of building more realistic neural models of cognitive

functions.
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The NEF characterizes neural populations and activities in terms of
mathematical representations and transformations. The complexity of a
representation is constrained by the dimensionality of the neural population
that represents it. In rough terms, a single dimension in such a representa-
tion can correspond to one discrete "aspect” of that representation (e.g.,
speed and direction are the dimensional components of the vector quan-
tity velocity). A hierarchy of representational complexity thus follows from
neural activity defined in terms of one-dimensional scalars; vectors, with
a finite but arbitrarily large number of dimensions; or functions, which are
essentially continuous indexings of vector elements, thus ranging over infi-
nite dimensional spaces.

The NEF provides for arbitrary computations to be performed in bio-
logically realistic neural populations and has been successfully applied to
phenomena as diverse as lamprey locomotion (Eliasmith & Anderson,
2003), path integration by rats (Conklin & Eliasmith, 2005), and the Wason
card selection task (Eliasmith, 2005a). The Wason task model, in particular,
is structured very similarly to the model of abductive inference discussed
here. Both employ holographic reduced representations (HRRs), a high-dimen-
sional form of distributed representation.

First developed by Plate (2003), HRRs combine the neurological plausi-
bility of distributed representations with the ability to maintain complex,
embedded structural relations in a computationally efficient manner.
This ability is common in symbolic models and is often singled out as
deficient in distributed connectionist frameworks; for a comprehensive
review of HRRs in the context of the distributed versus symbolic represen-
tation debate, see Lliasmith and Thagard (2001). HRRs consist of high-
dimensional vectors combined via multiplicative operations, and are
similar to the tensor products used by Smolensky (1990) as the basis for a
connectionist model of cognition. But HRRs have the important advantage
of fixed dimensionality: the combination of two n-dimensional HRRs pro-
duces another n-dimensional HRR, rather than the 2n or even n* dimen-
sionality one would obtain using tensor products. This avoids the explosive
computational resource requirements of tensor products to represent arbi-
trary, complex structural relationships.

HRR representations are constructed through the multiplicative circular
convolution (denoted by ®) and are decoded by the approximate inverse

operation, circular correlation (denoted by #). The details of these operations
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are given in the appendixes of Eliasmith and Thagard (2001), but in general
it C =A®B is encoded, then C#A = B and C#B = A. The approximate nature
of the unbinding process introduces a degree of noise, proportional to the
complexity of the HRR encoding in question and in inverse proportion to
the dimensionality of the HRR (Plate, 2003). As noise tolerance is a require-
ment of any neurologically plausible model, this loss of representation
information is acceptable, and the “cleanup” method of recognizing
encoded HRR vectors using the dot product can be used to find the
vector that best fits what was decoded (Eliasmith & Thagard, 2001). Note
that HRRs may also be combined by simple superposition (i.e., addition):
P = Q®R + XK®Y, where P#R = Q, P#X = Y, and so on. The operations
required for convolution and correlation can be implemented in a recur-
rent connectionist network (Plate, 2003) and in particular under the NEF
(Eliasmith, 2005a).

In brief, the new model of abductive inference involves several large,
high-dimensional populations to represent the data stored via HRRs and

learned HRR transformations (the main output of the model), and a smaller

population representing emotional valence information (abduction only
requires considering emotion scaling from surprise to satisfaction, and
hence needs only a single dimension represented by as few as 100 neurons
to represent emotional changes). The model is initialized with a base set
of causal encodings consisting of 100-dimensional HRRs combined in

the form
antecedent @ a + relation ® causes + consequent @ b,

as well as HRRs that represent the successful explanation of a target x (expl
® x). For the purposes of this model, only six different “filler” values were
used, representing three such causal rules (a causes b, ¢ causes d, and e
causes f ). The populations used have between 2,000 and 3,200 neurons
each and are 100- or 200-dimensional, which is at the lower end of what
is required for accurate HRR cleanup (Plate, 2003). More rules and filler
values would require larger and higher-dimensional neural populations, an
expansion that is unnecessary for a simple demonstration of abduction
using biologically plausible neurons.

Following detection of a surprising b, which could be an event, proposi-
tion, or any sensory or cognitive data that can be represented via neurons,
the change in emotional valence spurs activity in the output population
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toward generating a hypothesized explanation. This process involves
employing several neural populations (representing the memorized rules
and HRR convolution/correlation operations) to find an antecedent
involved in a causal relationship that has b as the consequent. In terms of
HRRs, this means producing (rule # antecedent) for ([rule # relation = causes|
and |rule # consequent = b]). This production is accomplished in the 2,000-
neuron, 100-dimensional output population by means of associative
learning through recurrent connectivity and connection-weight updating
(Eliasmith, 200S5). As activity in this population settles, an HRR cleanup
operation is performed to obtain the result of the learned transformation.
Specifically, some answer is “chosen” if the cleanup result matches one
encoded value significantly more than any of the others (i.e., is above some
reasonable threshold value).

After the successful generation of an explanatory hypothesis, the emo-
tional valence signal is reversed from surprise (which drove the search for
an explanation) to what can be considered pleasure or satisfaction derived
from having arrived at a plausible explanation. This in turn induces the
output population to produce a representation corresponding to the suc-
cessful dispatch of the explanandum b: namely, the HRR expl, = expl & b.
Upon settling, it can thus be said that the model has accepted the hypoth-
esized cause obtained in the previous stage as a valid explanation for the
target b. Settling completes the abductive inference: emotional valence
returns to a neutral level, which suspends learning in the output popula-
tion and causes population firing to return to basal levels of activity.

Figure 3.3 shows the result of performing the process of abductive
inference in the neural model, with activity in the output population
changing with respect to changing emotional valence, and vice versa.
The output population activity is displayed by dimension, rather than
individual neuron, since the 100-dimensional HRR output of the neural
ensemble as a whole is the real characterization of what is being repre-
sented. The boxed sets of numbers represent the results of HRR cleanups
on the output population at different points in time; if one value reason-
ably dominates over the next few largest, it can be taken to be the “true”
HRR represented by the population at that moment. In the first stage,
the high emotional valence leads to the search for an antecedent of a
causal rule” for b, the surprising explanandum. The result is an HRR

cleanup best fitting to a, which is indeed the correct response. Reaching
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accepted, whereas if a unit ends up with negative activation, the proposi-
tion it represents is rejected.

ECHO has been used to model numerous cases in the history of science,
and has also inspired experimental research in social and educational
psychology (Read & Marcus-Newhall, 1993; Schank & Ranney, 1991).
The model shows how a very high-level kind of cognition, evaluating
complex theories, can be performed by a simple neural network perform-
ing parallel constraint satisfaction. ECHO has a degree of psychological
plausibility, but for neurological plausibility it pales in comparison to the
NEF model of abduction described earlier in this section. The largest ECHO
model uses only around 200 units to encode the same number of proposi-
tions, whereas the NEF model uses thousands of spiking neurons to encode
a few causal relations. Computationally, this seems inefficient, but of
course the brain has many billions of neurons that provide its distributed
representations.

How might one implement comparative theory evaluation as performed
by ECHO within the NEF framework? Thagard and Aubie (2008) use the
NEF to encode ECHO networks by generating a population of thousands

of neurons. Parallel constraint satistaction is performed by transformations
of neurons that carry out approximately the same calculations that occur
more directly in ECHO's localist neural networks. Hence it is now possible
to model the evaluation of competing explanations using more biologi-

cally realistic neural networks.

Causality

Like most other models of explanation, these neural network models pre-
suppose some understanding of causality. In one sense that is common in
both science and everyday life, to explain something involves stating its
cause. For example, when people have influenza, the virus that infects
them is the cause of their symptoms such as fever. But what is a cause’
Philosophical theories of explanation correlate with competing theories of
causality; for example, the deductive view of explanation fits well with the
Humean understanding of causality as constant conjunction. If all As are
Bs, then someone can understand how being an A can cause and explain
being a B. Unfortunately, universality is not a requisite of either explana-

tion or causality. Smoking causes lung cancer, even though many smokers
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never get lung cancer, and some people with lung cancer have never
smoked. Schematic models of explanation presuppose a primitive concept
of causation without being able to say much about it. Probability theory
may look like a promising approach to causality in that causes make their
effects more probable than they would be otherwise, but such increased
probability may be accidental or the result of some common cause. For
example, the probability of someone drowning is greater on a day when
much ice cream is consumed, but that is because of the common cause
that more people go swimming and more people eat ice cream on hot days.
Sorting out causal probabilistic information from misleading correlations
requires much information about probability and independence that
people usually lack.

Thagard (2007a) conjectured that it might be possible to give a neural
network account of how organisms understand causality. Suppose,
in keeping with research on infants’ grasp of causality, that cause is a
preverbal concept based on perception and motor control (Baillargeon,
Kotovsky & Needham, 1995; Mandler, 2004). Consider an infant a few
months old, lying on its back and swiping at a mobile suspended over
its head. The infant has already acquired an image schema of the fol-

lowing form:
perception of situation + motor behavior = perception of new situation.

Perhaps this schema is innate, but alternatively it may have been acquired
from very early perceptual-motor experiences in which the infant acted

on the world and perceived the resultant changes. A simple instance of the

schema would be:
stationary object + hand hitting object = moving object.

The idea of a preverbal image schema for causality is consistent with the
views of some philosophers that manipulability and intervention are
central features of causality (Woodward, 2004). The difference between A
causing B and A merely being correlated with B is that manipulating A also
manipulates B in the former case but not the latter. Conceptually, the
concepts of manipulation and intervention seem to presuppose the concept
of causation, because making something happen is on the surface no dif-
ferent from causing it to happen. However, although there is circularity at
the verbal level, psychologically it is possible to break out of the circle by

supposing that people have from infancy a neural encoding of the causality
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image schema described above. This nonverbal schema is the basis for
understanding the difference between one event making another event
happen and one event just occurring after the other.

The causality image schema is naturally implemented within the Neural
Engineering Framework used to construct the model of abductive infer-
ence. Neural populations are capable of encoding both perceptions and
motor behaviors, and are also capable of encoding relations between them.

In the model of abductive inference described in the last section, cause

(c, e) was represented by a neural population that encodes an HRR vector
that captures the relation between a vector representing ¢ and a vector
representing e, where both of these can easily be nonverbal perceptions
and actions as well as verbal representations. In the NEF model of abduc-
tion, there is no real understanding of causality, because the vector was
generated automatically. In contrast, it is reasonable to conjecture that
people have neural populations that encode the notion of causal connec-
tion as the result of their very early preverbal experience with manipulat-
ing objects. Because the connection is based on visual and Kkinesthetic
experiences, it cannot be adequately formulated linguistically, but it pro-
vides the intellectual basis for the more verbal and mathematical charac-
terizations of causality that develop later.

[f this account of causality is correct, then a full cognitive model of
explanation cannot be purely verbal or probabilistic. Many philosophers
and cognitive scientists currently maintain that scientific explanation of
phenomena consists in providing mechanisms that produce those phe-
nomena (e.g., Bechtel & Abrahamsen, 2005; Sun, Coward & Zenzen, 2005).
A mechanism is a system of objects whose interactions regularly produce
changes. All of the computational models described in this chapter are
mechanistic, although they differ in what they take to be the parts and

interactions that are central to explaining human thinking; for the neura

network approaches, the computational mechanisms are also biological
ones. But an understanding of mechanism presupposes an understanding
of causality, in that there must be a relation between the interactions of
the parts that constitutes production of the relevant phenomena. Because
scientific explanation depends on the notion of causality, and because
understanding of causality is in part visual and kinesthetic, future compre-
hensive cognitive models of explanation will need to incorporate neural

network simulations of people’s nonverbal understanding of causality.
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Table 3.1

Summary of approaches to computational modeling of explanation.

Relation
Target of between target Mode of
explanation Explainers and explainers generation
Deductive sentence sentences deduction backward
chaining
Schema sentence pattern of fit search for fit,
sentences schema
generation
Probabilistic  variable node Bayesian conditional Bayesian
network probability learning
Neural neural group: neural groups  gated activation,  search,
network multimodal connectivity associative
representation learning

Conclusion

This chapter has reviewed four major computational approaches to under-
standing scientific explanations: deductive, schematic, probabilistic, and
neural network. Table 3.1 summarizes the different approaches to provid-
ing and generating explanations. To some extent, the approaches are com-
plementary rather than competitive, because explanation can take different
forms in different areas of science and everyday life. However, at the root
of scientific and everyday explanation is an understanding of causality
represented nonverbally in human brains by populations of neurons
encoding how physical manipulations produce sensory changes. Another
advantage of taking a neural network approach to explanation is that it
becomes possible to model how abductive inference, the generation of
explanatory hypotheses, is a process that is multimodal, involving not only
verbal representations but also visual and emotional ones that constitute

inputs and outputs to reasoning.



4 How Brains Make Mental Models

Introduction

Mental models are psychological representations that have the same rela-
tional structure as what they represent. They have been invoked to
explain many important aspects of human reasoning, including deduction,
induction, problem solving, language understanding, and human-machine
interaction. But the nature of mental models and of the processes that
operate on them has not always been clear from the psychological discus-
sions. The main aim of this chapter is to provide a neural account of mental
models by describing some of the brain mechanisms that produce them.

The neural representations required to understand mental models are
also valuable for providing new understanding of how minds perform
abduction, a kind of inference that generates and/or evaluates explanatory
hypotheses. Considering the neural mechanisms that support abductive
inference makes it possible to address several aspects of abduction, some
first proposed by Charles Peirce, that have largely been neglected in sub-
sequent research. These aspects include the generation of new ideas, the
role of emotions such as surprise, the use of multimodal representations
to produce “embodied abduction,” and the nature of the causal relations
that are required for explanations.

The suggestion that abductive inference is embodied raises issues that
have been very controversial in recent discussions in psychology, philoso-
phy, and artificial intelligence. This chapter argues that the role of emo-
tions and multimodal representations in abduction supports a moderate
thesis about the role of embodiment in human thinking, but not an
extreme thesis that proposes embodied action as an alternative to the

computational-representational understanding of mind.
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relation in the sentential abductive schema. Presumably it must be more
than material implication, but what more is required? Logic-based
approaches to abduction tend to assume that explanation is a matter of
deduction, but philosophical discussions show that deduction is neither
necessary nor suftficient for explanation (e.g., Salmon, 1989). | think that

good explanations exploit causal mechanisms, but what constitutes the

causal relation between what is explained and what gets explained? I aim
to show that all of these difficult aspects of abduction—the role of surprise
and insight, the generation of new ideas, and the nature of causality—can
be illuminated by consideration of neural mechanisms.

Terminological note: Magnani (2009) writes of “non-explanatory abduc-
tion,” which strikes me as self-contradictory. Perhaps there is a need for a
new term describing a kind of generalization of abduction to cover other
kinds of backward or inverse reasoning such as generating axioms from
desired theorems, but let me propose to call this generalized abduction
“gabduction” and retain the term “abduction” for Peirce’s idea of the gen-

eration and evaluation of explanatory hypotheses.

Neural Representation and Processing

A ftull and rigorous description of current understanding of the nature
of neural representation and processing is beyond the scope of this
chapter, but [ will provide an introductory sketch (for fuller accounts, see
such sources as Churchland & Sejnowski, 1992; Dayan & Abbott, 2001;
Eliasmith & Anderson, 2003; O'Reilly & Munakata, 2000; and Thagard,
2010a).

The human brain contains around 100,000,000,000 neurons, each of
which has many thousands of connections with other neurons. These
connections are either excitatory (the firing of one neuron increases the
firing of the one it is connected to) or inhibitory (the firing of one neuron
decreases the firing of the one it is connected to). A collection of neurons
that are richly interconnected is called a neural population (or group, or
ensemble). A neuron fires when it has accumulated sutficient voltage as
the result of the firing of the neurons that have excitatory connections to
it. Typical neurons fire around 100 times per second, making them vastly
slower than current computers that operate at speeds of billions of times

per second, but the massive parallel processing of the intricately connected
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brain enables it to perform feats of inference that are still far beyond the
capabilities of computers.

A neural representation is not a static object like a word on paper or
a street sign, but is rather a dynamic process involving ongoing change
in many neurons and their interconnections. A population of neurons
represents something by its pattern of firing. The brain is capable of a
vast number of patterns: assuming that each neuron can fire 100 times
per second, then the number of firing patterns of that duration is

(2109)100.000.000.000 "3 number far larger that the number of elementary par-

ticles in the universe, which is only about 10*. T call this “Dickinson’s
theorem,” after Emily Dickinson’s beautiful poem “The Brain Is Wider
Than the Sky.” A pattern of activation in the brain constitutes a represen-
tation of something when there is a stable causal correlation between the
firing of neurons in a population and the thing that is represented, such
as an object or group of objects in the world (Eliasmith, 2005b; Parisien
& Thagard, 2008). The claim that mental representations are patterns of
firing in neural populations is a radical departure from everyday concepts
and even from cognitive psychology until recently, but is increasingly sup-
ported by data acquired through experimental techniques such as brain

scans and by rapidly developing theories about how brains work (e.g.,
Anderson, 2007; Smith & Kosslyn, 2007; Thagard 2010a).

Neural Mental Models

Demonstrating that neural representations can constitute mental models
requires showing how they can have the same relational structure as what
they represent, both statically and dynamically. Static mental models have
spatial structure similar to what they represent, whereas dynamic mental
models have similar temporal structure. Combined mental models capture
both spatial and temporal structure, as when a person runs a mental movie
that represents what happens in some complex visual situation such as
two cars colliding.

The most straighttorward kind of neural mental models are topographi-
cal sensory maps, for which Knudsen, du Lac, and Esterly (1987, p. 61)

provide the following summary:

The nervous system performs computations to process information that is biologi-

cally important. Some of these computations occur in maps—arrays of neurons in
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which the tuning of neighboring neurons for a particular parameter value varies
systematically. Computational maps transform the representation into a place-coded
probability distribution that represents the computed values of parameters by
sites of maximum relative activity. Numerous computational maps have been dis-
covered, including visual maps of line orientation and direction of motion, auditory
maps of amplitude spectrum and time interval, and motor maps of orienting

movements.

The simplest example is the primary visual cortex, in which neighboring
columns of neurons process information from neighboring small regions
of visual space (Knudsen, du Lac & Esterly, 1987; Kaas, 1997). In this case,
the spatial organization of the neurons corresponds systematically to the
spatial organization of the world, in the same way that the location of major
cities on a map of Brazil corresponds to the actual location of those cities.

Such topographic neural models are useful for basic perception, but they
are not rich enough to support high-level Kinds of reasoning such as the
above “taller than” example. How populations of neurons can support
such reasoning is still unknown, as brain scanning technologies do not
have sufficient resolution to pin down neural activity in enough detail to
inspire theoretical models of how high-level mental modeling can work.
But let me try to extrapolate from current views on neural representation,
particularly those of Eliasmith and Anderson (2003), to suggest how the
brain might be able to make extra-topographic models of the world (see
also Eliasmith, 2005b).

Neural populations can acquire the ability to encode features of the
world as their firing activity becomes causally correlated with those fea-
tures (A and B are causally correlated if they are statistically correlated as
the result of causal interactions between A and B). Neural populations are
also capable of encoding the activity of other neural populations, as the
firing patterns of one population become causally correlated with the firing
patterns of another population that feeds into it. If the input population
is a topographic map, then the output population can become a more
abstract representation of the features of the world, in two ways. The most
basic retains some of the topographic structure of the input population,
so that the output population is still a mental model of the world in that
it shares some (but not all) relational structure with it. An even more
abstract encoding is performed by an output neural population that
captures key aspects of the encoding performed by the input population,

but does so in a manner analogous to the way that language produces



