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This book has two purposes. It is designed to provide you with
skills that will make you a better problem solver, and to give you
up-to-date information about the psychology of problem solving.

The first purpose is clearly a practical one, but I believe the
second purpose is, too. It is important for people to know how
their minds work. Certainly for humanistic reasons—knowledge
of our human nature is valuable in itself—but it is also important
because it provides us with a degree of flexibility which we might
not otherwise have. If we can examine or own problem solving
processes with some degree of understanding, then we have a
better chance of improving them. Further, if we have some
understanding of how people think, we can be more effective in
helping others. Anyone who is to teach, or to tutor, or even to help
a child with homework, can benefit from knowledge of how
human problem solving processes work and how they can go
wrong.

Early in my career as a psychologist, a student asked me about
my special area of interest. I told him that I studied people's
thinking processes. "Oh, thinking!" he said, "I know all about that.
I'm a math major." Of course, he did know a lot about thinking—
he knew about how to do it, at least in certain cases. Given a math
problem, he could draw on a wealth of experience to help him find
a solution. But if he were like most people, he would have a very
difficult time articulating that wealth of experience; he knew how
to think but he didn't know how to describe his own thinking.
When they are faced with their first teaching task, whether in
school or out, many professionals discover a vast difference
between their ability to do what they do very well and their ability
to describe what they do to others.

In this book, then, we hope to provide you with some skills that




will help you to solve problems, but we also hope to provide you
with some knowledge that will give you greater insight into what
you are doing and an increased ability to understand others.

What Is a Problem?

[f you are on one side of a river and you want to get to the other
side but you don't know how, you have a problem. If you are
assembling a mail-order purchase, and the instructions leave you
completely baffled about how to "put tab A in slot B," you have a
problem. If you are writing a letter and you just can't find the
polite way to say, "No, we don't want you to come and stay for a
month," you have a problem. Whenever there is a gap between
where you are now and where you want to be, and you don't know
how to find a way to cross that gap, you have a problem.

Solving a problem means finding an appropriate way to cross a
gap. The process of finding a solution has two major parts: 1.
Representing the gap—that is, understanding the nature of the
problem, and 2. Searching for a means to cross it.

Representing the Gap

If people fail to understand the nature of the gap, they may well
set off in the wrong direction to search for the solution. Suppose
you told a friend that you would give him $10,000 if he put his
elbow in his ear. "Easy," your friend says; "I'll just cut off my
elbow and put it in any ear you choose." Now you may question
your friend's values, but you are also pretty sure that he
understands the nature of the difficulty—the gap—that the
problem presents. On the other hand, if your friend said, "Easy, I'll



stand on a chair,” you would suspect that he didn't really
understand the nature of the ditficulty.

Representing the gap isn't always easy. In fact, the main
difficulty in many problems is just the difficulty of representing
the gap. Consider the Driver's License Problem.

Problem 1. The Driver's License

When Tom and Bill applied for their drivers' licenses, they were
asked their ages. Bill, who was a bit of a revolutionary, said they were
both in their twenties and that was all he was going to reveal to a
bunch of bureaucrats. The clerk insisted on more specific information
so, to smooth things over, Tom added that they both had the same
birthday, and that he was four times as old as Bill was when he was
three times as old as Bill was when he was twice as old as Bill was.
At this the clerk fainted and the two snatched up their licenses and

disappeared. When the clerk came to and realized that he would have
to complete his records some way or other he began to do a little
figuring, and before long had found out how old the two were. Can
you tell, too?

A typical reaction to this problem is to say, "What?" or beat a
hasty retreat explaining, "I never was much good at puzzles." But
the problem really isn't very difficult once we find an appropriate
representation for it. In Chapter 1, we will discuss processes by
which we come to understand the nature of a problem; we will
show that the way we represent the gap can make an enormous
difference in the difficulty of the problem; and we will provide
some hints on how to represent problems to make them easier.

Finding a Solution Path



Once we understand the nature of a problem, there are still
many reasons why we may have difficulty in finding a solution to
it. The problems below illustrate some of the most important
reasons.

Problem 2. The Loser

A man once offended a fortune teller by laughing at her predictions
and saying that fortune telling was all nonsense. He offended her so
much, in fact, that she cast a spell on him which turned him into both
a compulsive gambler and in addition a consistent loser. That was
pretty mean. We would expect the spell would shortly have turned
him into a miserable, impoverished wreck. Instead, he soon married a
wealthy businesswoman who took him to the casino every day, gave
him money, and smiled happily as he lost it at the roulette table. They
lived happily in just this way ever after. Why was the man's wife so

happy to see him lose?

The story poses a problem for most of us when we first see it. It
would be no problem if the man were winning money. We know
right away how to get from winning money to happy smiles, but
to get from losing money to happy smiles is a problem—there is a
gap that we can't immediately cross. How can losing money lead
to happiness?

In trying to bridge the gap, people propose a variety of
solutions:

"Perhaps she is so rich that she really doesn't care about the
money."

"Perhaps she is becoming a nun and wants to give all her money
away."

"Perhaps her crazy grandfather left a will which required her to
lose all her money by 21 in order to inherit a billion,"

"Perhaps she is a masochist."

These solutions vary in quality. The solution about the woman



becoming a nun has the difficulty that it ignores her husband. A
solution which seems to us better than all of these is this: When
playing roulette, the man bets, say, on red and loses, as his spell
requires. The woman, however, bets twice as much on black and
wins. In short, she has turned her husband's misfortune into an
advantage. His loss is their gain, and so the smiles. The gap is
crossed.

The problem illustrates a very important process in problem
solving—the process of invention. In many problems, lots of
approaches are conceivable-some of them better than others.
Typically, a person will try several approaches before hitting on a
good one. If people can't think up any approaches, then they can't
solve the problem.

Invention is an important problem solving process, but it isn't
the only process required in solving problems. There are many

problems in which invention is easy but the problem is still
difficult.

Problem 3. The Combination Lock

Suppose that you have the problem of opening the 10-dial
combination lock shown above. Proposing possible solutions is
easy. The dial setting shown may be a solution—and it may not.
There is a total of 10'° or 10,000,000,000 or ten billion possible
dial settings, any one of which may be the solution. This is where
the difficulty of the problem lies—finding the single correct



combination among ten billion possibilities. If we tried one
combination every second, working day and night, it would take
us 317 years to try them all. Some problems, then, like the
Combination Lock Problem, are difficult to solve because we have
to search for the solution among a very large number of
alternatives.

The following problem is a difficult one, even though it
involves neither invention nor examining large numbers of
alternatives.

Problem 4. The Rational Investor

Suppose that you have a choice between a safe investment which
yields a sure 25% return and a risky investment which gives you an
even chance of either tripling your money or of losing it. Which
investment is best?

The difficulty of practical decision making demanded by
problems like this one lies in evaluating the alternatives. People
are often unreliable when making such evaluations. If they choose
from the same alternatives on several different occasions, the
results may be quite inconsistent.

Which of the two investments is best depends in a complex way
on the investor's financial circumstances. To evaluate the
alternatives accurately, most people require explicit decision
procedures such as those described in Chapter 9.

Some problems are difficult because we have trouble
remembering where we are on our path to the solution. Try to
solve problem #5 before reading further.




Problem 5. Cats Among Pigeons

Messrs. Downs, Heath, Field, Forest, and Marsh—{five elderly
pigeon fanciers-were worried by the depredations of marauding cats
owned by five not less elderly ladies, and, hoping to get control of the
cats, they married the cat owners.

The scheme worked well for each of them so far as his own cat and
pigeon were concerned; but it was not long before each cat had
claimed a victim and each fancier had lost his favorite pigeon,

Mrs. Downs'cat killed the pigeon owned by the man who married
the owner of the cat which killed Mr. Marsh's pigeon. Mr. Downs'
vigeon was killed by Mrs. Heath's cat. Mr. Forest's pigeon was killed

by the cat owned by the lady who married the man whose pigeon was
killed by Mrs. Field's cat.

Who was the owner of the pigeon killed by Mrs. Forest's eat?

(from Phillips, 1961)

Unless you are an expert in solving this sort of problem, you
may have had some difficulty in keeping track of your place on
your way to the solution. You may have found yourself asking
questions like, "Wasn't Mrs. Marsh the lady who ate the cat that



married

Mr. Forest's pigeon?—Or was it the other way around?"

Being able to remember your place on the solution path is a
critical problem solving skill.
Consider Problem #6, but don't consider it for very long.

Problem 6. Who's Got the Enthalpy?

Liquid water at 212°F and 1 atm has an internal energy (on an

arbitrary basis) of 180.02 Btu/lb_. The specific volume of liquid water
at these conditions is 0.01672 ft3flbm. What is its enthalpy?

(from Smith and Van Ness, 1959)

Problem #6 is not a very difficult problem if you know
something about thermodynamics. If you don't, however—if, for
example, you haven't the foggiest idea what enthalpy is—then it's
an impossibly hard problem. I present this problem not to make
you feel bad, but to dramatize the extreme importance of

knowled
knowled

ge in problem solving. If you are missing relevant

ge, an easy problem may appear difficult or impossible. If

your knowledge of math and science is weak, the problems that
scientists solve may appear much harder to you than they really
are. If the humanities or the arts are your weak suit, then people
who can understand philosophy or who can interpret a musical
score may seem magically intelligent to you. The moral is this:
Much that passes for cleverness or innate quickness of mind

actually

depends on specialized knowledge. If you acquire that

specialized knowledge, you too may be able to solve hard
problems and appear clever to your less learned friends.

Organization of the Book



The six problems given here illustrate six important aspects of
human problem solving which we emphasize:

Problem 1: Representation

Problem 2: Invention

Problem 3: Search for the Solution Among Many
Alternatives

Problem 4: Decision Making

Problem 5: Memory

Problem 6: Knowledge

The book is divided into four sections:

Section 1. Problem Solving Theory and Practice
(representing problems and searching for solutions)

Section II. Memory and Knowledge Acquisition

Section III. Decision Making

Section IV. Creativity and Invention

While the order in which you read Sections 1, 2, 3, and 4 is not
critical for understanding, I do recommend that you read Section 1
first for an overview of the problem solving process.
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Usually when we solve a problem, we put most of our attention
on the problem and very little attention on ourselves—that is, on
what we are doing to solve the problem. If we did attend to our
own actions, we might notice that they often occur in a
characteristic sequence:

1. Finding the Problem: recognizing that there is a
problem to be solved.

2. Representing the Problem: understanding the nature of
the gap to be crossed.

3. Planning the Solution: choosing a method for crossing
the gap.

4. Carrying Out the Plan

5. Evaluating the Solution: asking "How good is the
result?" once the plan is carried out.

6. Consolidating Gains: learning from the experience of
solving.

This sequence of actions is illustrated in the following problem.

Action Problem

Finding the Problem I observe Smith, who claims to be too poor to re-
pay the $50.00 he owes me, buying round after
round of drinks for his friends.

Representing the Problem I conclude that Smith i1s not sufficiently serious
about repaying his debt.

Planning the Solution I consider a polite telephone call or a note remind-



ing Smith of his indebtedness, but decide instead
to ask three very large friends of mine to call on
Smith in person.

Carrying Out the Plan I call my friends, who then deliver my message
to Smith.

Evaluating the Solution Since Smith paid up rapidly without major
bloodshed, I regard the problem as satisfactorily
solved.

Consolidating Gains I revise my rules for lending money to Smith and
reflect on the value of having a few large friends.

In easy problems, we may go through these actions in order and
without any difficulties. In hard problems, though, we may have
to do a great deal of backtracking. For example, when we evaluate
what we have done, we may decide that our solution is terrible,
e.g., "Asbestos bread will not solve the burned toast problem!!"
and go back to planning. Or while trying to execute a solution, we
may discover something about the problem which will lead us to
represent it in an entirely new way—"Oh, now I see what kind of
a problem it is!" Retracing of this sort is characteristic of problems
that are called "ill-defined." We will discuss these in much more
detail later.

Our success as problem solvers depends on the effectiveness
with which we can carry out each of the six actions just described.
In this chapter, we will examine the nature of problem
representations and the processes people use to form them. In
addition, we will describe techniques for improving
representations so that they make problem solving easier. In the
next chapter we will discuss planning, executing, evaluating, and
consolidating. We will delay the discussion of problem finding
until the final section of the book because this topic is so closely
related to the topic of creativity.

How Do People Understand Problems?



Suppose we were to spy on people as they were trying to

understand a new problem, such as the Monster Problem below.

Monster Problem #1

Three five-handed extra-terrestrial monsters were holding three
crystal globes. Because of the quantum-mechanical peculiarities of
their neighborhood, both monsters and globes come in exactly three
sizes with no others permitted; small, medium, and large. The
medium-sized monster was holding the small globe; the small
monster was holding the large globe; and the large monster was
holding the medium-sized globe. Since this situation offended their
keenly developed sense of symmetry, they proceeded to transfer
globes from one monster to another so that each monster would have
a globe proportionate to its own size.

Monster etiquette complicated the solution of the problem since it
requires: 1. that only one globe may be transferred at a time, 2. that if
a monster is holding two globes, only the larger of the two may be
transferred, and 3. that a globe may not be transferred to a monster

who is holding a larger globe

By what sequence of transfers could the monsters have solved this

problem?

We might see people reading the problem over several tunes

and pausing over the hard
sketches or writing symbols

parts. We might see them drawing
on paper, and we might hear them

mutter to themselves, something like: "Let's see ... If a monster is
holding two globes . . . What does this mean? . . ." If we were to
ask people to "think aloud" as they worked on the problem, we

would find that their reading,

sketching, and muttering retlected a

whirlwind of internal activities—imaging, inferencing, decision
making, and retrieving of knowledge from memory—activities
which are directed toward "understanding the problem." If we
look in more detail, we would find that people are selecting
information and imaging objects and relations in the problem. For



example, after reading the first line of the Monster Problem, a
person might form a visual image of three blobs, each touching a
circle. The imagined blobs and circles, of course, correspond to
the monsters and the globes, and touching in the image
corresponds to the relation of holding. The images usually reflect
some selection of information, e.g., the blobs may have no hands,
or the circles may give no indication that the globes are crystaline.

To understand a problem, then, the problem solver creates
(imagines) objects and relations in his head which correspond to
objects and relations in the externally presented problem. These
internal objects and relations are the problem solver's internal
representation of the problem. Different people may create
different internal representations of the same problem.

Frequently, problem solvers will make an external
representation of some parts of the problem. They do this by
drawing sketches and diagrams or by writing down symbols or
equations which correspond to parts of the internal representation.
Such external representations can be enormously helpful in
solving problems.

The Relation of Internal and External Representations

Sometimes we can solve a problem using only an internal
representation. For example, most of us can multiply 17 by 23
entirely in our heads and, with a little effort, get the right answer.
Many problems, however, are very difficult to solve without the
aid of an external representation. The Monster Problem and the
Driver's License Problem in the Introduction are examples of such
problems. While it is possible to solve the Monster Problem
entirely mentally, it is very difficult to keep track of where you are
in this problem without an external representation. You find
yourself asking questions like, "Did I give the small globe to the
big monster or didn't I?" In the Driver's License Problem, if you



don't invent and write down a good algebraic notation, you are
very likely to confuse such things as Tom's age now with his age
at an earlier time.

External representations, then, are often very helpful m solving
difficult problems. We should note, though, that external
representations can't help us at all unless we also have an internal
representation of the problem. Imagine that we are playing chess.
In front of us the chess board and pieces provide a very useful
external representation of the chess game. But when we make a
move, we typically try it in our heads before making it on the
board. Planning is done internally. Further, we couldn't make
moves either in our heads or on the board if we didn't have an
internal representation of how each piece moves. In short,
intelligent play would be impossible without an internal
representation.

In summary:

1. An internal representation is essential for intelligent
problem solving. Internal representations are the
medium in which we think, in the same way that words
are the medium in which we talk. Without internal
representations, we can't think through the solution of a
problem, just as without words we can't speak.

2. Sometimes an internal representation is sufficient for
solving. If we were very skillful, we could play
"blindfold chess," that is, we could play using only our
internal representation, but it wouldn't be easy.

3. For many problems, an external representation is very
helpful. We will explore how external representations
can help later in this chapter.

What Do We Need to Represent in an



Internal Representation?

Consider the Monster Problem discussed previously. If we are
to solve this problem, there are four problem parts that we need to
include in our internal representation:

1. The Goal—where we want the globes to be when we
are done.

2. The Initial State—that is, which monsters have which
globes at the beginning of the problem.

3. The Operators—the actions that change one problem
state into another— in this case, passing globes back
and forth; and

4. The Restrictions on the Operators—Monster Problem
rules 1,2, and 3.

Here is another problem:

Starting with the arrangement of dots shown below:

® & & ¢ O O QO 0O Initial Stute

Try to produce this arrangement:

O 0O 00 O e o o o Final State

Given that a dot can move to an adjacent space on either side, e.g.,

QO L@ Operator 1

and a dot can jump over one other dot of either color into an empty space, e.g.,

/,.f"*-..._\
® O Operator 2

However, the white dots can only move to the left and the black
dots to the right.

Restriction



Try to identify the goal, the initial state, the operators, and the
restrictions in the following problem:

A farmer traveling to market took three possessions with him; his
dog, a chicken, and a sack of grain. On his way, he came to a river
which he had to cross. Unfortunately, the only available transportation
was an old abandoned boat that would hold only himself and one of
his possessions. Taking his possessions across one at a time posed a
problem, however. If he left his very reliable dog with the chicken,
the dog would very reliably eat the chicken. If he left the chicken with

the grain, the chicken would eat the grain and then burst, improving
neither of them.

How did the farmer manage to get all his possessions safely across
the river?

While all four problem parts are essential in these two
problems, this isn't always the case. All problems involve at least
a goal, but many problems omit one or more of the other three
parts. Suppose a friend says to us, "Get to my house at 10
o'clock." That statement specifies the goal you are to accomplish,
but nothing else. It doesn't specify where you should start—north,
south, east, or west. There is no special initial state. Further, it
doesn't matter how you get there—you can walk, hop, skate,
unicycle, take a cab, a helicopter, a large bird, anything—it doesn't
matter—no operator is specified. Further still, no restrictions were
specified—e.g., "If you hop, use only the left foot," or "If you
come by bird, don't use a sparrow." Some other problem
statements which specify only a goal are: "Be a success, my
child," and, "Prove your point."

Some problems specify just initial state and goal: "Make a silk
purse out of a sow's ear"; or initial state, goal, and restrictions:
"Make a silk purse out of a sow's ear, but don't smell up the
house." Others specify just goal and operators: "Paint a picture,"
or, "Get to my house by taxi"; or goal, operators, and restrictions:
"Drive me home, but don't drive too fast." Finally, we have



problems which specify goal and restrictions, e.g., "Build a fire
but don't use matches."

To form an adequate internal representation of a problem, we
must represent the goal of the problem, and in addition—for
problems in which they are required— the initial state, the
operators, and the restrictions.

How Internal Representations Are
Formed

At first, we might imagine that forming internal representations
is a copying process in which the problem solver makes a sort of
mental xerox of an external situation—reproducing everything in
the external situation and adding nothing. In fact, an internal
representation is far from being a copy. Forming a representation
is a very active process in which the person adds and subtracts
information, and interprets information in the original situation.
When you read the Monster Problem, you may have pictured
creatures arranged in a row either horizontally or vertically. You
may have pictured them in the order they were mentioned in the
text—medium, small, large—in order of size, or in some other
order. However you pictured them, you added details to the
representation. The problem said nothing at all about how the
monsters were arranged. You may also have added shapes for the
monsters such as those shown in Figure 1.




Figure 1. A Representation of the Monster Problem



Selecting Information

While you probably added some details, you probably left
others out. For example, your image of the problem situation
probably didn't contain anything about "the quantum-mechanical
peculiarities” of the monsters' neighborhood. Very likely you
regarded this material as "just part of the cover story" and not
really relevant to the solution of the problem. Further, you may
have recognized that the number of monster hands is irrelevant
and left that out of your representation as well. Relevance
judgments such as these are useful because they allow us to pare
our representations down to manageable size.

In a study exploring relevance judgments in problem solving
(Hayes, Waterman, and Robinson, 1977), the experimenter read
problems aloud which the subjects had not heard before and asked
them to make relevance judgments. The problems were presented
in small pieces so that the subjects could make separate judgments
about each piece. A typical session for the "Allsports Problem"
proceeded as follows:

Experimenter (reading problem): "I went to tea."

Subject:  ““Not relevant.,”

Exp: “Yesterday.”’

Sub: ‘“‘Relevant—this may be some sort of a time problem”’

Exp: ““With an old friend.”’

Sub: ‘““Maybe the ‘old’ is important if this is a time problem. No, I'll
say irrelevant.”’

Exp: ““Mrs. Allsports.”

Sub: ‘“‘Relevant. Probably an important person.’’

Exp: ‘‘She has three daughters: Amelia, Bella, and Celia.”

Sub: ““OK, now we're into it. It’s going to be about the daughters.
Relevant.’’

Exp: ““On the doorstep, I met another friend.”’

Sub: ““Irrelevant.’’



Even on first reading, subjects were quite accurate in their
relevance judgments. They correctly identified more than 80
percent of the material in the text which was actually relevant,
while rejecting more than 40 percent of the text as irrelevant.
Clearly, relevance judgments can help us to focus on the
important parts of the problem and thus make our task of building
a representation easier.

How do people make relevance judgments? The Hayes,
Waterman, and Robinson study suggests that one very important
factor is the person's knowledge of problem types. A sophisticated
problem solver recognizes many problem types, such as distance-
rate-time problems, age problems, river-crossing problems, and so
on. Once the problem solver has identified the problem type,
judging what is relevant for solution is much easier. For example,
in another study (Hinsley, Hayes, and Simon, 1977), the
experimenter had presented only the first three words of the
problem, "A river steamer . . ." At this point the subject said, "It's
going to be one of those river things with upstream, downstream,
and still water. [She was right.] You are going to compare times
upstream and downstream—or if the time is constant it will be
distance." By recognizing the problem type, the subject could
predict that any mention of speed either upstream or downstream
would be important for solution, and that the names of the boat,
the captain, and their desination would be irrelevant.

If you want to be quick in finding the essential parts of a
problem, knowledge of problem types can be a great help.

Using Knowledge to Interpret Problems

When we form a problem representation, we not only add
information and delete information, we also interpret information
—that is, we use our knowledge of the language and the world to
understand problem information. Imagine the following scene: A



room in which we find a father, a mother, a son, and a baby. The
father says, "Pedro, Juarnta is crying. Please change her." We
infer that the father is talking to the boy, because we know Pedro
is a male name and because the comment isn't an appropriate one
to address to a baby. We infer from our knowledge of people's
behavior at various ages that it is the baby who is crying and in
need of a change, not the mother. Further, we infer that the baby is
female and named Juanita, and that the family is probably Spanish
or Mexican. Finally, our knowledge of family life suggests that
when the father says, "Please change her," he does not mean,
"Turn her in for a new model."

Even a simple situation like this one requires us to make a
number of knowledge-based inferences in order to understand it.
We make these inferences so naturally and automatically that
often we believe that our conclusions were actually spelled out in
the problem and that they were not inferences at all. For example,
if we were to ask someone, "How do you know the boy's name
was Pedro?" the response might well be, "It said so in the
problem." It didn't. That was an inference based on the problem
solver's knowledge.

A time when we become acutely aware that we need knowledge
to interpret problems is when we don't have that knowledge.
When you read through the Enthalpy Problem in the introduction,
you may have found yourself asking questions such as, "What is
internal energy?" "What's a BTU?" "And what in the world is
enthalpy?" Without knowledge of concepts and relations in
thermodynamics to build on, we can't represent the problem. We
don't understand the initial state or the goal, and we have no idea
what the operators might be.

Analogies and Schemas



Very often, when we encounter a problem, we recognize that
we have seen a similar problem before. For example, suppose that
while you are driving, your car begins to lose power. It will only
make 30 miles per hour on level road and slows to a crawl up
hills. Also it has a terrible tendency to stall when the traffic light
turns green. The first time this happens, you may think that your
car is about to die a ghastly death. If you have been through it
before, though, you may recognize the symptoms of a familiar
problem. Your car (you hope) just needs a tune up. With luck,
new spark plugs and points will make it healthy and happy again.

Ahmed and George

For another example, consider the following problem. Two
ancient Egyptians, Ahmed and George, were measuring a field on
the banks of the Nile. Starting from one corner of the field,
Ahmed walked 20 cubits south and George walked 60 cubits west.
How far apart were they at this point?

Now, I'm reasonably sure that you have never heard this
problem before, since I just made it up. Nevertheless, you likely
recognize that this is a "triangle" problem, and because you have a
triangle problem schema, you know that you should use the
Pythagorean theorem to solve it.

There are many familiar problem schemas. For example, there
are schemas for distance-rate-time problems, triangle problems,
interest problems, river-current problems, river-crossing problems,
mixture problems, age problems, and many more. A problem
schema is a package of information about the properties of a
particular problem type. A schema for triangle problems, for
example, may include information that:

1. The initial state will specify lengths of some of the sides
of a right-angle triangle;



2. The goal will be to find the length of another side; and
3. The operator will involve application of the Pythagorean
theorem.

There is a variety of "optimist" story which (inadvertently)
illustrates the importance of our knowledge of problem schemas
in representing problems.

Optimist Story 1

An optimist put a new kind of furnace in his house and found that it
cut his heating bills in half. Delighted, he had another one installed,
expecting that he would cut his fuel bill to zero.

Optimist Story 2

An optimist really likes his doctor except that every time he visits
his office, he has to wait an hour to see him. Then a brilliant idea

strikes him. He decides that if he takes two friends with him to help,
he should only have to wait for 20 minutes.

Now, the peculiar thing about the optimists' thinking is not that
they are failing to use knowledge, but rather that they are using
the knowledge inappropriately. There are many situations in
which it is true that if one of something does half a job, then two
of them will do the whole job. If one can of paint covers half of
the house, then two cans ought to cover the whole house. The
optimist's error is that he has applied this schema to heating
houses, where it is not appropriate.

The optimist in the second story uses a schema which is
perfectly appropriate in "work" problems. If one person can do a
job in an hour, three people ought to be able to do the job in 20
minutes. However, there are many activities that can't be hastened



by having several people combine their effort. These include
waiting, falling off cliffs, and maturing—If one boy reaches
puberty at 12, could 12 boys reach puberty at one?

Problem schemas are an important part of the knowledge we
use to solve problems. However, as the optimist stories show, we
also need to know when the schemas are appropriate and when
they are not.

Individual Differences in Problem
Representation

Even when two people represent the same problem, they may
well not represent it in the same way. A person who is very good
at filtering out irrelevant detail may produce a very spare
representation, as in Figure 2. Another person who is not good at
filtering out irrelevant detail may produce a complex and ornate
representation, as in Figure 3.

There are more differences between representations, though,
than just the amount of detail they contain. One person may
represent a problem in visual imagery, another in sentences, and a
third in auditory images. If two people represent a problem in
visual images, they may well not use the same images. For
example, in imagining the monsters in the Monster Problem, some

saw them arranged horizontally, some vertically, and some in a
circle.

Initial
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State



Figure 2. A Spare Representation

Figure 3. An Ornate Representation of the Same Problem

Our skill in problem solving depends in a very important way
on our store of problem schemas. Each problem schema we know
gives us a very valuable advantage in solving a whole class of
problems—an advantage which may consist in knowing what to
pay attention to, or how to represent the problem, or how to search
for a solution, or all three. Clearly the more schemas we know, the
better prepared we are as problem solvers.

While our problem skill depends on how many sehemas we
have, it also depends on the nature of those sehemas, McDermott
and Larkin (1978) have shown that novices in physics are more
likely to have sehemas that are tied to concrete aspects of the
problem situation, e.g., "spring problem" sehemas and "balance
problem" sehemas, whereas experts are more likely to have
sehemas tied to abstract physics principles, e.g., "energy" sehemas
and "moment of inertia" sehemas.

In the same way, inexperienced math students are likely to use
separate schemas for the following problems:




Mr. Lloyd and Mr. Russo

Mr. Russo takes 3 min. less than Mr. Lloyd to pack a case when
each works alone. One day, after Mr. Russo spent 6 min. in packing a
case, the boss called him away, and Mr. Lloyd finished packing in 4
more minutes. How many minutes would it take Mr. Russo alone to

pack a case?

Saturated Fats

One vegetable oil contains 6% saturated fats and a second contains
26% saturated fats. In making a salad dressing how many ounces of
the second may be added to 10 oz. of the first if the percent of
saturated fats is not to exceed 16%?

They will use a "work problem" schema for the first and a
"mixture problem" schema for the second. More experienced math
students would include both of these problems in a "linear
equations" schema.

Several years ago, I did some studies of the imagery people use
to solve elementary math problems (Hayes, 1973). When I gave
people long-division problems to do in their heads, I heard my
subjects do a lot of talking to themselves: "Two-seventy-three into
nine-forty-one, is two, and two times two-seventy-three is . . ."
"Aha!" I said to myself. "Auditory images are important here."
What really surprised me though was the behavior of subjects
recruited from the faculty of the modern languages department.
These subjects were people who were born in Europe but had
been in the United States for many years and spoke excellent
English. These subjects did a lot of talking, too, but in French,
Spanish, Italian, Polish, or Latvian—whatever language they
spoke when they originally learned division. One person told me
that he did elementary mathematics in Catalan, his first language,
and more advanced mathematics in Spanish, the language he used



about quite undeliberately, without any effort, and have no
conscious purpose or use. For example, I don't use them
deliberately to help me remember the songs. They rather just
accompany my listening to a song, or singing it, or thinking about
it, as a sort of image of the song. As the tune unfolds, I mentally
proceed along the route."

We have observed that people use very diverse forms of
representation even when they are solving simple problems.
Numbers may be represented as the sound of words in one's native
language. They may be represented as visual images

Table 1. One Subject's Color Associations




of print forms, Braille patterns, or colors. And they may be
represented as finger movements. Most of our subjects used two
or more of the forms. Thus, when they are representing a problem,
people appear to have considerable choice in how they represent
it. This choice is important because the form of representation that
subjects choose can make a big difference in the difficulty they
have in solving problems, and in the success they have in
generalizing the solutions.

External Representations

In many cases, an external representation is very helpful for
solving problems. Drawing a sketch, jotting down lists, writing
out equations, and making diagrams can help us to remember
information and to notice new relations in the problem.

Consider the following rate problem:

A car can average 20 mph up to Pike s Peak and 60 mph back down
the same road. What is the average speed for the whole trip?

Some people will find this problem easy enough to solve in
their heads. Others feel much more comfortable with pencil and
paper—writing down relations as they occur to them and not
trying to juggle all the facts in their heads at once. The scratch
sheet of such a person might look like this:



total distance

1) average rate =
(1) 5 total time

(2) distance up = distance down =X

(3) total distance =2X

(4) time =dlstance
rate
X X
# — . t- d —
(5) time up 0 mph’ ime down 60 moh
X X
|l time = —+ —
(6) total time >0 ' 60
7 X 2X 2X - 20 - 60 - 2X
average rate = = - —
. £+£ 60X + 20X 80X

20 60 20 - 60

_20-60 -2 2400 .
80 80

(8)

Clearly this external representation is an enormous aid to
memory. The problem solver can compute total time in lines 4
through 6 without having to remember total distance. In
computing average rate in lines 7 and 8, he can apply each
algebraic step without having to remember the effects of previous
steps. Working without such an external representation would be
very difficult for most people.

Other kinds of external representation can also be very useful



memory aids. For example, matrix representation is very useful in
solving identification problems such as this one:

Dickens, Einstein, Freud, and Kant

Dickens, Einstein, Freud, and Kant are professors of English,
Physics, Psychology, and Philosophy (though not necessarily
respectively).

1. Dickens and Freud were in the audience when the
psychologist delivered his first lecture.

2. Both Einstein and the philosopher were friends of the
physicist.

3. The philosopher has attended lectures by both Kant and
Dickens.

4. Dickens has never heard of Freud.

Match the protessors to their fields.

Our task is to match the professors to their fields. To do this, we
construct a matrix as shown in Figure 5. Now, reading sentence 1,
we conclude that the psychologist is neither Dickens nor Freud, so
we put X's (indicating combinations ruled out) in two blocks as
shown in the top matrix of Figure 6. In the second line, we learn
that Einstein is neither the philosopher nor the physicist, and in the
third line, that the philosopher is neither Kant nor Dickens, so we
can fill in four more X's, as shown in the middle matrix of Figure
6. Now that leaves only Freud who could be the philosopher, so
we put an O in the block corresponding to Freud and philosophy,
and X out the other alternative fields for Freud (see remaining
matrix, Figure 6). Proceeding in this way (though you may have
some difficulty with the last few steps), you can identify the fields
of all of the professors.

The matrix, like the notations in the previous problem, provides




us with a great deal of help in remembering the results we have
obtained in previous steps. Without such aids, some problems
would be difficult or impossible to solve.

Eaolish Bk cifeis - Y ) G DLl ki
Dickens

Einstein

Freud

Kant

Figure 5. A matrix for the Dickens, Einstein, Freud, and Kant problem



TOTAL VOLUME AFTER = ALCOHOL AFTER + WATER AFTER

If any of these relations hadn't occurred to you after reading the
problem text, the diagram could have given you a very useful hint.
Now, solve this problem before you proceed.

A board was sawed into two pieces. One piece was two-thirds as
long as the whole board and was exceeded in length by the second
piece by 4 ft. How long was the board before it was cut?

Did you notice the contradictory nature of the problem? Paige
and Simon found that people who draw a diagram to represent this
problem can use the diagram to discover its contradictory nature.
People who do not draw a diagram are likely to miss the
contradiction and some may be quite happy to accept an answer of
—12 feet for the length of the board!

External representations, then, can be enormously useful both in

remembering the details of a problem and in understanding the
relations among its parts. You should always consider using them
when you are solving difficult problems.

Change and Growth in Presentations

An important fact about a representation is that it can change or
develop as we work on the problem. Often enough, when we start
to solve a problem, there are some important parts that we are
vague about or which have escaped us entirely. We may not fully
understand the whole problem until we have worked on it for
some time. When people start to solve the Monster Problem, they
usually have a pretty clear understanding of the initial state, the
goal, and the operator. Often though, they don't really understand
the restrictions. As they try to make a move, we may hear them
mutter, "If two globes are holding the same monster . . . No. That's




This new, more precise representation of the goal can help you
to avoid false leads in your search for a solution.

[ observed another example of change in representation
firsthand when a mend challenged me to solve the Four Knights
Problem. This problem involves a 3 x 3 chess board and four
chess pieces—two white knights and two black knights, arranged
as shown in Figure 8. The goal is to interchange the positions of
the white and black knights using only legal knight moves. For
those who aren't familiar with chess, Figure 9 shows the legal
knight moves. The knight can move one space straight ahead and
one space diagonally forward.

Unfortunately, I had never seen the Four Knights Problem
before. However, on general principles, I set up some guidelines
in searching for a solution. First, I decided to work with an
external representation of the problem to help me keep my place. I
used a 3 x 3 matrix like that shown in Figure 8, on which I
pencilled the current position of each piece and erased the
previous position. Second, I knew that if I moved pieces at
random, I would have trouble remembering which




move. Now, because of the result I observed in the external
representation, I added a larger operator to my representation—a
macro-operator—consisting of eight knights' moves. Using the
macro-operator, I could solve the problem in just two moves
rather than 16.

Figure 10. Four Knights Problem Rotated One Step Clockwise From

Original Position



Figure 11. Four Knights Problem Rotated Two Steps Clockwise

From Original Position

Very often, then, we change our representation of a problem
while we are solving it. In many cases, these changes appear to be
improvements which make the problem easier to solve. If you are
having difficulty in solving a problem, it makes sense to consider
changing your problem representation. A useful way to proceed,
as Polya (1945) has suggested, is to reexamine the problem
statement very carefully. Perhaps we can make an inference which
will help us represent the goal more accurately as in the
Matchstick Problem. Or perhaps we can form a macro-operator as
in the Four Knights Problem. Careful examination of each of the



four problem parts—initial state, goal, operators, and restrictions-
can suggest ways to improve our representation.

Representations Make a Difference

A problem may be difficult or impossible for us to solve in one
representation, but much easier in another. For example, consider
the Nine Dots Problem.

The Nine Dots Problem

Without raising your pencil from the paper, draw four straight lines
so that each of the dots above is touched by at least one of the lines.

If you don't already know the problem, try to solve it before
proceeding. Some people have trouble because they have added a
restriction to their representation which makes the problem
unsolvable.* The restriction is that the lines should never extend
beyond the square defined by the nine dots. Typical solution
attempts for subjects adding this restriction are shown in Figure
12.

The first representation gave trouble because it added an extra
restriction to the problem. Any representation that adds or deletes



significant things from the initial state, from the goal, from the
operators, or from the restrictions is very likely to give us serious
trouble. We can avoid this trouble to some extent by checking our
representation very carefully against the problem statement before
we launch into any massive solution attempt.

Even when our representation of a problem is essentially
correct, though, there are other ways to form a correct
representation. Some of them are easier to use than others.
Consider the following river-current problem.

A River-Current Problem

You are standing by the side of a river which is flowing past you at
the rate of 5 mph. You spot a raft 1 mi. upstream on which there are
two boys helplessly adrift. Then you spot the boys' parents 1 mi,
downstream paddling upstream to save them. You know that in still
water the parents can paddle at the rate of 4 mph. How long will it be
before the parents reach the boys?

One very natural way to represent the problem is to take the
point of view of the observer standing by the side of the river.
(The problem really sets you up to do this.) We can compute the
speed of the boys with respect to the observer (5 mph
downstream) and the speed of the parents with respect to the
observer (5 mph—4 mph = 1 mph downstream). The difference in
speed between the boys and their parents is four miles per hour.
Thus, it should take half an hour to cover the two-mile distance.

An alternate and simpler way to represent the problem is to take
the point of view of the boys on the raft. If we take this point of
view, we can ignore the rate at which the boys and their parents
are moving with respect to the observer. (The observer really is
irrelevant in this problem.) In addition, we can ignore the rate of
the current, since it is affecting the boys and their parents equally.
(If this seems strange to you, remember that we routinely ignore
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