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The Lovelace Test

Works of art make rules;
rules do not make works of art.

— CLAUDE DEBUSSY

The machine was a thing of beauty. Towers of spinning brass cogs
with numbers on their teeth were pinned to rods driven by a
gear train. The seventeen-year-old Ada Byron was transfixed as she
cranked the handle of the Difference Engine. Its inventor, Charles
Babbage, had invited her to see it in action as it whirred and clicked
away, mechanically calculating polynomial sums. Ada had always had
a fascination with mathematics and inventions, encouraged by the
tutors her mother had been eager to provide.

But it may have been the artistic genes she’d inherited from her
father, the poet Lord Byron, that set Ada to imagining what such
marvellous machinery might be capable of. A decade later—now
married and become Countess of Lovelace—she turned her attention
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to Babbage’s designs for an even more sophisticated calculator. It

dawned on her that it would be more than just a number cruncher:

The Analytical Engine does not occupy common ground with
mere “calculating machines.” It holds a position wholly its own;
and the considerations it suggests are most interesting in their
nature.

Ada Lovelace’s notes are now recognized as the first inroads into the
creation of code, the spark of the idea that has ignited the artificial in-
telligence revolution sweeping the world today, fueled by the work of
pioneers like Alan Turing, Marvin Minsky, and Donald Michie. Yet
Lovelace herself was cautious as to how much any machine could
achieve: “It is desirable to guard against the possibility of exaggerated
ideas that might arise as to the powers of the Analytical Engine,” she
wrote. “The Analytical Machine has no pretensions whatever to origi-
nate anything. It can do whatever we know how to order it to perform.”

Ultimately, she believed, it was limited: you couldn’t get more out
than you had put in.

This belief has been a mantra of computer science for many years,
a shield against the fear that someday programmers will set in motion
a computer they cannot control. Some have gone so far as to suggest
that to program a machine to be artificially intelligent, we would first
have to understand human intelligence. But in the last few years a new
way of thinking about code has emerged: a shift from a top-down ap-
proach to programming to bottom-up efforts to get the code to chart its
own path. It turns out you don’t have to solve intelligence first. You can
allow algorithms to roam the digital landscape and learn just like chil-
dren. Today’s code is making surprisingly insightful moves, spotting
hard-to-detect features in medical images and making shrewd trades on
the stock market. This generation of coders believes it can finally prove
Ada Lovelace wrong: that you can get more out than you programmed in.

Yet there is still one realm of human endeavor that most people be-
lieve the machines will never be able to touch. We have this extraordi-
nary ability to imagine, to innovate and create. Our code, the creativity
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code, is one we have long felt that no programmer could ever crack.
This is a code that we believe depends on being human.

Mozart’s Requiem allows us to contemplate our own mortality.
Witnessing a performance of Othello invites us to navigate the land-
scape of love and jealousy. A Rembrandt portrait conveys so much
more than what the sitter looked like. How could a machine ever re-
place or compete with Mozart, Shakespeare, or Rembrandt? And, of
course, human creativity extends beyond the arts. The molecular gas-
tronomy of Michelin star chef Heston Blumenthal, the football trickery
of Dutch striker Johan Cruyff, the curvaceous buildings of Zaha Hadid,
the invention of the Rubik’s Cube by Hungarian Erno Rubik, even the
code behind a game like Minecraft—all involve great acts of human
creativity.

One of the things that drives me to spend hours at my desk con-
juring up equations and penning proofs is the thrill of creating some-
thing new. My greatest moment of creativity, one I think back to again
and again, was the time I conceived of a new symmetrical object. No
one knew this object was possible. But after years of hard work and a
momentary flash of white-hot inspiration I wrote on my yellow notepad
the blueprint for this novel shape. That sheer buzz of excitement is the
allure of creativity.

But what do we really mean by this shape-shifting term? Those who
have tried to pin it down usually circle around three factors. They speak
of creativity as the drive to come up with something that is new, that
is surprising, and that has value.

It turns out it’s easy to make something new. I can get my computer
to churn out endless proposals for new symmetrical objects. Surprise
and value are more difficult to produce. In the case of my symmetrical
creation, I was legitimately surprised by what I'd cooked up, and so
were other mathematicians. No one was expecting the strange new
connection I'd discovered between this symmetrical object and the un-
related subject of number theory. My object suggested a new way of
understanding an area of mathematics that is full of unsolved problems,
and that is what gave it value.
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We all get sucked into patterns of thought. We think we see how
the story will evolve and then suddenly we are taken in a new direc-
tion. This element of surprise makes us take notice. It is probably why
we get a rush when we encounter creativity. But what gives something
value? Is it a question of price? Does it have to be recognized by others?
I might value a poem or a painting I've created, but my conception of
its value is unlikely to be shared more widely. A surprising novel with
lots of plot twists could be of relatively little value, but a new and sur-
prising approach to storytelling, or architecture, or music—one that
changes the way we see or experience things—will generally be rec-
ognized as having value. This is what Kant refers to as “exemplary orig-
inality,” when an original act becomes an inspiration for others. This
form of creativity has long been thought to be uniquely human.

At some level, all these expressions of creativity are the products
of neuronal and chemical activity. Creativity is a code that evolution
across millions of years has honed inside our brains. If we unpick the
creative outpourings of the human species, we can start to see that
there are rules underlying the creative process. So is our creativity
in fact more algorithmic and rule-based than we might want to ac-
knowledge? Can we hope to crack the creativity code?

This book aims to explore the limits of the new Al to see whether
it can match or even surpass the marvels of our human code. Could a
machine paint, compose music, or write a novel? It may not be able to
compete with Mozart, Shakespeare, or Picasso, but could it be as cre-
ative as a child when asked to write a story or paint a scene?

My daughters are being creative when they build their Lego castles.
My son is heralded as a creative midfielder when he leads his football
team to victory. We speak of solving everyday problems creatively and
running organizations creatively. The creative impulse is a key part of
what distinguishes humans from other animals, and yet we often let it
stagnate inside us, falling into the trap of becoming slaves to our for-
mulaic lives. Being creative requires a jolt to take us out of the well-
carved paths we retrace each day. This is where a machine might come
in: perhaps it could give us that jolt, throw up a new suggestion, stop
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Three Types of Creativity

The chief enemy of creativity is good sense.

—PABLO PICASSO

The value placed on creativity in modern times has led to a range
of writers and thinkers trying to articulate what it is, how to
stimulate it, and why it is important. It was while serving on a com-
mittee convened by the Royal Society to assess what impact machine
learning would likely have on society that I first encountered the
theories of Margaret Boden.

Boden is an original thinker who over the decades has managed to
fuse many different disciplines: she is a philosopher, psychologist,
physician, Al expert, and cognitive scientist. In her eighties now, with
white hair flying like sparks and an ever-active brain, she enjoys en-
gaging with the question of what these “tin cans,” as she likes to call
computers, might be capable of. To this end, she has identified three

different types of human creativity.
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Exploratory creativity involves taking what is already there and ex-
ploring its outer edges, extending the limits of what is possible while
remaining bound by the rules. Bach’s music is the culmination of a
journey that baroque composers embarked on to explore tonality by
weaving together different voices. His preludes and fugues pushed the
boundaries of what was possible before breaking the genre open and
ushering in the classical era of Mozart and Beethoven. Renoir and Pis-
sarro reconceived how we could visualize nature and the world
around us, but it was Claude Monet who really pushed the boundaries,
painting his water lilies over and over until his flecks of color dissolved
into a new form of abstraction.

Mathematics revels in this type of creativity. The classification of
Finite Simple Groups is a tour de force of exploratory creativity. Starting
from the simple definition of a group of symmetries—a structure
defined by four simple axioms—mathematicians spent 150 years
compiling the list of every conceivable element of symmetry. This ef-
fort culminated in the discovery of the Monster simple group: it has
more symmetries than there are atoms in the Earth and yet fits into
no pattern of other groups. This form of mathematical creativity in-
volves pushing limits while adhering strictly to the rules of the game.
Those who engage in it are like the geographical explorers who, even
as they discover previously unknown territory, are still bound by the
limits of our planet.

Boden believes that exploration accounts for 97 percent of human
creativity. This is also the sort of creativity at which computers excel.
Pushing a pattern or set of rules to an extreme is a perfect exercise for
a computational mechanism that can perform many more calculations
than the human brain can. But is it enough to yield a truly original cre-
ative act? When we hope for that, we generally imagine something
more utterly unexpected.

To understand Boden’s second type, combinational creativity, think
of an artist taking two completely different constructs and finding a
way to combine them. Often the rules governing one will suggest an
interesting new framework for the other. Combination is a very
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powerful tool in the realm of mathematical creativity. The eventual
solution of the Poincaré conjecture, which describes the possible shapes
of our universe, was arrived at by applying the very different tools used
to understand flow over surfaces. In a leap of creative genius, Grigori
Perelman landed at the unexpected realization that by knowing the way
aliquid flows over a surface one could classify the possible surfaces that
might exist.

My own research takes tools from number theory that have been
used to understand primes and applies them to classify possible sym-
metries. The symmetries of geometric objects don’t look at first sight
anything like numbers. But applying the language that has helped us
to navigate the mysteries of the primes and replacing primes with sym-
metrical objects has revealed surprising new insights into the theory
of symmetry.

The arts have also benefited greatly from this form of cross-
fertilization. Philip Glass took ideas he learned from working with
Ravi Shankar and used them to create the additive process that is the
heart of his minimalist music. Zaha Hadid combined her knowledge
of architecture with her love of the pure forms of the Russian painter
Kasimir Malevich to create a unique style of curvaceous buildings. In
cooking, creative master chefs have fused cuisines from opposite ends
of the globe.

There are interesting hints that this sort of creativity might also be
perfect for the world of AL Take an algorithm that plays the blues and
combine it with the music of Boulez and you will end up with a strange
hybrid composition that might just create a new sound world. Of
course, it could also be a dismal cacophony. The coder needs to find
two genres that can be fused algorithmically in an interesting way.

It is Boden’s third form of creativity that is the more mysterious and
elusive. What she calls transformational creativity is behind those rare
moments that are complete game changers. Every art form has these
gear shifts. Think of Picasso and cubism. Schoenberg and atonality.
Joyce and modernism. They are phase changes, like when water sud-
denly goes from liquid to gas or solid. This was the image Goethe hit
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upon when he sought to describe how he was able to write The
Sorrows of Young Werther. He devoted two years to wrestling with how
to tell the story, only for a startling event, a friend’s suicide, to act as a
sudden catalyst. “At that instant,” he recalled in Dichtung und Wahrheit,
“the plan of Werther was found; the whole shot together from all direc-
tions, and became a solid mass, as the water in a vase, which is just at
the freezing point, is changed by the slightest concussion into ice.”

At first glance it would seem hard to program such a decisive shift,
but consider that, quite often, these transformational moments hinge
on changing the rules of the game, or dropping a long-held assump-
tion. The square of a number is always positive. All molecules come
in long lines, not chains. Music must be written inside a harmonic scale
structure. Eyes go on either sides of the nose. There is a meta rule for this
type of creativity: start by dropping constraints and see what emerges.
The creative act is to choose what to drop—or what new constraint to
introduce—such that you end up with a new thing of value.

If I were asked to identify a transformational moment in mathe-
matics, the creation of the square root of minus one, in the mid-
sixteenth century, would be a good candidate. This was a number that
many mathematicians believed did not exist. It was referred to as an
imaginary number (a dismissive term first used by Descartes to indi-
cate that there was no such thing). And yet its creation did not con-
tradict previous mathematics. It turned out it had been a mistake to
exclude it. Now consider, if that error had persisted to today: Would a
computer come up with the concept of the square root of minus one
if it were fed only data telling it that there is no number whose square
could be negative? A truly creative act sometimes requires us to step
outside the system and create a new reality. Can a complex algorithm
do that?

The emergence of the romantic movement in music is in many
ways a catalog of rule-breaking. Instead of hewing to close key signa-
tures as earlier composers had done, upstarts like Schubert chose to
shift keys in ways that deliberately defied expectations. Schumann left
chords unresolved that Haydn or Mozart would have felt compelled



Three Types of Creativity 11

to complete. Chopin composed dense moments of chromatic runs and
challenged rhythmic expectations with his unusual accented passages
and bending of tempos. The move from one musical era to another,
from Medieval to Baroque to Classical to Romantic to Impressionist
to Expressionist and beyond, is one long story of smashing the rules.
It almost goes without saying that historical context plays an impor-
tant role in allowing us to define something as new. Creativity is not
an absolute but a relative activity. We are creative within our culture
and frame of reference.

Could a computer initiate the kind of phase change that can move
us into a new state? That seems a challenge. Algorithms learn how to
act based on the data presented to them. Doesn’t this mean that they
will always be condemned to producing more of the same?

As the epigraph of this chapter, I chose Picasso’s observation that
the “chief enemy of creativity is good sense.” That sounds, on the face
ofit, very much against the spirit of the machine. And yet, one can pro-
gram a system to behave irrationally. One can create a meta rule that
will instruct it to change course. As we shall see, this is in fact some-
thing machine learning is quite good at.

Can Creativity Be Taught?

Many artists like to fuel their own creation myths by appealing to ex-
ternal forces. In ancient Greece, poets were said to be inspired by the
muses, who breathed a kind of creative energy into their minds, some-
times sacrificing the poet’s sanity in the process. For Plato, “a poet is
holy, and never able to compose until he has become inspired, and is
beside himself and reason is no longer in him ... for no art does
he utter but by power divine.” The great mathematician Srinivasa
Ramanujan likewise attributed his insights to ideas imparted to him
in dreams by the goddess Namagiri, his family’s deity. Is creativity a
form of madness or a gift of the divine?

One of my mathematical heroes, Carl Friedrich Gauss, was known
for covering his tracks. Gauss is credited with creating modern number
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obvious path. This involves deep immersion in what we have created to
date. Out of that deep understanding might emerge something never
seen before. It is important to impress on students that there isn’t very
often some big bang that resounds with the act of creation. It is gradual.
Van Gogh expressed it well: “Great things are not done by impulse but
by small things brought together”

I find Boden’s second type, combinational creativity, to be a
powerful weapon in stimulating new ideas. I often encourage students
to attend seminars and read papers in subjects that don’t seem con-
nected with the problems they are tackling. A line of thought from a
distant corner of the mathematical universe might resonate with the
problem at hand and stimulate a new idea. Some of the most creative
bits of science are happening today at the junctions of the disciplines.
The more we can stray beyond our narrow lanes to share our ideas and
problems, the more creative we are likely to be. This is where a lot of
the low-hanging fruit is found.

Boden’s third type, transformational creativity, seems hard at first
sight to harness as a strategy. But again, the goal is to test the status quo
by dropping some of the constraints that have been put in place. Try
seeing what happens if you change one of the basic rules you have ac-
cepted as part of the fabric of your subject—it’s dangerous, because
by doing so you can collapse the system. But this brings me to one of
the most important ingredients needed to foster creativity, and that is
embracing failure.

Unless you are prepared to fail, you will not take the risks that will
allow you to break out and create something new. This is why our ed-
ucation system and our business environment, both realms that
abhor failure, are terrible environments for fostering creativity. If I want
creativity from my students, I have learned, it is important to celebrate
their failures as much as their successes. Sure, their failures won’t make
it into the PhD thesis, but so much can be learned from them. When
I meet with my students, I repeat again and again Samuel Beckett’s call
to “Try. Fail. Fail again. Fail better.”
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Are these strategies that can be written into code? In the past, the
top-down approach to coding meant there was little prospect of cre-
ativity in the output. Coders were never very surprised by what their
algorithms produced. There was no room for experimentation or
failure. But this all changed recently—because an algorithm, built on
code that learns from its failures, did something that was new, shocked
its creators, and had incredible value. This algorithm won a game that
many believed was beyond the abilities of a machine to master. As we
will see in Chapter 3, it was a game that required creativity to play.
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Ready Steady Go

We construct and construct,
but intuition is still a good thing.

—PAUL KLEE

People often compare mathematics to playing chess, and certainly
there are connections. But when Deep Blue beat the best chess
master the human race could offer, in 1997, it did not lead to the closure
of mathematics departments. Although chess is a good analogy for the
formal effort of constructing a proof, there is another game that mathe-
maticians have regarded as much closer to their work, because it also
features a creative and intuitive side. That is the Chinese game of Go.

I first discovered Go when I visited the mathematics department
at Cambridge as an undergraduate to explore whether to do my PhD
with the amazing group that had helped complete the Classification
of Finite Simple Groups, a sort of Periodic Table of Symmetry. As I
sat talking about the future of mathematics with John Conway and
Simon Norton, two of the architects of this great project, I kept being
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distracted by students at the next table furiously slamming black and
white stones onto a grid carved into a large, wooden board.

Eventually I asked Conway what they were doing. “That’s Go,” he
explained. “It’s the oldest game that is still being played to this day.” In
contrast to chess, with its warlike quality, Go is a game of territory cap-
ture. Players take turns placing their white or black pieces (or stones)
onto a grid nineteen squares wide and nineteen squares high. If one
player manages to surround a collection of the other’s stones, those
stones are captured. The game is over when all the stones have been
placed, and the winner is the player who has captured the most stones.
It sounds rather simple. The challenge of the game is that, as you are
pursuing efficient captures of your opponent’s stones, you must also
avoid having your own stones captured.

“It’s a bit like mathematics,” Conway explained. “Simple rules that
give rise to beautiful complexity.” In fact, it was while Conway watched
a game playing out between two experts, as they drank coftee in that
common room, that he formed the germ of the idea he would later call
“surreal numbers.” As a Go match moves to its end game, it behaves
like this new sort of number.

I've always been fascinated by games. When I travel abroad I like
to learn whatever game I find the locals playing and bring it back with
me. So when I got back from the wilds of Cambridge to the safety of
my home in Oxford, I decided to buy a Go set from the local toy shop
and see just what appeal it held for these obsessed students. As I began
to explore the game with an Oxford classmate, I realized how subtle it
was. It seemed impossible to devise a strategy that would lead to a win.
In an important respect, a Go game proceeds in a direction opposite
to chess. Whereas with chess, one’s choices of moves get simplified
with every piece removed from the board, with this game the con-
stant addition of stones to the board makes the situation ever more
complicated.

The American Go Association estimates that it would take a
number with three hundred digits to count the number of games of
Go that are legally possible. For chess, the computer scientist Claude
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Shannon estimated that a 120-digit number (now called the Shannon
number) would suffice. These are not small numbers in either case,
but they give you a sense of how big the difference is in possible
permutations.

As a kid I played a lot of chess and enjoyed working through the
logical consequences of a proposed move. It appealed to the growing
mathematician in me. Because the moves in chess branch out in a con-
trolled manner, it is a manageable task for a computer, or even a
human, to comprehend the tree of possibilities and analyze the impli-
cations of going down different branches. In contrast, the complexity
of Go makes it impossible to analyze the tree of possibilities in any rea-
sonable timeframe. This is not to say that Go players don’t work to
anticipate the logical consequences of their moves, but it does imply
that they also rely on a more intuitive feel for the pattern of play.

The human brain is acutely attuned to discerning whatever struc-
ture and pattern there is to be found in a visual image. An experienced
Go playerlooks at the lay of the stones and, by tapping into the brain’s
strength at pattern recognition, is able to spot a valuable next move.
For computers, mimicking this very basic human skill has tradition-
ally been a struggle. Machine vision is a challenge that engineers have
wrestled with for decades.

The human brain’s highly developed sense of visual structure has
been honed over millions of years and has been key to our survival.
Any animal’s ability to survive depends in part on its ability to pick out
structure from the visual mess that nature offers up. A pattern in the
chaos of the jungle likely indicates the presence of another animal—and
if you fail to take notice, that animal might eat you (or at least you will
miss your chance to eat it). The human code is extremely good at
reading patterns, interpreting how they might develop, and responding
appropriately. It is one of our key assets, and it plays into our appre-
ciation for the patterns in music and art.

It turns out that pattern recognition is precisely what I do as a math-
ematician when I venture into the remoter reaches of the mathemat-
ical jungle. I can’t rely on a simple, step-by-step logical analysis of the
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Hassabis soon graduated to a Commodore Amiga, which could be
programmed to play the games he enjoyed. Chess was still too com-
plicated, but he managed to program the Commodore to play Othello,
a game that looks rather similar to Go. Its stones, which are black on
one side and white on the other, get flipped when they are trapped be-
tween stones of an opponent’s color. It’s not a game that merits grand-
masters, so he tried his program out on his younger brother. It beat him
every time.

This was classic if-then programming: he needed to code in by
hand the response to each of his opponent’s moves. It was “if your op-
ponent plays that move, then reply with this move.” The machine’s ca-
pability all came from Hassabis and his ability to see what the right
responses were to win the game. It still felt a bit like magic, though.
Code up the right spell and then, rather like The Sorcerer’s Apprentice,
the Commodore would go through the work of winning the game.

Hassabis raced through his schooling, which culminated at the age
of sixteen with an offer to study computer science at Cambridge. He'd
set his heart on Cambridge after seeing Jeff Goldblum in the film The
Race for the Double Helix. “I thought, is this what goes on at Cambridge?
You go there and you invent DNA in the pub? Wow.”

Cambridge wouldn’t let him start his degree at the age of sixteen,
so he had to defer for a year. To fill his time, he won a place working
for a game developer, having come in second in a competition run by
Amiga Power magazine. While there, he created his own game, Theme
Park, in which players build and run their own theme park. The game
was hugely successful, selling several million copies and winning a
Golden Joystick Award. With enough funds to finance his time at uni-
versity, Hassabis set off for Cambridge.

His course introduced him to the greats of the Al revolution: Alan
Turing and his test for intelligence; Arthur Samuel and his program
to play checkers; John McCarthy, who coined the term artificial intel-
ligence; Frank Rosenblat and his first experiments with neural net-
works. These were the shoulders on which Hassabis aspired to stand.
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It was while sitting in lectures at Cambridge that he heard a professor
repeat the mantra that a computer could never play Go because of the
game’s great reliance on creativity and intuition. This was like a red rag
waved in front of the young Hassabis. He left Cambridge determined
to prove that professor wrong,.

His idea was that, rather than try to write the program himself that
could play Go, he would write the meta-program that could write the
program to play Go. It sounded crazy, but the concept was that this meta-
program could, as the Go-playing program played more and more
games, learn from its mistakes.

Hassabis had learned about a similar idea implemented by artifi-
cial intelligence researcher Donald Michie in the 1960s. Michie had
written an algorithm called MENACE that learned from scratch the
best strategy to play tic-tac-toe or, as it is called in the UK, noughts and
crosses. (MENACE stood for Machine Educable Noughts And Crosses
Engine.) To demonstrate the algorithm Michie had rigged up 304
matchboxes representing all the possible layouts of X's and O’s encoun-
tered while playing. Each matchbox was filled with different colored
balls to represent possible moves. Balls were removed or added to the
boxes to punish losses or reward wins. As the algorithm played more
and more games, the reassignment of the balls eventually led to an al-
most perfect strategy for playing. It was this idea of learning from
mistakes that Hassabis wanted to use to train an algorithm to play Go.

Hassabis could base his strategy on another good model. A new-
born baby does not have a brain that is preprogrammed with knowl-
edge of how to make its way through life. It is programmed instead to
learn as it interacts with its environment.

If Hassabis was going to emulate the way the brain learns to solve
problems, then knowing how the brain works was clearly going to help.
So he decided to do a PhD in neuroscience at University College
London. It was during coffee breaks from lab work that Hassabis
started discussing with neuroscientist Shane Legg his plans to create
a company to try out his ideas. It shows the low status of Al as recently
as a decade ago that they never admitted to their professors their dream
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to dedicate their lives to AL But they felt they were onto something
big. In September 2010, the two scientists decided to create a company
with Mustafa Suleyman, who had been Hassabis’s friend since child-
hood. And thus DeepMind was incorporated.

The company needed money, but initially Hassabis couldn’t raise
any capital. Pitching on a promise that they were going to solve intel-
ligence by playing games did not sound serious to most investors. A
few, however, did see the potential. Among those who put money in
right at the outset were Elon Musk and Peter Thiel. Thiel had never
invested outside Silicon Valley and tried to persuade Hassabis to relo-
cate there. A born and bred Londoner, Hassabis held his ground,
insisting that there was more untapped talent available in London.
Hassabis remembers a bizarre conversation he had with Thiel’s lawyer,
who asked in all earnestness: “Does London have law on IP?” He shakes
his head: “I think they thought we were coming from Timbuktu!” The
founders had to give up a huge amount of stock to the investors, but
they got the money to start trying to crack Al

The challenge of creating a machine that could learn to play Go still
felt like a distant dream. They set their sights at first on a less cerebral
goal: playing 1980s Atari games. Atari is probably responsible for a lot
of students flunking courses in the late "70s and early "80s. I certainly
remember wasting a huge amount of time playing the likes of Pong,
Space Invaders, and Asteroids on a friend’s Atari 2600 console. The con-
sole was one of the first pieces of hardware that could play multiple
games, which were loaded via cartridges. This allowed for more games
to be developed over time. With previous consoles you could play only
the games that had come preprogrammed into them.

One of my favorite Atari games was called Breakout. A wall of col-
ored bricks appeared on the screen and your job was to destroy it com-
pletely. Your only weapons were a series of brick-destroying balls that
you could send toward the bricks by using a paddle at the bottom.
Moving this paddle left or right with a joystick, you attempted to
intercept the balls as they bounced off the bricks and propel them
back toward the wall. As you cleared the bricks—assuming you didn’t



24 THE CREATIVITY CODE

lose all the balls by letting them fly past your paddle—the yellow ones
in the bottom layers each scored you one point. The higher layers of
red bricks got you seven points. Meanwhile, as your score rose, the
balls would speed up, making the game-play progressively harder.

My friend and I were particularly pleased one afternoon when we
found a clever trick to vastly improve our scores. If you dug a tunnel
up through the bricks on one edge of the screen, you could get the ball
up above the wall, where it would bounce rapidly up and down in that
tight crawl space. You could sit back and watch one well-batted ball de-
stroy many upper-level, high-scoring bricks before it eventually rico-
cheted back down through the wall. You just had to be ready with the
paddle to bat the ball back up again. It was a very satisfying strategy!

Hassabis and the team he assembled also spent a lot of time playing
computer games in their youth. Their parents may be happy to know
that the time and effort they put into those games did not go to waste.
It turned out that Breakout was a perfect test case to see if the team at
DeepMind could program a computer to learn how to play games. It
would have been a relatively straightforward job to write a program for
each individual game. Hassabis and his team set themselves a much
greater challenge.

They wanted to write a program that would have constant aware-
ness of the state of the pixels on the screen and the current score and,
with only those two inputs provided, could figure out how to play. The
program was not told the rules of the game—only that its objective
was to maximize the score. It had to experiment randomly with dif-
ferent ways of moving the paddle in Breakout or firing the laser cannon
at the descending aliens of Space Invaders. Each time it made a move,
it could assess whether that move had helped increase the score or not.

The code implements an idea dating from the 1990s called rein-
forcement learning, which aims to update the probability of actions
based on the effect on a reward function, or score. For example, in
Breakout, the only decision is whether to move the paddle left or right.
Initially, the choice will be 50:50. But if moving the paddle randomly
results in its hitting the ball, and a short time later the score goes up,
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the code then recalibrates based on this new information the proba-
bility of whether left or right is a better way to go. This increases the
chance of heading toward where the ball is heading. The new feature
was to combine this learning with neural networks that would assess
the state of the pixels to determine what features were correlating to
the increase in score.

At the outset, because the computer was just trying random moves,
it was terrible. It barely scored anything. But each time it made a
random move that bumped up the score, it would remember that move
and reinforce the use of such a move in future. Gradually the random
moves disappeared and a more informed set of moves began to
emerge, moves that the program had learned through experiment
seemed to boost its score.

It’s worth watching the video the DeepMind team appended to the
paper it eventually published. It shows the program learning to play
Breakout. At first you see it randomly moving the paddle back and forth
to see what will happen. Then, when a ball finally hits the paddle and
bounces back and hits a brick and the score goes up, the program starts
to rewrite itself. If the pixels of the ball and the pixels of the paddle con-
nect, that seems to be a good thing. After four hundred games, it’s doing
really well, getting the paddle to bat balls back to the wall repeatedly.

The shock for me came with what it discovered after six hundred
games. It found the same trick my friend and I had! I'm not sure how
many games it took us as kids to discover it, but judging by the amount
of time we wasted together, it could well have been more. But there it
is. The program manipulated the paddle to ding the ball several times
to the right, where it tunneled its way up the side and got trapped in
the gap at the top of the screen. But while I remember my friend and
I high-fiving when we discovered this trick, the machine felt nothing.

By 2014, four years after the creation of DeepMind, the program
had learned how to outperform humans on twenty-nine of the forty-
nine Atari games it had been exposed to. The paper the team submitted
to Nature detailing this achievement came out in early 2015. To be
published in Nature is one of the highlights of a scientist’s career. But
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press and the whispers of curious bystanders. It could assume a Zen-
like state of concentration wherever it was placed.

Sedol wasn't fazed by the knowledge that the machine he was up
against had beaten Fan Hui. A few weeks before the match, he made
this prediction to reporters: “Based on its level seen in the match
[against Fan], I think I will win the game by a near landslide—at least
this time.” Although he was aware that AlphaGo was constantly learning
and evolving, this did not concern him.

Most people still felt that, despite great inroads into programming,
an Al Go champion was still a distant goal. Rémi Coulom, the creator
of the only software capable of playing Go at any high standard—a pro-
gram called Crazy Stone—was predicting that computers would not
beat the best humans at the game for at least another decade.

As the date for the match approached, the team at DeepMind felt
it needed someone to really stretch AlphaGo and to test it for any weak-
nesses. So Fan Hui was invited back to play the machine going into
the last few weeks. Despite having suffered a 5-0 defeat and being
mocked by the press back in China, he was keen to help out. Perhaps
a bit of him felt that if he could help make AlphaGo good enough to
beat Sedol, it would make his defeat less humiliating.

As Fan Hui played, he could see that AlphaGo was extremely strong
in some areas. But he managed to expose a weakness that the team was
not aware of. Faced with certain configurations, it seemed incapable
of assessing who had control of the game, often seeming to suffer from
the delusion that it was winning when the opposite was true. If Sedol
exploited this weakness, AlphaGo wouldn'’t just lose, it would appear
extremely stupid.

Members of the DeepMind team worked around the clock trying
to fix this blind spot. Eventually they just had to lock down the code
as it was. It was time to ship the hardware they were using to Seoul.
The stage was set for a fascinating duel as the players, or at least one
player, sat down on March 9 to play the first of the five games.
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Beautiful, Beautiful, Beautiful

It was with a sense of existential anxiety that I fired up the YouTube
channel broadcasting Sedol’s matches against AlphaGo and joined 280
million other viewers to see humanity take on the machines. Having
for years compared creating mathematics to playing the game of Go,
I had alot on the line.

Sedol picked up a black stone, placed it on the board, and waited
for the response. Aja Huang, a member of the DeepMind team, would
make the physical moves for AlphaGo. This, after all, was not a test of
robotics but of artificial intelligence, so AlphaGo would still be relying
on human anatomy to place the stones on the board. Huang stared at
AlphaGo’s screen, waiting for its response to Sedol’s first stone. But
nothing came.

We all stared at our screens wondering if the program had crashed.
The DeepMind team was also beginning to wonder what was up. The
opening moves are generally something of a formality. No human
would think so long over move 2. There is nothing really to go on yet.
What was happening? And then a white stone appeared on the com-
puter screen. It had made its move. The DeepMind team breathed a
huge sigh of relief. We were off! Over the next couple of hours the
stones began to build up across the board.

As I watched the game it was hard for me at many points to assess
who was winning. It turns out that this isn't just because I'm not a very
experienced Go player. Itis a characteristic of the game. And this is one
of the main reasons that programming a computer to play Go is so
hard. There isn’t an easy way to turn the current state of the game into
a robust scoring system of who leads by how much.

Chess, by contrast, is much easier to score as you play. Each piece
has a different numerical value which gives you a simple first approxi-
mation of who is winning. Chess is destructive. One by one, pieces are
removed so the state of the board simplifies as the game proceeds. But
Go increases in complexity as you play. It is constructive. Even the
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commentators, although they kept up a steady stream of observations,
struggled to say if anyone was in the lead right up until the final mo-
ments of the game.

What they were able to pick up quite quickly was Sedol’s opening
strategy. Because AlphaGo had learned to play on games that had been
played in the past, Sedol was working on the principle that it would
put him at an advantage if he disrupted the expectations it had built
up. He was making moves that were not in the conventional repertoire.
The trouble was, this required Sedol to play an unconventional
game—one that was not his own.

It was a good idea, but it didn’t work. Any conventional machine
programmed on a database of familiar openings wouldn’t have known
how to respond and would likely have made a move that would have
serious consequences in the grand arc of the game. But AlphaGo was
not a conventional machine. As David Silver, its lead programmer, ex-
plained in the run-up to the match, “AlphaGo learned to discover new
strategies for itself, by playing millions of games between its neural net-
works, against themselves, and gradually improving” If anything, Sedol
had put himself at a disadvantage.

AsTwatched I couldn’t help feeling for Sedol. You could see his con-
fidence draining out of him as it gradually dawned on him that he was
losing. He kept looking over at Huang, the DeepMind representative
who was executing AlphaGo’s moves, but there was nothing he could
glean from Huang’s face. By move 186, Sedol realized there was no way
to overturn the advantage AlphaGo had built up on the board. He
placed a stone on the side of the board to indicate his resignation.

By the end of day one it was AlphaGo 1, Humans 0. Sedol made
an admission at the press conference that day: “I was very surprised,
because I didn’t think I would lose”

But it was Game Two that would truly shock not just Sedol but
every human player of Go. In the first game, experts could follow the
logic and appreciate why AlphaGo was playing the moves it was. They
were moves a human champion would play. But in Game Two, some-
thing rather strange happened. Sedol had just played move 36 and then
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retired to the roof of the hotel for a cigarette break. While he was away,
AlphaGo instructed Huang, its human representative, to execute move
37, placing one of its black stones on an intersection five lines in from
the edge of the board. Everyone was shocked.

The conventional wisdom is that during the early part of the game
you focus on the outer four lines. Stones placed on the third line build
up short-term territory strength at the edge of the board while playing
on the fourth line contributes to your strength later in the game as you
move into the center of the board. Players have always found that there
is a fine balance between playing on the third and fourth lines. Playing
on the fifth line has always been regarded as suboptimal, giving your
opponent the chance to build up territory that has both short- and
long-term influence.

AlphaGo had defied this orthodoxy built up over centuries of com-
peting. Some commentators declared it a clear mistake. Others were
more cautious. Everyone was intrigued to see what Sedol would make
of the move when he returned from his cigarette break. Even watching
on my laptop at home, I could see him flinch as he took in the new
stone on the board. He was certainly as shocked as all of the rest of us
by the move. He sat there thinking for over twelve minutes. As in chess
competitions, the game was being played under time constraints. Using
twelve minutes of his time was very costly. It is a mark of how surprising
this move was that it took Sedol so long to respond. He could not
understand what AlphaGo was doing. Why had the program aban-
doned the region of stones they were competing over?

Wias this a mistake by AlphaGo? Or did it see something deep in-
side the game that humans were missing? Fan Hui, who was serving
as one of the referees, looked down on the board. His initial reaction
matched everyone else’s: shock. But then he paused to appreciate it.
Wired magazine reports how he would describe the moment later:

“It’s not a human move. I've never seen a human play this move,”
says spectator and Go champion Fan Hui. “So beautiful.” It’s a
word he keeps repeating. Beautiful. Beautiful. Beautiful.
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Beautiful and deadly it turned out to be. Not a mistake but an ex-
traordinarily insightful move. Some fifty moves later, as the black and
white stones fought over territory in the lower left corner of the board,
they found themselves creeping toward the black stone of move 37. It
was joining up with this stone that gave AlphaGo the edge, allowing it
to clock up its second win. AlphaGo 2, Humans 0.

Sedol’s mood in the press conference that followed was notably dif-
ferent. “Yesterday I was surprised. But today I am speechless ...l am
in shock. I can admit that . . . the third game is not going to be easy for
me.” The match was being played over five games. This was a game that
Sedol needed to win to have any hope of keeping AlphaGo from
claiming the match.

The Human Fights Back

Sedol had a day off to recover. The third game would be played on Sat-
urday, March 12. He needed the rest, unlike the machine. The first
game had required more than three hours of intense concentration.
The second lasted over four hours. Spectators could see the emotional
toll that losing two games in a row was having on him.

Rather than resting, though, Sedol stayed up till six o’clock the next
morning analyzing the games he'd lost so far with a group of fellow
professional Go players. Did AlphaGo have a weakness they could ex-
ploit? The machine wasn’t the only one who could learn and evolve.
Sedol felt he might learn something from his losses.

Sedol played a very strong opening to Game Three, forcing AlphaGo
to manage a weak group of stones within his sphere of influence on
the board. Commentators began to get excited. Some said Sedol had
found AlphaGo’s weakness. But then, as one commentator, David
Ormerod, posted, “things began to get scary. .. . As I watched the game
unfold and the realization of what was happening dawned on me, I felt
physically unwell.”

Sedol pushed AlphaGo to its limits, but in doing so he seemed to
invoke some hidden powers the program possessed. As the game pro-
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This apparently is another characteristic behavior of Go algorithms.
Once they see that they are losing they go rather crazy.

Silver winced as he saw the next move AlphaGo was opting for: “I
think they’re going to laugh.” Sure enough, the Korean commentators
collapsed into fits of giggles at the moves AlphaGo was now making.
Its moves were failing the Turing Test. No human with a shred of stra-
tegic sense would make such moves. The game dragged on for a total
of 180 moves, at which point AlphaGo put up a message on the screen
that it had resigned.

The human race had got one back. AlphaGo 3, Humans 1. The
smile on Lee Sedol’s face at the press conference that evening said it
all. “This win is so valuable that I wouldn’t exchange it for anything in
the world.” The press room erupted with joyful applause. “It’s because
of the cheers and the encouragement that you all have shown me.”

Gu Li, who was commentating the game in China, declared Sedol’s
move 78 as the “hand of God.” It was a move that broke the conven-
tional way to play the game and that was ultimately the key to its
shocking impact. Yet this is characteristic of true human creativity. It
is a good example of Boden’s transformational creativity, where people
break out of the system to find new insights.

At the press conference, Hassabis and Silver, his chief programmer,
could not explain why AlphaGo had lost. They would need to go back
and analyze why it had made such a lousy move in response to Sedol’s
move 78. It turned out that AlphaGo’s experience in playing humans
had led it to totally dismiss such a move as something not worth
thinking about. It had assessed that this was a move that had only a
one-in-ten-thousand chance of being played. It seems as if it had just
not bothered to learn a response to such a move because it had priori-
tized other moves as more likely and therefore more worthy of
response.

Perhaps Sedol just needed to get to know his opponent. Perhaps
over a longer match he would have turned the tables on AlphaGo.
Could he maintain the momentum into the fifth and final game? Losing
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three games to two would be very different from losing four to one.
The last win was still worth fighting for. If he could win a second game,
it would sow seeds of doubt about whether AlphaGo could sustain its
superiority.

But AlphaGo had learned something valuable from its loss. The
next person who plays Sedol’s one-in-ten-thousand move against the
algorithm won't get away with it. That’s the power of this sort of algo-
rithm. It never forgets what it learns from its mistakes.

That’s not to say it can’'t make new mistakes. As Game Five pro-
ceeded, there was a moment quite early in the game when AlphaGo
seemed to completely miss a standard set of moves in response to a par-
ticular configuration that was building. As Hassabis tweeted from back-
stage, “#AlphaGo made a bad mistake early in the game (it didn’t know
aknown tesuji) but now it is trying hard to claw it back . . . nail-biting”

Sedol was in the lead at this stage. It was game-on. Gradually
AlphaGo did claw back. But right up to the end the DeepMind team
was not exactly sure whether it was winning. Finally, on move 281—
after five hours of play—Sedol resigned. This time there were cheers
backstage. Hassabis punched the air. Team members hugged and high-
fived. The win that Sedol had pulled off in Game Four had evidently
reengaged their competitive spirit. It was important for them not to
lose this last game.

Looking back at the match, many recognize what an extraordinary
moment this was. Some immediately commented on its being an in-
flection point for AL Sure, all this machine could do was play a board
game—and yet for those looking on, its capability to learn and adapt
was something quite new. Hassabis’s tweet after winning the first game
summed up the achievement: “#AlphaGo WINS!!!! We landed it on
the moon.”

It was a good comparison. Landing on the moon did not yield ex-
traordinary new insights about the universe, but the technology that
humanity developed to achieve such a feat did. Following the last game,
AlphaGo was awarded an honorary nine-dan professional ranking by
the Korean Go Association, the highest accolade for a Go player.
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From Hilltop to Mountain Peak

Move 37 of Game Two was a truly creative act. It was novel, certainly,
it caused surprise, and as the game evolved it proved its value. This was
exploratory creativity, pushing the limits of the game to the extreme.

One of the important points about the game of Go is that there is
an objective way to test whether a novel move has value. Anyone can
come up with a new move that appears creative. The art and challenge
is making a novel move that has some sort of value. How should we
assess value? It can be very subjective and time-dependent. Something
that is panned critically at the time of its release can be recognized gen-
erations later as a transformative creative act. Nineteenth-century audi-
ences didn't know what to make of Beethoven’s Symphony No. 5, and yet
it is central repertoire now. During his lifetime, Van Gogh could barely
sell his paintings—he traded them for food or painting materials—but
now they go for millions. In Go, there is a more tangible and immediate
test of value: Does it help you win the game? Move 37 won Game Two
for AlphaGo. There was an objective measure that we could use to value
the novelty of this move.

AlphaGo had taught the world a new way to play an ancient game.
Analysis since the match has resulted in new tactics. The fifth line is
now played early on, as we have come to understand that it can have
big implications for the end game. AlphaGo has gone on to discover
still more innovative strategies. DeepMind revealed at the beginning
of 2017 that its latest iteration had played online anonymously against
a range of top-ranking professionals under two pseudonyms: Master
and Magister. Human players were unaware that they were playing a
machine. Over a few weeks it had played a total of sixty complete
games. It won all sixty.

But it was the analysis of the games that was truly eye-opening.
Those games are now regarded as a treasure trove of new ideas. In
several games AlphaGo played moves that any beginners, if they made
them, would have their wrists slapped for by their Go masters. Tradi-
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tionally, for example, you do not play a stone at the intersection of the
third column and third row. And yet AlphaGo showed how to use such
amove to great advantage.

Hassabis describes how the game of Go had got stuck on what
mathematicians like to call a local maximum. Look at the landscape
illustrated below and imagine you are at the top of the peak to the left.
From this height there is nowhere higher to go. This is called a local
maximum. If there were fog all around you, you'd think you were at
the highest point in the land. But across the valley is a higher peak. To
know this, you need the fog to clear. Then you need to descend from
your peak, cross the valley, and climb to the top ofit.

The trouble with modern Go is that conventions had built up about
ways to play that had ensured players hit Peak A. But by breaking those
conventions AlphaGo had cleared the fog and revealed an even higher
Peak B. It’s even possible to measure the difference. In Go, a player
using the conventions of Peak A will in general lose by two stones to
the player using the new strategies discovered by AlphaGo.

This rewriting of the conventions of how to play Go has happened
at two previous points in history. The most recent was the innovative
game-play introduced by the legendary player Go Seigen in the 1930s.
His experimentation with ways of playing the opening moves revolu-
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tionized the way the game is played. But Go players now recognize that
AlphaGo might well have launched an even greater revolution.

Chinese Go champion Ke Jie recognizes that we are in a new era:
“Humanity has played Go for thousands of years, and yet, as Al has
shown us, we have not yet even scratched the surface. The union of
human and computer players will usher in a new era.”

Ke Jie’s compatriot Gu Li, winner of the most Go world titles,
added: “Together, humans and Al will soon uncover the deeper mys-
teries of Go.” For Hassabis, the algorithm is like the Hubble telescope
of Go. This illustrates the way many view this new AL It is a tool for
exploring deeper, further, wider than ever before. It is not meant to re-
place human creativity but to augment it.

And yet there is something that I find quite depressing about this
moment. It feels almost pointless to want to aspire to be the world
champion at Go when you know there is a machine that you will never
be able to beat. Professional Go players have tried to put a brave face
on it, talking about the extra creativity that it has unleashed in their
own play, but there is something quite soul-destroying about knowing
that we are now second-best to the machine. Sure, the machine was
programmed by humans, but that doesn’t really make it feel better.

AlphaGo has since retired from competitive play. The Go team at
DeepMind has been disbanded. Hassabis proved his Cambridge lec-
turer wrong. DeepMind has now set its heights on other goals: health
care, climate change, energy efficiency, speech recognition and gener-
ation, computer vision. It’s all getting very serious.

Given that Go had always been my shield against computers doing
mathematics, was my own subject next in DeepMind’s cross-hairs? To
truly judge the potential of this new AI, we’ll have to look more closely
at how it works and dig around inside. The ironic thing is that the tools
DeepMind is using to create the programs that might put me out of a
job are precisely the ones that mathematicians have created over the
centuries. Is this mathematical Frankenstein’s monster about to turn
on its creator?
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If M =36 and N = 1§, then dividing M by N gives you 2 with a re-
mainder (N, ) of 6. Dividing N by N, we get 2 with a remainder (N,)
of 3. But now, dividing N, by N,, we get 2 with no remainder at all, so
we know that 3 is the largest number that can divide both 36 and 15.

You see that there are lots of “if . . . then .. ” clauses in this process.
That is typical of an algorithm and is what makes algorithms so per-
fect for coding and computers. Euclid’s ancient recipe exhibits the four
key characteristics any algorithm should ideally possess:

It consists of a precisely stated and unambiguous set of
instructions.

Its procedure always comes to a finish, regardless of the numbers
inserted. (It does not enter an infinite loop!)

It produces the answer for any values input.

It is fast.

In the case of Euclid’s algorithm, there is no ambiguity at any stage.
Because the remainder grows smaller at every step, after a finite number
of steps it must hit zero, at which point the algorithm stops and spits
out the answer. The bigger the numbers, the longer the algorithm will
take, but it’s still relatively fast. (The number of steps is five times the
number of digits in the smaller of the two numbers, for those who are
curious. )

If the invention of the algorithm happened over two thousand years
ago, why does it owe its name to a ninth-century Persian mathe-
matician? Algorithmi is the Latinized form of a surname—that of
Muhammad ibn Musa al-Khwarizmi. One of the first directors of the
great “House of Wisdom” in Baghdad, al-Khwarizmi was responsible
for many of the translations of the ancient Greek mathematical texts
into Arabic. Although all the instructions for Euclid’s algorithm are
there in the Elements, the language Euclid used was very clumsy. The
ancient Greeks thought about mathematic problems geometrically,
so numbers were presented as lines of different lengths and proofs
consisted of pictures—a bit like our example of tiling the floor. But
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pictures aren’t sufficient for doing mathematics with much rigor. For
that, you need the language of algebra, which uses letters to stand for
variable numbers. This was the invention of al-Khwarizmi.

To be able to articulate the workings of an algorithm, we need lan-
guage that allows us to talk about numbers without specifying what
those numbers are. We already saw this at work in Euclid’s algorithm,
when we gave names to the numbers we were trying to analyze: N and
M. These letters can represent any numbers. The power of this new,
linguistic take on mathematics was that it allowed mathematicians to
understand the grammar underlying how numbers work. Rather than
being limited to showing particular examples of a method working, this
new language of algebra provided a way to explain the general patterns
behind the behavior of numbers. Today’s easy analogy is to think of
the code behind a running software program. No matter what num-
bers are plugged in as inputs, it works to yield an output—the third
criterion in our conditions for a good algorithm.

Indeed, algorithms have gained enormous currency in our era pre-
cisely because they are perfect fodder for computers. Wherever there is
a discernible pattern underlying the way we solve a problem to guide us
to a solution, an algorithm can exploit that discovery. It is not required
of the computer that it think. It need only execute the steps encoded
in the algorithm and, again and again, as if by magic, out pop the an-
swers we seek.

Desert Island Algorithm

One of the most extraordinary algorithms of the modern age is the one
that helps millions of us navigate the internet every day. If I were ex-
iled to a desert island and could take only one algorithm with me, I'd
probably choose the one that drives Google (although perhaps Iwould
check first whether in exile I would still have an internet connection).

In the early days of the World Wide Web (we're talking the early
1990s) there was a directory of all the existing websites. In 1994 there
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were only three thousand of them. The list was small enough that you
could pretty easily thumb through it and find a site that someone had
mentioned to you. Things have changed quite a bit since then. When
I started writing this paragraph there were 1,267,084,131 websites
live on the internet. A few sentences later, that number has gone up to
1,267,085,440. (You can check the current status at www.internetlive
stats.com. )

How does Google’s search engine figure out exactly which ones of
these billion-plus websites to recommend? Most users have no idea.
Mary Ashwood, for example, an eighty-six-year-old granny from
Wigan, in northeast England, was careful to add a courteous “please”
and “thank you” to each query, perhaps imagining an industrious
group of interns on the other end sifting through the endless requests.
When her grandson Ben opened her laptop and found “Please trans-
late these roman numerals memxcviii thank you,” he couldn't resist
posting a snapshot on Twitter to share his nan’s misconception with

the world. He got a shock when someone at Google UK tweeted
back:

Dearest Ben’s Nan.
Hope you're well.

In a world of billions of Searches, yours made us smile.
Oh, and it’s 1998.
Thank YOU.

Ben’s Nan brought out the human in Google on this occasion, but
there is no way any company could respond personally to the million
searches Google receives every fifteen seconds. So if it isn't magic
Google elves scouring the internet, how does Google succeed in so
spectacularly locating the information you want?

It all comes down to the power and beauty of the algorithm Larry
Page and Sergey Brin cooked up in their dorm rooms at Stanford in
1996. They originally named their new search engine “BackRub” (re-
ferring to its reliance on the web’s “back links”) but by 1997 switched
to “Google,” inspired by the name a mathematician in the 1930s gave



