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Chapter 1

What 1s Data Science”?

The purpose of computing is insight, not numbers.

— Richard W. Hamming

What is data science? Like any emerging field, it hasn’t been completely defined
yvet, but yvou know enough about it to be interested or else you wouldn’t be
reading this book.

I think of data science as lying at the intersection of computer science, statis-
tics, and substantive application domains. From computer science comes ma-
chine learning and high-performance computing technologies for dealing with
scale. From statistics comes a long tradition of exploratory data analysis, sig-
nificance testing, and visualization. From application domains in business and
the sciences comes challenges worthy of battle, and evaluation standards to
assess when they have been adequately conquered.

But these are all well-established fields. Why data science, and why now? |
see three reasons for this sudden burst of activity:

e New technology makes it possible to capture, annotate, and store vast
amounts of social media, logging, and sensor data. After you have amassed
all this data, you begin to wonder what you can do with it.

e Computing advances make it possible to analyze data in novel ways and at
ever increasing scales. Cloud computing architectures give even the little
eguy access to vast power when they need it. New approaches to machine
learning have lead to amazing advances in longstanding problems, like
computer vision and natural language processing.

e Prominent technology companies (like Google and Facebook) and quan-
titative hedge funds (like Renaissance Technologies and TwoSigma) have
proven the power of modern data analytics. Success stories applying data
to such diverse areas as sports management ( Moneyball [Lew04]) and elec-
tion forecasting (Nate Silver [Sil12]) have served as role models to bring
data science to a large popular audience.

© The Author(s) 2017
S.S. Skiena, The Data Science Design Manual,
Texts in Computer Science, https://doi.org/10.1007/978-3-319-55444-0_1



2 CHAPTER 1. WHAT IS DATA SCIENCE?

This introductory chapter has three missions. First, I will try to explain how
good data scientists think, and how this differs from the mindset of traditional
programmers and software developers. Second, we will look at data sets in terms
of the potential for what they can be used for, and learn to ask the broader
questions they are capable of answering. Finally, I introduce a collection of
data analysis challenges that will be used throughout this book as motivating
examples.

1.1 Computer Science, Data Science, and Real
Science

Computer scientists, by nature, don’t respect data. They have traditionally
been taught that the algorithm was the thing, and that data was just meat to
be passed through a sausage grinder.

So to qualify as an effective data scientist, you must first learn to think like
a real scientist. Real scientists strive to understand the natural world, which
is a complicated and messy place. By contrast, computer scientists tend to
build their own clean and organized virtual worlds and live comfortably within
them. Scientists obsess about discovering things, while computer scientists in-
vent rather than discover.

People’s mindsets strongly color how they think and act, causing misunder-
standings when we try to communicate outside our tribes. So fundamental are
these biases that we are often unaware we have them. Examples of the cultural
differences between computer science and real science include:

e Data vs. method centrism: Scientists are data driven, while computer
scientists are algorithm driven. Real scientists spend enormous amounts
of effort collecting data to answer their question of interest. They invent
fancy measuring devices, stay up all night tending to experiments, and
devote most of their thinking to how to get the data they need.

By contrast, computer scientists obsess about methods: which algorithm
is better than which other algorithm, which programming language is best
for a job, which program is better than which other program. The details
of the data set they are working on seem comparably unexciting.

e Concern about results: Real scientists care about answers. They analyze
data to discover something about how the world works. Good scientists
care about whether the results make sense, because they care about what
the answers mean.

By contrast, bad computer scientists worry about producing plausible-
looking numbers. As soon as the numbers stop looking grossly wrong,
they are presumed to be right. This 1s because they are personally less
invested in what can be learned from a computation, as opposed to getting
it done quickly and efficiently.
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e Robustness: Real scientists are comfortable with the idea that data has
errors. In general, computer scientists are not. Scientists think a lot about
possible sources of bias or error in their data, and how these possible prob-
lems can effect the conclusions derived from them. Good programmers use
strong data-typing and parsing methodologies to guard against formatting
errors, but the concerns here are different.

Becoming aware that data can have errors is empowering. Computer
scientists chant “garbage in, garbage out” as a defensive mantra to ward
off criticism, a way to say that’s not my job. Real scientists get close
enough to their data to smell it, giving it the snifl test to decide whether
it is likely to be garbage.

e Preciston: Nothing is ever completely true or false in science, while every-
thing is either true or false in computer science or mathematics.

Generally speaking, computer scientists are happy printing floating point
numbers to as many digits as possible: 8/13 = 0.61538461538. Real
scientists will use only two significant digits: 8/13 =~ 0.62. Computer
scientists care what a number is, while real scientists care what it means.

Aspiring data scientists must learn to think like real scientists. Your job is
going to be to turn numbers into insight. It is important to understand the why
as much as the how.

To be fair, it benefits real scientists to think like data scientists as well. New
experimental technologies enable measuring systems on vastly greater scale than
ever possible before, through technologies like full-genome sequencing in biology
and full-sky telescope surveys in astronomy. With new breadth of view comes
new levels of vision.

Traditional hypothesis-driven science was based on asking specific questions
of the world and then generating the specific data needed to confirm or deny
it. This is now augmented by data-driven science, which instead focuses on
generating data on a previously unheard of scale or resolution, in the belief that
new discoveries will come as soon as one is able to look at it. Both ways of
thinking will be important to us:

e Given a problem, what available data will help us answer it?

e (Given a data set, what interesting problems can we apply it to?

There is another way to capture this basic distinction between software en-
gineering and data science. It is that software developers are hired to build
systems, while data scientists are hired to produce insights.

This may be a point of contention for some developers. There exist an
important class of engineers who wrangle the massive distributed infrastructures
necessary to store and analyze, say, financial transaction or social media data
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on a full Facebook or Twitter-level of scale. Indeed, I will devote Chapter 12
to the distinctive challenges of big data infrastructures. These engineers are
building tools and systems to support data science, even though they may not
personally mine the data they wrangle. Do they qualify as data scientists?

This is a fair question, one I will finesse a bit so as to maximize the poten-
tial readership of this book. But I do believe that the better such engineers
understand the full data analysis pipeline, the more likely they will be able to
build powerful tools capable of providing important insights. A major goal of
this book is providing big data engineers with the intellectual tools to think like
big data scientists.

1.2 Asking Interesting Questions from Data

Good data scientists develop an inherent curiosity about the world around them.,
particularly in the associated domains and applications they are working on.
They enjoy talking shop with the people whose data they work with. They ask
them questions: What is the coolest thing yvou have learned about this field?
Why did you get interested in it? What do you hope to learn by analyzing vour
data set? Data scientists always ask questions.

Good data scientists have wide-ranging interests. They read the newspaper
every day to get a broader perspective on what is exciting. They understand that
the world is an interesting place. Knowing a little something about everything
equips them to play in other people’s backyards. They are brave enough to get
out of their comfort zones a bit, and driven to learn more once they get there.

Software developers are not really encouraged to ask questions, but data
scientists are. We ask questions like:

e What things might you be able to learn from a given data set?
¢ What do you/your people really want to know about the world?
e What will it mean to you once you find out?

Computer scientists traditionally do not really appreciate data. Think about
the way algorithm performance is experimentally measured. Usually the pro-
oram is run on “random data” to see how long it takes. They rarely even look
at the results of the computation, except to verify that it is correct and efficient.
Since the “data” is meaningless, the results cannot be important. In contrast,
real data sets are a scarce resource, which required hard work and imagination
to obtain.

Becoming a data scientist requires learning to ask questions about data, so
let’s practice. Fach of the subsections below will introduce an interesting data
set. After you understand what kind of information is available, try to come
up with, say, five interesting questions you might explore/answer with access to
this data set.
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Figure 1.1: Statistical information on the performance of Babe Ruth can be
found at http://www.baseball-reference. com.

The key is thinking broadly: the answers to big, general questions often lie
buried in highly-specific data sets, which were by no means designed to contain
them.

1.2.1 The Baseball Encyclopedia

Baseball has long had an outsized importance in the world of data science. This
sport has been called the national pastime of the United States; indeed, French
historian Jacques Barzun observed that “Whoever wants to know the heart and
mind of America had better learn baseball.” I realize that many readers are not
American, and even those that are might be completely disinterested in sports.
But stick with me for a while.

What makes baseball important to data science is its extensive statistical
record of play, dating back for well over a hundred years. Baseball is a sport of
discrete events: pitchers throw balls and batters try to hit them — that naturally
lends itself to informative statistics. Fans get immersed in these statistics as chil-
dren, building their intuition about the strengths and limitations of quantitative
analysis. Some of these children grow up to become data scientists. Indeed, the
success of Brad Pitt’s statistically-minded baseball team in the movie Moneyball
remains the American public’s most vivid contact with data science.

This historical baseball record is available at http://www.baseball-reference.
com. There you will find complete statistical data on the performance of every
player who even stepped on the field. This includes summary statistics of each
season’s batting, pitching, and fielding record, plus information about teams
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Figure 1.2: Personal information on every major league baseball player is avail-
able at http://www.baseball-reference.com.

and awards as shown in Figure 1.1.

But more than just statistics, there is metadata on the life and careers of all
the people who have ever played major league baseball, as shown in Figure 1.2.
We get the vital statistics of each player (height, weight, handedness) and their
lifespan (when/where they were born and died). We also get salary information
(how much each player got paid every season) and transaction data (how did
they get to be the property of each team they played for).

Now, I realize that many of you do not have the slightest knowledge of or
interest in baseball. This sport is somewhat reminiscent of cricket, if that helps.
But remember that as a data scientist, it is your job to be interested in the
world around you. Think of this as chance to learn something.

So what interesting questions can you answer with this baseball data set?
Try to write down five questions before moving on. Don’t worry, I will wait here
for you to finish.

The most obvious types of questions to answer with this data are directly
related to baseball:

e How can we best measure an individual player’s skill or value?
e How fairly do trades between teams generally work out?

e What is the general trajectory of player’s performance level as they mature
and age?

e To what extent does batting performance correlate with position played?
For example, are outfielders really better hitters than infielders?

These are interesting questions. But even more interesting are guestions
about demographic and social issues. Almost 20,000 major league baseball play-
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ers have taken the field over the past 150 years, providing a large, extensively-
documented cohort of men who can serve as a proxy for even larger, less well-
documented populations. Indeed, we can use this baseball player data to answer
questions like:

e Do left-handed people have shorter lifespans than right-handers? Handed-
ness is not captured in most demographic data sets, but has been diligently
assembled here. Indeed, analysis of this data set has been used to show
that right-handed people live longer than lefties |HCS88]|!

e How often do people return to live in the same place where they were
born? Locations of birth and death have been extensively recorded in this
data set. Further, almost all of these people played at least part of their
career far from home, thus exposing them to the wider world at a critical
time in their youth.

e Do player salaries generally reflect past, present, or future performance?

e 'To what extent have heights and weights been increasing in the population
at large?

There are two particular themes to be aware of here. First, the identifiers
and reference tags (i.e. the metadata) often prove more interesting in a data set
than the stuff we are supposed to care about, here the statistical record of play.

Second is the idea of a statistical proxy, where you use the data set you have
to substitute for the one you really want. The data set of your dreams likely
does not exist, or may be locked away behind a corporate wall even if it does.
A good data scientist is a pragmatist, seeing what they can do with what they
have instead of bemoaning what they cannot get their hands on.

1.2.2 The Internet Movie Database (IMDb)

Everybody loves the movies. The Internet Movie Database (IMDDb) provides
crowdsourced and curated data about all aspects of the motion picture industry,
at www.imdb.com. IMDb currently contains data on over 3.3 million movies and
TV programs. For each film, IMDDb includes its title, running time, genres, date
of release, and a full list of cast and crew. There is financial data about each
production, including the budget for making the film and how well it did at the
box office.

Finally, there are extensive ratings for each film from viewers and critics.
This rating data consists of scores on a zero to ten stars scale, cross-tabulated
into averages by age and gender. Written reviews are often included, explaining
why a particular critic awarded a given number of stars. There are also links
between films: for example, identifying which other films have been watched
most often by viewers of It’s a Wonderful Life.

Every actor, director, producer, and crew member associated with a film
merits an entry in IMDb, which now contains records on 6.5 million people.
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Movies, TV Celebs, Events News &
& Showtimes ~ & Photos * | Community ~ Watchlist

It's a Wonderful Life (1946) s TP 500

\pproved 130 min - Drama | Family | Fantasy -
7 January 1947 (USA)

Your rating:

8.7 Ratings: B.7/10 from 202,743 users
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LIBERTY, FILMS-

Frank 4
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m h- “ STEWART he never existed.
D(J‘IIMREED Director: Frank Capra
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Figure 1.3: Representative film data from the Internet Movie Database.

James Stewart (1) (1908- by Top 5000
1997)

Actor | Soundtrack Director

James Maitland Stewart was born on 20 May 1908 in
Indiana, Pennsylvania, where his father owned a hardware
store. He was educated at a local prep school, Mercershurg
Academy, where he was a keen athlete (football and
track), musician (singing and accordion playing), and
sometime actor. In 1929 he won a place at Princeton,
where he studied ... See full bio »

Born: James Maitland Stewart
May 20, 1908 in Indiana, Pennsylvania, USA

Died: July 2, 1997 (age 89) in Los Angeles, California,
USA

230 photos 42 videos | 1180 news articles =»

Won 1 Oscar. Another 25 wins & 19 nominations. See more awards »

Figure 1.4: Representative actor data from the Internet Movie Database.
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These happen to include my brother, cousin, and sister-in-law. FEach actor
is linked to every film they appeared in, with a description of their role and
their ordering in the credits. Available data about each personality includes
birth /death dates, height, awards, and family relations.

So what kind of questions can you answer with this movie data?

Perhaps the most natural questions to ask IMDDb involve identifying the
extremes of movies and actors:

e Which actors appeared in the most films? Earned the most money? Ap-
peared in the lowest rated films? Had the longest career or the shortest
lifespan?

e What was the highest rated film each year, or the best in each genre?
Which movies lost the most money, had the highest-powered casts, or got
the least favorable reviews.

Then there are larger-scale questions one can ask about the nature of the
motion picture business itself:

e How well does movie gross correlate with viewer ratings or awards? Do
customers instinctively flock to trash, or is virtue on the part of the cre-
ative team properly rewarded?

e How do Hollywood movies compare to Bollywood movies, in terms of rat-
ings, budget, and gross? Are American movies better received than foreign
films, and how does this differ between U.S. and non-U.S. reviewers”

e What is the age distribution of actors and actresses in films? How much
younger is the actress playing the wife, on average, than the actor playing
the husband? Has this disparity been increasing or decreasing with time?

e Live fast, die young, and leave a good-looking corpse? Do movie stars live
longer or shorter lives than bit players, or compared to the general public?

Assuming that people working together on a film get to know each other,
the cast and crew data can be used to build a social network of the movie
business. What does the social network of actors look like? The Oracle of
Bacon (https://oracleofbacon.org/) posits Kevin Bacon as the center of
the Hollywood universe and generates the shortest path to Bacon from any
other actor. Other actors, like Samuel L. Jackson, prove even more central.

More critically, can we analyze this data to determine the probability that
someone will like a given movie? The technique of collaborative filtering finds
people who liked films that I also liked, and recommends other films that they
liked as good candidates for me. The 2007 Netflix Prize was a $1,000,000 com-
petition to produce a ratings engine 10% better than the proprietary Netflix
system. The ultimate winner of this prize (BellKor) used a variety of data
sources and techniques, including the analysis of links [BKO07].
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Figure 1.5: The rise and fall of data processing, as witnessed by Google Ngrams.

1.2.3 Google Ngrams

Printed books have been the primary repository of human knowledge since
Gutenberg’s invention of movable type in 1439. Physical objects live somewhat
uneasily in today’s digital world, but technology has a way of reducing every-
thing to data. As part of its mission to organize the world’s information, Google
undertook an effort to scan all of the world’s published books. They haven'’t
quite gotten there yet, but the 30 million books thus far digitized represent over
20% of all books ever published.

(GGoogle uses this data to improve search results, and provide fresh access
to out-of-print books. But perhaps the coolest product is Google Ngrams, an
amazing resource for monitoring changes in the cultural zeitgeist. It provides
the frequency with which short phrases occur in books published each year.
Each phrase must occur at least forty times in their scanned book corpus. This
eliminates obscure words and phrases, but leaves over two billion time series
available for analysis.

This rich data set shows how language use has changed over the past 200
years, and has been widely applied to cultural trend analysis [MAV " 11]. Figure
1.5 uses this data to show how the word data fell out of favor when thinking
about computing. Data processing was the popular term associated with the
computing field during the punched card and spinning magnetic tape era of the
1950s. The Ngrams data shows that the rapid rise of Computer Science did not
eclipse Data Processing until 1980. Even today, Data Science remains almost
invisible on this scale.

Check out Google Ngrams at http://books.google.com/ngrams. | promise
yvou will enjoy playing with it. Compare hot dog to tofu, science against religion,
freedom to justice, and sex vs. marriage, to better understand this fantastic
telescope for looking into the past.

But once you are done playing, think of bigger things vou could do if vou
cgot your hands on this data. Assume you have access to the annual number
of references for all words/phrases published in books over the past 200 years.
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Google makes this data freely available. So what are you going to do with it?

Observing the time series associated with particular words using the Ngrams
Viewer is fun. But more sophisticated historical trends can be captured by
ageregating multiple time series together. The following types of questions
seem particularly interesting to me:

e How has the amount of cursing changed over time? Use of the four-
letter words I am most familiar with seem to have exploded since 1960,
although it is perhaps less clear whether this reflects increased cussing or
lower publication standards.

e How often do new words emerge and get popular? Do these words tend
to stay in common usage, or rapidly fade away? Can we detect when
words change meaning over time, like the transition of gay from happy to
homosexual?

e Have standards of spelling been improving or deteriorating with time,
especially now that we have entered the era of automated spell check-
ing? Rarely-occurring words that are only one character removed from a
commonly-used word are likely candidates to be spelling errors (e.g. al-
gorithm vs. algorthm). Aggregated over many different misspellings, are
such errors increasing or decreasing?

You can also use this Ngrams corpus to build a language model that captures
the meaning and usage of the words in a given language. We will discuss word
embeddings in Section 11.6.3, which are powerful tools for building language
models. Frequency counts reveal which words are most popular. The frequency
of word pairs appearing next to each other can be used to improve speech
recognition systems, helping to distinguish whether the speaker said that’s too
bad or that’s to bad. These millions of books provide an ample data set to build
representative models from.

1.2.4 New York Taxi Records

Every financial transaction today leaves a data trail behind it. Following these
paths can lead to interesting insights.

Taxi cabs form an important part of the urban transportation network. They
roam the streets of the city looking for customers, and then drive them to their
destination for a fare proportional to the length of the trip. Each cab contains
a metering device to calculate the cost of the trip as a function of time. This
meter serves as a record keeping device, and a mechanism to ensure that the
driver charges the proper amount for each trip.

The taxi meters currently employved in New York cabs can do many things
beyond calculating fares. They act as credit card terminals, providing a way
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Vendor passenger trip_ pickup pickup dropoff _ dropoff_  payment tip_ total
ID ~count  distance longitude latitude longitude latitude _type amount amount
2 1 7.22 -73.9998 40.74334 -73.5428 40.80662 2 0 30.8
1 1 2.3 -13.977 40.7749 -13.9783 40,74986 1 2.93 16.23
1 1 1.5 -73.9591 40.77513 -73.9804 40.78231 1 1.65 9.95
1 1 0.9 -73.9766  40,78075 -73.9706 40.78885 1 1.45 8.75
2 1 2.44 -73.9786 40.78532 -73.9574 40.7563 1 2 16.3
2 1 3.26 -73.9764 40.78589 -713.94.24 40.82209 1 3.58 17.88
2 2 2.34 -73.9862 40.76087 -73.9569 40.77156 1 1 13.8
2 1 10.19 -73.79 40.64406 -73.9312 40.67588 2 0 32.8
1 2 3.3 -73.9937 40.72738 -73.9982 40.7641 1 2 21.3
1 1 1.8 -73.9549  40.74006 -73.9767 40.74534 1 1.85 11.15

Figure 1.6: Representative fields from the New York city taxi cab data: pick up
and dropoff points, distances, and fares.

for customers to pay for rides without cash. They are integrated with global
positioning systems (GPS), recording the exact location of every pickup and
drop off. And finally, since they are on a wireless network, these boxes can
communicate all of this data back to a central server.

The result is a database documenting every single trip by all taxi cabs in
one of the world’s greatest cities, a small portion of which is shown in Figure
1.6. Because the New York Taxi and Limousine Commission is a public agency,
its non-confidential data is available to all under the Freedom of Information
Act (FOA).

Every ride generates two records: one with data on the trip, the other with
details of the fare. Each trip is keyed to the medallion (license) of each car
coupled with the identifier of each driver. For each trip, we get the time/date
of pickup and drop-off, as well as the GPS coordinates (longitude and latitude)
of the starting location and destination. We do not get GPS data of the route
they traveled between these points, but to some extent that can be inferred by
the shortest path between them.

As for fare data, we get the metered cost of each trip, including tax, surcharge
and tolls. It is traditional to pay the driver a tip for service, the amount of which
is also recorded in the data.

So I'm talking to you. This taxi data is readily available, with records of
over 80 million trips over the past several years. What are you going to do with
it”

Any interesting data set can be used to answer questions on many different
scales. This taxi fare data can help us better understand the transportation
industry, but also how the city works and how we could make it work even
better. Natural questions with respect to the taxi industry include:
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Figure 1.7: Which neighborhoods in New York city tip most generously? The
relatively remote outer boroughs of Brooklyn and Queens, where trips are
longest and supply is relatively scarce.

e How much money do drivers make each night, on average? What is the
distribution? Do drivers make more on sunny days or rainy days?

e Where are the best spots in the city for drivers to cruise, in order to pick
up profitable fares?” How does this vary at different times of the day?”

e How far do drivers travel over the course ol a night's work? We can’t
answer this exactly using this data set, because it does not provide GPS
data of the route traveled between fares. But we do know the last place
of drop off, the next place of pickup, and how long it took to get between
them. Together, this should provide enough information to make a sound
estimate.

e Which drivers take their unsuspecting out-of-town passengers for a “ride,”
running up the meter on what should be a much shorter, cheaper trip?

e How much are drivers tipped, and why? Do faster drivers get tipped
better?” How do tipping rates vary by neighborhood, and is it the rich
neighborhoods or poor neighborhoods which prove more generous?

[ will confess we did an analysis of this, which I will further describe in
the war story of Section 9.3. We found a variety of interesting patterns
SS15]. Figure 1.7 shows that Manhattanites are generally cheapskates
relative to large swaths of Brooklyn, Queens, and Staten Island, where
trips are longer and street cabs a rare but welcome sight.
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e Simple models do not require massive data to fit or evaluate: A typical
data science task might be to make a decision (say, whether I should offer
this fellow life insurance?) on the basis of a small number of variables:
say age, gender, height, weight, and the presence or absence of existing
medical conditions.

It I have this data on 1 million people with their associated life outcomes, |
should be able to build a good general model of coverage risk. It probably
wouldn’t help me build a substantially better model if 1 had this data
on hundreds of millions of people. The decision criteria on only a few
variables (like age and martial status) cannot be too complex, and should
be robust over a large number of applicants. Any observation that is so
subtle it requires massive data to tease out will prove irrelevant to a large
business which is based on volume.

Big data is sometimes called bad data. It is often gathered as the by-product
of a given system or procedure, instead of being purposefully collected to answer
your question at hand. The result is that we might have to go to heroic efforts
to make sense ol something just because we have it.

Consider the problem of getting a pulse on voter preferences among presi-
dential candidates. The big data approach might analyze massive Twitter or
Facebook feeds, interpreting clues to their opinions in the text. The small data
approach might be to conduct a poll, asking a few hundred people this specific
question and tabulating the results. Which procedure do you think will prove
more accurate? The right data set is the one most directly relevant to the tasks
at hand, not necessarily the biggest one.

Take-Home Lesson: Do not blindly aspire to analyze large data sets. Seek the
right data to answer a given question, not necessarily the biggest thing you can
get your hands on.

1.4 Classification and Regression

Two types of problems arise repeatedly in traditional data science and pattern
recognition applications, the challenges of classification and regression. As this
book has developed, I have pushed discussions of the algorithmic approaches
to solving these problems toward the later chapters, so they can benefit from a
solid understanding of core material in data munging, statistics, visualization,
and mathematical modeling.

Still, I will mention issues related to classification and regression as they
arise, so it makes sense to pause here for a quick introduction to these problems,
to help you recognize them when you see them.

e Classification: Often we seek to assign a label to an item from a discrete
set of possibilities. Such problems as predicting the winner of a particular
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sporting contest (team A or team B7?7) or deciding the genre of a given
movie (comedy, drama, or animation?) are classification problems, since
each entail selecting a label from the possible choices.

e fRegression: Another common task is to forecast a given numerical quan-
tity. Predicting a person’s weight or how much snow we will get this year
is a regression problem, where we forecast the future value of a numerical
function in terms of previous values and other relevant features.

Perhaps the best way to see the intended distinction is to look at a variety
of data science problems and label (classify) them as regression or classification.
Different algorithmic methods are used to solve these two types of problems,
although the same questions can often be approached in either way:

e Will the price of a particular stock be higher or lower tomorrow? (classi-
fication)

i
*

e What will the price of a particular stock be tomorrow? (regression)
e [s this person a good risk to sell an insurance policy to? (classification)

e How long do we expect this person to live? (regression)

Keep your eyes open for classification and regression problems as you en-
counter them in your life, and in this book.

1.5 Data Science Television: The Quant Shop

[ believe that hands-on experience is necessary to internalize basic principles.
Thus when I teach data science, I like to give each student team an interesting
but messy forecasting challenge, and demand that they build and evaluate a
predictive model for the task.

These forecasting challenges are associated with events where the students
must make testable predictions. They start from scratch: finding the relevant
data sets, building their own evaluation environments, and devising their model.
Finally, I make them watch the event as it unfolds, so as to witness the vindi-
ation or collapse of their prediction.

As an experiment, we documented the evolution of each group’s project
on video in Fall 2014. Professionally edited, this became The Quant Shop, a
television-like data science series for a general audience. The eight episodes of
this first season are available at http://www.quant-shop.com, and include:

e [Yinding Miss Universe — The annual Miss Universe competition aspires
to identify the most beautiful woman in the world. Can computational
models predict who will win a beauty contest? Is beauty just subjective,
or can algorithms tell who is the fairest one of all?
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e Modeling the Movies — The business of movie making involves a lot of
high-stakes data analysis. Can we build models to predict which film will
gross the most on Christmas day? How about identifying which actors
will receive awards for their performance?

e Winning the Baby Pool — Birth weight is an important factor in assessing
the health of a newborn child. But how accurately can we predict junior’s
weight before the actual birth? How can data clarify environmental risks
to developing pregnancies?

e The Art of the Auction — The world’s most valuable artworks sell at auc-
tions to the highest bidder. But can we predict how many millions a
particular J.W. Turner painting will sell for? Can computers develop an
artistic sense of what’s worth buying?

o White Christmas — Weather forecasting is perhaps the most familiar do-
main of predictive modeling. Short-term forecasts are generally accurate,
but what about longer-term prediction? What places will wake up to a
snowy Christmas this year? And can you tell one month in advance?

e Predicting the Playoffs — Sports events have winners and losers, and book-
ies are happy to take your bets on the outcome of any match. How well can
statistics help predict which football team will win the Super Bowl? Can
Google’s PageRank algorithm pick the winners on the field as accurately
as it does on the web?

e The Ghoul Pool — Death comes to all men, but when? Can we apply
actuarial models to celebrities, to decide who will be the next to die?
Similar analysis underlies the workings of the life insurance industry, where
accurate predictions of lifespan are necessary to set premiums which are
both sustainable and affordable.

Figure 1.8: Exciting scenes from data science television: The Quant Shop.
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e Playing the Market — Hedge fund quants get rich when guessing right
about tomorrow’s prices, and poor when wrong. How accurately can we
predict future prices of gold and oil using histories of price data? What
other information goes into building a successful price model?

I encourage you to watch some episodes of The Quant Shop in tandem with
reading this book. We try to make it fun, although I am sure you will find
plenty of things to cringe at. Each show runs for thirty minutes, and maybe
will inspire you to tackle a prediction challenge of your own.

These programs will certainly give you more insight into these eight specific
challenges. I will use these projects throughout this book to illustrate important
lessons in how to do data science, both as positive and negative examples. These
projects provide a laboratory to see how intelligent but inexperienced people not
wildly unlike yourselt thought about a data science problem, and what happened
when they did.

1.5.1 Kaggle Challenges

Another source of inspiration are challenges from Kaggle (www.kaggle.com),
which provides a competitive forum for data scientists. New challenges are
posted on a regular basis, providing a problem definition, training data, and
a scoring function over hidden evaluation data. A leader board displays the
scores of the strongest competitors, so you can see how well your model stacks
up in comparison with your opponents. The winners spill their modeling secrets
during post-contest interviews, to help you improve your modeling skills.

Performing well on Kaggle challenges is an excellent credential to put on your
resume to get a good job as a data scientist. Indeed, potential employers will
track yvou down if you are a real Kaggle star. But the real reason to participate
is that the problems are fun and inspiring, and practice helps make you a better
data scientist.

The exercises at the end of each chapter point to expired Kaggle challenges.
loosely connected to the material in that chapter. Be forewarned that Kaggle
provides a misleading glamorous view of data science as applied machine learn-
ing, because it presents extremely well-defined problems with the hard work
of data collection and cleaning already done for you. 5till, I encourage you to
check it out for inspiration, and as a source of data for new projects.

1.6 About the War Stories

(Genius and wisdom are two distinct intellectual gifts. Genius shows in discover-
ing the right answer, making imaginative mental leaps which overcome obstacles
and challenges. Wisdom shows in avoiding obstacles in the first place, providing
a sense of direction or guiding light that keeps us moving soundly in the right
direction.
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(Genius is manifested in technical strength and depth, the ability to see things
and do things that other people cannot. In contrast, wisdom comes from ex-
perience and general knowledge. It comes from listening to others. Wisdom
comes from humility, observing how often you have been wrong in the past and
figuring out why you were wrong, so as to better recognize future traps and
avold them.

Data science, like most things in life, benefits more from wisdom than from
genius. In this book, I seek to pass on wisdom that I have accumulated the hard
way through war stories, gleaned from a diverse set of projects I have worked
on:

e Large-scale text analytics and NLP: My Data Science Laboratory at Stony
Brook University works on a variety of projects in big data, including sen-
timent analysis from social media, historical trends analysis, deep learning
approaches to natural language processing (NLP), and feature extraction
from networks.

o Start-up companies: 1 served as co-founder and chief scientist to two
data analytics companies: General Sentiment and Thrivemetrics. General
Sentiment analyzed large-scale text streams from news, blogs, and social
media to identify trends in the sentiment (positive or negative) associated
with people, places, and things. Thrivemetrics applied this type of analysis
to internal corporate communications, like email and messaging systems.

Neither of these ventures left me wealthy enough to forgo my royalties
from this book, but they did provide me with experience on cloud-based
computing systems, and insight into how data is used in industry.

e Collaborating with real scientists: 1 have had several interesting collab-
orations with biologists and social scientists, which helped shape my un-
derstanding of the complexities of working with real data. Experimental
data is horribly noisy and riddled with errors, yet you must do the best
you can with what you have, in order to discover how the world works.

e Building gambling systems: A particularly amusing project was building
a system to predict the results of jai-alai matches so we could bet on them,
an experience recounted in my book Calculated Bets: Computers, Gam-
bling, and Mathemalical Modeling to Win [SkiO1]. Our system relied on
web scraping for data collection, statistical analysis, simulation/modeling,
and careful evaluation. We also have developed and evaluated predictive
models for movie grosses [ZS09], stock prices [ZS10], and football games
'HS10] using social media analysis.

e Ranking historical figures: By analyzing Wikipedia to extract meaningful
variables on over 800,000 historical figures, we developed a scoring func-
tion to rank them by their strength as historical memes. This ranking
does a great job separating the greatest of the great (Jesus, Napoleon,
Shakespeare, Mohammad, and Lincoln round out the top five) from lesser
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The potential of ride-sharing systems in New York was studied by Santi et.
al. [SRS™14], who showed that almost 95% of the trips could have been shared

with no more than five minutes delay per trip.

The Lydia system for sentiment analysis is described in [GSS07]. Methods
to identify changes in word meaning through analysis of historical text corpora
like Google Ngram are reported in [KARPS15].

1.9 Exercises

Identifying Data Sets

1-1. /3] Identify where interesting data sets relevant to the following domains can be
found on the web:

(a) Books.
(b) Horse racing.
(c) Stock prices.
(d) Risks of diseases.
e) Colleges and universities.
f) Crime rates.
(g) Bird watching.
For each of these data sources, explain what you must do to turn this data into
a usable format on your computer for analysis.

1-2. /3] Propose relevant data sources for the following The Quant Shop prediction
challenges. Distinguish between sources of data that you are sure somebody must
have, and those where the data is clearly available to you.

(a) Miss Universe.
(b) Mowvie gross.
(¢) Baby weight.
(d) Art auction price.
(e) Whate Christmas.
() Football champions.
(g) Ghoul pool.
(h) Gold/oil prices.
1-3. [3/ Visit http://data.gov, and identify five data sets that sound interesting to

you. For each write a briel description, and propose three interesting things you
might do with them.

Asking Questions

1-4. [3] For each of the following data sources, propose three interesting questions
you can answer by analyzing them:

(a) Credit card billing data.
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(b) Click data from http://www.Amazon. com.

(c) White Pages residential /commercial telephone directory.

[5] Visit Entrez, the National Center for Biotechnology Information (NCBI)
portal. Investigate what data sources are available, particularly the Pubmed
and Genome resources. Propose three interesting projects to explore with each
of them.

/5] You would like to conduct an experiment to establish whether your friends
prefer the taste of regular Coke or Diet Coke. Briefly outline a design for such
a study.

[5] You would like to conduct an experiment to see whether students learn better
if they study without any music, with instrumental music, or with songs that
have lyrics. Briefly outline the design for such a study.

[5] Traditional polling operations like Gallup use a procedure called random digit
dialing, which dials random strings of digits instead of picking phone numbers
from the phone book. Suggest why such polls are conducted using random digit
dialing.

Implementation Projects

1-9.

1-10.

[5] Write a program to scrape the best-seller rank for a book on Amazon.com.
Use this to plot the rank of all of Skiena’s books over time. Which one of these
books should be the next item that you purchase? Do you have friends for whom
they would make a welcome and appropriate gift? :-)

/5] For your favorite sport (baseball, football, basketball, cricket, or soccer)
identify a data set with the historical statistical records for all major partici-
pants. Devise and implement a ranking system to identify the best player at
each position.

Interview Questions

1-11.

[3] For each of the following questions: (1) produce a quick guess based only on
your understanding of the world, and then (2) use Google to find supportable
numbers to produce a more principled estimate from. How much did your two
estimates differ by?

(a) How many piano tuners are there in the entire world?
(1

(
(d

) How much does the ice in a hockey rink weigh?

b

E

How many gas stations are there in the United States?

e

How many people fly in and out of LaGuardia Airport every day?

e) How many gallons of ice cream are sold in the United States each vear?

ar

How many basketballs are purchased by the National Basketball Associa-
tion (NBA) each year?

)
)
(e)
(f)

) How many fish are there in all the world’s oceans?
) How many people are flying in the air right now, all over the world?
(i) How many ping-pong balls can fit in a large commercial jet?

How many miles of paved road are there in your favorite country?
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(k) How many dollar bills are sitting in the wallets of all people at Stony Brook
University?

(1) How many gallons of gasoline does a typical gas station sell per day?
(m) How many words are there in this book?
(n) How many cats live in New York city?

(o) How much would it cost to fill a typical car’s gas tank with Starbuck’s
coffee?

(p) How much tea is there in China?
(q) How many checking accounts are there in the United States?
1-12. [3] What is the difference between regression and classification?

1-13. /8/ How would you build a data-driven recommendation system? What are the
limitations of this approach?

1-14. /3] How did you become interested in data science?

1-15. /3] Do you think data science is an art or a science?

Kaggle Challenges

1-16. Who survived the shipwreck of the Titanic?
https://www.kaggle.com/c/titanic

[-17. Where is a particular taxi cab going?
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

1-18. How long will a given taxi trip take?

https://www.kaggle.com/c/pkdd-15-taxi-trip-time-prediction-ii



Chapter 2

Mathematical Preliminaries

A data scientist is someone who knows more statistics than a com-
puter scientist and more computer science than a statistician.

— Josh Blumenstock

You must walk before you can run. Similarly, there is a certain level of mathe-
matical maturity which is necessary betore you should be trusted to do anything
meaningful with numerical data.

In writing this book, I have assumed that the reader has had some degree
of exposure to probability and statistics, linear algebra, and continuous math-
ematics. I have also assumed that they have probably forgotten most of it, or
perhaps didn’t always see the forest (why things are important, and how to use
them) for the trees (all the details of definitions, proofs, and operations).

This chapter will try to refresh your understanding of certain basic math-
ematical concepts. Follow along with me, and pull out your old textbooks if
necessary for future reference. Deeper concepts will be introduced later in the
book when we need them.

2.1 Probability

Probability theory provides a formal framework for reasoning about the likeli-
hood of events. Because it is a formal discipline, there are a thicket of associated
definitions to instantiate exactly what we are reasoning about:

e An experiment is a procedure which yields one of a set of possible out-
comes. As our ongoing example, consider the experiment of tossing two
six-sided dice, one red and one blue, with each face baring a distinct inte-

ger {1,...,6}.

e A sample space S is the set of possible outcomes of an experiment. In our

27
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dice example, there are 36 possible outcomes, namely

S = {(1,1),(1,2), (1,3), (1,4),(1,5), (1,6), (2, 1), (2,2), (2,3), (2,4), (2, 5), (2, 6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5), (4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}.

o

An event F is a specified subset of the outcomes of an experiment. The
event that the sum of the dice equals 7 or 11 (the conditions to win at
craps on the first roll) is the subset

L= {(L 6), (25 5)= (3, 4)! (41 3)? (‘5! 2)= (6= 1)1 (5'- 6)3 (61 *3)}

The probability of an outcome s, denoted p(s) is a number with the two
properties:

— For each outcome s in sample space S, 0 < p(s) < 1.

— The sum of probabilities of all outcomes adds to one: ) ¢ p(s) = 1.

[f we assume two distinct fair dice, the probability p(s) = (1/6) x (1/6) =
1/36 for all outcomes s € S.

The probability of an event E is the sum of the probabilities of the out-
comes of the experiment. Thus

p(E) =) n(s)

sc

An alternate formulation is in terms of the complement of the event FE,
the case when £ does not occur. Then

P(E)=1- P(E).
This is useful, because often it is easier to analyze P(F) than P(F) di-
rectly.

A random variable V' is a numerical function on the outcomes of a proba-
bility space. The function “sum the values of two dice” (V((a,b)) = a+b)
produces an integer result between 2 and 12. This implies a probabil-
ity distribution of the values of the random variable. The probability
P(V(s) =7) = 1/6, as previously shown, while P(V(s) = 12) = 1/36.

The expected value of a random variable V' defined on a sample space S,
E(V') is defined
E(V)=> p(s)-V(s).

seS5

All this you have presumably seen before. But it provides the language we

will use to connect between probability and statistics. The data we see usually
comes from measuring properties of observed events. The theory of probability
and statistics provides the tools to analyze this data.
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Probability theorists love independent events, because it simplifies their cal-
culations. But data scientists generally don’t. When building models to predict
the likelihood of some future event B, given knowledge of some previous event
A, we want as strong a dependence of B on A as possible.

Suppose | always use an umbrella if and only if it is raining. Assume that
the probability it is raining here (event B) is, say, p = 1/5. This implies the
probability that I am carrying my umbrella (event A) is ¢ = 1/5. But even
more, if you know the state of the rain you know exactly whether I have my
umbrella. These two events are perfectly correlated.

By contrast, suppose the events were independent. Then

P(AN B) P(A)P(B)
P(A|B) = = - = P(A)
P(B) P(B)
and whether it is raining has absolutely no impact on whether I carry my pro-
tective gear.

Correlations are the driving force behind predictive models, so we will discuss

how to measure them and what they mean in Section 2.3.

2.1.3 Conditional Probability

When two events are correlated, there is a dependency between them which
makes calculations more difficult. The conditional probability of A given B,
P(A|B) is defined:
P(ANB)

P(B)

Recall the dice rolling events from Section 2.1.2, namely:

P(A|B) =

e Kvent A is that at least one of two dice be an even number.
e Kvent B i1s the sum of the two dice 1s either a 7 or an 11.

Observe that P(A|B) = 1, because any roll summing to an odd value must
consist of one even and one odd number. Thus AN B = B, analogous to the
umbrella case above. For P(B|A), note that P(AN B) = 9/36 and P(A) =
25/36, so P(B|A) =9/25.

Conditional probability will be important to us, because we are interested in
the likelihood of an event A (perhaps that a particular piece of email is spam)
as a function of some evidence B (perhaps the distribution of words within the
document). Classification problems generally reduce to computing conditional
probabilities, in one way or another.

Our primary tool to compute conditional probabilities will be Bayes theorem,
which reverses the direction of the dependencies:

P(A|B)P(B)
P(A)

P(B|A) =

Often it proves easier to compute probabilities in one direction than another, as
in this problem. By Bayes theorem P(B|A) = (1-9/36)/(25/36) = 9/25, exactly
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Figure 2.2: The probability density function (pdf) of the sum of two dice con-
tains exactly the same information as the cumulative density function (edf), but
looks very different.

what we got before. We will revisit Bayes theorem in Section 5.6, where it will
establish the foundations of computing probabilities in the face of evidence.

2.1.4 Probability Distributions

Random variables are numerical functions where the values are associated with
probabilities of occurrence. In our example where V' (s) the sum of two tossed
dice, the function produces an integer between 2 and 12. The probability of a
particular value V(s) = X is the sum of the probabilities of all the outcomes
which add up to X.

Such random variables can be represented by their probability density func-
tion, or pdf. This is a graph where the z-axis represents the range of values
the random variable can take on, and the y-axis denotes the probability of that
given value. Figure 2.2 (left) presents the pdf of the sum of two fair dice. Ob-
serve that the peak at X = 7 corresponds to the most frequent dice total, with
a probability of 1/6.

Such pdf plots have a strong relationship to histograms of data frequency,
where the z-axis again represents the range of value, but y now represents the
observed frequency of exactly how many event occurrences were seen for each
given value X. Converting a histogram to a pdf can be done by dividing each
bucket by the total frequency over all buckets. The sum of the entries then
becomes 1, so we get a probability distribution.

Histograms are statistical: they reflect actual observations of outcomes. In
contrast, pdfs are probabilistic: they represent the underlying chance that the
next observation will have value X. We often use the histogram of observations
h(zx) in practice to estimate the probabilities® by normalizing counts by the total

2 A technique called discounting offers a better way to estimate the frequency of rare events,
and will be discussed in Section 11.1.2.
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Figure 2.3: iPhone quarterly sales data presented as cumulative and incremental
(quarterly) distributions. Which curve did Apple CEO Tim Cook choose to
present,”?
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There is another way to represent random variables which often proves use-
ful, called a cumulative density function or cdf. The cdf is the running sum of
the probabilities in the pdf; as a function of k, it reflects the probability that
X < k instead of the probability that X = k. Figure 2.2 (right) shows the
cdf of the dice sum distribution. The values increase monotonically from left
to right, because each term comes from adding a positive probability to the
previous total. The rightmost value is 1, because all outcomes produce a value
no greater than the maximum.

It is important to realize that the pdf (V') and cdf C'(V') of a given random
variable V contain ezactly the same information. We can move back and forth
between them because:

Pk =X)

Pk=X)=CX<k+0)—-C(X <k),
where 0 = 1 for integer distributions. The cdf is the running sum of the pdf, so

C(X <k)=)» PX=u)

<k

Just be aware of which distribution you are looking at. Cumulative distribu-
tions always get higher as we move to the right, culminating with a probability
of C(X < oo) = 1. By contrast, the total area under the curve of a pdf equals
1, so the probability at any point in the distribution is generally substantially
less.
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An amusing example of the difference between cumulative and incremental
distributions is shown in Figure 2.3. Both distributions show exactly the same
data on Apple iPhone sales, but which curve did Apple CEO Tim Cook choose to
present at a major shareholder event? The cumulative distribution (red) shows
that sales are exploding, right? But it presents a misleading view of growth
rate, because incremental change is the derivative ol this function, and hard to
visualize. Indeed, the sales-per-quarter plot (blue) shows that the rate of iPhone
sales actually had declined for the last two periods before the presentation.

2.2 Descriptive Statistics

Descriptive statistics provide ways of capturing the properties of a given data
set or sample. They summarize observed data, and provide a language to talk
about it. Representing a group of elements by a new derived element, like
mean. min, count, or sum reduces a large data set to a small summary statistic:
ageregation as data reduction.

Such statistics can become features in their own right when taken over natu-
ral groups or clusters in the full data set. There are two main types of descriptive
statistics:

e (entral tendency measures, which capture the center around which the
data is distributed.

e Variation or variability measures, which describe the data spread, 1.e. how
far the measurements lie from the center.

Together these statistics tell us an enormous amount about our distribution.

2.2.1 Centrality Measures

The first element of statistics we are exposed to in school are the basic centrality
measures: mean, median, and mode. These are the right place to start when
thinking of a single number to characterize a data set.

e Mean: You are probably quite comfortable with the use of the arithmetic
mean, where we sum values and divide by the number of observations:

.I T
HX = - E L

1=1

We can easily maintain the mean under a stream of insertions and dele-
tions, by keeping the sum of values separate from the frequency count,
and divide only on demand.

The mean is very meaningful to characterize symmetric distributions with-
out outliers, like height and weight. That it is symmetric means the num-
ber of items above the mean should be roughly the same as the number
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below. That it is without outliers means that the range of values is rea-
sonably tight. Note that a single MAXINT creeping into an otherwise
sound set of observations throws the mean wildly off. The median is a
centrality measure which proves more appropriate with such ill-behaved
distributions.

e Geometric mean: The geometric mean is the nth root of the product of n

values:
n 1/n

| | a; = Yaiaz...ay

1=1

The geometric mean is always less than or equal to the arithmetic mean.
For example, the geometric mean of the sums of 36 dice rolls is 6.5201, as
opposed to the arithmetic mean of 7. It is very sensitive to values near
zero. A single value of zero lays waste to the geometric mean: no matter
what other values you have in your data, you end up with zero. This is
somewhat analogous to having an outlier of oo in an arithmetic mean.

But geometric means prove their worth when averaging ratios. The ge-
ometric mean of 1/2 and 2/1 is 1, whereas the mean is 1.25. There is
less available “room” for ratios to be less than 1 than there is for ratios
above 1, creating an asymmetry that the arithmetic mean overstates. The
geometric mean is more meaningful in these cases, as is the arithmetic
mean of the logarithms of the ratios.

e Median: The median is the exact middle value among a data set; just as
many elements lie above the median as below it. There is a quibble about
what to take as the median when you have an even number of elements.
You can take either one of the two central candidates: in any reasonable
data set these two values should be about the same. Indeed in the dice
example, both are 7.

A nice property of the median as so defined is that it must be a genuine
value of the original data stream. There actually is someone of median
height to you can point to as an example, but presumably no one in the
world is of exactly average height. You lose this property when vou average
the two center elements.

Which centrality measure is best for applications? The median typically
lies pretty close to the arithmetic mean in symmetrical distributions, but
it is often interesting to see how far apart they are, and on which side of
the mean the median lies.

The median generally proves to be a better statistic for skewed distribu-
tions or data with outliers: like wealth and income. Bill Gates adds $250
to the mean per capita wealth in the United States, but nothing to the
median. If he makes vou personally feel richer, then go ahead and use the
mean. But the median is the more informative statistic here, as it will be
for any power law distribution.
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In[28]= Season[p Real, n_Integer)] :=
Count [ Table[If [RandomReal[l] = p, 1, 0], {(m}], 1]/ (1.0%nm)
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Figure 2.5: Sample variance on hitters with a real 30% success rate results in a
wide range of observed performance even over 500 trials per season.

year usually underperforms the market the year after, which shouldn’t
happen if this outstanding performance was due to skill rather than luck.

The fund managers themselves are quick to credit profitable years to their
own genius, but losses to unforeseeable circumstances. However, several
studies have shown that the performance of professional investors is es-
sentially random, meaning there is little real difference in skill. Most
investors are paying managers for previously-used luck. So why do these
entrail-readers get paid so much money?

e Sports performance: Students have good semesters and bad semesters, as
reflected by their grade point average (GPA). Athletes have good and bad
seasons, as reflected by their performance and statistics. Do such changes
reflect genuine differences in effort and ability, or are they just variance?

In baseball, .300 hitters (players who hit with a 30% success rate) represent
consistency over a full season. Batting .275 is not a noteworthy season,
but hit .300 and you are a star. Hit .325 and you are likely to be the
batting champion.

Figure 2.5 shows the results of a simple simulation, where random numbers
were used to decide the outcome of each at-bat over a 500 at-bats/season.
Our synthetic player is a real .300 hitter, because we programmed it to
report a hit with probability 300/1000 (0.3). The results show that a real
300 hitter has a 10% chance of hitting .275 or below, just by chance.
Such a season will typically be explained away by injuries or maybe the
inevitable eflects of age on athletic performance. But it could just be
natural variance. Smart teams try to acquire a good hitter after a lousy
season, when the price is cheaper, trying to take advantage of this variance.

Our .300 hitter also has a 10% chance of batting above .325, but you
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can be pretty sure that they will ascribe such a breakout season to their
improved conditioning or training methods instead of the fact they just
got lucky. Good or bad season, or lucky/unlucky: it is hard to tell the
signal from the noise.

e Model performance: As data scientists, we will typically develop and eval-
nate several models for each predictive challenge. The models may range
from very simple to complex, and vary in their training conditions or
parameters.

Typically the model with the best accuracy on the training corpus will
be paraded triumphantly before the world as the right one. But small
differences in the performance between models is likely explained by sim-
ple variance rather than wisdom: which training/evaluation pairs were
selected, how well parameters were optimized, etc.

Remember this when 1t comes to training machine learning models. In-
deed, when asked to choose between models with small performance dif-
ferences between them, I am more likely to argue for the simplest model
than the one with the highest score. Given a hundred people trying to
predict heads and tails on a stream of coin tosses, one of them is guar-
anteed to end up with the most right answers. But there is no reason to
believe that this fellow has any better predictive powers than the rest of
us.

2.2.4 Characterizing Distributions

Distributions do not necessarily have much probability mass exactly at the
mean. Consider what your wealth would look like after you borrow $100 million,
and then bet it all on an even money coin flip. Heads you are now $100 million
in clear, tails you are $100 million in hock. Your expected wealth is zero, but
this mean does not tell vou much about the shape of vour wealth distribution.

However, taken together the mean and standard deviation do a decent job
of characterizing any distribution. Even a relatively small amount of mass
positioned far from the mean would add a lot to the standard deviation, so a
small value of ¢ implies the bulk of the mass must be near the mean.

To be precise, regardless of how your data is distributed, at least (1 —
(1/k*))th of the mass must lie within £k standard deviations of the mean.
This means that at least 75% of all the data must lie within 20 of the mean,
and almost 89% within 3o for any distribution.

We will see that even tighter bounds hold when we know the distribution is
well-behaved, like the Gaussian or normal distribution. But this is why it is a
great practice to report both p and ¢ whenever you talk about averages. The
average height of adult women in the United States is 63.7+£2.7 inches, meaning
1= 63.7 and ¢ = 2.7. The average temperature in Orlando, F1 is 60.3 degrees
Fahrenheit. However, there have been many more 100 degree days at Disney
World than 100 inch (8.33 foot) women visiting to enjoy them.
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Take-Home Lesson: Report both the mean and standard deviation to charac-
terize yvour distribution, written as p & o.

2.3 Correlation Analysis

Suppose we are given two variables z and y, represented by a sample of n points
of the form (x;,y;), for 1 <17 <n. We say that x and y are correlated when the
value of = has some predictive power on the value of .

The correlation coefficient r(X,Y) is a statistic that measures the degree
to which Y is a function of X, and vice versa. The value of the correlation
coefficient ranges from —1 to 1, where 1 means fully correlated and 0 implies
no relation, or independent variables. Negative correlations imply that the
ariables are anti-correlated, meaning that when X goes up, Y goes down.

Perfectly anti-correlated variables have a correlation of —1. Note that nega-
tive correlations are just as good for predictive purposes as positive ones. That
you are less likely to be unemployed the more education you have is an example
of a negative correlation, so the level of education can indeed help predict job
status. Correlations around 0 are useless for forecasting.

Observed correlations drives many of the predictive models we build in data
science. Representative strengths of correlations include:

e Are taller people more likely to remain lean”? The observed correlation
between height and BMI 18 r = —0.711, so height 1s indeed negatively
correlated with body mass index (BMI).?

e Do standardized tests predict the performance of students in college? The
observed correlation between SAT scores and freshmen GPA is r = 0.47,
so yes, there is some degree of predictive power. But social economic
status is just as strongly correlated with SAT scores (r = 0.42).%

e Does financial status affect health? The observed correlation between
household income and the prevalence of coronary artery disease is r =
—0.717, so there is a strong negative correlation. So yes, the wealthier
you are, the lower your risk of having a heart attack.”

e Does smoking affect health? The observed correlation between a group’s
propensity to smoke and their mortality rate is » = 0.716, so for G-d’s
sake, don’t smoke.®

‘https://onlinecourses.science.psu.edu/stat500/node/60
‘https://research.collegeboard.org/sites/default/files/publications/2012/9/
researchreport-2009-1-sociceconomic-status-sat-freshman-gpa-analysis—data.pdf
"http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457990/.
Shttp://lib.stat.cmu.edu/DASL/Stories/SmokingandCancer.html.
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Figure 2.8: Limits in interpreting significance. The r? value shows that weak
correlations explain only a small fraction of the variance (left). The level of cor-

size n (right).
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Figure 2.9: Plotting r; = y; — f(x;) shows that the residual values have lower
variance and mean zero. The original data points are on the left, with the
corresponding residuals on the right.



