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Preface

The recent progress in artificial intelligence (Al) was made by reverse engi-
neering brains. Learning algorithms for layered neural network models are
inspired by the way that neurons communicate with one another and are
modified by experience. Inside the network, the complexity of the world
is transformed into a kaleidoscope of internal patterns of activity that are
the ingredients of intelligence. The network models that I worked on in the
1980s were tiny compared with today’s models, which now have millions
of artificial neurons and which are dozens of layers deep. What made it
possible for deep learning to make big breakthroughs on some of the most
difficult problems in artificial intelligence was persistence, big data, and a
lot more computer power.

We're not good at imagining the impact of a new technology on the
future. Who could have predicted in 1990, when the Internet went com-
mercial, what impact it would have on the music business? On the taxi
business? On political campaigns? On almost all aspects of our daily lives?
There was a similar failure to imagine how computers would change our
lives. Thomas J. Watson, the president of IBM, is widely quoted as saying in
1943: “I think there is a world market for maybe five computers.”" What's
hard to imagine are the uses to which a new invention will be put, and
inventors are no better than anyone else at predicting what those uses will
be. There is a lot of room between the utopian and doomsday scenarios that
are being predicted for deep learning and Al, but even the most imagina-
tive science fiction writers are unlikely to guess what their ultimate impact
will be.

The first draft of The Deep Learning Revolution was written in a few
focused weeks after hiking in the Pacific Northwest and meditating on the
remarkable recent shift in the world of artificial intelligence, which had its
origin many decades earlier. It is a story about a small group of researchers
challenging an Al establishment that was much better funded and at the
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time the “only game in town.” They vastly underestimated the difficulty of
the problems and relied on intuitions about intelligence that proved to be
misleading.

Life on earth is filled with many mysteries, but perhaps the most
challenging of these is the nature of intelligence. Nature abounds with
intelligence in many forms, from humble bacterial to complex human
intelligence, each adapted to its niche in nature. Artificial intelligence will
also come in many forms that will take their particular places on this spec-
trum. As machine intelligence based on deep neural networks matures, it
could provide a new conceptual framework for biological intelligence.

The Deep Learning Revolution is a guide to the past, present, and future
of deep learning. Not meant to be a comprehensive history of the field, it
is rather a personal view of key conceptual advances and the community
of researchers who made them. Human memory is fallible and shifts with
every retelling of a story, a process called “reconsolidation.” The stories in
this book stretch over forty years, and even though some are as vivid to me
as if they occurred yesterday, I am well aware that the details have been
edited by my memory’s retellings over time.

Part 1 provides the motivation for deep learning and the background
needed to understand its origins; part Il explains learning algorithms in sev-
eral different types of neural network architectures; and part IIT explores the
impact that deep learning is having on our lives and what impact it may
have in years to come. But, as the New York Yankees’ philosopher Yogi Berra
once said: “It’s tough to make predictions, especially about the future.” Text
boxes in eight of the chapters to follow provide technical background to
the story; timelines at the beginning of the three parts keep track of events
that bear on that story and extend over sixty years.

The 2019 Turing Award recognized Geoffrey Hinton, Yann LeCun, and
Yoshua Bengio for their pioneering work on deep learning. The Turing
Award is the highest honor in computer science and is named after Alan
Turing, who pioneered the fundamental theory underlying modern digital
computers. Digital computers were invented after Nobel Prizes were estab-
lished, so the Turing Award is widely considered to be like a Nobel Prize
for computing. This book tells the story of the 30-year journey that led
these pioneers to a revolution in artificial intelligence and the influence
that their achievements are having on the world.
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Timeline

1956—The Dartmouth Artificial Intelligence Summer Research Project
gave birth to the field of Al and motivated a generation of scientists to
explore the potential for information technology to match the capabilities
of humans.

1959—David Hubel and Torsten Wiesel published “Receptive Fields, Bin-
ocular Interaction and Functional Architecture in the Cat’s Visual Cortex,”
which reported for the first time the response properties of single neurons
recorded with a microelectrode. Deep learning networks have an architec-
ture similar to the hierarchy of areas in the visual cortex.

1962—Frank Rosenblatt published Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms, which introduced a learning algorithm
for neural network models with a single layer of variable weights—the pre-
cursor of today’s learning algorithms for deep neural network models.

1969—Marvin Minsky and Seymour Papert published Perceptrons, which
pointed out the computational limitations of a single artificial neuron and
marked the beginning of a neural network winter.

1979—Geoffrey Hinton and James Anderson organized the Parallel Mod-
els of Associative Memory workshop in La Jolla, California, which brought
together a new generation of neural network pioneers and led to publica-
tion of Hinton and Anderson’s collected volume by the same title in 1981.

1987—The First Neural Information Processing Systems (NIPS) Confer-
ence and Workshop was held at the Denver Tech Center, bringing together
researchers from many fields.



Copyrighted material



The Rise of Machine Learning 5

Figure 1.2
Beer Bottle Pass. This challenging terrain was near the end of the 2005 DARPA
Grand Challenge for a vehicle to drive unassisted by a human through a 132-mile
off-road desert course. A truck in the distance is just beginning the climb. Courtesy
of DARPA.

products that its operating systems control, hoping to repeat its successful
foray into the cell phone market. Seeing a business that had not changed
for 100 years transformed before their eyes, automobile manufacturers are
following in their tracks. General Motors paid $1 billion for Cruise Auto-
mation, a Silicon Valley start-up that is developing driverless technology,
and invested an additional $600 million in 2017 in research and develop-
ment.” In 2017, Intel purchased Mobileye, a company that specializes in
sensors and computer vision for self-driving cars, for $15.3 billion dollars.
The stakes are high in the multitrillion-dollar transportation sector of the
economy.

Self-driving cars will soon disrupt the livelihoods of millions of truck
and taxi drivers. Eventually, there will be no need to own a car in a city
when a self-driving car can show up in a minute and take you safely to your
destination, without your having to park it. The average car today is only
used 4 percent of the time, which means it needs to be parked somewhere
96 percent of the time. But because self-driving cars can be serviced and
parked outside cities, vast stretches of city land now covered with parking
lots can be repurposed for more productive uses. Urban planners are already
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thinking ahead to the day when parking lots become parkland.® Parking
lanes along streets can become real bike lanes. Many other car-related busi-
nesses will be affected, including auto insurance agencies and body shops.
No more speeding or parking tickets. There will be fewer deaths from drunk
drivers and from drivers falling asleep at the wheel. Time wasted commut-
ing to work will be freed for other purposes. According to the U.S. Census
Bureau, in 2014, 139 million Americans spent an average of 52 minutes
commuting to and from work each workday. That amounts to 29.6 bil-
lion hours per year, or an astounding 3.4 million years of human lives that
could have been put to better use.* Highway capacity will be increased by
a factor of four by caravaning.® And, once developed and widely used, self-
driving cars that can drive themselves home without a steering wheel will
put an end to grand theft auto. Although there are many regulatory and
legal obstacles in the way, when self-driving cars finally become ubiquitous,
we will indeed be living in a brave new world. Trucks will be the first to
become autonomous, probably in 10 years; taxis in 15 years and passenger
cars in 15 to 25 years from start to finish.

The iconic position that cars have in our society will change in ways
that we cannot imagine and a new car ecology will emerge. Just as the
introduction of the automobile more than 100 years ago created many new
industries and jobs, there is already a fast-growing ecosystem being created
around self-driving cars. Waymo, the self-driving spin-off from Google, has
invested $1 billion over 8 years and has constructed a secretive testing facil-
ity in California’s central valley with a 91-acre fake town, including fake
bicycle riders and fake auto breakdowns.® The goal is to broaden the train-
ing data to include special and unusual circumstances, called edge cases.
Rare driving events that occur on highways often lead to accidents. The dif-
ference with self-driving cars is that when one car experiences a rare event,
the learning experience will propagate to all other self-driving cars, a form
of collective intelligence. Many similar test facilities are being constructed
by other self-driving car companies. These create new jobs that did not exist
before, and new supply chains for the sensors and lasers that are needed to
guide the cars.”

Self-driving cars are just the most visible manifestation of a major shift
in an economy being driven by information technology (IT). Information
flows through the Internet like water through city pipes. Information accu-
mulates in massive data centers run by Google, Amazon, Microsoft, and
other IT companies that require so much electrical power that they need
to be located near hydroelectric plants, and streaming information gener-
ates so much heat that it needs rivers to supply the coolant. In 2013, data
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centers in the United States consumed 10 million megawatts, equivalent
to the power generated by thirty-four large power plants.® But what is now
making an even bigger impact on the economy is how this information is
used. Extracted from raw data, the information is being turned into knowl-
edge about people and things: what we do, what we want, and who we are.
And, more and more, computer-driven devices are using this knowledge to
communicate with us through the spoken word. Unlike the passive knowl-
edge in books that is externalized outside brains, knowledge in the cloud is
an external intelligence that is becoming an active part of everyone’s lives.”

Learning How to Translate

Deep learning is used at Google today in more than 100 services, from
Street View to Inbox Smart Reply and voice search. Several years ago, engi-
neers at Google realized that they had to scale up these compute-intensive
applications to cloud levels. Setting out to design a special-purpose chip for
deep learning, they cleverly designed the board to fit into a hard disk drive
slot in their data center racks. Google’s tensor processing unit (TPU) is now
deployed on servers around the world, delivering an order-of-magnitude
improvement in performance for deep learning applications.

An example of how quickly deep learning can change the landscape is
the impact it has had on language translation—a holy grail for artificial
intelligence since it depends on the ability to understand a sentence. The
recently unveiled new version of Google Translate based on deep learn-
ing represents a quantum leap improvement in the quality of transla-
tion between natural languages. Almost overnight, language translation
went from a fragmented hit-and-miss jumble of phrases to seamless sen-
tences (figure 1.3). Previous computer methods searched for combinations
of words that could be translated together, but deep learning looks for
dependencies across whole sentences.

Alerted about the sudden improvement of Google Translate, on
November 18, 2016, Jun Rekimoto at the University of Tokyo tested the
new system by having it translate the opening of Ernest Hemingway’s
“The Snows of Kilimanjaro” into Japanese and then back into English—
with the following result (guess which one is the original Hemingway):

1: Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to be the
highest mountain in Africa. Its western summit is called the Masai “Ngaje Ngai,”
the House of God. Close to the western summit there is the dried and frozen
carcass of a leopard. No one has explained what the leopard was seeking at that
altitude.
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Figure 1.3

Japanese signs and menus instantly translated into English by Google Translate,
which is now an app on your smart phone. This is especially useful if you need to
find the right train in Japan.

2: Kilimanjaro is a mountain of 19,710 feet covered with snow and is said to be
the highest mountain in Africa. The summit of the west is called “Ngaje Ngai”
in Masai, the house of God. Near the top of the west there is a dry and frozen
dead body of leopard. No one has ever explained what leopard wanted at that
altitude."

(Hemingway is #1.)

The next step will be to train larger deep learning networks on para-
graphs to improve continuity across sentences. Words have long cultural
histories. Vladimir Nabokov, the Russian writer and English-language nov-
elist who wrote Lolita, came to the conclusion that it was impossible to
translate poetry between languages. His literal translation of Aleksandr
Pushkin’s Eugene Onegin into English, annotated with explanatory foot-
notes on the cultural background of the verses, made his point." Perhaps
Google Translate will be able to translate Shakespeare someday by integrat-
ing across all of his poetry."

Learning How to Listen

Another holy grail of artificial intelligence is speech recognition. Until
recently, speaker-independent speech recognition by computers was
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limited to narrow domains, such as airline reservations. Today, it is unlim-
ited. A summer research project at Microsoft Research by an intern from
the University of Toronto in 2012 dramatically improved the performance
of Microsoft’s speech recognition system (figure 1.4)."”* In 2016, a team at
Microsoft announced that its deep learning network with 120 layers had
achieved human-level performance on a benchmark test for multi-speaker
speech recognition."

The consequences of this breakthrough will ripple through society over
the next few years, as computer keyboards are replaced by natural language
interfaces. This is already happening with digital assistants as Amazon’s
Alexa, Apple’s Siri, and Microsoft’s Cortana leapfrog one another into homes
everywhere. Just as typewriters became obsolete with the widespread use of

Figure 1.4

Microsoft Chief Research Officer Rick Rashid in a live demonstration of automated
speech recognition using deep learning on October 25, 2012, at an event in Tianjin,
China. Before an audience of 2,000 Chinese, Rashid’s words, spoken in English, were
recognized by the automated system, which first showed them in subtitles below
Rashid’s screen image and then translated them into spoken Chinese. This high-wire
act made newsfeeds worldwide. Courtesy of Microsoft Research.
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to record your electroencephalogram (EEG) and muscle activity while
you sleep. In the course of each night, you will enter into slow-wave sleep
and, periodically, into rapid-eye-movement (REM) sleep, during which you
will dream, but insomnia, sleep apnea, restless leg syndrome, and many
other sleep disorders can disrupt this pattern. If you had trouble sleeping
at home, sleeping in a strange bed connected by wires to ominous medi-
cal equipment can be a real challenge. A sleep expert will look over your
EEG recordings and mark the sleep stages in blocks of 30 seconds, which
takes several hours to score each eight hours of sleep. You will eventu-
ally get back a report on abnormalities in your sleep pattern and a bill
for $2,000.

The sleep expert will have been trained to look for telltale features that
characterize the different sleep stages, based on a system devised in 1968
by Anthony Rechtshaffen and Alan Kales.'® But, because the features are
often ambiguous and inconsistent, experts agree only 75 percent of the
time on how to interpret them. In contrast, Philip Low, a former graduate
student in my lab, used unsupervised machine learning to automatically
detect sleep stages with a time resolution of 3 seconds and a concordance
with human experts of 87 percent, in less than a minute of computer time.
Moreover, this required recording from only a single location on the head
rather than many contacts and a bundle of wires that take a long time to
put on and take oftf. In 2007, we launched a start-up company, Neurovigil,
to bring this technology to sleep clinics, but they showed little interest in
disrupting their cash flow from human scoring. Indeed, with an insurance
code to bill patients, they had no incentive to adopt a cheaper procedure.
Neurovigil found another market in large drug companies that run clinical
trials and need to test the effects of their drugs on sleep patterns, and it is
now entering the market for long-term care facilities, where elderly often
have progressive sleep problems.

The sleep clinic model is flawed because health problems can’t be reli-
ably diagnosed based on such restricted circumstances: Everyone has a dif-
ferent baseline, and departures from that baseline are the most informative.
Neurovigil already has a compact device, the iBrain, which can record your
EEG at home, transmit the data to the Internet and analyze the data longi-
tudinally for trends and anomalies. This will allow doctors to detect health
problems early when it is easier to treat them and to stop the development
of chronic illnesses. There are other diseases whose treatment would benefit
from continuous monitoring, such as type 1 diabetes, for which the level of
sugar in the blood could be monitored and regulated by delivery of insulin.
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Access to cheap sensors that can record data continuously is having a major
impact on diagnosis and treatment of other chronic diseases.

There are several lessons to be learned from the Neurovigil experience.
Although having better and cheaper technology does not translate easily
into a marketable new product or service, even a far superior one, when an
incumbent is entrenched in the market, there are secondary markets where
the new technology can have a more immediate impact and buy time to
improve and better compete. This is how the technologies of solar energy
and of many other new industries entered the market. In the long run, sleep
monitoring and new technologies with demonstrated advantages will reach
patients at home and eventually be integrated into medical practice.

Learning How to Make Money

More than 75 percent of trading on the New York Stock Exchange is auto-
mated (figure 1.6), fueled by high-frequency trades that move into and out
of positions in fractions of a second. (When you don’t have to pay for each
transaction, even small advantages can be parlayed into big profits.) Algo-
rithmic trading on a longer time scale takes into account longer-term trends
based on big data. Deep learning is getting better and better at making both
more money and higher profits."” The problem with predicting the finan-
cial markets is that the data are noisy and conditions are not stationary—
psychology can change overnight after an election or international conflict.
This means that an algorithm that predicts stock values today may not
work tomorrow. In practice, hundreds of algorithms are used and the best
ones are continually combined to optimize returns.

Back in the 1980s, when I was consulting for Morgan Stanley on neu-
ral network models of stock trading, I met David Shaw, a computer scien-
tist who specialized in designing parallel computers. On leave of absence
from Columbia University, Shaw was working as a quantitative analyst, or
“quant,” in the early days of automated trading. He would go on to start his
own investment management firm on Wall Street, the D. E. Shaw Group,
and he is now a multibillionaire. The D. E. Shaw Group has been highly
successful, but not as successful as another hedge fund, Renaissance Tech-
nologies, which was founded by James Simons, a distinguished mathema-
tician and former chair of the Mathematics Department at Stony Brook
University. Simons made $1.6 billion in 2016 alone, and this wasn’t even
his best year.”’ Called “the best physics and mathematics department in the
world,”*" Renaissance “avoids hiring anyone with even the slightest whiff
of Wall Street bona fides.”*
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Latency versus position timeline

1 atanncar

How long position held

Figure 1.6

Machine learning is driving algorithmic trading, which is faster than traditional
long-term investment strategies and more deliberate than high-frequency trading
(HFT) in stock markets. Many different kinds of machine learning algorithms are
combined to achieve best returns.

No longer involved in the daily operation of D. E. Shaw, David Shaw is
now engrossed in D. E. Shaw Research, which has built a special-purpose
parallel computer, called “Anton,” that performs protein folding much
faster than any other computer on the planet.”® Simons has retired from
overseeing Renaissance and has started a foundation that funds research
on autism and other programs in the physical and biological sciences.
Through the Simons Institute for the Theory of Computing at UC Berkeley,
the Simons Center for the Social Brain at MIT, and the Flatiron Institute in
New York, Shaw’s philanthropy has had a major impact on advancing com-
putational methods for data analysis, modeling, and simulation.*

Financial services more broadly are undergoing a transformation under
the banner of financial technology, or “fintech,” as it has come to be called.
Information technology such as block chain, which is a secure Internet
ledger that replaces financial middlemen in transactions, is being tested on
a small scale but could soon disrupt multitrillion-dollar financial markets.
Machine learning is being used to improve credit evaluation on loans, to
accurately deliver business and financial information, to pick up signals on
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social media that predict market trends, and to provide biometric security
for financial transactions. Whoever has the most data wins, and the world
is awash with financial data.

Learning the Law

Deep learning is just beginning to affect the legal profession. Much of the
routine work of associates in law firms who charge hundreds of dollar an
hour will be automated, especially in large, high-value commercial offices.
In particular, technology-assisted review, or discovery, will be taken over by
artificial intelligence, which can sort through thousands of documents for
legal evidence without getting tired. Automated deep learning systems will
also help law firms comply with the increasing complexity of governmental
regulations. They will make legal advice available for the average person
who cannot now afford a lawyer. Not only will legal work be cheaper; it will
be much faster, a factor that is often more important than its expense. The
world of law is well on its way to becoming “Legally Deep.”*

Learning How to Play Poker

Heads-up no-limit Texas hold 'em is one of the most popular versions of
poker, commonly played in casinos, and the no-limit betting form is played
at the main event of the World Series of Poker (figure 1.7). Poker is chal-
lenging because, unlike chess, where both players have access to the same
information, poker players have imperfect information, and, at the highest
levels of play, skills in bluffing and deception are as important as the cards
that are dealt.

The mathematician John von Neumann, who founded mathematical
game theory and pioneered digital computers, was particularly fascinated
with poker. As he put it: “Real life consists of bluffing, of little tactics of
deception, of asking yourself what is the other man going to think I mean
to do. And that is what games are about in my theory.””® Poker is a game
that reflects parts of human intelligence that were refined by evolution.
A deep learning network called “DeepStack” played 44,852 games against
thirty-three professional poker players. To the shock of poker experts, it beat
the best of the poker players by a sizable margin, one standard deviation,
but it beat the thirty-three players overall by four standard deviations—an
immense margin.” If this achievement is replicated in other areas where
human judgment based on imperfect information is paramount, such as pol-
itics and international relations, the consequences could be far reaching.”®
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Figure 1.7

Heads-up no-limit Texas hold ‘em. Aces in the hole. Bluffing in high stakes poker has
been mastered by DeepStack, which has beaten professional poker players at their
own game by a wide margin.

Learning How to Play Go

In March 2016, Lee Sedol, the Korean Go 18-time world champion, played
and lost a five-game match against DeepMind’s AlphaGo (figure 1.8), a
Go-playing program that used deep learning networks to evaluate board
positions and possible moves.”” Go is to Chess in difficulty as chess is to
checkers. If chess is a battle, Go is a war. A 19x19 Go board is much larger
than an 8x8 chessboard, which makes it possible to have several battles
raging in different parts of the board. There are long-range interactions
between battles that are difficult to judge, even by experts. The total num-
ber of legal board positions for Go is 10'°, far more than the number of
atoms in the universe.

In addition to several deep learning networks to evaluate the board and
choose the best move, AlphaGo had a completely different learning system,
one used to solve the temporal credit assignment problem: which of the
many moves were responsible for a win, and which were responsible for a
loss? The basal ganglia of the brain, which receive projections from the entire
cerebral cortex and project back to it, solve this problem with a temporal
difference algorithm and reinforcement learning. AlphaGo used the same
learning algorithm that the basal ganglia evolved to evaluate sequences of
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Figure 1.10
Demis Hassabis (left) and Ke Jie meet after the historic Go match in China in 2017,
holding a board with Ke Jie's signature. Courtesy of Demis Hassabis.

in good form. Their performances follow an inverted U-shaped curve, with
their best ones in an optimal state between low and high levels of arousal.
Athletes call this being “in the zone.”

AlphaGo also defeated a team of five top players on May 26, 2017. These
players have analyzed the moves made by AlphaGo and are already chang-
ing their strategies. In a new version of “ping-pong diplomacy,” the match
was hosted by the Chinese government. China is making a large invest-
ment in machine learning, and a major goal of their brain initiative is to
mine the brain for new algorithms.*

The next chapter in this Go saga is even more remarkable, if that is
possible. AlphaGo was jump-started by supervised learning from 160,000
human Go games before playing itself. Some thought this was cheating—
an autonomous Al program should be able to learn how to play Go without
human knowledge. In October, 2017, a new version, called AlphaGo Zero,
was revealed that learned to play Go starting with only the rules of the
game, and trounced AlphaGo Master, the version that beat Ke Jie, winning
100 games to none.* Moreover, AlphaGo Zero learned 100 times faster and
with 10 times less compute power than AlphaGo Master. By completely
ignoring human knowledge, AlphaGo Zero became super-superhuman.
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There is no known limit to how much better AlphaGo might become as
machine learning algorithms continue to improve.

AlphaGo Zero had dispensed with human play, but there was still a lot
of Go knowledge handcrafted into the features that the program used to
represent the board. Maybe AlphaGo Zero could improve still further with-
out any Go knowledge. Just as Coca-Cola Zero stripped all the calories from
Coca-Cola, all domain knowledge of Go was stripped from AlphaZero. As a
result, AlphaZero was able to learn even faster and decisively beat AlphaGo
Zero.” To make the point that less is more even more dramatically, Alp-
haZero, without changing a single learning parameter, learned how to play
chess at superhuman levels, making alien moves that no human had ever
made before. AlphaZero did not lose a game to Stockfish, the top chess pro-
gram already playing at superhuman levels. In one game, AlphaZero made
a bold bishop sacrifice, sometimes used to gain positional advantage, fol-
lowed by a queen sacrifice, which seemed like a colossal blunder until it led
to a checkmate many moves later that neither Stockfish nor humans saw
coming. The aliens have landed and the earth will never be the same again.

AlphaGo’s developer, DeepMind, was cofounded in 2010 by neurosci-
entist Demis Hassabis (figure 1.10, left), who had been a postdoctoral fel-
low at University College London’s Gatsby Computational Neuroscience
Unit (directed by Peter Dayan, a former postdoctoral fellow in my lab and
winner of the prestigious Brain Prize in 2017 along with Raymond Dolan
and Wolfram Schultz for their research on reward learning). DeepMind was
acquired by Google for $600 million in 2014. The company employs more
than 400 engineers and neuroscientists in a culture that is a blend between
academia and start-ups. The synergies between neuroscience and Al run
deep and are quickening.

Learning How to Become More Intelligent

Is AlphaGo intelligent? There has been more written about intelligence
than any other topic in psychology except consciousness, both of which
are difficult to define. Psychologists since the 1930s distinguish between
tluid intelligence, which uses reasoning and pattern recognition in new sit-
uations to solve new problems, without depending on previous knowledge,
and crystallized intelligence, which depends on previous knowledge and is
what the standard IQ tests measure. Fluid intelligence follows a develop-
mental trajectory, reaching a peak in early adulthood and decreasing with
age, whereas crystallized intelligence increases slowly and asymptotically
as you age until fairly late in life. AlphaGo displays both crystallized and
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fluid intelligence in a rather narrow domain, but within this domain, it
has demonstrated surprising creativity. Professional expertise is also based
on learning in narrow domains. We are all professionals in the domain of
language and practice it every day.

The reinforcement learning algorithm used by AlphaGo can be applied
to many problems. This form of learning depends only on the reward given
to the winner at the end of a sequence of moves, which paradoxically can
improve decisions made much earlier. When coupled with many power-
ful deep learning networks, this leads to many domain-dependent bits
of intelligence. And, indeed, cases have been made for different domain-
dependent kinds of intelligence: social, emotional, mechanical, and con-
structive, for example.”” The “g factor” that intelligence tests claim to
measure is correlated with these different kinds. There are reasons to be cau-
tious about interpreting IQ tests. The average 1Q has been going up all over
the world by three points per decade since it was first studied in the 1930s,
a trend called the “Flynn effect.” There are many possible explanations
for the Flynn effect, such as better nutrition, better health care, and other
environmental factors.” This is quite plausible because the environment
affects gene regulation, which in turn affects brain connectivity, leading
to changes in behavior.” As humans increasingly are living in artificially
created environments, brains are being molded in ways that nature never
intended. Could it be that humans have been getting smarter over a much
longer period of time? For how long will the increase in 1Q continue? The
incidence of people playing computers in chess, backgammon, and now Go
has been steadily increasing since the advent of computer programs that
play at championship levels, and so has the machine augmented intelli-
gence of the human players.* Deep learning will boost the intelligence not
just of scientific investigators but of workers in all professions.

Scientific instruments are generating data at prodigious rate. Elementary
particle collisions at the Large Hadron Collider (LHC) in Geneva gener-
ate 25 petabyes of data each year. The Large Synoptic Sky Telescope (LSST)
will generate 6 petabytes of data each year. Machine learning is being used
to analyze the huge physics and astronomy datasets that are too big for
humans to search by traditional methods."" For example, DeepLensing is
a neural network that recognizes images of distant galaxies that have been
distorted by light bending by “gravitational lenses” around another galaxy
along the line of sight. This allows many new distant galaxies to be auto-
matically discovered. There are many other “needle-in-a-haystack” prob-
lems in physics and astronomy for which deep learning vastly amplifies
traditional approaches to data analysis.
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The Shifting Job Market

Introduced by banks in the late 1960s to dispense cash to account holders
24/7, a much-welcomed convenience for those in need of cash before or
after normal banking hours, automated teller machines (ATMs) have since
acquired the ability to read handwritten checks. And though they reduced
routine work for bank tellers, there are more bank tellers than before
providing customers with personalized services such as mortgage and
investment advice, and new ATM repair jobs*”—just as the steam engine
displaced manual laborers, on the one hand, but gave rise to new jobs for
skilled workers who could build and maintain steam engines and drive
steam locomotives, on the other. So, too, Amazon’s online marketing has
displaced many workers from local brick-and-mortar retail stores but has
also created 380,000 new jobs for workers in the distribution and delivery
of the goods sold by it and by the many businesses under its umbrella.*
And as jobs that now require human cognitive skills are taken over by
automated Al systems, there will be new jobs for those who can create and
maintain these systems.

Job turnover is nothing new. Farmworkers in the nineteenth century
were displaced by machines, and new jobs were created at city factories
made possible by machines, all of which required an educational system
to train workers in new skills. The difference is that, today, the new jobs
being opened up by artificial intelligence will require new, different, and
ever-changing skills in addition to traditional cognitive skills.** So we
will need to learn throughout our lifetimes. For this to happen, we will
need a new educational system that is based at the home rather than the
school.

Fortunately, just as the need for finding new jobs has become acute, the
Internet has made available free massive open online courses (MOOCs) to
acquire new knowledge and skills. Though still in their infancy, MOOCs
are evolving rapidly in the education ecosystem and hold great promise for
delivering quality instruction to a wider range of people than ever before.
When coupled with the next generation of digital assistants, MOOCs could
be transformational. Barbara Oakley and I developed a popular MOOC
called “Learning How to Learn” that teaches you how to become a better
learner (figure 1.11) and a follow-up MOOC called “Mindshift” that teaches
you how to reinvent yourself and change your lifestyle (both MOOCs will
be described in chapter 12).

As you interact with the Internet, you are generating big data about
yourself that is machine readable. You are being targeted by ads generated
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Learning
How to Learn

Figure 1.11

“Learning How to Learn,” a massive open online course (MOOC) that teaches you
how to become a better learner is the most popular MOOC on the Internet, with over
3 million learners. Courtesy of Terrence Sejnowski and Barbara Oakley.

from the digital bread crumbs you have left behind on the Internet. The
information you reveal on Facebook and other social media sites can be
used to create a digital assistant that knows you better than almost anyone
else in the world and will not forget anything, becoming, in effect, your
virtual doppelganger. By pressing both Internet tracking and deep learn-
ing into service, the educational opportunities for the children of today’s
children will be better than the best available today to wealthy families.
These grandchildren will have their own digital tutors, who will accom-
pany them throughout the trajectory of their education. Not only will edu-
cation become more individualized; it will become more precise. There are
already a wide range of educational experiments under way throughout
the world at programs like the Kahn Academy and funded by the Gates,
Chan-Zuckerberg, and other philanthropic foundations that are testing
software to make it possible for all children to progress at their own pace
throughout their formal education and to adapt to the specific needs of
each child.” The widespread availability of digital tutors will free teachers
from the repetitive parts of teaching, like grading, and allow them to do
what humans do best—emotional support for struggling students and intel-
lectual inspiration for gifted students. Educational technology—edtech—is
moving rapidly ahead, and the transition to precision education could be
quite fast compared to self-driving cars because the obstacles it must over-
come are much less daunting, the demand is much greater, and education
in the U.S. is a trillion-dollar market.** One major concern will be who has
access to the internal files of the digital assistants and digital tutors.

Is Artificial Intelligence an Existential Threat?

When AlphaGo convincingly beat Lee Sedol at Go in 2016, it fueled a
reaction that had been building over the last several years concerning the
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generally known. The Deep Learning Revolution tells that story and explores
the origins and consequences of deep learning from my perspective both
as a pioneer in developing learning algorithms for neural networks in the
1980s and as the president of the Neural Information Processing Systems
(NIPS) Foundation, which has overseen discoveries in machine learning
and deep learning over the last thirty years. My colleagues and I in the
neural network community were for many years the underdogs, but our
persistence and patience eventually prevailed.



2 The Rebirth of Artificial Intelligence

Marvin Minsky was a brilliant mathematician and a founder of the MIT
Artificial Intelligence Laboratory (MIT Al Lab).! Founders set the direction
and the culture of a field, and, thanks in no small part to Minsky, artifi-
cial intelligence at MIT in the 1960s was a bastion of cleverness. Bubbling
over with more ideas per minute than anyone else I knew, he could con-
vince you that his take on a problem was right, even when common sense
told you otherwise. I admired his boldness and his cleverness—but not the
direction that he took AL

Child’s Play?

Blocks World is a good example of a project that came out of the MIT Al
Lab in the 1960s. To simplify the problem of vision, Blocks World consisted
of rectangular building blocks that could be stacked to create structures
(figure 2.1). The goal was to write a program that could interpret a com-
mand, such as “Find a large yellow block and put it on top of the red block,”
and plan the steps needed for a robot arm to carry out the command. This
seems like child’s play, but a large, complex program had to be written,
one that became so cumbersome that it could not be readily debugged and
was effectively abandoned when the student who wrote the program, Terry
Winograd, left MIT. This seemingly simple problem was much harder than
anyone thought it would be, and, even if it had succeeded, there was no
direct path from Blocks World to the real world, where objects come in
many shapes, sizes, and weights, and not all angles are right angles. Com-
pared to a controlled laboratory setting where the direction and level of
lighting can be fixed, in the real world, lighting can vary dramatically from
place to place and time to time, which greatly complicates the task of object
recognition for computers.
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Figure 2.1

Marvin Minsky watching a robot stacking blocks around 1968. Blocks World was a
simplified version of how we interact with the world, but it was far more complex
than anyone imagined, and was not solved until 2016 by deep learning.

In the 1960s, the MIT Al Lab received a large grant from a military
research agency to build a robot that could play Ping-Pong. I once heard a
story that the principal investigator forgot to ask for money in the grant pro-
posal to build a vision system for the robot, so he assigned the problem to a
graduate student as a summer project. I once asked Marvin Minsky whether
the story was true. He snapped back that I had it wrong: “We assigned the
problem to undergraduate students.” A document from the archives at MIT
confirms his version of the story.” What looked like it would be an easy
problem to solve proved to be quicksand that swallowed a generation of
researchers in computer vision.

Why Vision Is a Hard Problem

We rarely have difficulty identifying what an object is despite differences
in the location, size, orientation, and lighting of the object. One of the
earliest ideas in computer vision was to match a template of the object with
the pixels in the image, but that approach failed because the pixels of the
two images of the same object in different orientations don’t match. For
example, consider the two birds in figure 2.2. If you shift the image of one
bird over the other, you can get a part to match, but the rest is out of regis-
ter; but you can get a fairly good match to an image of another bird species
in the same pose.
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Figure 2.2

Zebra finches consulting with each other. We have no difficulty seeing that they
are the same species. But because they have different orientations to the viewer it is
difficult to compare them with templates even though they have almost identical
features.

Progress in computer vision was made by focusing not on pixels but
on features. For example, birders have to become experts in distinguishing
between different species that may differ in only a few subtle markings. A
practical and popular book on identifying birds has only one photograph
of a bird (figure 2.3), but many schematic drawings pointing out the subtle
differences between them.® A good feature is one that is unique to one bird
species, but because the same features are found on many species, what
makes it possible to identify a bird is the unique combination of several
tield marks such as wing bars, eye stripes, and wing patches. And when
these field marks are shared by closely related species, there are calls and
songs that distinguish one from another. Drawings or paintings of birds are
much better at directing our attention to the relevant distinguishing fea-
tures than are photographs, which are filled with hundreds of less relevant
features (figure 2.3).

The problem with this features-based approach is not just that it is very
labor intensive to develop feature detectors for the hundreds of thousands
of different objects in the world, but that, even with the best feature detec-
tors, ambiguities arise from images of objects that are partially occluded,
which makes recognizing objects in cluttered scenes a daunting task for
computers.
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Figure 2.3

Distinctive feature that can be used to discriminate between similar birds. The arrows
point toward the location of where to find wing bars that are especially important for
telling apart families of warblers: Some are conspicuous, some obscure, some double,
some long, some short. From Peterson, Mountfort, and Hollom, Field Guide to the
Birds of Britain and Europe, 5th ed., p.16.

Little did anyone suspect in the 1960s that it would take fifty years and
a millionfold increase in computer power before computer vision would
reach human levels of performance. The misleading intuition that it would
be easy to write a computer vision program is based on activities that we
find easy to do, such as seeing, hearing, and moving around—but that
took evolution millions of years to get right. Much to their chagrin, early
Al pioneers found the computer vision problem to be extremely hard to
solve. In contrast, they found it much easier to program computers to prove
mathematical theorems—a process thought to require the highest levels of
intelligence—because computers turn out to be much better at logic than
we are. Being able to think logically is a late development in evolution and,
even in humans, requires training to follow a long line of logical proposi-
tions to a rigorous conclusion, whereas, for most problems we need to solve
to survive, generalizations from previous experiences work well for us most
of the time.

Expert Systems

Popular in the 1970s and 1980s, Al expert systems were developed to solve
problems like medical diagnosis using a set of rules. Thus an early expert
system, MYCIN, was developed to identify the bacteria responsible for infec-
tious diseases such as meningitis.* Following the expert system approach,
MYCIN's developers had first to collect facts and rules from infectious dis-
ease experts, as well as symptoms and medical histories from the patients,
then to enter these into the system’s computer, and finally to program the
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Figure 2.4
Terry Sejnowski talking about scaling laws for the cortex shortly after he moved to
the Salk Institute in 1989. Courtesy of Ciencia Explicada.

winging it. “The fly can see, it can fly, it can navigate, and it can find food.
But what is truly remarkable is that it can reproduce itself. MIT owns a
supercomputer that costs $100 million: it consumes a megawatt of power
and is cooled by a huge air-conditioner. But the biggest cost of the super-
computer is human sacrifice in the form of programmers to feed its vora-
cious appetite for programs. That supercomputer can’t see, it can't fly, and
although it communicates with other computers, it can’t mate or reproduce
itself. What is wrong with this picture?”

After a long pause, a senior faculty member spoke, “Because we haven't
written the vision program yet.” (The Department of Defense had recently
poured $600 million into its Strategic Computing Initiative, a program that
ran from 1983 to 1993 but came up short on building a vision system to
guide a self-driving tank.)’ “Good luck with that,” was my reply.

Gerald Sussman, who made several important applications of Al to
real-world problems, including a system for high-precision integration for
orbital mechanics, defended the honor of MIT’s approach to Al with an
appeal to the classic work of Alan Turing, who had proven that the Turing
machine, a thought experiment, could compute any computable function.
“And how long would that take?” I asked. “You had better compute quickly
or you will be eaten,” I added, then walked across the room to pour myself
a cup of coffee. And that was the end of the dialogue with the faculty.
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“What is wrong with this picture?” is a question that every student in
my lab can answer. But the first two rows of my lunchtime audience were
stumped. Finally, a student in the third row offered this reply: “The digital
computer is a general-purpose device, which can be programmed to com-
pute anything, though inefficiently, but the fly is a special-purpose com-
puter that can see and fly but can’t balance my checkbook.” This was the
right answer. The vision networks in the fly eye evolved over hundreds of
millions of years, and its vision algorithms are embedded in the networks
themselves. This is why you can reverse engineer vision by working out the
wiring diagram and information flow through the neural circuits of the fly
eye, and why you can’t do that for a digital computer, where the hardware
by itself needs software to specify what problem is being solved.

I recognized Rodney Brooks smiling in the back of the crowd, someone I
had once invited to a workshop on computational neuroscience in Woods
Hole on Cape Cod, Massachusetts. Brooks is from Australia, and, in the
1980s, he was a junior faculty member in the MIT AI Lab, where he built
walking robotic insects using an architecture that did not depend on digital
logic. He would eventually become the lab’s director and go on to found
iRobot, the company that makes Roombas.

The room where I gave my lecture that afternoon was huge and filled
with a large contingent of undergraduate students, the next generation
looking to the future rather than the past. I talked about a neural network
that learned how to play backgammon, a project I collaborated on with
Gerald Tesauro, a physicist at the Center for Complex Systems Research at
the University of Illinois in Urbana-Champaign. Backgammon is a race to
the finish between two players, with pieces that move forward based on
each roll of the dice, passing over one another on the way. Unlike chess,
which is deterministic, backgammon is governed by chance: the uncer-
tainty with every roll of the dice makes it more difficult to predict the out-
come of a particular move. It is a highly popular game in the Middle East,
where some make a living playing high-stakes backgammon.

Rather than write a program based on logic and heuristics to handle
all possible board positions, an impossible task given that there are 10*
possible backgammon board positions, we had the network learn to play
through pattern recognition by watching a teacher play."” Gerry went on to
create the first backgammon program that played at world-championship
levels by having the backgammon network play itself (a story that will be
told in chapter 10).

After my lecture, I learned that there was a front page article in the New
York Times that morning about how government agencies were slashing
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tunding for artificial intelligence. Although this was the beginning of an
Al winter for mainstream researchers, it didn’t affect me or the rest of my
group, for whom the neural network spring had just begun.

But our new approach to Al would take twenty-five years to deliver real-
world applications in vision, speech, and language. Even in 1989, I should
have known it would take this long. In 1978, when I was a graduate student
at Princeton, I extrapolated Moore’s law for the exponential increase in
computing power, doubling every 18 months, to see how long it would take
to reach brain levels of computing power and concluded it would happen
in 2015. Fortunately, that did not deter me from charging ahead. My belief
in neural networks was based on my intuition that if nature had solved
these problems, we should be able to learn from nature how to solve them,
too. The twenty-five years I had to wait was not even a blink of the eye
compared to the hundreds of millions of years it took nature.

Inside the visual cortex, neurons are arranged in a hierarchy of layers. As
sensory information is transformed cortical layer by cortical layer, the repre-
sentation of the world becomes more and more abstract. Over the decades,
as the number of layers in neural network models increased, their perfor-
mance continued to improve until finally a critical threshold was reached
that allowed us to solve problems we could only dream about solving in the
1980s. Deep learning automates the process of finding good features that
distinguish different objects in an image, and that is why computer vision
is so much better today than it was five years ago.

By 2016, computers had become a million times faster and computer
memory had increased by a million times from megabytes to terabytes. It
became possible to simulate neural networks with millions of units and
billions of connections, compared with networks in the 1980s that had
only hundreds of units and thousands of connections. Though still tiny
by the standards of a human brain, which has a hundred billion neurons
and a million billion synaptic connections, today’s networks are now large
enough to demonstrate proof of principle in narrow domains.

Deep learning in deep neural networks has arrived. But before there were
deep networks, we had to learn how to train shallow networks.
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The only existence proof that any of the hard problems in artificial
intelligence can be solved is the fact that, through evolution, nature has
already solved them. But there were clues in the 1950s for how computers
might actually achieve intelligent behavior, if Al researchers would take an
approach that was fundamentally different from symbol processing.

The first clue was that our brains are powerful pattern recognizers. Our
visual systems can recognize an object in a cluttered scene in one-tenth of a
second, even though we may have never seen that particular object before
and even when the object is in any location, of any size, and in any orien-
tation to us. In short, our visual system behaves like a computer that has
“recognize object” as a single instruction.

The second clue was that our brains can learn how to perform many
difficult tasks through practice, from playing the piano to mastering phys-
ics. Nature uses general-purpose learning to solve specialized problems, and
humans are champion learners. This is our special power. The organization
of our cerebral cortex is similar throughout, and deep learning networks are
found in all our sensory and motor systems.'

The third clue was that our brains aren’t filled with logic or rules. Yes, we
can learn how to think logically or follow rules, but only after a lot of train-
ing, and most of us aren’t very good at it. This is illustrated by typical per-
formances on a logical puzzle called the “Wason selection task” (figure 3.1).

The correct selections are the card with “8” and the brown card. In the
original study, only 10 percent of subjects got the right answer.” But most
subjects had no trouble getting the right answer when the logic test was
grounded in a familiar context (figure 3.2).

Reasoning seems to be domain specific, and the more familiar we are
with a domain, the easier it is for us to solve problems in that domain.
Experience makes it easier to reason within a domain because we can use
examples we have encountered to intuit solutions. In physics, for example,
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Figure 3.3

Pandemonium. Oliver Selfridge imagined that there were demons in the brain that
were responsible for extracting successively more complex features and abstractions
from sensory inputs, resulting in decisions. Each demon at each level is excited if it
is a match to input from an earlier level. The decision demon weighs the degree of
excitement and importance of its informants. This form of evidence evaluation is a
metaphor for current deep learning networks, which have many more levels. From
Peter H. Lindsay and Donald A. Norman, Human Information Processing: An Introduc-
tion to Psychology, 2nd ed. (New York: Academic Press, 1977), figure 3-1. Wikipedia
Commons: https://commons.wikimedia.org/wiki/File:Pande.jpg.

The traditional way that an engineer solves this problem is to handcraft
the weights based on analysis or an ad hoc procedure. This is labor inten-
sive and often depends on intuition as much as on engineering. An alterna-
tive is to use an automatic procedure that learns from examples, the same
way that we learn about objects in the world. Many examples are needed
including those not in the category, especially if they are similar, such as
dogs if the goal is to recognize cats. The examples are passed to the percep-
tron one at a time and corrections are automatically made to the weights if
there is a classification error.

The beauty of the perceptron learning algorithm is that it is guaranteed
to find a set of weights automatically if such a set of weights exists and
if enough examples are available. The learning takes place incrementally
after each of the examples in the training set is presented and the output
compared with the correct answer. If the answer is correct, no changes are
made to the weights, but if it isn’t correct (1 when it should be 0, or 0 when
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Figure 3.4

Frank Rosenblatt at Cornell deep in thought. He invented the perceptron, an early
precursor of deep learning networks, which had a simple learning algorithm for clas-
sifying images into categories. Article in the New York Times, July 8, 1958, from a UPI
wire report. The perceptron machine was expected to cost $100,000 on completion
in 1959, or around $1 million in today’s dollars; the IBM 704 computer that cost $2
million in 1958, or $20 million in today’s dollars, could perform 4,000 multiplies per
second, which was blazingly fast at the time. But the much less expensive Samsung
Galaxy S6 phone, which can perform 34 billion operations per second, is more than
a million times faster. Photo courtesy of George Nagy.
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Box 3.1
The Perceptron

in(t) <

A perceptron is a neural network with one artificial neuron that has an input
layer and a set of connections linking the input units to the output unit.
The goal of a perceptron is to classify patterns presented to input units. The
basic operation performed by the output unit is to sum up the values of each
input (x;) multiplied by its connection strength, or weight (w;), to the output
unit. In the diagram above, a weighted sum of the inputs (Xi.;, _ , w; x;) is
compared to the threshold 6 and passed through a step function that gives
an output of “1” if the sum is greater than the threshold and an output of
“0" otherwise. For example, the input could be the intensities of pixels in
an image, or more generally, features that are extracted from the raw image,
such as the outline of objects in the image. Images are presented one at a
time, and the perceptron decides whether or not the image is a member of a
category, such as the category of cats. The output can only be in one of two
states, “on” if the image is in the category or “off” if it isn’t. “On” and “off”
correspond to the binary values 1 and 0, respectively. The perceptron learn-
ing algorithm is

Awi=adx
¢ = output - teacher,

where both the output and teacher are binary, so that § = 0 if the output
is correct , and & = +1 or —1 If the output is not correct, depending on the
difference.
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it should be 1), then the weights are changed slightly so that the next time
the same input is given, it is closer to getting the correct answer (box 3.1).
It is important that the changes occur gradually so that the weights can
feel the tugs from all the training examples, and not just from the last one.

If this explanation of perceptron learning isn’t clear, there is a much
neater geometric way to understand how a perceptron learns to classify
inputs. For the special case of two inputs, it is possible to plot the inputs
on a two-dimensional graph. Each input is a point in the graph and the
two weights in the network determine a straight line. The goal of learn-
ing is to move the line around so that it cleanly separates the positive and
negative examples (figure 3.5). For three inputs, the space of inputs is three-
dimensional, and the perceptron specifies a plane that separates the posi-
tive and negative training examples. The same principle holds even in the
general case, when the dimensionality of the space of inputs can be quite
high and impossible to visualize.

Eventually, if a solution is possible, the weights will stop changing,
which means the perceptron has correctly classified all of the examples
in the training set. But, in what is called “overfitting,” it is also possible
that there are not enough examples in the set, and the network has simply
memorized the specific examples without being able to generalize to new
ones. To avoid overfitting, it is important to have another set of examples,

Figure 3.5

Geometric explanation for how two object categories are discriminated by a percep-
tron. The objects have two features, such as size and brightness, which have values
(x,y) and are plotted on each graph. The two types of objects (pluses and squares) in
the panel on the left can be separated by a straight line that passes between them;
this discrimination can be learned by a perceptron. The two types of objects in the
other two panels cannot be separated by a straight line, but those in the center panel
can be separated by a curved line. The objects in the panel on the right would have to
be gerrymandered to separate the two types. The discriminations in all three panels
could be learned by a deep learning network if enough training data were available.
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called a “test set,” that wasn’t used to train the network. At the end of
training, the classification performance on the test set is a true measure of
how well the perceptron can generalize to new examples whose respective
categories are unknown. Generalization is the key concept here. In real life,
we never see the same object the same way or encounter the same situation,
but if we can generalize from previous experience to new views or situa-
tions, we can handle a broad range of real-world problems.

SEXNET

As an example of how a perceptron can be used to solve a real-world prob-
lem, consider how you would tell a male from a female face, taking away
hair, jewelry, and secondary sexual characteristics such as Adam’s apples,
which tend to be larger in males. Beatrice Golomb, a postdoctoral fellow in
my lab in 1990, used faces of college students from a database she obtained
as inputs to a perceptron that was trained to classify the sex of a face with
an 81 percent accuracy (figure 3.6).* The faces that the perceptron had dif-
ficulty classifying were also difficult for humans to classity, and members
of my lab achieved an average performance of 88 percent on the same set
of faces. Beatrice also trained a multilayer perceptron (which will be intro-
duced in chapter 8) that achieved a 92 percent accuracy,” better than people
from my lab. At a talk she gave at the 1991 Neural Information Processing
Systems (NIPS) Conference, she concluded: “Since experience improves
performance, this should suggest that people in the lab need to spend more
time engaged in discriminating sex.” She called her multilayer perceptron
the “SEXNET.” In the question-and-answer period, someone asked whether
SEXNET could be used to detect transvestite faces. “Yes,” said Beatrice, to
which Ed Posner, the founder of the NIPS conferences, retorted, “That
would be the DRAGNET.”""

»
-

Figure 3.6

What is the sex of this face—male or female? A perceptron was trained to discrimi-
nate male from female faces. The pixels from the image of a face (top) are multiplied
by the corresponding weights (bottom), and the sum is compared to a threshold. The
size of each weight is depicted as the area of the pixel. Positive weights (white) are ev-
idence for maleness and negative weights (black) favor femaleness. The nose width,
the size of the region between the nose and mouth, and image intensity around the
eye region are important for discriminating males, whereas image intensity around
the mouth and cheekbone is important for discriminating females. From M. S. Gray,
D. T. Lawrence, B. A. Golomb, and T. ]J. Sejnowski, “A Perceptron Reveals the Face of
Sex,” Neural Computation 7 (1995): 1160-1164, figure 1.
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Embarrassingly simple distributions of points in two dimensions cannot be
separated by a perceptron (figure 3.5, nonlinear). It turned out that the tank
perceptron was not a tank classifier, but a time of day classifier. It is much
more difficult to classify tanks in images; indeed, it cannot be done with
a perceptron. This also shows that, even when a perceptron has learned
something, it may not be what you think it has learned. The final blow
to the perceptron was a 1969 tour de force mathematical treatise, Percep-
trons by Marvin Minsky and Seymour Papert."* Their definitive geometric
analysis showed that the capabilities of perceptrons are limited: they can
only separate categories that are linearly separable (figure 3.5). The cover of
their book illustrates a geometric problem that Minsky and Papert proved
the perceptron could not solve (figure 3.7). Although, at the end of their
book, Minsky and Papert considered the prospect of generalizing single- to
multiple-layer perceptrons, one layer feeding into the next, they doubted
there would ever be a way to train even these more powerful perceptrons.
Unfortunately, many took this doubt to be definitive, and the field was
abandoned until a new generation of neural network researchers took a
fresh look at the problem in the 1980s.

In a perceptron, each input contributes independent evidence to the
output unit. But what if several inputs need to be combined in ways that
make decisions dependent on the combination and not on each input
separately? This is why a perceptron cannot distinguish whether a spiral
is connected or not: a single pixel carries no information on whether it
is on the inside or the outside. Although in multilayer feedforward net-
works, combinations of several inputs can be formed in intermediate layers
between the input and output units, no one in the 1960s knew how to
train a network with even a single layer of such “hidden units” between
the input and output layers.

Frank Rosenblatt and Marvin Minsky had been classmates at the Bronx
High School of Science in New York City. They debated their radically dif-
ferent approaches to artificial intelligence at scientific meetings, where
participants tilted toward Minsky's approach. But despite their differences,
each man made important contributions to our understanding of percep-
trons, which is the starting point for deep learning.

When Rosenblatt died in a boating accident in 1971 at age 43, the back-
lash against perceptrons was in full swing, and there were rumors that
he might have committed suicide, or was it an outing gone tragically
wrong?'® What became clear was that a heroic period of discovering a new
way of computing with neural networks was closing; a generation would
pass before the promise of Rosenblatt’s pioneering efforts was realized.



