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Ajay Agrawal, Joshua Gans, and Avi Goldfarb

Artificial intelligence (AI) technologies have advanced rapidly over the last
several years. As the technology continues to improve, it may have a substan-
tial impact on the economy with respect to productivity, growth, inequality,
market power, innovation, and employment. In 2016, the White House put
out several reports emphasizing this potential impact. Despite its impor-
tance, there is little economics research on the topic. The research that exists
is derived from past technologies (such as factory robots) that capture only
part of the economic reach of AI. Without a better understanding of how
Al might impact the economy, we cannot design policy to prepare for these
changes.

To address these challenges, the National Bureau of Economic Research
held its first conference on the Economics of Artificial Intelligence in Sep-
tember 2017 in Toronto, with support from the NBER Economics Digitiza-
tion Initiative, the Sloan Foundation, the Canadian Institute for Advanced
Research, and the University of Toronto’s Creative Destruction Lab. The
purpose of the conference was to set the research agenda for economists
working on Al The invitation emphasized these points as follows:

Ajay Agrawal is the Peter Munk Professor of Entrepreneurship at the Rotman School of
Management, University of Toronto, and a research associate of the National Bureau of Eco-
nomic Research. Joshua Gans is professor of strategic management and holder of the Jeffrey S.
Skoll Chair of Technical Innovation and Entrepreneurship at the Rotman School of Manage-
ment, University of Toronto (with a cross appointment in the Department of Economics),
and a research associate of the National Bureau of Economic Research. Avi Goldfarb holds
the Rotman Chair in Artificial Intelligence and Healthcare and is professor of marketing at
the Rotman School of Management, University of Toronto, and a research associate of the
National Bureau of Economic Research.

For acknowledgments, sources of research support, and disclosure of the authors’ material
financial relationships, if any, please see http://www.nber.org/chapters/c14005.ack.
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The context is this: imagine back to 1995 when the internet was about to
begin transforming industries. What would have happened to economic
research into that revolution had the leading economists gathered to scope
out a research agenda at that time? Today, we are facing the same oppor-
tunity with regard to Al This time around we are convening a group of
30 leading economists to scope out the research agenda for the next 20
years into the economics of Al.

Scholars who accepted the invitation were asked to write up and pre-
sent ideas around a specific topic related to their expertise. For each paper,
a discussant was assigned. Throughout the conference, in presentations,
discussions, and debates, participants weighed in with their ideas for what
the key questions will be, what research has already shown, and where the
challenges will lie. Pioneering Al researchers Geoffrey Hinton, Yann LeCun,
and Russ Salakhutdinov attended, providing useful context and detail about
the current and expected future capabilities of the technology. The confer-
ence was unique because it emphasized the work that still needs to be done,
rather than the presentation of standard research papers. Participants had
the freedom to engage in informed speculation and healthy debate about the
most important areas of inquiry.

This volume contains a summary of the proceedings of the conference.
We provided authors with few constraints. This meant diversity in topics and
chapter style. Many of the chapters contained herein are updated versions
of the original papers and presentations at the conference. Some discussants
commented directly on the chapters while others went further afield, empha-
sizing concepts that did not make it into the formal presentations but instead
arose as part of debate and discussion. The volume also contains a small
number of chapters that were not presented at the conference, but never-
theless represent ideas that came up in the general discussion and that war-
ranted inclusion in a volume describing the proceedings of the conference.

We categorize the chapters into four broad themes. First, several chapters
emphasize the role of Al as a general purpose technology (GPT), building
on the existing literature on general purpose technologies from the steam
engine to the internet. Second, many chapters highlight the impact of Al
on growth, jobs, and inequality, focusing on research and tools from macro
and labor economics. Third, five chapters discuss machine learning and eco-
nomic regulation, with an emphasis on microeconomic consequences and
industrial organization. The final set of chapters explores how Al will affect
research in economics.

Of course, these themes are not mutually exclusive. Discussion of Al as
a GPT naturally leads to discussions of economic growth. Regulation can
enhance or reduce inequality. And AI’s impact on economics is a conse-
quence of it being a general purpose technology for scientific discovery (as
emphasized in chapter 4 by Cockburn, Henderson, and Stern). Further-
more, a handful of concepts cut across the various parts, most notably the



role of humans as Al improves and the interaction between technological
advance and political economy.

Below, we summarize these four broad themes in detail. Before doing so,
we provide a definition of the technology that brings together the various
themes.

What Is Artificial Intelligence?

The Oxford English Dictionary defines artificial intelligence as “the
theory and development of computer systems able to perform tasks nor-
mally requiring human intelligence.” This definition is both broad and fluid.
There is an old joke among computer scientists that artificial intelligence
defines what machines cannot yet do. Before a machine could beat a human
expert at chess, such a win would mean artificial intelligence. After the famed
match between IBM’s Deep Blue and Gary Kasparov, playing chess was
called computer science and other challenges became artificial intelligence.

The chapters in this volume discuss three related, but distinct, concepts
of artificial intelligence. First, there is the technology that has driven the
recent excitement around artificial intelligence: machine learning. Machine
learning is a branch of computational statistics. It is a tool of prediction in
the statistical sense, taking information you have and using it to fill in infor-
mation you do not have. Since 2012, the uses of machine learning as a pre-
diction technology have grown substantially. One set of machine-learning
algorithms, in particular, called “deep learning,” has been shown to be useful
and commercially viable for a variety of prediction tasks from search engine
design to image recognition to language translation. The chapter in the book
authored by us—Agrawal, Gans, and Goldfarb—emphasizes that rapid
improvements in prediction technology can have a profound impact on orga-
nizations and policy (chapter 3). The chapter by Taddy (chapter 2) defines
prediction with machine learning as one component of a true artificial intel-
ligence and provides detail on the various machine-learning technologies.

While the recent interest in Al is driven by machine learning, computer
scientists and philosophers have emphasized the feasibility of a true artifi-
cial general intelligence that equals or exceeds human intelligence (Bostrom
2014; Kaplan 2016). The closing sentence of this volume summarizes this
possibility bluntly. Daniel Kahneman writes, “I do not think that there is
very much that we can do that computers will not eventually be programmed
to do.” The economic and societal impact of machines that surpass human
intelligence would be extraordinary. Therefore—whether such an event
occurs imminently, in a few decades, in a millennium, or never—it is worth
exploring the economic consequences of such an event. While not a focal
aspect of any chapter, several of the chapters in this volume touch on the
economic consequences of such superintelligent machines.

A third type of technology that is often labeled “artificial intelligence™ is
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better seen as a process: automation. Much of the existing empirical work on
the impact of artificial intelligence uses data on factory automation through
robotics. Daron Acemoglu and Pascual Restrepo use data on factory robots
to explore the impact of Al and automation on work (chapter 8). Auto-
mation is a potential consequence of artificial intelligence, rather than arti-
ficial intelligence per se. Nevertheless, discussions of the consequences of
artificial intelligence and automation are tightly connected.

While most chapters in the book focus on the first definition—artificial
intelligence as machine learning—a prediction technology, the economic
implications of artificial general intelligence and automation receive seri-
ous attention.

Al as a GPT

A GPT is characterized by pervasive use in a wide range of sectors com-
bined with technological dynamism (Bresnahan and Trajtenberg 1995).
General purpose technologies are enabling technologies that open up new
opportunities. While electric motors did reduce energy costs, the productiv-
ity impact was largely driven by increased flexibility in the design and loca-
tion of factories (David 1990). Much of the interest in artificial intelligence
and its impact on the economy stems from its potential as a GPT. Human
intelligence is a general purpose tool. Artificial intelligence, whether defined
as prediction technology, general intelligence, or automation, similarly has
potential to apply across a broad range of sectors.

Brynjolfsson, Rock, and Syverson (chapter 1) argue the case for Al as a
GPT. They focus on machine learning and identify a variety of sectors in
which machine learning is likely to have a broad impact. They note expected
continual technological progress in machine learning and a number of com-
plementary innovations that have appeared along with machine learning.
By establishing Al as a GPT, they can turn to the general lessons of the pro-
ductivity literature on GPTs with respect to initially low rates of productiv-
ity growth, organizational challenges, and adjustment costs. They propose
four potential explanations for the surprisingly low measured productivity
growth given rapid innovation in Al and related technologies—false hopes,
mismeasurement, redistribution, and implementation lags—and conclude
that lags due to missing complementary innovations are most likely the
primary source of missing productivity growth: “an underrated area of
research involves the complements to the new Al technologies, not only
in areas of human capital and skills, but also new processes and business
models. The intangible assets associated with the last wave of computeriza-
tion were about ten times as large as the direct investments in computer
hardware itself.”

Henderson’s comment emphasizes the impact of a GPT on employment
and the distribution of income, directly linking the discussion of Al as a



GPT to questions addressed in the section on Growth, Jobs, and Inequal-
ity. She agrees with the central thesis “One of the reasons I like the paper
so much is that it takes seriously an idea that economists long resisted—
namely, that things as nebulous as ‘culture’ and ‘organizational capabilities’
might be (a) very important, (b) expensive, and (c) hard to change.” At the
same time, she adds emphasis on additional implications: “I think that the
authors may be underestimating the implications of this dynamic in impor-
tant ways. . . . I'm worried about the transition problem at the societal level
quite as much as I’'m worried about it at the organizational level.”

The next chapters provide micro-level detail on the nature of Al as a
technology. Taddy (chapter 2) provides a broad overview of the meaning
of intelligence in computer science. He then provides some technical detail
on two key machine-learning techniques, deep learning and reinforcement
learning. He explains the technology in a manner intuitive to economists:
“Machine learning is a field that thinks about how to automatically build
robust predictions from complex data. It is closely related to modern statis-
tics, and indeed many of the best ideas in ML have come from statisticians
(the lasso, trees, forests, etc.). But whereas statisticians have often focused
on model inference—on understanding the parameters of their models (e.g.,
testing on individual coefficients in a regression)—the ML community has
been more focused on the single goal of maximizing predictive performance.
The entire field of ML is calibrated against ‘out-of-sample’ experiments that
evaluate how well a model trained on one data set will predict new data.”

Building on ideas in Agrawal, Gans, and Goldfarb (2018), we argue in
chapter 3 that the current excitement around Al is driven by advances in
prediction technology. We then show that modeling Al as a drop in the cost
of prediction provides useful insight into the microeconomic impact of Al
on organizations. We emphasize that Al is likely to substitute for human
prediction, but complement other skills such as human judgment—defined
as knowing the utility or valuation function: “a key departure from the
usual assumptions of rational decision-making is that the decision-maker
does not know the payoff from the risky action in each state and must apply
Judgment to determine the payoff. . . . Judgment does not come for free.”

Prat’s comment emphasizes that economists typically assume that the
valuation function is given, and that loosening that assumption will lead to
a deeper understanding of the impact of Al on organizations. He offers an
example to illustrate: “Admissions offices of many universities are turning to
Al to choose which applicants to make offers to. Algorithms can be trained
on past admissions data. We observe the characteristics of applicants and
the grades of past and present students. . . . The obvious problem is that we
do not know how admitting someone who is likely to get high grades is going
to affect the long-term payoff of our university. . . . Progress in Al should
induce our university leaders to ask deeper questions about the relationship
between student quality and the long-term goals of our higher-learning
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institutions. These questions cannot be answered with Al, but rather with
more theory-driven retrospective approaches or perhaps more qualitative
methodologies.”

The next chapters explore Al as a GPT that will enhance science and
innovation. After reviewing the history of artificial intelligence, Cockburn,
Henderson, and Stern (chapter 4) provide empirical support for the wide-
spread application of machine learning in general, and deep learning in
particular, in scientific fields outside of computer science: “we develop what
we believe is the first systematic database that captures the corpus of scien-
tific paper and patenting activity in artificial intelligence . . . we find striking
evidence for a rapid and meaningful shift in the application orientation of
learning-oriented publications, particularly after 2009.” The authors make
a compelling case for Al as a general purpose tool in the method of inven-
tion. The chapter concludes by discussing the implications for innovation
policy and innovation management: “the potential commercial reward from
mastering this mode of research is likely to usher in a period of racing,
driven by powerful incentives for individual companies to acquire and con-
trol critical large data sets and application-specific algorithms.”

Mitchell’s comment emphasizes the regulatory effects of Al as a GPT
for science and innovation—in terms of intellectual property, privacy, and
competition policy: “It is not obvious whether Al is a general purpose tech-
nology for innovation or a very efficient method of imitation. The answer
has a direct relevance for policy. A technology that made innovation cheaper
would often (but not always) imply less need for strong IP protection, since
the balance would swing toward limiting monopoly power and away from
compensating innovation costs. To the extent that a technology reduces
the cost of imitation, however, it typically necessitates greater protection.”
Several later chapters detail these and other regulatory issues.

Agrawal, McHale, and Oettl (chapter 5) provide a recombinant growth
model that explores how a general purpose technology for innovation could
affect the rate of scientific discovery: “instead of emphasising the potential
substitution of machines for workers in existing tasks, we emphasise the
importance of Al in overcoming a specific problem that impedes human
researchers—finding useful combinations in complex discovery spaces . . .
we develop a relatively simple combinatorial-based knowledge production
function that converges in the limit to the Romer/Jones function. . . . If the
curse of dimensionality is both the blessing and curse of discovery, then
advances in Al offer renewed hope of breaking the curse while helping to
deliver on the blessing.” This idea of Al as an input into innovation is a
key component of Cockburn, Henderson, and Stern (chapter 4), as well as
in several later chapters. It is an important element of Aghion, Jones, and
Jones’s model of the impact of Al on economic growth (chapter 9), empha-
sizing endogenous growth through Al (self-)improvements. It also underlies



the chapters focused on how Al will impact the way economics research is
conducted (chapters 21 through 24).

The section on Al as a general purpose technology concludes with Manuel
Trajtenberg’s discussion of political and socictal consequences (chapter 6).
At the conference, Trajtenberg discussed Joel Mokyr’s paper “The Past and
Future of Innovation: Some Lessons from Economic History,” which will
be published elsewhere. The chapter therefore sits between a stand-alone
chapter and a discussion. Trajtenberg’s chapter does not comment directly
on Mokyr, but uses Mokyr’s paper as a jumping-off point to discuss how
technology creates winners and losers, and the policy challenges associated
with the political consequences of the diffusion of a GPT. “The sharp split
between winners and losers, if left to its own, may have serious consequences
far beyond the costs for the individuals involved: when it coincides with the
political divide, it may threaten the very fabric of democracy, as we have seen
recently both in America and in Europe. Thus, if Al bursts onto the scene
and triggers mass displacement of workers, and demography plays out its
fateful hand, the economy will be faced with a formidable dual challenge,
that may require a serious reassessment of policy options . . . we need to
anticipate the required institutional changes, to experiment in the design
of new policies, particularly in education and skills development, in the
professionalization of service occupations, and in affecting the direction of
technical advance. Furthermore, economists possess a vast methodological
arsenal that may prove very useful for that purpose—we should not shy away
from stepping into this area, since its importance for the economy cannot
be overstated.” The next set of chapters also emphasize the distributional
challenges of economic growth driven by rapid technological change.

Growth, Jobs, and Inequality

Much of the popular discussion around Al focuses on the impact on jobs.
If machines can do what humans do, then will there still be work for humans
in the future? The chapters in this section dig into the consequences of Al
for jobs, economic growth, and inequality. Almost all chapters emphasize
that technological change means an increase in wealth for society. As Jason
Furman puts it in chapter 12, “We need more artificial intelligence.” At the
same time, it is clear that the impact of Al on society will depend on how
the increased income from Al is distributed. The most recent GPTs to dif-
fuse, computers and the internet, likely led to increased inequality due to
skill-bias (e.g., Autor, Katz, and Krueger 1998; Akerman, Gaarder, and
Mogstad 2015) and to an increased capital share (e.g., Autor et al. 2017).
This section brings together those chapters that emphasize (largely macro-
economic) ideas related to growth, inequality, and jobs. If the impact of
Al will be like these other technologies, then what will the consequences
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look like for inequality, political economy, economic growth, jobs, and the
meaning of work?

Stevenson (chapter 7) outlines many of the key issues. She emphasizes that
economists generally agree that in the long run society will be wealthier. She
highlights issues with respect to the short run and income distribution. Sum-
marizing both the tension in the public debate and the key themes in several
other chapters, she notes, “In the end, there’s really two separate questions:
there’s an employment question, in which the fundamental question is can
we find fulfilling ways to spend our time if robots take our jobs? And there’s
an income question, can we find a stable and fair distribution of income?”

Acemoglu and Restrepo (chapter 8) examine how Al and automation
might change the nature of work. They suggest a task-based approach to un-
derstanding automation, emphasizing the relative roles of labor and capital
in the economy. “At the heart of our framework is the idea that automation
and thus AI and robotics replace workers in tasks that they previously per-
formed, and via this channel, create a powerful displacement effect.” This
will lead to a lower labor share of economic output. At the same time, pro-
ductivity will increase and capital will accumulate, thereby increasing the
demand for labor. More importantly, “we argue that there is a more power-
ful countervailing force that increases the demand for labor as well as the
share of labor in the national income: the creation of new tasks, functions,
and activities in which labor has a comparative advantage relative to ma-
chines. The creation of new tasks generates a reinstatement effect directly
counterbalancing the displacement effect.” Like Stevenson, the long-run
message is optimistic; however, a key point is that adjustment costs may be
high. New skills are a necessary condition of the long-run optimistic fore-
cast, and there is likely to be a short- and medium-term mismatch between
skills and technologies. They conclude with a discussion of open questions
about which skills are needed, the political economy of technological change
(reinforcing ideas highlighted in the earlier chapter by Trajtenberg), and
the interaction between inequality and the type of innovation enabled by
automation going forward.

Aghion, Jones, and Jones (chapter 9) build on the task-based model,
focusing on the impact on economic growth. They emphasize Baumol’s
cost disease: “Baumol (1967) observed that sectors with rapid productivity
growth, such as agriculture and even manufacturing today, often see their
share of GDP decline while those sectors with relatively slow productiv-
ity growth—perhaps including many services—experience increases. As a
consequence, economic growth may be constrained not by what we do well,
but rather by what is essential and yet hard to improve. We suggest that com-
bining this feature of growth with automation can yield a rich description of
the growth process, including consequences for future growth and income
distribution.” Thus, even in the limit where there is an artificial general
intelligence that creates a singularity or intelligence explosion with a self-



improving Al, cost disease forces may constrain growth. This link between
technological advance and Baumol’s cost disease provides a fundamental
limit to the most optimistic and the most pessimistic views. Scarcity limits
both growth and the downside risk. The chapter also explores how Al might
reduce economic growth if it makes it easier to imitate a rival’s innovations,
returning to issues of intellectual property highlighted in Mitchell’s com-
ment. Finally, they discuss inequality within and across firms. They note
that Al will increase wages of the least skilled employees of technologically
advanced firms, but also increasingly outsource the tasks undertaken by
such employees.

Francois’s comment takes this emphasis on cost disease as a starting
point, asking what those tasks will be that humans are left to do. “But it
is when we turn to thinking about what are the products or services where
humans will remain essential in production that we start to run into prob-
lems. What if humans can’t do anything better than machines? Many dis-
cussions at the conference centered around this very possibility. And I must
admit that I found the scientists’ views compelling on this. . . . The point
I wish to make is that even in such a world where machines are better at
all tasks, there will still be an important role for human ‘work.” And that
work will become the almost political task of managing the machines.” He
argues that humans must tell the machines what to optimize. Bostrom (2014)
describes this as the value-loading problem. Francois emphasizes that this
is largely a political problem, and links the challenges in identifying values
with Arrow’s ([1951] 1963) impossibility theorem. He identifies key ques-
tions around ownership of the machines, length of time that rents should
accrue to those owners, and the political structure of decision-making. In
raising these questions, he provides a different perspective on issues high-
lighted by Stevenson on the meaning of work and Trajtenberg on the po-
litical economy of technological change.

The discussion of the meaning of work is a direct consequence of con-
cerns about the impact of Al on jobs. Jobs have been the key focus of public
discussion on Al and the economy. If human tasks get automated, what is
left for humans to do? Bessen (chapter 10) explores this question, using data
about other technological advances to support his arguments. He empha-
sizes that technological change can lead to an increase in demand and so
the impact of automation on jobs is ambiguous, even within a sector. “The
reason automation in textiles, steel, and automotive manufacturing led to
strong job growth has to do with the effect of technology on demand. . . .
New technologies do not just replace labor with machines, but in a com-
petitive market, automation will reduce prices. In addition, technology may
improve product quality, customization, or speed of delivery. All of these
things can increase demand. If demand increases sufficiently, employment
will grow even though the labor required per unit of output declines.”

Like Bessen, Goolsbee (chapter 11) notes that much of the popular dis-
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cussion around Al relates to labor market consequences. Recognizing that
those consequences matter, his chapter mostly emphasizes the positive:
growth and productivity are good. Artificial Intelligence has potential to
increase our standard of living. Like Acemoglu and Restrepo, he notes that
the short-term displacement effects could be substantial. One frequently
cited solution to the displacement effects of Alis a universal basic income,
in which all members of society receive a cash transfer from the government.
He then discusses the economics of such a policy and the numerous chal-
lenges to making it work. “First . . . in a world where Al-induced unemploy-
ment is already high, separating work and income is an advantage. In a world
like the one we are in now, offering a basic income will likely cause a sizable
drop in the labor market participation by low-wage groups. . . . Second,
for a given amount of money to be used on redistribution, UBI likely shifts
money away from the very poor. . . . Third, . . . converting things to a UBI
and getting rid of the in-kind safety net will lead to a situation in which,
even if among a small share of UBI recipients, SOME people will blow their
money in unsympathetic ways—gambling, drugs, junk food, Ponzi schemes,
whatever. And now those people will come to the emergency room or their
kids will be hungry and by the rules, they will be out of luck. That’s what they
were supposed to have used their UBI for.” Before concluding, he touches
on a variety of regulatory issues that receive more detailed discussion in
chapters 16 through 20. His conclusion mirrors that of Francois, emphasiz-
ing the importance of humans in determining policy direction, even if Al
improves to the point where it surpasses human intelligence.

Furman (chapter 12) is similarly optimistic, emphasizing that we need
more, not less Al. “Al is a critical area of innovation in the U.S. economy
right now. At least to date, Al has not had a large impact on the aggregate
performance of the macroeconomy or the labor market. But it will likely
become more important in the years to come, bringing substantial oppor-
tunities — and our first impulse should be to embrace it fully.” Referencing
data on productivity growth and on the diffusion of industrial robots, he
then discusses potential negative effects on the economy as Al diffuses, par-
ticularly with respect to inequality and reduced labor force participation.
The issues around labor force participation highlight the importance of Ste-
venson’s questions on the meaning of work. Like Goolsbee, Furman notes
several challenges to implementing a universal basic income as a solution
to these negative effects. He concludes that policy has an important role to
play in enabling society to fully reap the benefits of technological change
while minimizing the disruptive effects.

Returning to the question of labor share highlighted by Acemoglu and
Restrepo, Sachs (chapter 13) emphasizes that the income share going to
capital grows with automation: “Rather than Solow-era stylized facts, I
would therefore propose the following alternative stylized facts: (a) the
share of national income accruing to capital rises over time in sectors expe-
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riencing automation, especially when capital is measured to include human
capital; (b) the share of national income accruing to low-skill labor drops
while the share accruing to high-skill labor rises; (c) the dynamics across sec-
tors vary according to the differential timing of automation, with automa-
tion spreading from low-skilled and predictable tasks toward high-skilled
and less predictable tasks; (d) automation reflects the rising intensity of
science and technology throughout the economy . . ., and (e) future techno-
logical changes associated with Al are likely to shift national income from
medium-skilled and high-skilled toward owners of business capital.” The
chapter concludes with a list of key open questions about the dynamics of
automation, the role of monopoly rents, and the consequences for income
distribution and labor force participation.

Korinek and Stiglitz (chapter 14) also emphasize income distribution,
discussing the implications of Al-related innovation for inequality. They
show that, in a first-best economy, contracts can be specified in advance that
make innovation Pareto improving. However, imperfect markets and costly
redistribution can imply a move away from the first-best. Innovation may
then drive inequality directly by giving innovators a surplus, or indirectly
by changing the demand for different types of labor and capital. They dis-
cuss policies that could help reduce the increase in inequality, emphasizing
different taxation tools. Related to the ideas introduced in Mitchell’s com-
ment, they also explore IP policies: “If outright redistribution is infeasible,
there may be other institutional changes that result in market distributions
that are more favorable to workers. For example, intervention to steer tech-
nological progress may act as a second-best device . . . we provide an ex-
ample in which a change in intellectual property rights—a shortening of the
term of patent protection—effectively redistributes some of the innovators’
surplus to workers (consumers) to mitigate the pecuniary externalities on
wages that they experience, with the ultimate goal that the benefits of the
innovation are more widely shared.” Stiglitz and Korinek conclude with a
more speculative discussion of artificial general intelligence (superhuman
artificial intelligence), emphasizing that such a technological development
will likely further increase inequality.

The final chapter in the section on growth, jobs, and inequality calls for
a different emphasis. Cowen (chapter 15) emphasizes consumer surplus,
international effects, and political economy. With respect to consumer sur-
plus, he writes, “Imagine education and manufactured goods being much
cheaper because we produced them using a greater dose of smart software.
The upshot is that even if a robot puts you out of a job or lowers your pay,
there will be some recompense on the consumer side.” Cowen also specu-
lates that AI might hurt developing countries much more than developed,
as automation means that labor cost reasons to offshore decline. Finally,
like Trajtenberg and Francois, he emphasizes the political economy of Al,
highlighting questions related to income distribution.
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Taken together, the chaptersin this section highlight several key issues and
provide models that identify challenges related to growth, jobs, inequality,
and politics. These models set up a number of theoretical and empirical
questions about how Al will impact economic outcomes within and across
countries.

The discussions are necessarily speculative because Al has not yet diffused
widely, so research must either be entirely theoretical or it must use related
technologies (such as factory robots) as a proxy for Al. The discussions are
also speculative because of the challenges in measuring the relevant vari-
ables. In order to determine the impact of Al on the economy, we need con-
sistent measures of A, productivity, intangible capital, and growth across
sectors, regions, and contexts. Going forward, to the extent that progress
occurs against the proposed research agenda, it will depend on advances
in measurement.

Machine Learning and Regulation

Industry will be a key innovator and adopter of artificial intelligence.
A number of regulatory issues arise. The regulatory issues related to truly
intelligent machines are touched on by Trajtenberg, Francois, Goolsbee, and
Cowen. Mitchell’s comment of Cockburn, Henderson, and Stern empha-
sizes intellectual property regulation. This section focuses on other regula-
tory challenges with respect to advances in machine learning.

Varian (chapter 16) sets up the issues by describing the key models from
industrial organization that are relevant to understanding the impact of
machine learning on firms. He highlights the importance of data as a scarce
resource, and discusses the economics of data as an input: it is nonrival and
it exhibits decreasing returns to scale in a technical sense (because predic-
tion accuracy increases in the square root of N). He discusses the structure
of ML-using industries including vertical integration, economies of scale,
and the potential for price discrimination. He emphasizes the difference
between learning by doing and data network effects: “There is a concept that
is circulating among lawyers and regulators called ‘data network effects.” The
model is that a firm with more customers can collect more data and use this
data to improve its product. This is often true—the prospect of improving
operations is what makes ML attractive—but it is hardly novel. And it is
certainly not a network effect! This is essentially a supply-side effect known
as ‘learning by doing.’. . . A company can have huge amounts of data, but
if it does nothing with the data, it produces no value. In my experience, the
problem is not lack of resources, but is lack of skills. A company that has
data but no one to analyze it is in a poor position to take advantage of that
data.” He concludes by highlighting policy questions related to algorithmic
collusion (which was discussed at the conference as “economist catnip,”
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interesting and fun but unlikely to be of first-order importance), security,
privacy, and transparency.

Chevalier’s comment builds on Varian’s emphasis on the importance of
data, exploring the potential of antitrust policy aimed at companies that
use machine learning. Legal scholars and policymakers have asked whether
antitrust essential facilities doctrine should be applied to data ownership.
She emphasizes the trade-off between static and dynamic considerations for
such a policy: “In evaluating antitrust policies in innovative industries, it is
important to recognize that consumer benefits from new technologies arise
not just from obtaining goods and services at competitive prices, but also
from the flow of new and improved products and services that arise from
innovation. Thus, antitrust policy should be evaluated not just in terms of
its effect on prices and outputs, but also on its effect on the speed of inno-
vation. Indeed, in the high technology industries, it seems likely that these
dynamic efficiency considerations dwarf the static efficiency considerations.”
She also explores several practical challenges.

Another regulatory issue that arises from the importance of data is pri-
vacy. Tucker (chapter 17) notes that machine learning uses data to make
predictions about what individuals may desire, be influenced by, or do. She
emphasizes that privacy is challenging for three reasons: cheap storage
means that data may persist longer than the person who generated the data
intended, nonrivalry means that data may be repurposed for uses other than
originally intended, and externalities caused by data created by one indi-
vidual that contains information about others: “For example, in the case of
genetics, the decision to create genetic data has immediate consequences for
family members, since one individual’s genetic data is significantly similar to
the genetic data of their family members. . . . There may also be spillovers
across a person’s decision to keep some information secret, if such secrecy
predicts other aspects of that individual’s behavior that Al might be able
to project from.” She discusses potential negative impacts of these three
challenges, concluding with some key open questions.

Jin (chapter 18) also focuses on the importance of data as an input into
machine learning. She emphasizes that reduced privacy creates security
challenges, such as identity theft, ransomware, and misleading algorithms
(such as Russian-sponsored posts in the 2016 US election): “In my opinion,
the leading concern is that firms are not fully accountable for the risk they
bring to consumer privacy and data security. To restore full accountability,
one needs to overcome three obstacles, namely (a) the difficulty to observe
firms” actual action in data collection, data storage, and data use; (b) the
difficulty to quantify the consequence of data practice, especially before low-
probability adverse events realize themselves; and (c) the difficulty to draw a
causal link between a firm’s data practice and its consequence.” Combined,
Tucker and Jin’s chapters emphasize that any discussion of growth and
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impact of Al requires an understanding of the privacy framework. Access
to data drives innovation, underlies the potential for economic growth, and
frames the antitrust debate.

The economics of data also create challenges with respect to the rules
governing international trade. Goldfarb and Trefler (chapter 19) argue that
economies of scale in data through feedback loops, along with economies
of scope and knowledge externalities in Al innovation, could create the
opportunity for country-level rents and strategic trade policy. At the same
time, they emphasize that the geographic constraints on data and knowledge
would have to be high for such a policy to be optimal at the country level.
They highlight the rise of China: “China has become the focal point for
much of the international discussion. The US narrative has it that Chinese
protection has reduced the ability of dynamic US firms such as Google and
Amazon to penetrate Chinese markets. This protection has allowed China
to develop significant commercial Al capabilities, as evidenced by compa-
nies such as Baidu (a search engine like Google), Alibaba (an e-commerce
web portal like Amazon), and Tencent (the developer of WeChat, which
can be seen as combining the functions of Skype, Facebook, and Apple
Pay) . . . we collected time-series data on the institutional affiliation of all
authors of papers presented at a major Al research conference . . . we com-
pare the 2012 and 2017 conferences. . . . While these countries all increased
their absolute number of participants, in relative terms they all lost ground
to China, which leapt from 10 percent in 2012 to 23 percent in 2017.” The
authors discuss the international dimensions of domestic regulation related
to privacy, access to government data, and industrial standards.

The final regulatory issue highlighted in this section is tort liability.
Galasso and Luo (chapter 20) review prior literature on the relationship
between liability and innovation. They emphasize the importance of getting
the balance right between consumer protection and innovation incentives:
“A central question in designing a liability system for Al technologies is
how liability risk should be allocated between producers and consumers,
and how this allocation might affect innovation. . . . A key promise of Al
technologies is to achieve autonomy. With less room for consumers to take
precautions, the relative liability burden is likely to shift toward producers,
especially in situations in which producers are in a better position than indi-
vidual users to control risk. . . . On the other hand, during the transitional
period of an Al technology, substantial human supervision may still be
required. . . . In many of these situations, it may be impractical or too costly
for producers to monitor individual users and to intervene. Therefore, it
would be important to maintain consumer liability to the extent that users
of Al technologies have sufficient incentives to take precautions and invest
in training, thus internalizing potential harm to others.”

Broadly, regulation will affect the speed at which Al diffuses. Too much
regulation, and industry will not have incentives to invest. Too little regu-
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lation, and consumers will not trust the products that result. In this way,
getting the regulatory balance right is key to understanding when and how
any impact of Al on economic growth and inequality will arise.

Impact on the Practice of Economics

Cockburn, Henderson, and Stern emphasize that machine learning is a
general purpose technology for science and innovation. As such, it is likely
to have an impact on research in a variety of disciplines, including eco-
nomics. Athey (chapter 21) provides an overview of the various ways in
which machine learning is likely to affect the practice of economics. For
example: “I believe that machine learning (ML) will have a dramatic impact
on the field of economics within a short time frame. . . . ML does not add
much to questions about identification, which concern when the object of
interest, for example, a causal effect, can be estimated with infinite data, but
rather yields great improvements when the goal is semiparametric estima-
tion or when there are a large number of covariates relative to the number
of observations . . . a key advantage of ML is that ML views empirical
analysis as “algorithms” that estimate and compare many alternative mod-
els . .. ‘outsourcing’” model selection to algorithms works very well when
the problem is ‘simple’—for example, prediction and classification tasks,
where performance of a model can be evaluated by looking at goodness of
fitin a held-out test set.” She emphasizes the usefulness of machine-learning
techniques for policy problems related to prediction (as in Kleinberg et al.
2015). The chapter then details recent advances in using machine-learning
techniques in causal inference, which she views as a fundamental new tool kit
for empirical economists. She concludes with a list of sixteen predictions of
how machine learning will impact economics, emphasizing new econometric
tools, new data sets and measurement techniques, increased engagement of
economists as engineers (and plumbers), and, of course, increased study
of the economic impact of machine learning on the economy as a whole.

Lederman’s comment emphasizes the usefulness of machine learning to
create new variables for economic analysis, and how the use of machine
learning by organizations creates a new kind of endogeneity problem: “We
develop theoretical models to help us understand the data-generation pro-
cess which, in turn, informs both our concerns about causality as well as
the 1dentification strategies we develop. . . . Overall, as applied researchers
working with real-world data sets, we need to recognize that increasingly
the data we are analyzing is going to be the result of decisions that are made
by algorithms in which the decision-making process may or may not re-
semble the decision-making processes we model as social scientists.”

If the study of Al is going to be a key question for economists going for-
ward, Raj and Seamans (chapter 22) emphasize that we need better data:
“While there is generally a paucity of data examining the adoption, use, and
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effects of both Al and robotics, there is currently less information available
regarding Al. There are no public data sets on the utilization or adoption of
Al at either the macro or micro level. The most complete source of informa-
tion, the McKinsey Global Institute study, is proprietary and inaccessible
to the general public or the academic community. The most comprehensive
and widely used data set examining the diffusion of robotics is the Inter-
national Federation of Robotics (IFR) Robot Shipment Data . . . the IFR
does not collect any information on dedicated industrial robots that serve
one purpose. Furthermore, some of the robots are not classified by indus-
try, detailed data is only available for industrial robots (and not robots in
service, transportation, warchousing, or other sectors), and geographical
information is often aggregated” They provide a detailed discussion of data-
collection opportunities by government and by academic researchers. If the
agenda set up in the other chapters is to be answered, it is important to have
a reliable data set that defines AI, measures its quality, and tracks its diffusion.

Related to Athey’s emphasis of increased engagement of economists
as engineering, Milgrom and Tadelis (chapter 23) describe how machine
learning is already affecting market-design decisions. Using specific ex-
amples from online marketplaces and telecommunications auctions, they
emphasize the potential of Al to improve efficiency by predicting demand
and supply, overcoming computational barriers, and reducing search fric-
tions: “Al and machine learning are emerging as important tools for market
design. Retailers and marketplaces such as eBay, Taobao, Amazon, Uber,
and many others are mining their vast amounts of data to identify patterns
that help them create better experiences for their customers and increase
the efficiency of their markets . . . two-sided markets such as Google, which
match advertisers with consumers, are not only using Al to set reserve prices
and segment consumers into finer categories for ad targeting, but they also
develop Al-based tools to help advertisers bid on ads. . . . Another impor-
tant application of AI’s strength in improving forecasting to help markets
operate more efficiently is in electricity markets. To operate efficiently, elec-
tricity market makers . . . must engage in demand and supply forecasting.”
The authors argue that Al will play a substantial role in the design and
implementation of markets over a wide range of applications.

Camerer (chapter 24) also emphasizes the role of Al as a tool for predict-
ing choice: “Behavioral economics can be defined as the study of natural
limits on computation, willpower, and self-interest, and the implications of
those limits for economic analysis (market equilibrium, IO, public finance,
etc.). A different approach is to define behavioral economics more generally,
as simply being open-minded about what variables are likely to influence
economic choices. . . . In a general ML approach, predictive features could
be—and should be—any variables that predict. . . . If behavioral econom-
ics 1s recast as open-mindedness about what variables might predict, then
ML is an ideal way to do behavioral economics because it can make use of
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a wide set of variables and select which ones predict.” He argues that firms,
policymakers, and market designers can implement Al as either a “bionic
patch™ that improves human decision-making or “malware” that exploits
human weaknesses. In this way, Al could reduce or exacerbate the political
economy and inequality issues highlighted in earlier chapters. In addition,
Camerer explores two other ways in which Al and behavioral economics will
interact. He hypothesizes that machine learning could help predict human
behavior in a variety of settings including bargaining, risky choice, and
games, helping to verify or reject theory. He also emphasizes that (poor)
implementation of Al might provide insight into new ways to model biases
in human decision-making.

The book concludes with Kahneman’s brief and insightful comment.
Kahneman begins with a discussion of Camerer’s idea of using prediction
to verify theory, but continues with a broader discussion of a variety of
themes that arose over the course of the conference. With an optimistic
tone, he emphasizes that there are no obvious limits to what artificial intel-
ligence may be able to do: “Wisdom is breadth. Wisdom is not having too
narrow a view. That is the essence of wisdom; it is broad framing. A robot
will be endowed with broad framing. When it has learned enough, it will
be wiser than we people because we do not have broad framing. We are nar-
row thinkers, we are noisy thinkers, and it is very easy to improve upon us.
I do not think that there is very much that we can do that computers will
not eventually be programmed to do.”

The Future of Research on the Economics of Artificial Intelligence

The chapters in this book are the beginning. They highlight key questions,
recognize the usefulness of several economic models, and identify areas for
further development. We can leverage what we know about GPTs to antici-
pate the impact of Al as it diffuses, recognizing that no two GPTs are iden-
tical. If Al is a general purpose technology, it is likely to lead to increased
economic growth. A common theme in these chapters is that slowing down
scientific progress—even if it were possible—would come at a significant
cost. At the same time, many attendees emphasized that the distribution
of the benefits of Al might not be even. It depends on who owns the Al,
the effect on jobs, and the speed of diffusion.

The task given to the conference presenters was to scope out the research
agenda. Perhaps more than anything, this volume highlights all that we do
not know. It emphasizes questions around growth, inequality, privacy, trade,
innovation, political economy, and so forth. We do not have answers yet. Of
course, the lack of answers is a consequence of the early stage of Al’s diffu-
sion. We cannot measure the impact until Al is widespread.

With the current state of measurement, however, we may never get
answers. As highlighted in the chapter by Raj and Seamans, we do not have
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good measures of Al. We also do not have a good measure of improvement
to Al. What is the Al equivalent to the computational speed of a micro-
chip or the horsepower of an internal combustion engine that will allow
for quality-adjusted prices and measurement? We also do not have good
measures of productivity growth when that growth is primarily driven by
intangible capital. To answer these questions, the gross domestic product
(GDP) measurement apparatus needs to focus on adjusting for intangible
capital, software, and changes to the innovation process (Haskel and West-
lake 2017). Furthermore, to the extent that the benefits of Al generate het-
erogeneous benefits to people as consumers and as workers, measurement of
the benefit of AT will be tricky. For example, if Al enables more leisure and
people choose to take more leisure, should that be accounted for in measures
of inequality? If so, how?

While each chapter has its own take on the agenda, several themes cut
across the volume as key aspects of the research agenda going forward. To
the extent there is consensus on the questions, the consensus focuses on the
potential of AI as a GPT, and the associated potential consequences on
growth and inequality. A second consistent theme is the role of regulation in
accelerating or constraining the diffusion of the technology. A third theme is
that Al will change the way we do our work as economists. Finally, a number
of issues appear in many chapters that are somewhat outside the standard
economic models of technology’s impact. How do people find meaning if
Al replaces work with leisure? How can economists inform the policy debate
on solutions proposed by technologists in the popular press such as taxing
robots or a universal basic income? How does a technology’s diffusion affect
the political environment, and vice versa?

This book highlights the questions and provides direction. We hope read-
ers of this book take it as a starting point for their own research into this
new and exciting area of study.
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Artificial Intelligence and the
Modern Productivity Paradox
A Clash of Expectations

and Statistics

Erik Brynjolfsson, Daniel Rock, and Chad Syverson

The discussion around the recent patterns in aggregate productivity growth
highlights a seeming contradiction. On the one hand, there are astonishing
examples of potentially transformative new technologies that could greatly
increase productivity and economic welfare (see Brynjolfsson and McAfee
2014). There are some early concrete signs of these technologies’ promise,
recent leaps in artificial intelligence (AI) performance being the most promi-
nent example. However, at the same time, measured productivity growth
over the past decade has slowed significantly. This deceleration is large, cut-
ting productivity growth by half or more in the decade preceding the slow-
down. It is also widespread, having occurred throughout the Organisation
for Economic Co-operation and Development (OECD) and, more recently,
among many large emerging economies as well (Syverson 2017).!
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We thus appear to be facing a redux of the Solow (1987) paradox: we
see transformative new technologies everywhere but in the productivity sta-
tistics.

In this chapter, we review the evidence and explanations for the modern
productivity paradox and propose a resolution. Namely, there is no inher-
ent inconsistency between forward-looking technological optimism and
backward-looking disappointment. Both can simultaneously exist. Indeed,
there are good conceptual reasons to expect them to simultaneously exist
when the economy undergoes the kind of restructuring associated with
transformative technologies. In essence, the forecasters of future company
wealth and the measurers of historical economic performance show the
greatest disagreement during times of technological change. In this chap-
ter, we argue and present some evidence that the economy is in such a
period now.

1.1 Sources of Technological Optimism

Paul Polman, Unilever’s CEQ, recently claimed that “The speed of inno-
vation has never been faster.” Similarly, Bill Gates, Microsoft’s cofounder,
observes that “Innovation is moving at a scarily fast pace.” Vinod Khosla of
Khosla Ventures sees “the beginnings of . . . [a] rapid acceleration in the next
10, 15, 20 years.” Eric Schmidt of Alphabet Inc., believes “we’re entering . . .
the age of abundance [and] during the age of abundance, we're going to see
a new age . . . the age of intelligence.” Assertions like these are especially
common among technology leaders and venture capitalists.

In part, these assertions reflect the continuing progress of information
technology (IT) in many areas, from core technology advances like further
doublings of basic computer power (but from ever larger bases) to suc-
cessful investment in the essential complementary innovations like cloud
infrastructure and new service-based business models. But the bigger source
of optimism is the wave of recent improvements in Al, especially machine
learning (ML). Machine learning represents a fundamental change from the
first wave of computerization. Historically, most computer programs were
created by meticulously codifying human knowledge, mapping inputs to
outputs as prescribed by the programmers. In contrast, machine-learning
systems use categories of general algorithms (e.g., neural networks) to fig-
ure out relevant mappings on their own, typically by being fed very large
sample data sets. By using these machine-learning methods that leverage
the growth in total data and data-processing resources, machines have made
impressive gains in perception and cognition, two essential skills for most

2. http://www.khoslaventures.com/fireside-chat-with-google-co-founders-larry-page-and
-sergey-brin; https://en.wikipedia.org/wiki/Predictions_made_by_Ray_Kurzweil#2045:_The
_Singularity; https://www.theguardian.com/small-business-network/2017/jun/22/alphabets
-eric-schmidt-google-artificial-intelligence-viva-technology-mckinsey.
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Fig. 1.1 Al versus human image recognition error rates

types of human work. For instance, error rates in labeling the content of
photos on ImageNet, a data set of over ten million images, have fallen from
over 30 percent in 2010 to less than 5 percent in 2016, and most recently
as low as 2.2 percent with SE-ResNet152 in the ILSVRC2017 competition
(see figure 1.1).3 Error rates in voice recognition on the Switchboard speech
recording corpus, often used to measure progress in speech recognition,
have decreased to 5.5 percent from 8.5 percent over the past year (Saon et al.
2017). The 5 percent threshold is important because that is roughly the per-
formance of humans on each of these tasks on the same test data.
Although not at the level of professional human performance yet, Face-
book’s Al research team recently improved upon the best machine language
translation algorithms available using convolutional neural net sequence
prediction techniques (Gehring et al. 2017). Deep learning techniques have
also been combined with reinforcement learning, a powerful set of tech-
niques used to generate control and action systems whereby autonomous
agents are trained to take actions given an environment state to maximize
future rewards. Though nascent, advances in this field are impressive. In
addition to its victories in the game of Go, Google DeepMind has achieved
superhuman performance in many Atari games (Fortunato et al. 2017).
These are notable technological milestones. But they can also change the
economic landscape, creating new opportunities for business value creation
and cost reduction. For example, a system using deep neural networks was
tested against twenty-one board-certified dermatologists and matched their

3. http://image-net.org/challenges/LSVRC/2017/results. ImageNet includes labels for each
image, originally provided by humans. For instance, there are 339,000 labeled as flowers,
1,001,000 as food, 188,000 as fruit, 137,000 as fungus, and so on.
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performance in diagnosing skin cancer (Esteva et al. 2017). Facebook uses
neural networks for over 4.5 billion translations each day.*

An increasing number of companies have responded to these opportuni-
ties. Google now describes its focus as “Al first,” while Microsoft’s CEO
Satya Nadella says Al is the “ultimate breakthrough” in technology. Their
optimism about Al is not just cheap talk. They are making heavy invest-
ments in Al, as are Apple, Facebook, and Amazon. As of September 2017,
these companies comprise the five most valuable companies in the world.
Meanwhile, the tech-heavy NASDAQ composite index more than doubled
between 2012 and 2017. According to CBlnsights, global investment in
private companies focused on Al has grown even faster, increasing {from
$589 million in 2012 to over $5 billion in 2016.°

1.2 The Disappointing Recent Reality

Although the technologies discussed above hold great potential, there is
little sign that they have yet affected aggregate productivity statistics. Labor
productivity growth rates in a broad swath of developed economies fell in
the middle of the first decade of the twenty-first century and have stayed
low since then. For example, aggregate labor productivity growth in the
United States averaged only 1.3 percent per year from 2005 to 2016, less
than half of the 2.8 percent annual growth rate sustained from 1995 to
2004. Fully twenty-eight of the twenty-nine other countries for which the
OECD has compiled productivity growth data saw similar decelerations.
The unweighted average annual labor productivity growth rate across these
countries was 2.3 percent from 1995 to 2004, but only 1.1 percent from 2005
t0 2015.9What’s more, real median income has stagnated since the late 1990s
and noneconomic measures of well-being, like life expectancy, have fallen
for some groups (Case and Deaton 2017).

Figure 1.2 replicates the Conference Board’s analysis of its country-level
Total Economy Database (Conference Board 2016). It plots highly smoothed
annual productivity growth rate series for the United States, other mature
economies (which combined match much of the OECD sample cited above),
emerging and developing economies, and the world overall. The aforemen-
tioned slowdowns in the United States and other mature economies are clear
in the figure. The figure also reveals that the productivity growth acceleration
in emerging and developing economies during the first decade of the twenty-

4. https://code.facebook.com/posts/289921871474277/transitioning-entirely-to-neural
-machine-translation/.

5. And the number of deals increased from 160 to 658. See https://www.cbinsights.com
/research/artificial-intelligence-startup-funding/.

6. These slowdowns are statistically significant. For the United States, where the slowdown
is measured using quarterly data, equality of the two periods’ growth rates is rejected with a
t-statistic of 2.9. The OECD numbers come from annual data across the thirty countries. Here,
the null hypothesis of equality is rejected with a z-statistic of 7.2.
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Fig. 1.2 Smoothed average annual labor productivity growth (percent) by region

Source: The Conference Board Total Economy Database™ (adjusted version), November
2016.

Note: Trend growth rates are obtained using HP filter, assuming a 1 = 100.

first century ended around the time of the Great Recession, causing a recent
decline in productivity growth rates in these countries too.

These slowdowns do not appear to simply reflect the effects of the Great
Recession. In the OECD data, twenty-eight of the thirty countries still
exhibit productivity decelerations if 2008—2009 growth rates are excluded
from the totals. Cette, Fernald, and Mojon (2016), using other data, also find
substantial evidence that the slowdowns began before the Great Recession.

Both capital deepening and total factor productivity (TFP) growth lead
to labor productivity growth, and both seem to be playing a role in the slow-
down (Fernald 2014; OECD 2015). Disappointing technological progress
can be tied to each of these components. Total factor productivity directly
reflects such progress. Capital deepening is indirectly influenced by techno-
logical change because firms’ investment decisions respond to improvements
in capital’s current or expected marginal product.

These facts have been read by some as reasons for pessimism about the
ability of new technologies like Al to greatly affect productivity and income.
Gordon (2014, 2015) argues that productivity growth has been in long-run
decline, with the IT-driven acceleration of 1995 to 2004 being a one-off
aberration. While not claiming technological progress will be nil in the com-
ing decades, Gordon essentially argues that we have been experiencing the
new, low-growth normal and should expect to continue to do so going for-
ward. Cowen (2011) similarly offers multiple reasons why innovation may
be slow, at least for the foreseeable future. Bloom et al. (2017) document
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that in many fields of technological progress research productivity has been
falling, while Nordhaus (2015) finds that the hypothesis of an acceleration
of technology-driven growth fails a variety of tests.

This pessimistic view of future technological progress has entered into
long-range policy planning. The Congressional Budget Office, for instance,
reduced its ten-year forecast for average US annual labor productivity
growth from 1.8 percent in 2016 (CBO 2016) to 1.5 percent in 2017 (CBO
2017). Although perhaps modest on its surface, that drop implies US gross
domestic product (GDP) will be considerably smaller ten years from now
than it would in the more optimistic scenario—a difference equivalent to
almost $600 billion in 2017,

1.3 Potential Explanations for the Paradox

There are four principal candidate explanations for the current confluence
of technological optimism and poor productivity performance: (a) false
hopes, (b) mismeasurement, (c) concentrated distribution and rent dissipa-
tion, and (d) implementation and restructuring lags.’

1.3.1 False Hopes

The simplest possibility is that the optimism about the potential tech-
nologies is misplaced and unfounded. Perhaps these technologies won’t be
as transformative as many expect, and although they might have modest
and noteworthy effects on specific sectors, their aggregate impact might be
small. In this case, the paradox will be resolved in the future because realized
productivity growth never escapes its current doldrums, which will force the
optimists to mark their beliefs to market.

History and some current examples offer a quantum of credence to this
possibility. Certainly one can point to many prior exciting technologies that
did not live up to initially optimistic expectations. Nuclear power never
became too cheap to meter, and fusion energy has been twenty years away
for sixty years. Mars may still beckon, but it has been more than forty years
since Eugene Cernan was the last person to walk on the moon. Flying cars
never got off the ground,® and passenger jets no longer fly at supersonic
speeds. Even Al, perhaps the most promising technology of our era, is
well behind Marvin Minsky’s 1967 prediction that “Within a generation
the problem of creating “artificial intelligence’ will be substantially solved”
(Minsky 1967, 2).

On the other hand, there remains a compelling case for optimism. As we
outline below, it is not difficult to construct back-of-the-envelope scenarios

7. To some extent, these explanations parallel the explanations for the Solow paradox (Bryn-
jolfsson 1993).
8. But coming soon? https://kittyhawk.aero/about/.
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in which even a modest number of currently existing technologies could
combine to substantially raise productivity growth and societal welfare.
Indeed, knowledgeable investors and researchers are betting their money
and time on exactly such outcomes. Thus, while we recognize the potential
for overoptimism—and the experience with early predictions for Al makes
an especially relevant reminder for us to be somewhat circumspect in this
chapter—we judge that it would be highly preliminary to dismiss optimism
at this point.

1.3.2 Mismeasurement

Another potential explanation for the paradox is mismeasurement of out-
put and productivity. In this case, it is the pessimistic reading of the empirical
past, not the optimism about the future, that is mistaken. Indeed, this expla-
nation implies that the productivity benefits of the new wave of technologies
are already being enjoyed, but have yet to be accurately measured. Under
this explanation, the slowdown of the past decade is illusory. This “mis-
measurement hypothesis” has been put forth in several works (e.g., Mokyr
2014; Alloway 2015; Feldstein 2015; Hatzius and Dawsey 2015; Smith 2015).

There is a prima facie case for the mismeasurement hypothesis. Many new
technologies, like smartphones, online social networks, and downloadable
media involve little monetary cost, yet consumers spend large amounts of
time with these technologies. Thus, the technologies might deliver substan-
tial utility even if they account for a small share of GDP due to their low
relative price. Guvenen et al. (2017) also show how growing offshore profit
shifting can be another source of mismeasurement.

However, a set of recent studies provide good reason to think that mis-
measurement is not the entire, or even a substantial, explanation for the
slowdown. Cardarelli and Lusinyan (2015), Byrne, Fernald, and Reinsdorf
(2016), Nakamura and Soloveichik (2015), and Syverson (2017), each using
different methodologies and data, present evidence that mismeasurement is
not the primary explanation for the productivity slowdown. After all, while
there is convincing evidence that many of the benefits of today’s technologies
are not reflected in GDP and therefore productivity statistics, the same was
undoubtedly true in earlier eras as well.

1.3.3 Concentrated Distribution and Rent Dissipation

A third possibility is that the gains of the new technologies are already
attainable, but that through a combination of concentrated distribution of
those gains and dissipative efforts to attain or preserve them (assuming the
technologies are at least partially rivalrous), their effect on average produc-
tivity growth is modest overall, and is virtually nil for the median worker. For
instance, two of the most profitable uses of Al to date have been for targeting
and pricing online ads, and for automated trading of financial instruments,
both applications with many zero-sum aspects.
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One version of this story asserts that the benefits of the new technologies
are being enjoyed by a relatively small fraction of the economy, but the
technologies’ narrowly scoped and rivalrous nature creates wasteful “gold
rush”-type activities. Both those seeking to be one of the few beneficiaries,
as well as those who have attained some gains and seek to block access to
others, engage in these dissipative efforts, destroying many of the benefits
of the new technologies.’

Recent research offers some indirect support for elements of this story.
Productivity differences between frontier firms and average firms in the same
industry have been increasing in recent years (Andrews, Criscuolo, and Gal
2016; Furman and Orszag 2015). Differences in profit margins between the
top and bottom performers in most industries have also grown (McAfee
and Brynjolfsson 2008). A smaller number of superstar firms are gaining
market share (Autor et al. 2017; Brynjolfsson et al. 2008), while workers’
earnings are increasingly tied to firm-level productivity differences (Song
etal. 2015). There are concerns that industry concentration is leading to sub-
stantial aggregate welfare losses due to the distortions of market power (e.g.,
De Loecker and Eeckhout 2017; Gutiérrez and Philippon 2017). Further-
more, growing inequality can lead to stagnating median incomes and associ-
ated socioeconomic costs, even when total income continues to grow.

Although this evidence is important, it is not dispositive. The aggregate
effects of industry concentration are still under debate, and the mere fact that
atechnology’s gains are not evenly distributed is no guarantee that resources
will be dissipated in trying to capture them—especially that there would be
enough waste to erase noticeable aggregate benefits.

1.3.4 Implementation and Restructuring Lags

Each of the first three possibilities, especially the first two, relies on ex-
plaining away the discordance between high hopes and disappointing statis-
tical realities. One of the two elements is presumed to be somehow “wrong.”
In the misplaced optimism scenario, the expectations for technology by tech-
nologists and investors are off base. In the mismeasurement explanation, the
tools we use to gauge empirical reality are not up to the task of accurately
doing so. And in the concentrated distribution stories, the private gains for
the few may be very real, but they do not translate into broader gains for
the many.

But there is a fourth explanation that allows both halves of the seeming
paradox to be correct. It asserts that there really is good reason to be optimis-
tic about the future productivity growth potential of new technologies, while
at the same time recognizing that recent productivity growth has been low.
The core of this story is that it takes a considerable time—often more than

9. Stiglitz (2014) offers a different mechanism where technological progress with concentrated
benefits in the presence of restructuring costs can lead to increased inequality and even, in the
short run, economic downturns.
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is commonly appreciated—to be able to sufficiently harness new technolo-
gies. Ironically, this is especially true for those major new technologies that
ultimately have an important effect on aggregate statistics and welfare. That
is, those with such broad potential application that they qualify as general
purpose technologies (GPTs). Indeed, the more profound and far-reaching
the potential restructuring, the longer the time lag between the initial inven-
tion of the technology and its full impact on the economy and society.

This explanation implies there will be a period in which the technologies
are developed enough that investors, commentators, researchers, and policy-
makers can imagine their potentially transformative effects, even though
they have had no discernable effect on recent productivity growth. It isn’t
until a sufficient stock of the new technology is built and the necessary
invention of complementary processes and assets occurs that the promise
of the technology actually blossoms in aggregate economic data. Investors
are forward looking and economic statistics are backward looking. In times
of technological stability or steady change (constant velocity), the disjoint
measurements will seem to track each other. But in periods of rapid change,
the two measurements can become uncorrelated.

There are two main sources of the delay between recognition of a new
technology’s potential and its measurable effects. One is that it takes time
to build the stock of the new technology to a size sufficient enough to have
an aggregate effect. The other is that complementary investments are neces-
sary to obtain the full benefit of the new technology, and it takes time to
discover and develop these complements and to implement them. While the
fundamental importance of the core invention and its potential for society
might be clearly recognizable at the outset, the myriad necessary coinven-
tions, obstacles, and adjustments needed along the way await discovery over
time, and the required path may be lengthy and arduous. Never mistake a
clear view for a short distance.

This explanation resolves the paradox by acknowledging that its two
seemingly contradictory parts are not actually in conflict. Rather, both parts
are in some sense natural manifestations of the same underlying phenom-
enon of building and implementing a new technology.

While each of the first three explanations for the paradox might have a
role in describing its source, the explanations also face serious questions
in their ability to describe key parts of the data. We find the fourth—the
implementation and restructuring lags story—to be the most compelling in
light of the evidence we discuss below. Thus it is the focus of our explorations
in the remainder of this chapter.

1.4 The Argument in Favor of the Implementation
and Restructuring Lags Explanation

Implicit or explicit in the pessimistic view of the future is that the recent slow-
down in productivity growth portends slower productivity growth in the future.
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We begin by establishing one of the most basic elements of the story: that
slow productivity growth today docs not rule out faster productivity growth
in the future. In fact, the evidence is clear that it is barely predictive at all.

Total factor productivity growth is the component of overall output
growth that cannot be explained by accounting for changes in observable
labor and capital inputs. It has been called a “measure of our ignorance”
(Abramovitz 1956). It is a residual, so an econometrician should not be
surprised if it is not very predictable from past levels. Labor productivity
is a similar measure, but instead of accounting for capital accumulation,
simply divides total output by the labor hours used to produce that output.

Figures 1.3 and 1.4 plot, respectively, US productivity indices since 1948
and productivity growth by decade. The data include average labor produc-
tivity (LP), average total factor productivity (TFP), and Fernald’s (2014)
utilization-adjusted TFP (TFPua).!

Productivity has consistently grown in the postwar era, albeit at different
rates at different times. Despite the consistent growth, however, past pro-
ductivity growth rates have historically been poor predictors of future pro-
ductivity growth. In other words, the productivity growth of the past decade
tells us little about productivity growth for the coming decade. Looking
only at productivity data, it would have been hard to predict the decrease
in productivity growth in the early 1970s or foresee the beneficial impact of
IT in the 1990s.

As it turns out, while there is some correlation in productivity growth rates
over short intervals, the correlation between adjacent ten-year periods is not
statistically significant. We present below the results from a regression of
different measures of average productivity growth on the previous period’s
average productivity growth for ten-year intervals as well as scatterplots
of productivity for each ten-year interval against the productivity in the
subsequent period. The regressions in table 1.1 allow for autocorrelation
in error terms across years (1 lag). Table 1.2 clusters the standard errors by
decade. Similar results allowing for autocorrelation at longer time scales are
presented in the appendix.

In all cases, the R* of these regressions is low, and the previous decade’s
productivity growth does not have statistically discernable predictive power
over the next decade’s growth. For labor productivity, the R* is 0.009.
Although the intercept in the regression is significantly different from zero
( productivity growth is positive, on average), the coefficient on the previous
period’s growth is not statistically significant. The point estimate is economi-
cally small, too. Taking the estimate at face value, 1 percent higher annual
labor productivity growth in the prior decade (around an unconditional
mean of about 2 percent per year) corresponds to less than 0.1 percent

10. Available at http://www.frbsf.org/economic-research/indicators-data/total-factor
-productivity-tfp/.
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Table 1.1 Regressions with Newey-West standard errors

0] (2)
Labor Total factor 3)
Newey-West regressions (1 lag allowed) productivity productivity Utilization-adjusted
ten-year average productivity growth growth growth productivity growth
Previous ten-year average LP growth 0.0857
0.177)
Previous ten-year average TFP growth 0.136
(0.158)
Previous ten-year average TFPua 0.158
growth
(0.187)
Constant 1.94G%** 0.91 1#** 0.910%*=*
(0.398) (0.188) (0.259)
Observations 50 50 50
R-squared 0.009 0.023 0.030
Note: Standard errors in parentheses.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
Table 1.2 Regressions with standard errors clustered by decade
( (2
Labor Total factor 3)
Ten-year average productivity growth productivity productivity Utilization-adjusted
(SEs clustered by decade) growth growth productivity growth
Previous ten-year average LP growth 0.0857
(0.284)
Previous ten-year average TFP growth 0.136
(0.241)
Previous ten-year average TFPua 0.158
growth
(0.362)
Constant 1.949%* 0.911** 0.910
(0.682) (0.310) (0.524)
Observations 50 50 50
R-squared 0.009 0.023 0.030

Note: Robust standard errors in parentheses.
***Significant at the 1 percent level.
**Significant at the 5 percent level,
*Significant at the 10 percent level.
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Fig. 1.6 Total factor productivity growth scatterplot

faster growth in the following decade. In the TFP growth regression, the
R*is0.023, and again the coeflicient on the previous period’s growth is insig-
nificant. Similar patterns hold in the utilization-adjusted TFP regression
(R? of 0.03). The lack of explanatory power of past productivity growth is
also apparent in the scatterplots (see figures 1.5, 1.6, and 1.7).

The old adage that “past performance is not predictive of future results”
applies well to trying to predict productivity growth in the years to come,
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Fig. 1.7 Utilization-adjusted total factor productivity growth scatterplot

especially in periods of a decade or longer. Historical stagnation does not
justify forward-looking pessimism.

1.5 A Technology-Driven Case for Productivity Qptimism

Simply extrapolating recent productivity growth rates forward is not a
good way to estimate the next decade’s productivity growth. Does that imply
we have no hope at all of predicting productivity growth? We don’t think so.

Instead of relying only on past productivity statistics, we can consider
the technological and innovation environment we expect to see in the near
future. In particular, we need to study and understand the specific technolo-
gies that actually exist and make an assessment of their potential.

One does not have to dig too deeply into the pool of existing technologies
or assume incredibly large benefits from any one of them to make a case
that existing but still nascent technologies can potentially combine to create
noticeable accelerations in aggregate productivity growth. We begin by look-
ing at a few specific examples. We will then make the case that Al is a GPT,
with broader implications.

First, let’s consider the productivity potential of autonomous vehicles.
According to the US Bureau of Labor Statistics (BLS), in 2016 there were
3.5 million people working in private industry as “motor vehicle operators”
of one sort or another (this includes truck drivers, taxi drivers, bus driv-
ers, and other similar occupations). Suppose autonomous vehicles were to
reduce, over some period, the number of drivers necessary to do the current
workload to 1.5 million. We do not think this is a far-fetched scenario given
the potential of the technology. Total nonfarm private employment in mid-
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2016 was 122 million. Therefore, autonomous vehicles would reduce the
number of workers necessary to achieve the same output to 120 million. This
would result in aggregate labor productivity (calculated using the standard
BLS nonfarm private series) increasing by 1.7 percent (122/120 = 1.017).
Supposing this transition occurred over ten years, this single technology
would provide a direct boost of 0.17 percent to annual productivity growth
over that decade.

This gain is significant, and it does not include many potential productiv-
ity gains from complementary changes that could accompany the diffusion
of autonomous vehicles. For instance, self-driving cars are a natural comple-
ment to transportation-as-a-service rather than individual car ownership.
The typical car is currently parked 95 percent of the time, making it readily
available for its owner or primary user (Morris 2016). However, in locations
with sufficient density, a self-driving car could be summoned on demand.
This would make it possible for cars to provide useful transportation services
for a larger fraction of the time, reducing capital costs per passenger-mile,
even after accounting for increased wear and tear. Thus, in addition to the
obvious improvements in labor productivity from replacing drivers, capital
productivity would also be significantly improved. Of course, the speed of
adoption is important for estimation of the impact of these technologies.
Levy (2018) is more pessimistic, suggesting in the near term that long dis-
tance truck driver jobs will grow about 2 percent between 2014 and 2024.
This is 3 percent less (about 55,000 jobs in that category) than they would
have grown without autonomous vehicle technology and about 3 percent of
total employment of long distance truck drivers. A second example is call
centers. As of 20135, there were about 2.2 million people working in more
than 6,800 call centers in the United States, and hundreds of thousands more
work as home-based call center agents or in smaller sites.'! Improved voice-
recognition systems coupled with intelligence question-answering tools like
IBM’s Watson might plausibly be able to handle 60—70 percent or more of
the calls, especially since, in accordance with the Pareto principle, a large
fraction of call volume is due to variants on a small number of basic queries.
If Al reduced the number of workers by 60 percent, it would increase US
labor productivity by 1 percent, perhaps again spread over ten years. Again,
this would likely spur complementary innovations, from shopping recom-
mendation and travel services to legal advice, consulting, and real-time per-
sonal coaching. Relatedly, citing advances in Al-assisted customer service,
Levy (2018) projects zero growth in customer service representatives from
2014 to 2024 (a difference of 260,000 jobs from BLS projections).

Beyond labor savings, advances in Al have the potential to boost total
factor productivity. In particular, energy efficiency and materials usage
could be improved in many large-scale industrial plants. For instance, a

11. https://info.siteselectiongroup.com/blog/how-big-is-the-us-call-center-industry
-compared-to-india-and-philippines.
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team from Google DeepMind recently trained an ensemble of neural net-
works to optimize power consumption in a data center. By carefully track-
ing the data already collected from thousands of sensors tracking tempera-
tures, electricity usage, and pump speeds, the system learned how to make
adjustments in the operating parameters. As a result, the Al was able to
reduce the amount of energy used for cooling by 40 percent compared to
the levels achieved by human experts. The algorithm was a general-purpose
framework designed to account complex dynamics, so it is easy to see how
such a system could be applied to other data centers at Google, or indeed,
around the world. Overall, data center electricity costs in the United States
are about $6 billion per year, including about $2 billion just for cooling.!?

What’s more, similar applications of machine learning could be imple-
mented in a variety of commercial and industrial activities. For instance,
manufacturing accounts for about $2.2 trillion of value added each year.
Manufacturing companies like GE are already using Al to forecast product
demand, future customer maintenance needs, and analyze performance data
coming from sensors on their capital equipment. Recent work on training
deep neural network models to perceive objects and achieve sensorimotor
control have at the same time yielded robots that can perform a variety
of hand-eye coordination tasks (e.g., unscrewing bottle caps and hanging
coat hangers; Levine et al., [2016]). Liu et al. (2017) trained robots to per-
form a number of household chores, like sweeping and pouring almonds
into a pan, using a technique called imitation learning.'® In this approach,
the robot learns to perform a task using a raw video demonstration of what
it needs to do. These techniques will surely be important for automating
manufacturing processes in the future. The results suggest that artificial
intelligence may soon improve productivity in household production tasks
as well, which in 2010 were worth as much as $2.5 trillion in nonmarket
value added (Bridgman et al. 2012).'4

Although these examples are each suggestive of nontrivial productivity
gains, they are only a fraction of the set of applications for Al and machine
learning that have been identified so far. James Manyika et al. (2017) ana-
lyzed 2,000 tasks and estimated that about 45 percent of the activities that
people are paid to perform in the US economy could be automated using
existing levels of Al and other technologies. They stress that the pace of

12. According to personal communication, August 24, 2017, with Jon Koomey, Arman
Shehabi, and Sarah Smith of Lawrence Berkeley Lab.

13. Videos of these efforts available here: https://sites.google.com/site/imitationfrom
observation/.

14. One factor that might temper the aggregate impact of Al-driven productivity gains is if
product demand for the sectors with the largest productivity Al gains is sufficiently inelastic.
In this case, these sectors’ shares of total expenditure will shrink, shifting activity toward
slower-growing sectors and muting aggregate productivity growth a la Baumol and Bowen
(1966). It is unclear what the elasticities of demand are for the product classes most likely to
be affected by AL
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automation will depend on factors other than technical feasibility, including
the costs of automation, regulatory barriers, and social acceptance.

1.6 Artificial Intelligence Is a General Purpose Technology

As important as specific applications of Al may be, we argue that the
more important economic effects of Al, machine learning, and associated
new technologies stem from the fact that they embody the characteristics
of general purpose technologies (GPTs). Bresnahan and Trajtenberg (1996)
argue that a GPT should be pervasive, able to be improved upon over time,
and be able to spawn complementary innovations.

The steam engine, electricity, the internal combustion engine, and com-
puters are each examples of important general purpose technologies. Each
of them increased productivity not only directly, but also by spurring impor-
tant complementary innovations. For instance, the steam engine not only
helped to pump water from coal mines, its most important initial appli-
cation, but also spurred the invention of more effective factory machinery
and new forms of transportation like steamships and railroads. In turn,
these coinventions helped give rise to innovations in supply chains and mass
marketing, to new organizations with hundreds of thousands of employees,
and even to seemingly unrelated innovations like standard time, which was
needed to manage railroad schedules.

Artificial intelligence, and in particular machine learning, certainly has
the potential to be pervasive, to be improved upon over time, and to spawn
complementary innovations, making it a candidate for an important GPT.

Asnoted by Agrawal, Gans, and Goldfarb (2017), the current generation
of machine-learning systems is particularly suited for augmenting or auto-
mating tasks that involve at least some prediction aspect, broadly defined.
These cover a wide range of tasks, occupations, and industries, from driv-
ing a car (predicting the correct direction to turn the steering wheel) and
diagnosing a disease (predicting its cause) to recommending a product ( pre-
dicting what the customer will like) and writing a song (predicting which
note sequence will be most popular). The core capabilities of perception and
cognition addressed by current systems are pervasive, if not indispensable,
for many tasks done by humans.

Machine-learning systems are also designed to improve over time. Indeed,
what sets them apart from earlier technologies is that they are designed to
improve themselves over time. Instead of requiring an inventor or devel-
oper to codify, or code, each step of a process to be automated, a machine-
learning algorithm can discover on its own a function that connects a set
of inputs X to a set of outputs ¥ as long as it is given a sufficiently large set
of labeled examples mapping some of the inputs to outputs (Brynjolfsson
and Mitchell 2017). The improvements reflect not only the discovery of
new algorithms and techniques, particularly for deep neural networks, but
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also their complementarities with vastly more powerful computer hardware
and the availability of much larger digital data sets that can be used to train
the systems (Brynjolfsson and McAfee 2017). More and more digital data
is collected as a byproduct of digitizing operations, customer interactions,
communications, and other aspects of our lives, providing fodder for more
and better machine-learning applications.'

Most important, machine-learning systems can spur a variety of comple-
mentary innovations. For instance, machine learning has transformed the
abilities of machines to perform a number of basic types of perception that
enable a broader set of applications. Consider machine vision—the abil-
ity to see and recognize objects, to label them in photos, and to interpret
video streams. As error rates in identifying pedestrians improve from one
per 30 frames to about one per 30 million frames, self-driving cars become
increasingly feasible (Brynjolfsson and McAfee 2017).

Improved machine vision also makes practical a variety of factory au-
tomation tasks and medical diagnoses. Gill Pratt has made an analogy to
the development of vision in animals 500 million years ago, which helped
ignite the Cambrian explosion and a burst of new species on earth (Pratt
2015). He also noted that machines have a new capability that no biological
species has: the ability to share knowledge and skills almost instantaneously
with others. Specifically, the rise of cloud computing has made it signifi-
cantly easier to scale up new ideas at much lower cost than before. This
is an especially important development for advancing the economic im-
pact of machine learning because it enables cloud robotics: the sharing of
knowledge among robots. Once a new skill is learned by a machine in one
location, it can be replicated to other machines via digital networks. Data
as well as skills can be shared, increasing the amount of data that any given
machine learner can use.

This in turn increases the rate of improvement. For instance, self-driving
cars that encounter an unusual situation can upload that information with
a shared platform where enough examples can be aggregated to infer a pat-
tern. Only one self-driving vehicle needs to experience an anomaly for many
vehicles to learn from it. Waymo, a subsidiary of Google, has cars driv-
ing 25,000 “real” autonomous and about 19 million simulated miles each
week.'® All of the Waymo cars learn from the joint experience of the others.
Similarly, a robot struggling with a task can benefit from sharing data and
learnings with other robots that use a compatible knowledge-representation
framework."”

When one thinks of Al as a GPT, the implications for output and wel-
fare gains are much larger than in our earlier analysis. For example, self-
driving cars could substantially transform many nontransport industries.

15. For example, through enterprise resource planning systems in factories, internet com-
merce, mobile phones, and the “Internet of Things.”
16. http://ben-evans.com/benedictevans/2017/8/20/winner-takes-all.

17. Rethink Robotics is developing exactly such a platform.
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Retail could shift much further toward home delivery on demand, creating
consumer welfare gains and further freeing up valuable high-density land
now used for parking. Traffic and safety could be optimized, and insurance
risks could fall. With over 30,000 deaths due to automobile crashes in the
United States each year, and nearly a million worldwide, there is an oppor-
tunity to save many lives.'®

1.7 'Why Future Technological Progress Is Consistent
with Low Current Productivity Growth

Having made a case for technological optimism, we now turn to explain-
ing why it is not inconsistent with—and in fact may even be naturally related
to—low current productivity growth.

Like other GPTs, Al has the potential to be an important driver of
productivity. However, as Jovanovic and Rousseau (2005) point out (with
additional reference to David’s [1991] historical example), “a GPT does
not deliver productivity gains immediately upon arrival” (1184). The tech-
nology can be present and developed enough to allow some notion of its
transformative effects even though it is not affecting current productivity
levels in any noticeable way. This is precisely the state that we argue the
economy may be in now.

We discussed earlier that a GPT can at one moment both be present and
yet not affect current productivity growth if there is a need to build a suf-
ficiently large stock of the new capital, or if complementary types of capital,
both tangible and intangible, need to be identified, produced, and put in
place to fully harness the GPT’s productivity benefits.

The time necessary to build a sufficient capital stock can be extensive.
For example, it was not until the late 1980s, more than twenty-five years
after the invention of the integrated circuit, that the computer capital stock
reached its long-run plateau at about 5 percent (at historical cost) of total
nonresidential equipment capital. It was at only half that level ten years
prior. Thus, when Solow pointed out his now eponymous paradox, the com-
puters were finally just then getting to the point where they really could be
seen everywhere.

David (1991) notes a similar phenomenon in the diffusion of electrifica-
tion. At least half of US manufacturing establishments remained unelectri-
fied until 1919, about thirty years after the shift to polyphase alternating
current began. Initially, adoption was driven by simple cost savings in pro-

18. These latter two consequences of autonomous vehicles, while certainly reflecting welfare
improvements, would need to be capitalized in prices of goods or services to be measured in
standard GDP and productivity measures. We will discuss Al-related measurement issues in
greater depth later. Of course, it is worth remembering that autonomous vehicles also hold
the potential to create new economic costs if, say, the congestion from lower marginal costs of
operating a vehicle is not counteracted by sufficiently large improvements in traffic management
technology or certain infrastructure investments.
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viding motive power. The biggest benefits came later, when complementary
innovations were made. Managers began to fundamentally reorganize work
by replacing factories’ centralized power source and giving every individual
machine its own electric motor. This enabled much more flexibility in the
location of equipment and made possible effective assembly lines of mate-
rials flow.

This approach to organizing factories is obvious in retrospect, yet it took
as many as thirty years for it to become widely adopted. Why? As noted
by Henderson (1993, 2006), it is exactly because incumbents are designed
around the current ways of doing things and so proficient at them that they
are blind to or unable to absorb the new approaches and get trapped in the
status quo—they suffer the “curse of knowledge.”"

The factory electrification example demonstrates the other contributor to
the time gap between a technology’s emergence and its measured productiv-
ity effects: the need for installation (and often invention) of complementary
capital. This includes both tangible and intangible investments. The time-
line necessary to invent, acquire, and install these complements is typically
more extensive than the time-to-build considerations just discussed. Con-
sider the measured lag between large investments in IT and productivity
benefits within firms. Brynjolfsson and Hitt (2003) found that while small
productivity benefits were associated with firms’ IT investments when one-
year differences were considered, the benefits grew substantially as longer
differences were examined, peaking after about seven years. They attributed
this pattern to the need for complementary changes in business processes.
For instance, when implementing large enterprise-planning systems, firms
almost always spend several times more money on business process rede-
sign and training than on the direct costs of hardware and software. Hiring
and other human-resources practices often need considerable adjustment
to match the firm’s human capital to the new structure of production. In
fact, Bresnahan, Brynjolfsson, and Hitt (2002) find evidence of three-way
complementarities between I'T, human capital, and organizational changes
in the investment decisions and productivity levels. Furthermore, Brynjolfs-
son, Hitt, and Yang (2002) show each dollar of IT capital stock is cor-
related with about $10 of market value. They interpret this as evidence of
substantial IT-related intangible assets and show that firms that combine IT
investments with a specific set of organizational practices are not just more
productive, they also have disproportionately higher market values than
firms that invest in only one or the other. This pattern in the data is consistent
with a long stream of research on the importance of organizational and even

19. Atkeson and Kehoe (2007) note manufacturers’ reluctance to abandon their large knowl-
edge stock at the beginning of the transition to electric power to adopt what was, initially, only
a marginally superior technology. David and Wright (2006) are more specific, focusing on “the
need for organizational and above all for conceptual changes in the ways tasks and products
are defined and structured” (147, emphasis in original).



Artificial Intelligence and the Modern Productivity Paradox 43

cultural change when making IT investments and technology investments
more generally (e.g., Aral, Brynjolfsson, and Wu 2012; Brynjolfsson and
Hitt 2000; Orlikowski 1996; Henderson 2006).

But such changes take substantial time and resources, contributing to
organizational inertia. Firms are complex systems that require an extensive
web of complementary assets to allow the GPT to fully transform the sys-
tem. Firms that are attempting transformation often must reevaluate and
reconfigure not only their internal processes but often their supply and distri-
bution chains as well. These changes can take time, but managers and entre-
preneurs will direct invention in ways that economize on the most expensive
inputs (Acemoglu and Restrepo 2017). According to LeChatelier’s principle
(Milgrom and Roberts 1996), elasticities will therefore tend to be greater in
the long run than in the short run as quasi-fixed factors adjust.

There is no assurance that the adjustments will be successful. Indeed,
there is evidence that the modal transformation of GPT-level magnitude
fails. Alon et al. (2017) find that cohorts of firms over five years old con-
tribute little to aggregate productivity growth on net—that is, among estab-
lished firms, productivity improvements in one firm are offset by produc-
tivity declines in other firms. It is hard to teach the proverbial old dog new
tricks. Moreover, the old dogs (companies) often have internal incentives to
not learn them (Arrow 1962; Holmes, Levine, and Schmitz 2012). In some
ways, technology advances in industry one company death at a time.

Transforming industries and sectors requires still more adjustment and
reconfiguration. Retail offers a vivid example. Despite being one of the
biggest innovations to come out of the 1990s dot-com boom, the largest
change in retail in the two decades that followed was not e-commerce, but
instead the expansion of warechouse stores and supercenters (Hortagsu
and Syverson 2015). Only very recently did e-commerce become a force for
general retailers to reckon with. Why did it take so long? Brynjolfsson and
Smith (2000) document the difficulties incumbent retailers had in adapting
their business processes to take full advantage of the internet and electronic
commerce. Many complementary investments were required. The sector
as a whole required the build out of an entire distribution infrastructure.
Customers had to be “retrained.” None of this could happen quickly. The
potential of e-commerce to revolutionize retailing was widely recognized,
and even hyped in the late 1990s, but its actual share of retail commerce was
miniscule, 0.2 percent of all retail sales in 1999. Only after two decades of
widely predicted yet time-consuming change in the industry, is e-commerce
starting to approach 10 percent of total retail sales and companies like Ama-
zon are having a first-order effect on more traditional retailers’ sales and
stock market valuations.

The case of self-driving cars discussed earlier provides a more prospective
example of how productivity might lag technology. Consider what happens
to the current pools of vehicle production and vehicle operation workers
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when autonomous vehicles are introduced. Employment on production side
will initially increase to handle research and development (R&D), Al de-
velopment, and new vehicle engineering. Furthermore, learning curve issues
could well imply lower productivity in manufacturing these vehicles during
the early years (Levitt, List, and Syverson 2013). Thus labor input in the
short run can actually increase, rather than decrease, for the same amount
of vehicle production. In the early years of autonomous vehicle develop-
ment and production, the marginal labor added by producers exceeds the
marginal labor displaced among the motor vehicle operators. It is only later
when the fleet of deployed autonomous vehicles gets closer to a steady state
that measured productivity reflects the full benefits of the technology.

1.8 Viewing Today’s Paradox through the Lens
of Previous General Purpose Technologies

We have indicated in the previous discussion that we see parallels between
the current paradox and those that have happened in the past. It is closely
related to the Solow paradox era circa 1990, certainly, but it is also tied
closely to the experience during the diffusion of portable power (combining
the contemporaneous growth and transformative effects of electrification
and the internal combustion engine).

Comparing the productivity growth patterns of the two eras is instructive.
Figure 1.8 is an updated version of an analysis from Syverson (2013). It over-
lays US labor productivity since 1970 with that from 1890 to 1940, the period
after portable power technologies had been invented and were starting to
be placed into production. (The historical series values are from Kendrick
[1961].) The modern series timeline is indexed to a value of 100 in 1995 and
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Fig. 1.8 Labor productivity growth in the portable power and IT eras
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is labeled on the upper horizontal axis. The portable power era index has a
value of 100 in 1915, and its years are shown on the lower horizontal axis.

Labor productivity during the portable power era shared remarkably
similar patterns with the current series. In both eras, there was an initial
period of roughly a quarter century of relatively slow productivity growth.
Then both eras saw decade-long accelerations in productivity growth, span-
ning 1915 to 1924 in the portable power era and 1995 to 2004 more recently.

The late-1990s acceleration was the (at least partial) resolution of the
Solow paradox. We imagine that the late 1910s acceleration could have simi-
larly answered some economist’s query in 1910 as to why one sees electric
motors and internal combustion engines everywhere but in the productivity
statistics.?

Very interesting, and quite relevant to the current situation, the produc-
tivity growth slowdown we have experienced after 2004 also has a parallel
in the historical data, a slowdown from 1924 to 1932. As can be seen in the
figure, and instructive to the point of whether a new wave of Al and associ-
ated technologies (or if one prefers, a second wave of IT-based technology)
could reaccelerate productivity growth, labor productivity growth at the end
of the portable power era rose again, averaging 2.7 percent per year between
1933 and 1940.

Of course this past breakout growth is no guarantee that productivity
must speed up again today. However, it does raise two relevant points. First,
it is another example of a period of sluggish productivity growth followed
by an acceleration. Second, it demonstrates that productivity growth driven
by a core GPT can arrive in multiple waves.

1.9 Expected Productivity Effects of an Al-Driven Acceleration

To understand the likely productivity effects of Al, it is useful to think
of Al as a type of capital, specifically a type of intangible capital. It can be
accumulated through investment, it is a durable factor of production, and
its value can depreciate. Treating Al as a type of capital clarifies how its
development and installation as a productive factor will affect productivity.

As with any capital deepening, increasing Al will raise labor productivity.
This would be true regardless of how well Al capital is measured (which we
might expect it won’t be for several reasons discussed below) though there
may be lags.

The effects of Al on TFP are more complex and the impact will depend
on its measurement. If Al (and its output elasticity) were to be measured
perfectly and included in both the input bundle in the denominator of TFP

20. We are not aware of anyone who actually said this, and of course today’s system of na-
tional economic statistics did not exist at that time, but we find the scenario amusing, instructive,
and in some ways plausible.
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and the output bundle in the numerator, then measured TFP will accurately
reflect true TFP. In this case, Al could be treated just like any other measur-
able capital input. Its effect on output could be properly accounted for and
“removed” by the TFP input measure, leading to no change in TFP. This
isn’t to say that there would not be productive benefits from diffusion of Al
it is just that it could be valued like other types of capital input.

There are reasons why economists and national statistical agencies might
face measurement problems when dealing with Al. Some are instances of
more general capital measurement issues, but others are likely to be idiosyn-
cratic to Al. We discuss this next.

1.10 Measuring Al Capital

Regardless of the effects of Al and Al-related technologies on actual out-
put and productivity, it is clear from the productivity outlook that the ways
AT’s effects will be measured are dependent on how well countries’ statistics
programs measure Al capital.

The primary difficulty in Al capital measurement is, as mentioned earlier,
that many of its outputs will be intangible. This issue is exacerbated by
the extensive use of Al as an input in making other capital, including new
types of software, as well as human and organizational capital, rather than
final consumption goods. Much of this other capital, including human
capital, will, like Al itself, be mostly intangible (Jones and Romer 2010).

To be more specific, effective use of Al requires developing data sets,
building firm-specific human capital, and implementing new business pro-
cesses. These all require substantial capital outlays and maintenance. The
tangible counterparts to these intangible expenditures, including purchases
of computing resources, servers, and real estate, are easily measured in the
standard neoclassical growth accounting model (Solow 1957). On the other
hand, the value of capital goods production for complementary intangible
investments is difficult to quantify. Both tangible and intangible capital
stocks generate a capital service flow yield that accrues over time. Real-
izing these yields requires more than simply renting capital stock. After
purchasing capital assets, firms incur additional adjustment costs (e.g.,
business process redesigns and installation costs). These adjustment costs
make capital less flexible than frictionless rental markets would imply. Much
of the market value of Al capital specifically, and IT capital more gen-
erally, may be derived from the capitalized short-term quasi-rents earned
by firms that have already reorganized to extract service flows from new
investment.

Yet while the stock of tangible assets is booked on corporate balance
sheets, expenditures on the intangible complements and adjustment costs
to Al investment commonly are not. Without including the production and
use of intangible Al capital, the usual growth accounting decompositions
of changes in value added can misattribute Al intangible capital deepening
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to changes in TFP. As discussed in Hall (2000) and Yang and Brynjolfsson
(2001), this constitutes an omission of a potentially important component
of capital goods production in the calculation of final output. Estimates of
TFP will therefore be inaccurate, though possibly in either direction. In the
case where the intangible Al capital stock is growing faster than output,
then TFP growth will be underestimated, while TFP will be overestimated
if capital stock is growing more slowly than output.

The intuition for this effect is that in any given period ¢, the output of
(unmeasured) Al capital stock in period ¢ + 1 is a function the input (unmea-
sured) existing Al capital stock in period 1. When Al stock is growing rapidly,
the unmeasured outputs (Al capital stock created) will be greater than the
unmeasured inputs (Al capital stock used).

Furthermore, suppose the relevant costs in terms of labor and other
resources needed to create intangible assets are measured, but the resulting
Increases in intangible assets are not measured as contributions to output. In
this case, not only will total GDP be undercounted but so will productivity,
which uses GDP as its numerator. Thus periods of rapid intangible capital
accumulation may be associated with /ower measured productivity growth,
even if true productivity is increasing.

With missing capital goods production, measured productivity will only
reflect the fact that more capital and labor inputs are used up in producing
measured output. The inputs used to produce unmeasured capital goods will
instead resemble lost potential output. For example, a recent report from
the Brookings Institution estimates that investments in autonomous vehicles
have topped $80 billion from 2014 to 2017 with little consumer adoption of
the technology so far.”! This is roughly 0.44 percent of 2016 GDP (spread
over three years). If all of the capital formation in autonomous vehicles
was generated by equally costly labor inputs, this would lower estimated
labor productivity by 0.1 percent per year over the last three years since
autonomous vehicles have not vet led to any significant increase in mea-
sured final output. Similarly, according to the Al Index, enrollment in Al
and ML courses at leading universities has roughly tripled over the past ten
years, and the number of venture-back Al-related start-ups has more than
quadrupled. To the extent that they create intangible assets beyond the costs
of production, GDP will be underestimated.

Eventually the mismeasured intangible capital goods investments are
expected to yield a return (i.e., output) by their investors. If and when mea-
surable output is produced by these hidden assets, another mismeasure-
ment effect leading to overestimation of productivity will kick in. When the
output share and stock of mismeasured or omitted capital grows, the mea-
sured output increases produced by that capital will be incorrectly attributed
to total factor productivity improvements. As the growth rate of invest-
ment in unmeasured capital goods decreases, the capital service flow from

21. https://www.brookings.edu/research/gauging-investment-in-self-driving-cars/.
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unmeasured goods effect on TFP can exceed the underestimation error from
unmeasured capital goods.

Combining these two effects produces a “J-curve” wherein early produc-
tion of intangible capital leads to underestimation of productivity growth,
but later returns from the stock of unmeasured capital creates measured
output growth that might be incorrectly attributed to TFP.

Formally:

(1) Y+zl, = f(4,K,K,,L)
) dY +zdl, = F,dA+ F dK, + F,dL + F dK,.

Output Y and unmeasured capital goods with price z(zI,) are produced
with production function f. The inputs of f{(*) are the total factor productiv-
ity A, ordinary capital K, unmeasured capital K, and labor L. Equation (2)
describes the total differential of output as a function of the inputs to the
production function. If the rental price of ordinary capital is r,, the rental
price of unmeasured capital is r,, and the wage rate is w, we have

o RIS

and

o - (EEL S (24

where $ is the familiar Solow residual as measured and S* is the correct
Solow residual accounting for mismeasured capital investments and stock.
The mismeasurement is then
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The right side of the equation describes a hidden capital effect and a hidden
investment effect. When the growth rate of new investment in unmeasured
capital multiplied by its share of output is larger (smaller) than the growth
rate of the stock of unmeasured capital multiplied by its share of output,
the estimated Solow residual will underestimate (overestimate) the rate of
productivity growth. Initially, new types of capital will have a high marginal
product. Firms will accumulate that capital until its marginal rate of return
is equal to the rate of return of other capital. As capital accumulates, the
growth rate of net investment in the unmeasured capital will turn negative,
causing a greater overestimate TFP. In steady state, neither net investment’s
share of output nor the net stock of unmeasured capital grows and the pro-
ductivity mismeasurement is zero. Figure 1.9 provides an illustration.?

22. The price of new investment (z) and rental price of capital (r) are 0.3 and 0.12, respec-
tively, in this toy economy. Other values used to create the figure are included in the appendix.
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Fig. 1.9 The mismeasurement J-curve for an economy accumulating a new kind
of capital

Looking forward, these problems may be particularly stark for Al capital,
because its accumulation will almost surely outstrip the pace of ordinary
capital accumulation in the short run. Al capital is a new category of
capital—new in economic statistics, certainly, but we would argue practi-
cally so as well.

This also means that capital quantity indexes that are computed from
within-type capital growth might have problems benchmarking size and
effect of Al early on. National statistics agencies do not really focus on mea-
suring capital types that are not already ubiquitous. New capital categories
will tend to either be rolled into existing types, possibly with lower inferred
marginal products (leading to an understatement of the productive effect
of the new capital), or missed altogether. This problem is akin to the new
goods problem in price indexes.

A related issue—once Al is measured separately—is how closely its units
of measurement will capture AI's marginal product relative to other capital
stock. That is, if a dollar of AI stock has a marginal product that is twice
as high as the modal unit of non-Al capital in the economy, will the quan-
tity indexes of Al reflect this? This requires measured relative prices of Al
and non-Al capital to capture differences in marginal product. Measuring
levels correctly is less important than measuring accurate proportional dif-
ferences (whether intertemporally or in the cross section) correctly. What is
needed in the end is that a unit of Al capital twice as productive as another
should be twice as large in the capital stock.

It is worth noting that these are all classic problems in capital measure-
ment and not new to Al. Perhaps these problems will be systematically worse
for Al but this is not obvious ex ante. What it does mean is that econo-
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mists and national statistical agencies at least have experience in, if not
quite a full solution for, dealing with these sorts of limitations. That said,
some measurement issues are likely to be especially prevalent for Al. For
instance, a substantial part of the value of Al output may be firm-specific.
Imagine a program that figures out individual consumers’ product prefer-
ences or price elasticities and matches products and pricing to predictions.
This has different value to different companies depending on their customer
bases and product selection, and knowledge may not be transferrable across
firms. The value also depends on companies’ abilities to implement price
discrimination. Such limits could come from characteristics of a company’s
market, like resale opportunities, which are not always under firms’ control,
or from the existence in the firm of complementary implementation assets
and/or abilities. Likewise, each firm will likely have a different skill mix that
it seeks in its employees, unique needs in its production process, and a par-
ticular set of supply constraints. In such cases, firm-specific data sets and
applications of those data will differentiate the machine-learning capabili-
ties of one firm from another (Brynjolfsson and McAfee 2017).

1.11 Conclusion

There are plenty of both optimists and pessimists about technology and
growth. The optimists tend to be technologists and venture capitalists, and
many are clustered in technology hubs. The pessimists tend to be econo-
mists, sociologists, statisticians, and government officials, Many of them are
clustered in major state and national capitals. There is much less interaction
between the two groups than within them, and it often seems as though they
are talking past each other. In this chapter, we argue that in an important
sense, they are.

When we talk with the optimists, we are convinced that the recent break-
throughs in Al and machine learning are real and significant. We also would
argue that they form the core of a new, economically important potential
GPT. When we speak with the pessimists, we are convinced that productiv-
ity growth has slowed down recently and what gains there have been are
unevenly distributed, leaving many people with stagnating incomes, declin-
ing metrics of health and well-being, and good cause for concern. People
are uncertain about the future, and many of the industrial titans that once
dominated the employment and market value leaderboard have fallen on
harder times.

These two stories are not contradictory. In fact, in many ways they are
consistent and symptomatic of an economy in transition. Our analysis sug-
gests that while the recent past has been difficult, it is not destiny. Although
it is always dangerous to make predictions, and we are humble about our
ability to foretell the future, our reading of the evidence does provide some
cause for optimism. The breakthroughs of Al technologies already demon-
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strated are not yet affecting much of the economy, but they portend big-
ger effects as they diffuse. More important, they enable complementary
innovations that could multiply their impact. Both the ATl investments and
the complementary changes are costly, hard to measure, and take time to
implement, and this can, at least initially, depress productivity as it is cur-
rently measured. Entrepreneurs, managers, and end-users will find powerful
new applications for machines that can now learn how to recognize objects,
understand human language, speak, make accurate predictions, solve prob-
lems, and interact with the world with increasing dexterity and mobility.

Further advances in the core technologies of machine learning would
likely yield substantial benefits. However, our perspective suggests that an
underrated area of research involves the complements to the new Al tech-
nologies, not only in areas of human capital and skills, but also new processes
and business models. The intangible assets associated with the last wave of
computerization were about ten times as large as the direct investments in
computer hardware itself. We think it is plausible that Al-associated intan-
gibles could be of a comparable or greater magnitude. Given the big changes
in coordination and production possibilities made possible by Al, the ways
that we organized work and education in the past are unlikely to remain
optimal in the future.

Relatedly, we need to update our economic measurement tool kits. As
Al and its complements more rapidly add to our (intangible) capital stock,
traditional metrics like GDP and productivity can become more difficult to
measure and interpret. Successful companies do not need large investments
in factories or even computer hardware, but they do have intangible assets
that are costly to replicate. The large market values associated with compa-
nies developing and/or implementing Al suggest that investors believe there
is real value in those companies. In the case that claims on the assets of the
firm are publicly traded and markets are efficient, the financial market will
properly value the firm as the present value of its risk-adjusted discounted
cash flows. This can provide an estimate of the value of both the tangible
and intangible assets owned by the firm. What’s more, the effects on living
standards may be even larger than the benefits that investors hope to cap-
ture. It is also possible, even likely, that many people will not share in those
benefits. Economists are well positioned to contribute to a research agenda
of documenting and understanding the often intangible changes associated
with Al and its broader economic implications.

Realizing the benefits of Al is far from automatic. It will require effort
and entrepreneurship to develop the needed complements, and adaptability
at the individual, organizational, and societal levels to undertake the associ-
ated restructuring. Theory predicts that the winners will be those with the
lowest adjustment costs and that put as many of the right complements in
place as possible. This is partly a matter of good fortune, but with the right
road map, it is also something for which they, and all of us, can prepare.



‘[oA3] 1ua01ad ()] dY1 1B JURIYIUSIS,
“[9A9] 1u2013d ¢ Y1 1B JUBIYIUSTIS 4
‘[oaa yuaoiad | ay) je JueoyIuSIS 4 4
‘sasayjuared Ul SIOLID PIRPURIS 210N

08070 0£0°0 0£00 0£0°0 000 pasenbs-y
0S 0s 0S 0¢ [ SUONBAIISGQO
(T1v0) (89¢°0) §8240)] (90€°0) (65T°0)
#+016°0 #x016°0 #+016°0 ##:016°0 *xx016°0 JuBISu0s)
(11€°0) (99T°0) Orz°0) (rzzo) (L81°0)
8S1°0 8S1°0 8S1°0 8S1°0 8S1°0 IMOIT BN ] ], 93RI0AR JBIL-UD) SNOIAAL]
yImoa3 (pe n) 11 ‘98eI1oAe 123K-Ud) ‘SUOISSAITAI IS -AoMIN]
€200 £c0'0 €200 €200 £c00 porenbs-y
0s 0S 0¢ 0S 0S SUONAISqQO
(LsT0) G20 (££2°0) 917°0) (881°0)
x4 11670 *xx[16°0 #xx 1670 #xx116°0 *xx 11670 jurIsuo0)
(€€7°0) (80T°0) (L61°0) (181°0) (851°0)
9t1°0 9¢1°0 9¢1°0 9e1°0 910 IM0IT J [ 25eIaAR 1BIL-UD) SNOTAAI]
IM0IT J.] I ‘9Fe1oae 122K-Ud) ‘SUOISSAITaT 159p -A0MaN
60070 60070 60070 60070 60070 parenbs-y
0¢ 0¢ 0§ 0¢ 0s SUOHBAIISA()
(F29'0) (s¥$°0) (115°0) (S9t°0) (86£°0)
k20761 wkxOF6" 1 #xx 070" [ sk OF6" 1 #xx0761 juesuo
(8£2°0) (zveo) (LTT0) (L0T°0) (Lro
LS800 LS80°0 LS80°0 LS800 LS800 w013 Ajanonpoid FeIase 1eak-us) SNOLAdl]
mo1s A1anonpoid 10qe[ 95RIIAR 122A-U) ‘SUOISSIITAT 1SN - AaMIN]
pamo[e pamore pamole pasmore pamoye
s3e[ (] s3e[ ¢ s3e[ ¢ sge| ¢ Se[ |
©) () (€) @ (n
ouapuadap swin) 193U0] Y)IM SIOLID PABPUE)S JSIAN-AIMIN] YA SUOISSIITIY 'V 21qe],

x1puaddy



Artificial Intelligence and the Modern Productivity Paradox 53

Table 1A.2 Parameters for the toy economy J-curve
Net Net capital Investment Capital stock

Time investment stock growth rate growth rate Output
0.0 1.0 10.0 10,000.0
1.0 15.0 25.0 14.0 1.5 10,500.0
2.0 80.0 105.0 43 3.2 11,025.0
3.0 160.0 265.0 1.0 1.5 11,576.3
4.0 220.0 485.0 0.4 0.8 12,155.1
5.0 250.0 735.0 0.1 0.5 12,762.8
6.0 220.0 955.0 -0.1 0.3 13,401.0
7.0 140.0 1,095.0 -0.4 0.1 14,071.0
8.0 100.0 1,195.0 -0.3 0.1 14,774.6
9.0 50.0 1,245.0 -0.5 0.0 15,513.3
10.0 20.0 1,265.0 -0.6 0.0 16,288.9
11.0 10.0 1,275.0 -0.5 0.0 17,103.4
12.0 0.0 1,275.0 -1.0 0.0 17,958.6
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Comment Rebecca Henderson

“Artificial Intelligence and the Modern Productivity Paradox™ is a fabulous
chapter. It is beautifully written, extremely interesting, and goes right to the
heart of a centrally important question, namely, what effects will Al have on
economic growth? The authors make two central claims. The first is that Al
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is a general purpose technology, or GPT, and as such is likely to have a dra-
matic impact on productivity and economic growth. The second is that the
reason we do not yet see it in the productivity statistics is because—like all
GPTs—thisis a technology that will take time to diffuse across the economy.

More specifically, the authors argue that Al will take time to diffuse
because its adoption will require mastering “adjustment costs, organiza-
tional changes, and new skills.” They suggest that just as we did not see IT
in the productivity statistics until firms had made the organizational changes
and hired the human capital necessary to master it, so the adoption of Al
will require not only the diffusion of the technology itself but also the de-
velopment of the organizational and human assets that will be required to
exploit its full potential.

This is a fascinating idea. One of the reasons I like the chapter so much
is that takes seriously an idea that economists long resisted—namely, that
things as nebulous as “culture” and “organizational capabilities” might be
(a) very important, (b) expensive, and (c) hard to change. Twenty-five years
ago, when I submitted a paper to the RAND Journal of Economics that
suggested that incumbents were fundamentally disadvantaged compared to
entrants because they were constrained by old ways of acting and perceiving,
I got a letter from the editor that began “Dear Rebecca, you have written
a paper suggesting that the moon is made of green cheese, and that econo-
mists have too little considered the motions of cheesy planetoids”

I like to think that few editors would respond that way today. Thanks
to a wave of new work in organizational economics and the pioneering
empirical research of scholars like Nick Bloom, John van Reenen, Raffaella
Sadun, and the authors themselves, we now have good reason to believe that
managerial processes and organizational structures have very real effects
on performance and that they take a significant time to change. One of the
most exciting things about this chapter is that it takes these ideas sufficiently
seriously to suggest that the current slowdown in productivity is largely a
function of organizational inertia—that a central macroeconomic outcome
is a function of a phenomenon that thirty years ago was barely on the radar.

That’s exciting. Is it true? And if it is, what are its implications?

My guess is that the deployment of Al will indeed be gated by the need to
change organizational structures and processes. But I think that the authors
may be underestimating the implications of this dynamic in important ways.

Take the case of accounting. A few months ago, | happened to meet the
chief strategy officer for one of the world’s largest accounting firms. He
told me that his firm is the largest hirer of college graduates in the world—
which may or may not be true, but which he certainly believed—and that
his firm was planning to reduce the number of college graduates they hire
by 75 percent over the next four to five years—Ilargely because it is increas-
ingly clear that Al is going to be able to take over much of the auditing work
currently performed by humans. This shift will certainly be mediated by
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every accounting firm’s ability to integrate Al into their procedures and to
persuade their customers that it is worth paying for—examples of exactly
the kinds of barriers that this chapter suggests are so important—but in
principle it should dramatically increase the productivity of accounting ser-
vices, exactly the effects that Erik and his coauthors are hoping for.

But I am worried about all the college graduates the accounting firms are
not going to hire. More broadly, as Al begins to diffuse across the economy
it seems likely that a lot of people will get pushed into new positions and a
lot of people will be laid off. And just as changing organizational processes
takes time, so it’s going to take time to remake the social context in ways
that will make it possible to handle these dislocations. Without these kinds
of investments—one can imagine they might be in education, in relocation
assistance, and the like—there is a real risk of a public backlash against Al
that could dramatically reduce its diffusion rate.

For example, the authors are excited about the benefits that the wide-
spread diffusion of autonomous vehicles are likely to bring. Productivity
seems likely to skyrocket, while with luck tens of thousands of people will
no longer perish in car crashes every year. But “driving” is one of the larg-
est occupations there is. What will happen when millions of people begin to
be laid off? I'm with the authors in believing that the diffusion of Al could
be an enormous source of innovation and growth. But I can see challenges
in the transition at the societal level, as well as at the organizational level.
And there will also be challenges if too large a share of the economic gains
from the initial deployment of the technology goes to the owners of capital
rather than to the rest of society.

Which is to say that I am a little more pessimistic than Erik and his co-
authors as to the speed at which AI will diffuse—and this is even before 1
start talking about the issues that Scott, Iain, and I touch on in our own
chapter, namely, that we are likely to have significant underinvestment in Al
relative to the social option, coupled with a fair amount of dissipative racing.
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