The Essence of Software

Copyright © 2021 by Princeton University Press

Princeton University Press is committed to the protection of copyright and the
intellectual property our authors entrust to us. Copyright promotes the progress and
integrity of knowledge. Thank you for supporting free speech and the global exchange
of ideas by purchasing an authorized edition of this book. If you wish to reproduce or
distribute any part of it in any form, please obtain permission.

Requests for permission to reproduce material from this work should be sent to
permissions@press.princeton.edu

Published by Princeton University Press

41 William Street, Princeton, New Jersey 08540

6 Oxford Street, Woodstock, Oxfordshire OX20 1TR
press.princeton.edu

All Rights Reserved
ISBN 978-0-691-22538-8
ISBN (e-book) 978-0-691-23054-2

British Library Cataloging-in-Publication Data is available
Editorial: Hallie Stebbins and Kristen Hop

Production Editorial: Jenny Wolkowicki

Jacket design: Emily Weigel

Production: Danielle Amatucci

Publicity: Sara Henning-Stout and Kate Farquhar-Thomson
Copyeditor: Bhisham Bherwani

Interior design: Daniel Jackson

Set in Adobe Arno Pro and Stone Magma using Adobe InDesign
Printed on acid-free paper. co

Printed in the United States of America
10987654321

Contents

How to Read This Book - 1

PART I: MOTIVATIONS

1 Why I Wrote This Book - 9
2 Discovering Concepts - 15
3 How Concepts Help - 29

PART II: ESSENTIALS

4 Concept Structure - 47

5 Concept Purposes - 59
Concept Composition - 79

6
7 Concept Dependence - 99
8 Concept Mapping - 109

PART III: PRINCIPLES

9 Concept Specificity - 127
10 Concept Familiarity - 147
1 Concept Integrity - 157

Questions to Remember - 167

Acknowledgments - 179

RESOURCES

Explorations & Digressions - 183
References - 299

Index of Applications - 309
Index of Concepts - 311

Index of Names - 315

Index of Topics - 317

Copyrighted material

How to Read This Book

A micromaniac is someone obsessed with reducing things to their
smallest possible form. This word, by the way, is not in the dictionary.
—Edouard de Pomiane, French Cooking in Ten Minutes

Concept design is a simple idea that you'll be able to apply in your own work—
using and designing software—without having to master any complex tech-
nicalities. Many of the concepts I'll use as examples will be recognizable old
friends. So T'll take it as a compliment if your conclusion, after reading this
book, is that concepts are a natural and even obvious way to think about soft-
ware, and that you learned nothing more than a systematic framework for an
intuitive idea.

But even if the underlying theme of this book resonates and seems familiar,
I suspect that for many readers this new way of thinking about software will
be disorienting, at least initially. Although software designers have talked for
decades about conceptual models and their importance, concepts have never
been placed at the center of software design. What would design look like if ev-
ery software app or system were described in terms of concepts? What exact-
ly would those concepts be? How would they be structured? And how would
they be composed together to form the product as a whole?

To answer these questions as best I can, this book is longer than I would
have liked. To mitigate that, I have organized it so that different readers can take
different journeys through it. Some will want to reach a pragmatic destination
as quickly and expeditiously as possible; others, wanting a deeper understand-
ing, may prefer to follow me on some detours away from the main path. This
little guide should help you plan your route.

Intended Audience

In short, this book is aimed at anyone interested in software, in design, or in us-
ability. You might be a programmer, a software architect, or a user interaction
designer; a consultant, an analyst, a program manager, or a marketing strate-
gist; a computer science student, teacher, or researcher; or maybe just one of

THE ESSENCE OF SOFTWARE

those people who (like me) enjoys thinking about why things are designed in
certain ways—and why some designs succeed so gloriously and others fail so
spectacularly.

No knowledge of computer science or programming is assumed, and al-
though many of the principles in the book can be expressed more precisely in
logic, no mathematical background is required. In order to appeal to as broad
an audience as possible, I've drawn examples from a wide variety of popular
apps, from word processors to social media platforms. So each reader will likely
encounter examples that are easy to follow and others that require more effort.
A byproduct of reading the book, I hope, will be a more solid grasp (and thus
greater mastery) of apps that you use but don’t yet fully understand.

Goals of This Book

This book has three related goals. The first is to present some straightforward
techniques that software creators can apply immediately to improve the quality
of their designs. By helping you identify and disentangle the essential concepts,
articulate them, and make them clear and robust, the book will enable you to
design software better—and thus design better software—whatever phase of
design you work in, from the earliest phases of strategic design (in which prod-
ucts are imagined and shaped) to the latest phases (in which every detail of in-
teraction with the user is settled).

The second goal is to provide a fresh take on software, so you can view a soft-
ware product not just as a mass of intertwined functions, but as a systematic
composition of concepts, some classic and well understood, and others novel
and more idiosyncratic. With this new perspective, designers can focus their
work more effectively, and users can understand software with greater clarity,
empowering them to exploit their software to its fullest potential.

My third and final goal is broader and perhaps easier. It is to convince the
community of researchers and practitioners who work on the development of
software applications and services that the design of software is an exciting and
intellectually substantive discipline.

Interest in software design—especially when focused on user-facing as-
pects—has waned over the last few decades, even as recognition of its impor-
tance has grown. In part this is due to the misconception that there is nothing
inherent to the design of software that makes it more or less usable, and that

2

HOW TO READ THIS BOOK

any such judgments are subjective (or better addressed as psychological or so-
cial questions, with the focus more on the user than the software itself).

The rise of empiricism in software practice—while motivated by the apt rec-
ognition that even the best designs have flaws that only user testing will re-
veal—has also, in my view, dulled our enthusiasm for design, as many have
come to doubt the value of design expertise. But mostly, I believe, we have suf-
fered from a lack of respectability and intellectual confidence, since our ideas
about what makes software usable have more often been expressed as tentative
rules of thumb rather than principles grounded in a rich theory. T hope to show,
in this book, that such principles and theory do indeed exist, and to encourage
others to pursue their development and refinement.

Choosing Your Path

You can take different paths through the book, depending on your goals. To
do so, it will help you to know how the book is organized and what each part
contains.

Part 1 contains three motivational chapters. The first might have served as a
preface: it explains why I came to write this book, and why the problems that
I was interested in hadn’t already been addressed in other fields (such as hu-
man-computer interaction, software engineering and design thinking). In the
second chapter, we see our first examples of concepts, and the impact that they
have on usability, and I explain concept design as the top of a hierarchy of us-
er-experience design levels. The third chapter outlines the many roles that con-
cepts have, from being product differentiators to being the linchpin of digital
transformations.

Part 11 is the heart of the book. Its first chapter tells you exactly what a con-
cept is, and how it can be structured. The second explains the fundamental idea
of a concept’s purpose as a motivation and a yardstick. The third shows how
an app or system can be understood as a composition of concepts, combined
using a simple but powerful synchronization mechanism; it explains how over-
or under-synchronization can damage usability; and, more subtly, how some
features that we traditionally view as complex and indivisible can instead be
understood as synergistic fusions of distinct concepts. The fourth shows how
mapping concepts to a user interface is not always as straightforward as you
might imagine, and that sometimes the problem with a design lies not with the

3

THE ESSENCE OF SOFTWARE

concepts per se but in their realization as buttons and displays. The last chap-
ter in this part introduces a way to think about software structure at a very high
level as a collection of concepts that are mutually dependent on one anoth-
er—not that any concept relies on another concept for its correct working, but
rather that only certain combinations of concepts make sense in the context of
an app.

Part 111 introduces three key principles of concept design each in its own
chapter: that concepts should be specific (one-to-one with purposes); that
they should be familiar; and that the integrity of a concept should not be vi-
olated in composition (resulting in behaviors that, when viewed through the
lens of an individual concept, do not satisfy that concept’s specification).

The body of the book closes with a list of provocative questions addressed
to readers in different roles. You might use these as a summary of the lessons of
the book; or as a checklist in your subsequent practice; or even read them first
as a quick overview of what the book offers.

If you want to jump in at the deep end, you could start with Part 11; the moti-
vations of Part 1 could be read as a conclusion, summarizing the ways in which
the ideas you've learned can be applied. Each chapter ends with a summary of

the main lessons and a list of practices that you can apply immediately.

Explorations & Digressions

Almost half the book is a collection of endnotes. I wrote the book like this be-
cause I wanted to make the body of the book as brief as possible, while also
carefully justifying my approach and explaining its connection to existing de-
sign theories. So the main part of the book contains no discussion of related
work (not even a single citation), ignores many subtle points, and leaves out
many ideas I have about design more generally.

The endnotes make up for these omissions. There, I not only cite related
work but attempt to put it all in context and explain its significance. I explain
in much more detail the distinguishing characteristics of concept design, and
I present examples that require more background (or persistence) to compre-
hend. When I have not managed to resist the temptation to fulminate (against
rampant empiricism, or a myopic focus on defect elimination, for example), I
have at least relegated my diatribes to these notes.

HOW TO READ THIS BOOK

The notes are cited at appropriate points in the main text with superscript
numerals; the first appears a few sentences from here. But to spare you the an-
noyance of flipping back and forth, I have grouped them into free standing sec-
tions with their own titles, so they can be read independently, and you can just
dive in and read them randomly at your leisure.

Multiple Indexes

Rather than just one index, this book has four separate ones: an index of the ap-
plications from which examples are drawn; an index of concepts; an index of
names; and a general index of topics. The entries under concept in the index of
topics might be particularly useful, as they highlight the key qualities of con-
cepts and point to various mini essays in the endnotes.

Warning: Micromaniac at Work

De Pomiane, author of the inimitable French Cooking in Ten Minutes," confesses
in his introduction to being a micromaniac. I readily admit to the same pathol-
ogy. I don’t want to hear that a design failed or succeeded for a myriad of amor-
phous reasons. Even if that were sometimes true, what use would it be? I want
to get to the essence, to put my finger on the one essential spot, on the crucial
design decision that launched the product to dizzying success or sunk the en-
tire enterprise.

I am not naive, and I know that being cognizant of multiple factors in de-
sign—especially when analyzing the causes of accidents—is wise and sensible.
But it’s just not a valuable way to draw lessons from prior experiences. To do
that, I believe we all need to be micromaniacs: to focus on the tiniest of details
in the search for an elusive but potent explanation whose generalization offers a
lasting and widely applicable lesson. So be warned: the devil is in the details—

and the angels are too.”

Copyrighted material

PART 1
MOTIVATIONS

Copyrighted material

Why I Wrote This Book

As an undergraduate in physics, I'd been entranced by the idea that the world
could be captured by simple equations like F = ma. When I became a program-
mer, and later a computer science researcher, I gravitated towards the field of
formal methods, because it promised to do something similar for software: to
express its very essence in a succinct logic.

A Passion for Design

My main research contribution in the 30 years since my PhD has been Alloy,’ a
language for describing software designs and analyzing them automatically. It’s
been an exciting and satisfying journey for me, but I came to realize over time
that the essence of software doesn’t lie in any logic or analysis. What really fas-
cinated me wasn’t the question that consumed most formal methods research-
ers—namely how to check that a program’s behavior conforms exactly to its
specification—but rather the question of design.*

I mean “design” here in the same sense that the word is used in other design
disciplines: the shaping of some artifact to meet a human need. Design, as the
architect Christopher Alexander put it, is about creating a form to fit a context.
For software, that means determining what the behavior of the software should
be: what controls it will offer, and what responses it will provide in return.
These questions have no right or wrong answers, only better or worse ones.®

I wanted to know why some software products seem so natural and elegant,
react predictably once you master the basics, and let you combine their features
in powerful ways. And to pinpoint why other products just seem wrong: clut-
tered with needless complexity, and behaving in unexpected and inconsistent
ways. Surely, I thought, there must be some essential principles, some theory
of software design, that could explain all of this. It would not only explain why
some software products are good and some are bad, but it would help you fix
the problems and avoid them in the first place.

THE ESSENCE OF SOFTWARE

Design in Computer Science and Other Fields

I started to look around. Within my own subfield (formal methods, software
engineering and programming languages), such a theory exists for what you
might call “internal design”—namely the design of the structure of the code.
Programmers have a rich language of design, and well-established criteria for
what distinguishes good designs from bad ones. But no such language or crite-
ria exist for software design in the user-facing sense, namely design that deter-
mines how software is experienced as a form in context.’

Internal code design is very important and influences primarily what soft-
ware engineers call “maintainability,” which means how easy (or hard) the code
is to change over time as needs evolve. It also influences performance and reli-
ability. But the key decisions that determine whether a software application or
system is useful and fulfills its users’ needs lie elsewhere, in the kind of software
design in which the functionality and the patterns of interaction with the user
are shaped.

These big questions were at one time more central in computer science. In
the field of software engineering, they came up in workshops on software de-
sign, specification and requirements; in the field of human-computer interac-
tion, they permeated early work on graphical user interfaces and computational
models of user behavior.”

But as time passed, they became less fashionable, and they faded away. Re-
search in software engineering narrowed, and eliminating defects—whether
by testing or more sophisticated means such as program verification—became
synonymous with software quality.® But you can’t get there from here: if your
software has the wrong design, there’s no amount of defect elimination that will
fix it, short of going back to the very start and fixing the design itself.”

Research in human-computer interaction (Hcr) shifted to novel interaction
technologies, to tools and frameworks, to niche domains, and to other disci-
plines (such as ethnography and sociology). Both software engineering and
HCI embraced empiricism enthusiastically, largely in the misguided hope that
this would bring respectability. Instead, the demand for concrete measures of
success seems to have led researchers towards less ambitious projects that ad-
mit easier evaluation, and has stymied progress on bigger and more important
questions."®

10

1: WHY I WROTE THIS BOOK

Puzzlingly, even as interest in design seems to have waned, talk of “design” is
everywhere. This is not in fact a contradiction. The talk, almost exclusively, is
about the process of design, whether in the context of “design thinking” (a com-
pelling packaging of iterative design processes), or of “agile” software develop-
ment. These processes are undoubtedly valuable (so long as they are applied
judiciously and not as panaceas), but they are for the most part content-free. I
mean that not to disparage but to describe. Design thinking, for example, might
tell you to develop your solution hand in hand with your understanding of the
problem, or to engage in alternating phases of brainstorming (“divergence”)
and reduction (“convergence”). But no design thinking book that I have read
talks in depth about any particular designs and how the process sheds light on
them. The very domain-independence of design thinking may be the key to
its widespread appeal and applicability—but also the reason it has little to say
about deeper challenges of design in a particular domain such as software."

Clarity & Simplicity in Design

When I began the Alloy project, with the goal of creating a design language
that was amenable to automatic analysis, I was critical of existing modeling and
specification languages whose lack of tool support rendered them “write-only.”
This snide dismissal was not entirely unwarranted. After all, why would you go
to the trouble of constructing an elaborate design model if you couldn’t then
do anything with it? I argued, in particular, that the designer’s effort should
be rewarded immediately with “push-button automation” that would instantly
give you feedback in the form of surprising scenarios that would challenge you
to think more deeply about your design.”*

I don't think I was wrong, and Alloy’s automation did indeed change the
experience of design modeling. But I had underestimated the value of writing
down a design. In fact, it was a not very well guarded secret amongst formal
methods researchers (who were eager to demonstrate the efficacy of their tools
by finding flaws in existing designs) that a high proportion of the flaws were
detected before the tools were even run! Just transcribing the design into logic
was enough to reveal serious problems. The software engineering researcher
Michael Jackson credits not the logic per se but the very difficulty of using it,
and once mischievously suggested that the quality of software systems might
be improved if designers were simply required to record their designs in Latin.

11

THE ESSENCE OF SOFTWARE

Clarity is good not only for finding design flaws after the fact. It is also the
key to good design in the first place. In teaching programming and software
engineering over the last thirty years, I've become increasingly convinced that
the determinant of success when you're developing software isn’t whether you
use the latest programming languages and tools, or the management process
you follow (agile or otherwise), or even how you structure the code. It’s simply
whether you know what you are trying to do. If your goals are clear, and your
design is clear—and it’s clear how your design meets the goals—your code will
tend to be clear too. And if something isn’t working, it will be clear how to fix
it.”

It is this clarity that distinguishes great software from the rest. When the
Apple Macintosh came out in 1984, people could see immediately how to use
folders to organize their files; the complexities of previous operating systems
(such as Unix, which made even the command to move files between folders
complicated) seemed to have evaporated.

But what exactly is this clarity, and how is it achieved? As early as the 1960s,
the central role of “conceptual models” has been recognized. The challenge was
not merely to convey the software’s conceptual model to the user so that her
internal version (“mental model”) was aligned with the programmers), but to
treat it as a subject of design in its own right. With the right conceptual model,
the software would be easy to understand and thus easy to use. This was a great
idea, but nobody seems to have pursued it, and so until now “concepts” have

. i . . 14
remained a vague, if inspiring, notion.

How This Project Came About

Convinced that conceptual models were indeed the essence of software, I start-
ed about eight years ago trying to figure out what they might be. I wanted to
give them concrete expression, so that I could point to some software’s concep-
tual model, compare it to others (and to the mental models of users), and have
an explicit focus for design discussions.

That didn’t seem so hard. After all, a plausible first cut at a conceptual mod-
el might be just a description of the software’s behavior, made suitably abstract
to remove incidental and “non-conceptual” aspects (such as the details of the
physical user interface). What proved much harder was finding appropriate

12

1: WHY I WROTE THIS BOOK

structure in the model. I had an inkling that a conceptual model should be
made up of concepts, but I didn’t know what a concept was.

In a social media app such as Facebook, for example, it seemed to me that
there should be a concept associated with liking things. This concept surely
wasn't a function or action (such as the behavior bound to the button you click
to like a post); there are too many of those, and they only tell part of the story.
It also surely wasn’t an object or entity (such as the “like” itself that your action
produced), since at the very least the concept seemed to be about the relation-
ship between things and their likes. It also seemed essential to me that the con-
cept of liking was not associated with any particular kind of thing: you could
like posts, comments, pages, and so on. The concept, in programming lingo, is
“generic” or “polymorphic.”

This Book: Opening a Conversation

This book is the result of my explorations to date. Driven by dozens of design
issues in widely used applications, I've evolved a new approach to software de-
sign, refining and testing it along the way. A happy aspect of this project has
been that every app failure or frustration had a silver lining: a chance to extend
my repertoire of examples. It has also given me greater sympathy and respect
for the designers when my analysis revealed the full complexity of the problem
they faced.

Of course, the problem of software design is not solved. But as my friend
Kirsten Olson wisely advised me: a book should aim to start a conversation,
not to end one. In the course of giving many talks about this project, I've been
thrilled to discover that it seems to resonate with audiences more than any of
my previous ones. I suspect this is because software design is something we all
want to talk about, but we have not known how to have that conversation.

So to you, my readers—fellow researchers, designers and users—1I present
this book as my opening gambit in what I hope to be a fruitful and enjoyable
conversation.

13

Copyrighted material

Discovering Concepts

A software product—from the smallest app that runs on your phone to the
largest enterprise system—is made of concepts, each a self-contained unit of
functionality. Even though concepts work in tandem for a larger purpose, they
can be understood independently of one another. If an app is like a chemical
mixture, concepts are like molecules: although bound together, their proper-
ties and behavior are similar wherever they are found.

You're already familiar with many concepts, and know how to interact with
them. You know how to place a phone call or make a restaurant reservation, how
to upvote a comment in a social media forum and how to organize files in a fold-
er. An app whose concepts are familiar and well designed is likely to be easy
to use, so long as its concepts are represented faithfully in the user interface
and programmed correctly. In contrast, an app whose concepts are complex or
clunky is unlikely to work well, no matter how fancy the presentation or clever
the algorithms.

Since concepts have no visible form, they're rather abstract, and this is per-
haps why they haven’t been a focus of attention until now. I hope to persuade
you, in the course of this book, that by thinking in terms of concepts, and by
“seeing through” user interfaces to the concepts that lie behind them, you will
be able to understand software more deeply—to use it more effectively, to de-
sign it better, to diagnose flaws more precisely, and to envision new products
with greater focus and confidence.

We don’t generally appreciate how something works until it breaks. You may
think that your water heater just magically produces a constant stream of hot
water. But then at some point someone in your household takes one shower
too many, and your shower is cold. That’s when you might learn that your water
heater has a storage tank with limited capacity.

Likewise, to learn about concepts, we need to see what happens when they
go wrong. Much of this book, therefore, will involve examples of concepts that

THE ESSENCE OF SOFTWARE

fail in seemingly unlikely scenarios, or that turn out to be much harder to un-
derstand than you'd expect them to be. In this chapter, we’ll see our first exam-
ples of concepts, and how they can explain some unexpected (and surprisingly
complicated) behaviors.

But don’t be put off, or draw the conclusion that the idea of concepts is it-
self obscure and complicated. On the contrary, the idea is straightforward, and
adopting it will help you to design software that is simpler and more powerful

than much of the software we use today.

A First Example: Baffling Backups

To protect my work from corrupted disks and accidental deletion, I use a ter-
rific backup utility called Backblaze, which copies my files to the cloud, and
lets me restore old versions if I need to. It runs invisibly and continuously in
the background, keeping an eye on every file in my computer, copying it to the
cloud if it changes.

Recently, I edited a video and wanted to make sure the new version had been
backed up before I deleted the old one to save space. I checked the backup sta-
tus, and it said “You are backed up as of: Today, 1:05 PM.” Since I had created
the new video before 1:05 PM, I assumed it had been backed up. Just to be sure, 1
tried to restore it from the cloud. But it wasn’t there.

I contacted tech support, and they explained to me that files aren’t exactly
backed up continuously. There’s a periodic scan that compiles a list of new or
modified files; when the next backup runs, only files on that list are uploaded.
So any changes made between the scan and the backup fall between the cracks
until they’re discovered in the next scan.

I could force a rescan, they told me, by clicking the “Backup Now” button
while holding down the option key. I followed this advice, and waited for the
scan and subsequent backup to complete. Now, surely, my new video would
show up on the restore list! But no such luck. At this point, I was totally con-
fused, and asked for more help. It turned out that my video had been uploaded,
but only to a special “staging” area, from which files are moved to the restore
area every few hours.

My problem was that I misunderstood the key backup concept of Backblaze.
had imagined that files were uploaded continuously, and moved directly to the
restore area (Figure 2.1, left). In fact, only the files on the list produced by the last

16

2: DISCOVERING CONCEPTS

FIG. 21 Backblaze’s backup concept. On the left, what I assumed: (1) I make a change
to a file; (2) when the backup runs, the file is copied to the cloud; (3) I can then restore
it. On the right, what actually happens: (1) I make a change to a file; (2) a scan runs
and adds the file to a list of files for backup; (3) the backup runs, copying to the cloud
only those files that were added in the last scan; (4) periodically, backed-up files are
moved to a cloud location (5) from where they can be restored.
scan are uploaded, and even then remain unavailable until they have been trans-
ferred sometime later from the upload destination to the restore area (Figure
2.1, right).

This is a small example but it illustrates my key point. I'm not taking a stand
on whether the design of Backblaze is flawed or not; I suspect it could be im-
proved though (see Chapter 8 for a suggestion). Certainly, had I taken the back-
up message at face value and not known about the scan, I might have lost some
crucial files.

What I am claiming is that any discussion of this design must revolve around
the fundamental concepts, in this case the backup concept, and an assessment
of whether the behavioral pattern that it embodies is fit for purpose. The user
interface matters too, but only to the extent that it serves the app’s concepts by
representing them to the user. If we want to make software more usable, con-

cepts are where we must start.

Dropbox Delusions

A friend of mine was running out of space on her laptop. So she cleverly sort-
ed the files by size, and looked down the list to see if there were any large and

17

THE ESSENCE OF SOFTWARE

Q ® Search Q @

Dropbox > Bella Party

Overview Show ese
l:' Name ¢+ Members ~ = -
|:| Bella Plan T 2 members s

Remove shared folder?

Are you sure you want to remove the shared folder Bella Party from your
Dropbox? This folder will stay shared with any existing members. You can re-
add it later.

Cancel Remove

Delete folder? X

Are you sure you want to delete Bella Plan from the shared folder ‘Bella
Party'?

FIG. 2.3 Dropboxs folder deletion messages. The folder Bella Party has been shared (top).
If that folder is deleted, the message (middle) informs you that the deletion will not be
propagated to other users. If the folder Bella Plan contained within it is deleted, a different
message (bottom) appears, surprisingly not warning that other users will lose the folder too.

Explaining Dropbox
To see what’s going on in these sharing scenarios, it helps first to articulate
what our expectations might have been. A simple and familiar design for names
would treat them as if they were sticky labels attached to physical objects—Ilike
a cat collar, or a license plate—with at most one label per object (Figure 2.4,
left). We might call this approach “name as metadata,” and it would be an in-

20

2: DISCOVERING CONCEPTS

Ava Dropbox Bella Dropbox Ava Dropbox Bella Dropbox

BelaPaty O | BellaPaty O

Bella Party

Bella Plan o

Bella Plan

FIG. 2.4 Two possible concepts for folders in Dropbox: in the metadata
concept (left), names are labels attached to folders; in the unix folder con-
cept (right), names belong to entries within the parent folder.

stance of a more general metadata concept in which data that describes an ob-
ject—such as the title or caption of a photo—can be attached to it.

With respect to deletion, the simplest design would be to make a file or fold-
er disappear when it’s deleted. We might call this (using a technical term) the
“deletion as poof” approach to deletion: you click delete, and “poof!”—it’s
gone. The underlying concept here—that a pool of items can be stored, with
actions to add and remove items from the pool—is so basic and familiar it has
no name. In this design, we'd expect a separate sharing concept, with an unshare
action so that you can remove a file or folder that someone else shared with you
and free up the space in your own account without deleting their copy.

Both of these understandings—that names are metadata and deletion sim-
ply removes items from a pool—are wrong (at least for Dropbox). The concepts
behind these understandings are themselves fine; they re just not the concepts
that Dropbox uses. If you hold the wrong conceptual model of a software app,
you might get away with it for a while. We've seen that in some scenarios these
explanations would work successfully. But in other scenarios, they’ll fail, per-
haps with disastrous consequence.

The actual concepts that Dropbox uses are very different (Figure 2.4, right).
When an item sits in a folder, the name of that item belongs nof to the item it-
self but rather to the folder containing it. Think of a folder as being a collection

21

THE ESSENCE OF SOFTWARE

of tags, each containing the name of an item (a file or folder) and a link to it.
This concept, which I'll call unix folder, was not invented by Dropbox, but, as its
name suggests, was borrowed from Unix."”®

Look at the diagram in Figure 2.4 (right). Each of Ava and Bella has her own,
top-level Dropbox folder, and these two folders have separate entries for the
single, shared folder called Bella Party. When Bella renames Bella Party, this alters
the entryin her own Dropbox folder, and the entry in Ava’s folder is unchanged.

In contrast, there is only a single entry holding the name of the second-level
shared folder, Bella Plan, belonging to the single, shared parent folder called Bella
Party. Since there is only one entry for the folder—the same entry seen by both
Ava and Bella—when Bella renames the folder, she is changing that one entry
in their shared folder, so Ava sees the change too.

Using this same unix folder concept, we can now explain the deletion behav-
iors. Deletion doesn’t remove the folder per se; it removes its entry. So if Bella
deletes the folder Bella Party, she removes the entry from her own folder, and
Ava’s view is unchanged. But if Bella deletes Bella Plan, she removes the entry
from the shared folder, and the deleted folder is now inaccessible to Ava too.

What Kind of Flaw is This?

At this point, you might be saying to yourself: Well, this is all obvious. I knew
Dropbox behaved like this and I'm not in the least bit surprised. There’s noth-
ing wrong with Dropbox, and someone who doesn’t understand it shouldn’t be
using it. But if you think this, I'm pretty sure you'd be in the minority of read-
ers. We presented this scenario to MIT computer science students and found
that many of them, even those who used Dropbox regularly, were confused.'®

Even if you understood all these subtleties, I'd argue that there’s still a prob-
lem. The distinction between the two cases—whether the folder that is the
subject of the action is shared at the top level, or belongs to another folder that
is itself shared—isn’t readily discernible in the user interface, so it’s a constant
annoyance having to figure out which situation you're in.

Moreover, it doesn't seem reasonable that this rather arbitrary distinction
should determine the behavior. Why should I be able to give my own name
only to the top-level folder? Why can'’t I give private names to all the folders
shared with me? Or conversely, if renaming folders for both of us is part of our
shared work, why can I only do it for some folders and not others?

22

2: DISCOVERING CONCEPTS

T
- o
/’g \“i:- =
£l
=== =
physical linguistic conceptual

color, size, layout, icons, labels, tooltips, semantics, actions,
type, touch, sound site structure data model, purpose

concrete abstract

FIG. 2.5 Levels of interaction design.

Assuming then, that these scenarios are indeed evidence of a flaw in Drop-
box, we can ask: what kind of flaw is it? It’s certainly not a bug; Dropbox has
behaved like this for years. We might wonder if it’s a flaw in the user interface.
That seems implausible too. It would be possible, of course, for Dropbox to give
more informative messages when a change you make affects other users. But
this might just be perceived as additional complexity, and experience suggests
that users ignore warning messages if they come up too often."”

The real problem runs deeper. It’s in the very essence of how files and folders
are named, and how those names are related to the containment relationship
between folders and their contents. This is what I call a conceptual design issue.
The flaw is that the Dropbox developer has certain concepts in mind that have
been faithfully implemented. But those concepts, at the very least, are not con-
sistent with the concepts in most users’ minds. And, at worst, these concepts

are not a good match for the users’ purposes.18

Levels of Design

To put conceptual design in perspective, it helps to break software design into
levels, as shown in Figure 2.5. This classification is my own, but it is similar to
schemes previously proposed.”

The first level of design, the physical level, is about the physical qualities of
the artifact. Even software whose interface is no more than a touch-sensitive
piece of glass has such qualities, limited though they might be.*® At this level,
the designer must take into account physical capabilities of human beings. It’s

23

THE ESSENCE OF SOFTWARE

* TextEdit File Edit Format View Window Help

Uniitied
v W=~ 8 u @

irue Edit Format View Help

FIG. 2.6 A design issue at the physical level, and a classic example of applying Fitts’s Law.
Which menu placement allows for more convenient access: the macos placement (on the left)
in which an application’s menu bar always appears at the top of the desktop, or the Windows

placement (on the right) in which the menu bar is part of the application window?

where accessibility concerns arise, as the designer considers how a visually im-
paired, or color-blind, or deaf user might interact.

Common human characteristics dictate certain design principles. For exam-
ple, the fact that our limited visual sampling rate results in perceptual fusion,
making it hard to distinguish events that occur within about 30 ms of each oth-
er, suggests that 30 frames/second is enough for a movie to look smooth. It
also tells us that system reactions that take much longer than 30 ms will be per-
ceived as delays by the user, and should be avoided, or given progress bars, and
if very much longer, an opportunity to abort. Likewise, Fitts’s Law predicts the
time it takes for a user to move a pointing device to a target, and explains why
the menu bar should be positioned at the top of the screen, as in the Macintosh
desktop, and not in the application window, as in Windows (Figure 2.6).™

The second level of design is the linguistic level. This level concerns the use
of language for conveying the behavior offered by the software, to help the user
navigate the software, understand what actions are available and what impact
they will have, what has happened already, and so on. While design at the phys-
icallevel must respect diversity amongst the physical characteristics ofits users,
design at this level must respect differences of culture and language.

Obviously, the button labels and tooltips on an app will vary depending on
whether it’s intended for English or Italian speakers. (I remember as a small
child on holiday in Italy learning the hard way that the faucet marked calda is
not the cold one.) The designer must be aware of cultural differences too. In
Europe, a road sign comprising a red circle with a white interior means that no
vehicular traffic is permitted at all; most American drivers would not be able to

24

2: DISCOVERING CONCEPTS

a

mental model

(Betapary 0] (BetaPaty o) Dropbox

O] [eapary & P

user interface

underlying concepts i e

inade (NINDDE | ;

implementation

F1G. 2.8 The central role of concepts (left) in aligning the user’s mental model (top
right) and the developer’s design model embodied in the code (bottom right). By
mapping the concepts carefully to the user interface (middle right), the concepts

are not only fully supported but also conveyed implicitly to the user.

Figure 2.8 depicts this. At the top, there is the user; at the bottom, the code
written by the programmer; and between the two, the user interface. For the
software to be successful, we need to understand the user (by investigating her
needs, working environment and psychological qualities); ensure that the code
meets its specification (by testing, review and verification); and craft a usable
interface. But most important of all is aligning the model in the head of the user
with the model in the head of the programmer, and that is achieved by explic-
itly designing concepts that are shared by user and programmer alike, and con-
veyed clearly in the user interface.

Lessons & Practices

Some lessons from this chapter:
Major usability problems in software applications can often be traced to
their underlying concepts. In Dropbox, for example, confusions over wheth-
er deletions will affect other users is explained by Dropbox’s adoption of a
concept that originated in Unix.
Software design is conducted at three levels: the physical level, which in-
volves designing buttons, layouts, gestures and so on that are matched to

27

THE ESSENCE OF SOFTWARE

the physical and cognitive capabilities of human users; the linguistic level,
which involves designing icons, messages and terminology to communicate
with users; and the conceptual level, which involves designing the underly-
ing behavior as a collection of concepts. The two lower levels are concerned
with representing the concepts in the user interface.
For users, having the right mental model is essential for usability. To ensure
this, we need to design concepts that are simple and straightforward, and to
map the concepts to the user interface so that the concepts are intelligible
and easy to use.

And some practices you can apply now:
Take an app you have trouble using. Ask yourself what concepts are involved,
and check that your hypotheses about how they work match the actual be-
havior. If not, can you find different concepts that explain the behavior more
accurately?
As the designer of an app, consider the functions that users find hardest to
use (or easiest to misuse). Can put your finger on one or more concepts that
are responsible?
When designing, know what level you're working at. Start at the concep-
tual level, and move down. Sketching concepts out at the lower levels can
help you grasp them more intuitively, but resist the temptation to polish the
physical interface (for example, worrying about typefaces, colors and layout
details) before you have a clear sense of your concepts.
When you hear complaints about an app that focus on physical or linguistic
aspects, ask if the underlying issue may lie at the conceptual level instead.

28

How Concepts Help

In traditional design disciplines, design evolves from a conceptual core. This
core differs from field to field. Architects call it the parti pris: an organizing
principle for the work that follows, represented by a diagram, a short state-
ment or an impressionistic sketch. Graphic designers call it identity, and it typ-
ically comprises a few elements that capture the spirit of the project or orga-
nization. Composers build music around motifs—sequences of notes—that
can be altered, repeated, layered, and sequenced together to form larger struc-
tures. Book designers start from a layout that specifies the dimensions of the
text block and margins, and the typefaces and sizes in which the text will be set.

When the core is well chosen, the subsequent design decisions can seem al-
most inevitable. The design as a whole emerges with a coherence that makes it
look like the product of a single mind even if it was the work of large team. Us-
ers perceive a sense of integrity and uniformity, and the underlying complexity
gives way to an impression of simplicity.

For a software application, the conceptual core consists of—no surprise
here—a collection of key concepts. In this chapter, we’ll explore the roles that
such concepts play, such as characterizing individual applications, application
families, and even entire businesses; exposing complexity and usability snags;
ensuring safety and security; and enabling division of labor and reuse.

Concepts Characterize Apps

If you're trying to explain an app, outlining the key concepts goes a long way.
Imagine encountering someone who time-traveled from the 1960s and want-
ed to know what Facebook (Figure 3.1) was and how to use it. You might start
with the concept of post, explaining that people author short pieces that can be
read by others; that these are called “status updates” in Facebook (and “tweets”
in Twitter) is a small detail. Then there’s the concept of comment, in which one

person can write something in response; the concept of like in which people

THE ESSENCE OF SOFTWARE

Kristin Rehder and
3hrs-as

A different kind of morning. September.

@O You and 39 others 3 Comments

FIG. 3.1 A screenshot of Facebook in which three concepts are evident: post (repre-
sented by the message and the associated image), like (represented by the emoticons
at the bottom left), and comment (represented by the link on the bottom right).

can register approval of a post, purportedly to boost its display ranking; and of
course the concept of friend that is used both to filter what’s shown to you and
to provide access control so you can limit who sees your posts.

The difference between apps that offer similar functionality can often be ex-
plained by comparing their concepts. For example, a key difference between
text messaging and email is that text messages are organized using a conversation
concept in which all messages sent to a particular recipient appear; email mes-
sages, in contrast, are typically organized using concepts such as mailbox, folder
or label. This is partly because the senders and recipients of text messages are
uniquely identified by their phone numbers, whereas email users tend to have
multiple addresses, which makes grouping into conversations unreliable. It also
reflects different modes of interaction, with text messages relying on the con-
text of the conversation and email messages more often interpreted in isolation
(and thus often quoting previous messages explicitly).

30

3: HOW CONCEPTS HELP

General Style Name: body
Basic Character Formats Location:
Advanced Character Formats Basic Character Formats

Indents and Spacing

Tabs Font Family: Arno Pro

Paragraph Rules Font Style: | Regular i

P h Bord " < i =
aragrapl rder Size: |, 11.5pt A Leading: . 15 pt

Paragraph Shading

Kerning: Metrics ¥ Tracking: clo

Keep Options
Fphenation Case: Normal b Position: Normal
LRSI [} Underline Ligatures [} No Break
Span Columns

[strikethrough
Drop Caps and Nested Styles

FIG. 3.2 The style concept, in Adobe InDesign, showing one tab of the formatting settings for
a style called "body,” which is the style associated with regular paragraphs in this book.

Sometimes it takes experience and expertise to identify the key concepts
in an app. Novice users of Microsoft Word, for example, might be surprised to
learn that its central concept is paragraph. Every document is structured as a se-
quence of paragraphs, and all line-based formatting properties (such as leading
and justification) are associated with paragraphs rather than lines. If you want
to write a book in Word, you won't find any concepts that correspond to its hi-
erarchical structure—no chapter or section, for example—and headings are treat-
ed as paragraphs like any other. Word achieves its flexibility and power through
the paragraph concept and by the powerful way in which it is combined with

other concepts.”

Concepts Characterize Families

Concepts not only distinguish individual apps, but also unify families of apps.
Programmers, for example, commonly use text editors (such as Atom, Sublime,
BBEdit and Emacs) to edit program code; people use word processors (such
as Word, OpenOffice and WordPerfect) to create documents of all sorts; and
professional designers use desktop publishing apps (such as Adobe InDesign,
QuarkXPress, Scribus and Microsoft Publisher) to organize documents into fi-
nalized layouts in books and magazines.

The key concepts of text editors are line and character. The line concept em-
bodies both powerful functionality (such as the ability to perform “diffs” and
“merges” which are essential to programmers for managing code) as well as
limitations (notably that there is no distinction between a line break and a

31

3: HOW CONCEPTS HELP

though, I realized that I needed to understand the core concepts more deeply,
so I found a book that explained layers and masks (and channels, curves, color
spaces, histograms, etc.) from a conceptual point of view, and I was then able
to do whatever I wanted.

Some of the most complex concepts appear in apps that are widely used by
non-experts. Browser apps include the certificate concept for checking that the
server you're talking to belongs to the company you expect—your bank, for ex-
ample, rather than an interloper trying to steal your credentials—and offer the
private browsing concept to prevent your browsing information from being avail-
able to others after you've logged out. Despite the critical importance of these
concepts for security, they are poorly understood. Most users have no idea how
certificates work and what they're for, and they often think that private brows-
ing allows them to visit sites without being tracked.

Worse, some of the most basic behaviors of browsers rely on complex con-
cepts that are invisible to most users. The page cache concept, for example, is
used by website developers to make pages load more quickly, by using previ-
ously downloaded content. But the rules for when old content is replaced (and
how these rules are modified) are obscure even to some developers, so users
and developers alike may be uncertain about whether content that appears in
the browser is fresh or not.

Highlighting tricky concepts is helpful because of the focus it brings. It tells
us, as users, what we need to learn: if you want to be a power user, just ignore
all the details of the interface—those will come easily later—and master the
handful of key concepts. It helps us, as teachers, to focus on the essence: so
when we teach web development, for example, we can explain the important
concepts—sessions, certificates, caching, asynchronous services, etc.—with-
out getting caught up in the idiosyncrasies of particular frameworks. And it
suggests opportunities to us as designers for innovation. A better concept for

server authentication, for example, might prevent a lot of phishing attacks.

Concepts Define Businesses

“Digital transformation” is a grandiose term for a simple idea: taking the core
of a business and putting it online, so customers can access services through
their devices. In my experience as a consultant, I've sometimes found that ex-
ecutives, seeking to refresh and expand their business, instead of trying to un-

35

Image
not
avallable

