~ The Essentlals
~ of Modern Software ‘_
- Englneermg . —

| Free the Pra rfgd
~ from the Method
- Prisons!

-""’“ LA e
"""-' *« lvar Jacobson
| *r Harold “Bud” Lawson
Pan-Wei Ng
Paul E. McMahon
Michael Goedicke

N~ AN\ .

Copyright © 2019 by the Association for Computing Machinery
and Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan & Claypool is aware
of a claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

The Essentials of Modern Software Engineering: Free the Practices from the Method Prisons!
Ivar Jacobson, Harold “Bud” Lawson, Pan-Wei Ng, Paul E. McMahon, Michael Goedicke
books.acm.org

www.morganclaypoolpublishers.com

ISBN: 978-1-94748-727-7 hardcover
ISBN: 978-1-94748-724-6 paperback
ISBN: 978-1-94748-725-3 eBook
ISBN: 978-1-94748-726-0 ePub

Series ISSN: 2374-6769 print 2374-6777 electronic

DOlIs:

10.1145/3277669 Book 10.1145/3277669.3277685 Part III
10.1145/3277669.3277670 Preface 10.1145/3277669.3277686 Chapter 13
10.1145/3277669.3277671 Partl 10.1145/3277669.3277687 Chapter 14

10.1145/3277669.3277672 Chapter 1 10.1145/3277669.3277688 Chapter 15
10.1145/3277669.3277673 Chapter 2 10.1145/3277669.3277689 Chapter 16
10.1145/3277669.3277674 Chapter 3 10.1145/3277669.3277690 Chapter 17
10.1145/3277669.3277675 Chapter 4 10.1145/3277669.3277691 Chapter 18
10.1145/3277669.3277676 Chapter 5 10.1145/3277669.3277692 Part IV
10.1145/3277669.3277677 Chapter 6 10.1145/3277669.3277693 Chapter 19
10.1145/3277669.3277678 Chapter 7 10.1145/3277669.3277694 Chapter 20
10.1145/3277669.3277679 Chapter 8 10.1145/3277669.3277695 Chapter 21
10.1145/3277669.3277680 Part II 10.1145/3277669.3277696 Chapter 22
10.1145/3277669.3277681 Chapter 9 10.1145/3277669.3277697 Chapter 23
10.1145/3277669.3277682 Chapter 10 10.1145/3277669.3277698 Appendix A
10.1145/3277669.3277683 Chapter 11 10.1145/3277669.3277699 References/Index/Bios
10.1145/3277669.3277684 Chapter 12

A publication in the ACM Books series, #25

Editor in Chief: M. Tamer Ozsu, University of Waterloo

Area Editor: Bashar Nuseibeh, The Open University

This book was typeset in Arnhem Pro 10/14 and Flama using ZzTiX.
First Edition

10987654321

PART I

Chapter1

Chapter 2

Chapter 3

Contents

Foreword by Ian Sommerville xvii

Foreword by Grady Booch xix

Preface xxi

THE ESSENCE OF SOFTWARE ENGINEERING 1

From Programming to Software Engineering 3

1.1
1.2
1.3
1.4

Beginning with Programming 4

Programming Is Not Software Engineering 6

From Internship to Industry 8

Journey into the Software Engineering Profession 12
What Should You Now Be Able to Accomplish? 15

Software Engineering Methods and Practices 17

2.1
2.2
2.3
2.4

Software Engineering Challenges 17

The Rise of Software Engineering Methods and Practices
The SEMAT Initiative 28

Essence: The OMG Standard 29

What Should You Now Be Able to Accomplish? 30

Essence in a Nutshell 31

3.1
3.2
3.3
3.4
3.5

The Ideas 32

Methods Are Compositions of Practices 32

There Is a Common Ground 34

Focus on the Essentials 37

Providing an Engaging User Experience 37

What Should You Now Be Able to Accomplish? 38

18

xii Contents

Chapter 4 Identifying the Key Elements of Software Engineering 41
4.1 Getting to the Basics 41
4.2 Software Engineering Is about Delivering Value to Customers 43
4.3 Software Engineering Delivers Value through a Solution 45
4.4 Software Engineering Is Also about Endeavors 48
What Should You Now Be Able to Accomplish? 50

Chapter 5 The Language of Software Engineering 53
5.1 ASimple Practice Example 53

5.2 The Things to Work With 54
5.3 Competencies 61

5.4 Thingsto Do 62

5.5 Essentializing Practices 63

What Should You Now Be Able to Accomplish? 65

Chapter 6 The Kernel of Software Engineering 67

6.1 Organizing with the Essence Kernel 67
6.2 The Essential Things to Work With: The Alphas 69
6.3 The Essential Things to Do: The Activities 72
6.4 Competencies 75
6.5 Patterns 77
What Should You Now Be Able to Accomplish? 81

Chapter 7 Reflection on Theory 83

7.1 Where’'s the Theory for Software Engineering? 84
7.2 Uses of Theory 87
7.3 Essence Is a General, Descriptive Theory of Software Engineering 87
7.4 Toward a General Predictive Theory of Software Engineering 91
7.5 A Theoretical Foundation Helps You Grow 93
What Should You Now Be Able to Accomplish? 94
Postlude to Part1 94
Recommended Additional Reading 95

Chapter 8 Applying Essence in the Small—Playing Serious Games 97
8.1 Progress Poker 99
8.2 Chasing the State 105
8.3 Objective Go 108
8.4 Checkpoint Construction 111

PART lI

Chapter 9

Chapter 10

Chapter 11

Chapter 12

PART Il

Chapter 13

Contents

8.5 Reflection 113
What Should You Now Be Able to Accomplish? 114

DEVELOPING SOFTWARE WITH ESSENCE 115

Kick-Starting Development Using Essence 117

9.1 Understand the Context Through the Lens of Essence 118

9.2 Agreeing on the Development Scope and Checkpoints 122

9.3 Agreeing on the Most Important Things to Watch 124
What Should You Now Be Able to Accomplish? 126

Developing with Essence 127

10.1 Planning with Essence 132

10.2 Doing and Checking with Essence 138

10.3 Adapting a Team’s Way of Working with Essence 140

10.4 How the Kernel Helps Adapt Their Way of Working 141
What Should You Now Be Able to Accomplish? 143

The Development Journey 145
11.1 Visualizing the Journey 145
11.2 Ensuring Progress and Health 146
11.3 Dealing with Anomalies 148
What Should You Now Be Able to Accomplish? 149

Reflection on the Kernel 151

12.1 Validity of the Kernel 151

12.2 Applying the Kernel Effectively 151
What Should You Now Be Able to Accomplish? 152
Postlude 153
Recommended Additional Reading 153

SMALL-SCALE DEVELOPMENT WITH PRACTICES 155

Kick-Starting Development with Practices 157

13.1 Understand the Context Through the Lens of Essence 158
13.2 Agree upon Development Scope and Checkpoints 159
13.3 Agree upon Practices to Apply 165

xiii

Xiv

Contents

Chapter 14

Chapter 15

Chapter 16

13.4
13.5

Agree upon the Important Things to Watch 167
Journey in Brief 169
What Should You Now Be Able to Accomplish? 170

Running with Scrum 171

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Scrum Explained 171

Practices Make a Software Engineering Approach Explicit and Modular
Making Scrum Explicit Using Essence 174

Scrum Lite Alphas 179

Scrum Lite Work Products 182

Scrum Lite Roles 184

Kick-Starting Scrum Lite Usage 187

Working with Scrum Lite 188

Reflecting on the Use of Scrum with Essence 198

What Should You Now Be Able to Accomplish? 202

Running with User Story Lite 203

15.1
15.2
15.3
15.4
15.5
15.6
15.7

User Stories Explained 204

Making the User Story Lite Practice Explicit Using Essence 207
User Story Lite Alphas 208

User Story Lite Work Products 209

Kick-Starting User Story Lite Usage 211

Working with User Story Lite 211

The Value of the Kernel to the User Story Lite Practice 215
What Should You Now Be Able to Accomplish? 218

Running with Use Case Lite 221

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Use Cases Explained 222

Making the Use Case Lite Practice Explicit Using Essence 227
Use Case Lite Alphas 230

Use Case Lite Work Products 233

173

Kick-Starting Use Cases Lite to Solve a Problem Our Team Is Facing 237

Working with Use Cases and Use-Case Slices 240
Visualizing the Impact of Using Use Cases for the Team 244
Progress and Health of Use-Case Slices 245

User Stories and Use Cases—What Is the Difference? 246
What Should You Now Be Able to Accomplish? 248

Contents Xxv

Chapter 17 Running with Microservices 249

17.1 Microservices Explained 250
17.2 Making the Microservice Practice Explicit Using Essence 252
17.3 Microservices Lite 256
17.4 Microservices Lite Alphas 257
17.5 Microservices Lite Work Products 259
17.6 Microservices Lite Activities 267
17.7 Visualizing the Impact of the Microservices Lite Practice on the Team 270
17.8 Progress and Health of Microservice Development 271
What Should You Now Be Able to Accomplish? 272

Chapter 18 Putting the Practices Together: Composition 275
18.1 What Is Composition? 276
18.2 Reflecting on the Use of Essentialized Practices 282
18.3 Powering Practices through Essentialization 283
What Should You Now Be Able to Accomplish? 284
Recommended Additional Reading 284

PART IV LARGE-SCALE COMPLEX DEVELOPMENT 287

Chapter 19 What It Means to Scale 289
19.1 The Journey Continued 289
19.2 The Three Dimensions of Scaling 291
What Should You Now Be Able to Accomplish? 294

Chapter 20 Essentializing Practices 295
20.1 Practice Sources 295
20.2 Monolithic Methods and Fragmented Practices 296
20.3 Essentializing Practices 298
20.4 Establishing a Reusable Practice Architecture 299
What Should You Now Be Able to Accomplish? 303

Chapter 21 Scaling Up to Large and Complex Development 305
21.1 Large-Scale Methods 306
21.2 Large-Scale Development 308
21.3 Kick-Starting Large-Scale Development 309
21.4 Running Large-Scale Development 315

xvi Contents

Chapter 22

Chapter 23

Appendix A

21.5

Value of Essence to Large-Scale Development 322
What Should You Now Be Able to Accomplish? 324

Reaching Out to Different Kinds of Development 325

22.1
22.2
22.3

From a Practice Architecture to a Method Architecture
Establishing a Practice Library within an Organization
Do Not Ignore Culture When Reaching Out 330
What Should You Now Be Able to Accomplish? 331

Reaching Out to the Future 333

23.1
23.2
23.3
23.4

Be Agile with Practices and Methods 335

The Full Team Owns Their Method 337

Focus on Method Use 337

Evolve Your Team’s Method 338

What Should You Now Be Able to Accomplish? 339
Recommended Additional Reading 339

326
328

A Brief History of Software and Software Engineering 341

References 349

Index 353

Author Biographies 369

Foreword by lan Sommerville

There’s some debate over whether the term software engineering was first coined by
Margaret Hamilton at NASA in the 1960s or at the NATO conference at the end of
that decade. It doesn’t really matter because 50 years ago it was clear that software
engineering was an idea whose time had come.

Since then, developments in software engineering have been immense.
Researchers and practitioners have proposed many different methods and
approaches to software engineering. These have undoubtedly improved our ability
to create software, although I think it is fair to say that we sometimes don’t really
understand why. However, we have no basis for comparing these methods to see
if they really offer anything new and we can’t assess the limitations of software
engineering methods without experiencing failure. Although we are a lot better at
developing software than we were in the 20th century, it is still the case that many
large software projects run into problems and the software is delivered late and
fails to deliver the expected value.

The SEMAT initiative was established with the immense ambition to rethink
software engineering. Rather than inventing another new method, however, Ivar
Jacobson and his collaborators went back to first principles. They examined soft-
ware engineering practice and derived a common underlying language and kernel
(Essence) that could be used for discussing and describing software engineering.
Essence embodies the essential rather than the accidental in software engineering
and articulates new concepts such as alphas that are fundamental to every devel-
opment endeavor.

Essence is not a software engineering method but you can think of it as a
meta-method. You can use it to model software engineering methods and so com-
pare them and expose their strengths and weaknesses. More importantly, perhaps,
Essence can also be the starting point for a new approach to software engineer-
ing. Because of the universality of the concepts that it embodies, Essence can be
used across a much wider range of domains than is possible with current methods.

xviii

Foreword by Ian Sommerville

It wisely separates the notion of specific practices, such as iterative development,
from fundamental concepts so it can be used in a variety of settings and application
domains.

The inventors of Essence understand that the value of Essence can only be
realized if it is widely used. Widespread use and experience will also expose its
limitations and will allow Essence to evolve and improve. This book is an important
contribution to transferring knowledge about Essence from specialists to a more
general audience. Although notionally aimed at students, it provides an accessible
introduction to Essence for all software engineers.

Organized into four parts, the first three parts focus squarely on using Essence as
a means of thinking about, planning, and describing software development. Using
real but manageable examples, Parts I and II of the book cover the fundamentals of
Essence and the innovative use of serious games to support software engineering.
Part I1I explains how current practices such as user stories, use cases, Scrum, and
microservices can be described using Essence and shows how their activities can be
represented using the Essence notions of cards and checklists. Part IV is perhaps
more speculative but offers readers a vision of how Essence can scale to support
large, complex systems engineering.

Software engineering has been both facilitated and hampered by the rate of
technological innovation. The need to build software for new technologies has led
to huge investment in the discipline but, at the same time, has made it difficult to
reflect on what software engineering really means. Now, 50 years on, Essence is an
important breakthrough in understanding the meaning of software engineering. It
is a key contribution to the development of our discipline, and I'm confident that
this book will demonstrate the value of Essence to a wider audience. It, too, is an
idea whose time has come.

Ian Sommerville

Emeritus Professor of Software Engineering at St. Andrews University, Scotland. For
more than 20 years, his research was concerned with large-scale complex IT systems.
He is the author of a widely used textbook on software engineering, titled Software
Engineering, first published in 1982, with the 10th edition published in 2015.

Foreword by Grady Booch

The first computers were human; indeed, the very noun “computer” meant “one
who computes or calculates” (and most often those ones were women).

My, how the world has changed.

Computing has woven itself into the interstitial spaces of society. Software-
intensive systems power our cars and airplanes; they serve as our financial conduits;
they track our every action; they fight our wars; they are as intimate as devices we
hold close to us or even within us and as grand as the wanderers we have flung into
space and that now inhabit other planets and venture to other stars. There is no
other invention in the history of humanity that has such a potential to amplify us,
diminish us, and perhaps even replace us.

I have often observed that the entire history of software engineering can be char-
acterized as the rising levels of abstraction. We witness this in our programming
languages, in our tools, in our frameworks, in the very ways with which we interact
with software-intensive systems . . . and even in the ways in which we craft these
systems. This is the world of software engineering methods.

I am proud and humbled to call myself a friend of Ivar Jacobson. The two of us,
along with Jim Rumbaugh, were at the center of a sea change in the way the world
develops and deploys software-intensive systems. We got some things right; we got
some things wrong. But, most important, we helped to codify the best practices
of software engineering in their time. Indeed, that was an incredibly vibrant time
in the history of software engineering, wherein many hundreds if not thousands
of others were struggling with how to codify the methods by which systems of
importance could best be built.

The nature of software development has changed—as it should and as it will
again—and even now we stand at an interesting crossroads in the field. Agile meth-
ods have proven themselves, certainly, but we are at the confluence of technical and
economic forces that bring us again to a very vibrant point in time. As the Internet
of Things brings computing to billions of devices, as computational resources grow

XX

Foreword by Grady Booch

in unceasing abundance, and as deep learning and other forms of artificial intel-
ligence enter the mainstream, now is the time to establish a sound foundation on
which we can build the next generation of software-intensive systems that matter.

In a manner of speaking, one might say that the essence of Essence is its powerful
mastery of the fundamental abstractions of software engineering. I saw in Ivar the
seeds of Essence in the early days of working with him and Jim on the UML, and
so now it is wonderful to see this work in its full flowering. What you hold in your
hands (or on your computer or tablet, if you are so inclined) represents the deep
thinking and broad experience of Ivar; information that you'll find approachable,
understandable, and—most importantly—actionable.

Enjoy the journey; it will make a difference for the good.

Grady Booch

IBM Fellow, ACM Fellow, IEEE Fellow, recipient of the BCS Ada Lovelace Award, and
IEEE Computer Pioneer.

Preface

We have developed software for many years, clearly more than 50 years. Thousands
of books and many more papers have been written about how to develop software.
Almost all teach one particular approach to doing it, one which the author thinks
is the best way of producing great software; we say each author has canned his/her
method. Most of these authors have some interesting ideas, but none can help you
in all the circumstances you will be faced with when you develop software. Even
the most modern books take this approach of presenting and selling “the one true
way” of doing it. Unless you are a world leader ready to impose your own true way
of doing it, all other top experts in the world seem to be in agreement that this
proprietary approach is not the way to teach software development to students.

You now have in front of you a book that will teach you modern software engi-
neering differently from how the subject has been taught since its infancy. On one
hand, it stands on the shoulders of the experience we have gained in the last 50
years or more. On the other hand, it teaches the subject in a universal and generic
way. It doesn’t teach you one particular way of developing software, but it teaches
you how to create one way of working that matches your particular situation and
your needs. The resulting way of working that you create is easy to learn (intuitive),
easy to adopt (by a team), easy to change (as you learn more), and fun to work with
thanks to its user experience being based on games and playing cards.

It is worth repeating: This book does not primarily teach you one particular way
of developing great software; rather, it teaches you how to create such a way of
working that should result in great software.

How This Book Is Different from Other Software

Engineering Textbooks

On the surface this book looks like most other books in software engineering (and
there are many of them; some are excellent books). It describes many important

xxii

Preface

aspects of software engineering and how a typical software engineering initiative
resulting in a new or improved software product takes place. However, underneath
the surface, this book is fundamentally different. The things being described are
selected because they are prevalent in every software engineering initiative. They
are the essential things to work with, the essential things to do, and the essential
competencies needed when you develop software. They are not just examples of
things or typical things. They are selected because they are the things that underpin
all recognized ways of developing software. The selection has been made by a group
of experts from around the world representing academia, research, and industry,
under the auspices of an international group called Object Management Group that
gave rise to the Essence standard.!

Essence addresses, first and foremost, a number of serious challenges we have
in the software industry today, one of which is that for 50 years we have had a war
between the canned methods (but there are many more challenges, which we will
discuss in the book). In addressing these issues, Essence has made it possible to
systematically improve the way we work, which should result in better software—
faster and cheaper. However, this will have to wait to be discussed until you have
gone deeper into the book.

Finally, the following summary can be repeated over and over again.

* Essence supports people when working with methods and it helps people
while they actually work developing software.

e Essence is not yet another method. It is many things but not a method
competing with any other method.

e It is a foundation to be used to describe methods effectively and efficiently.

e It is a thinking framework to be used when creating your method or using
your method, whether it is explicit or tacit.

e It can help you in a method-agnostic way to measure progress and health in

your endeavor.?

e It can help you, if you have challenges, to find root causes of the problems
with your endeavor.

1. Essence has been likened to the DNA of software engineering or the periodic table in chemistry.
2. Throughout this book, except for the cases where the term project is more appropriate for
historical reasons, we use the term endeavor. This is because not all software development occurs
within the context of a formal project.

Preface xxiii

How This Book Can Help Students

Ifyou are a student, this book will play a significant role in your career, because from
this book you will learn the fundamentals of the complex discipline of software
engineering. Even if you are not a student, you will rediscover your discipline in a
way you never expected. This is no ordinary software engineering textbook. What
you will learn from this book you can take with you wherever you go, for the rest of
your software engineering career.

Other books will help you learn the latest technologies, practices, and meth-
ods. While you will need that kind of information as you go through your career,
their value will fade over time as new technologies, practices, and methods come
into play. There is nothing wrong with that. Part of our profession is continuous
improvement and we encourage and expect that to go on forever.

What You Will Learn from This Book

So that you have the right expectations, we want to tell you what you can expect to
learn from this book.

e Youwill learn what are the essentials of software engineering presented as a
common ground.

e Youwill learn a simple, intuitive language by which you can describe specific
ways of working, called practices, using the common ground as a vocabulary.

e You will learn how the common ground can be used to assess the progress
and health of your software development endeavors no matter how simple
or complex.

e Youwill learn “lite” versions of a number of practices that are popular at the
time of writing this book, but they are only meant as examples to demonstrate
how to use the common ground and the language to describe practices.

¢ You will learn how to improve your way of working by adding or removing
practices, as and when the situation demands.

® You will learn how to improve communication with your teammates.
To be clear, this is what you won’t learn from this book.

e Youwill not learn any fully developed practices to be used in a real endeavor
(in a commercial production environment), since what we teach here is not

xXxiv

Preface

intended for that purpose. To learn practices that will work in such an envi-
ronment, you need to go to practice libraries such as the Ivar Jacobson Inter-
national practice library (https://practicelibrary.ivarjacobson.com/start) or,
if the practices are not yet essentialized, you will have to go to books or pa-
pers written about these practices.

® You will not learn the latest technologies, practices, and methods.

This book is about learning a foundation that underlies all practices and meth-
ods that have come and gone during the last 50 years, and all that will likely come
and go over the next 50 years. What you learn from this book you can take with you,
and it will continue to help you grow throughout your software engineering career.

Our Approach to Teaching in This Book
We also want to share with you a little bit about the approach to teaching software
engineering that we use in this book. While we do share some of the history of
software engineering in Part I and in the appendix, our general approach through-
out the book is a bottom-up approach instead of a top-down one. The “user” is a
young student and he/she is presented with more and more advanced use cases
of software development—from small systems to large systems. Or said in another
way, we present the essence of software engineering through the eyes of a young
student who moves from introductory courses into the industry. This approach will
help you understand how software engineering is often first viewed by new software
developers and how their perceptions and understanding of software engineering
grow with their experiences.

So with this brief introduction, you are now ready to start your exciting journey
toward the essentials of modern software engineering. During the journey, you will
pass through the following.

Part I, The Essence of Software Engineering. Here, we introduce the student
to software engineering and to the Essence standard.

Part II, Applying Essence in the Small. Here, Essence is first used to carry out
some simple, small, but very useful practices. They are so small that they
could be called mini-practices, but we call them games—serious games. They
are highly reusable when carrying out practices resulting in, for instance,
software products.

Thenin the rest of this part we advance the problem and consider building
some real but rather small software. We make the assumption that the given
team members have worked together before, so they have tacit knowledge

Preface xxv

about the practices they use and don’t need any additional explicit guidance
in the form of described practices.

Part III, Small-Scale Development with Practices. We use practices defined on
top of the kernel to provide further guidance to small teams.

Part IV, Large-Scale Complex Development. To describe how to develop large
software systems is far too complex for a textbook of this kind. However, we
do explain the impact large teams and organizations have on the practices
needed and how they are applied.

Appendix, A Brief History of Software Engineering.

On our website, http://software-engineering-essentialized.com, you are pro-
vided with additional training material and exercises associated with each part of
the book. This website will be continuously updated and will provide you with ad-
ditional insight. As you gain experience, we hope you will also be able to contribute
to this growing body of knowledge.

How This Book Can Free the Practices from the Method Prisons
and Why This Is Important

In 1968, more than 50years ago, the term software engineering was coined to address
the so-called software crisis. Thousands of books have been written since then to
teach the “best” method as perceived by their authors. Some of them have been very
successful and inspired a huge number of teams to each create their own method.
The classical faith typically espoused by all these popular methods has been that
the previous popular method now has become completely out of fashion and must
be replaced by a new, more fashionable method. People have been swinging with
these trends and, apart from learning something new, each time they must also
relearn what they already knew but with just a new spin to it.

The problem is that among all these methods there has been almost nothing
shared, even if in reality much more has been shared than what separated them.
What they shared was what we will call practices—some kind of mini-methods.
Every method author (if very successful, each became a guru) had their own way
of presenting their content so that other method authors couldn’t simply reuse it.
Instead, other authors had to reinvent the wheel by describing what could have been
reusable—the practices—in a way that fit these other authors’ presentation styles.
Misunderstandings and improper improvements happened and the method war
was triggered. It is still going on. Instead of “standing on one another’s shoulders,”
these various authors are “standing on one another’s toes.”

xXxvi

Preface

This book will show how reusable practices can be liberated from the methods
that use them—their method prisons. Free the practices from the method prisons!

Acknowledgments
Special thanks and acknowledgment goes to Svante Lidman and Ian Spence for
theirwork on the first Essence book [Jacobson et al. 2013a], from which some pieces
of text have been used, to Mira-Kajko-Mattson for her role in the original shaping
of this book, to Pontus Johnson for his work on theory in Part I, Chapter 7 and to
Barbora Buhnova for in particular her clear and accurate writing of the goal and the
accomplishments paragraphs in each chapter of the book. All these contributions
improved the clarity of the book as a whole.

The authors also want to recognize and thank all the people that worked with
us in creating the OMG Essence standard and in working on its use cases. Without
these individuals’ work this book would never have been written:

® For founding the SEMAT (Software Engineering Method And Theory) com-
munity in 2009 and later leading it: Apart from Ivar Jacobson, the founders
were Bertrand Meyer and Richard Soley. June Park chaired the SEMAT com-
munity from 2012 to 2016 and Sumeet Malhotra from 2016 until now.

¢ For serving as members of the Advisory Board chaired by Ivar Jacobson: Scott
Ambler, Herbert Malcolm, Stephen Nadin, Burkhard Perkens-Colomb.
e For supporting the foundation of the SEMAT initiative and its call for action:
= Individuals: Pekka Abrahamsson, Scott Ambler, Victor Basili, Jean
Bézivin, Robert V. Binder, Dines Bjorner, Barry Boehm, Alan W.
Brown, Larry Constantine, Steve Cook, Bill Curtis, Donald Fire-
smith, Erich Gamma, Carlo Ghezzi, Tom Gilb, Robert L. Glass, Ellen
Gottesdiener, Martin Griss, Sam Guckenheimer, David Harel, Brian
Henderson-Sellers, Watts Humphrey, Ivar Jacobson, Capers Jones,
Philippe Kruchten, Harold “Bud” Lawson, Dean Leffingwell, Robert
Martin, Bertrand Meyer, Paul Nielsen, James Odell, Meilir Page-
Jones, Dieter Rombach, Ken Schwaber, Alec Sharp, Richard Soley,
Ian Sommerville, Andrey Terekhov, Fuqing Yang, Edward Yourdon.
= Corporations: ABB, Ericsson, Fujitsu UK, Huawei, IBM, Microsoft
Spain, Munich RE, SAAB, SICS, SINTEF, Software Engineering Insti-
tute (SEI), Tata Consulting Services, Telecom Italia, City of Toronto,
Wellpoint.

Preface xxvii

= Academics: Chalmers University of Technology, Florida Atlantic Uni-
versity, Free University of Bozen Bolzano, Fudan University, Harbin
Institute of Technology, Joburg Centre for Software Engineering
at Wits University, KAIST, KTH Royal Institute of Technology, Na-
tional University of Colombia at Medellin, PCS—Universidade de Sao
Paulo, Peking University, Shanghai University, Software Engineering
Institute of Beihang University, Tsinghua University, University of
Twente, Wuhan University.

e For developing what eventually became the Essence standard with its use
cases and for driving it through the OMG standards process: Andrey Bayda,
Arne Berre, Stefan Bylund, Dave Cuningham, Brian Elveseter, Shihong
Huang, Carlos Mario Zapata Jaramillo, Mira Kajko-Mattson, Prabhakar R.
Karve, Tom McBride, Ashley McNeille, Winifred Menezes, Barry Myburgh,
Gunnar Overgaard, Bob Palank, June Park, Cecile Peraire, Ed Seidewitz, Ed
Seymour, Ian Spence, Roly Stimson, Michael Striewe.

e For organizing SEMAT Chapters around the world: Doo-Hwan Bae, Steve
Chen, Zhong Chen, Barry Dwolatsky, Gorkem Giray, Washizaki Hironori,
Debasish Jana, Carlos Mario Zapata Jaramillo, Pinakpani Pal, Boris Pozin.

e For co-chairing the “Software Engineering Essentialized” project with Ivar
Jacobson: Pekka Abrahamsson. This project develops training material,
quizzes, exercises, certification, games, essentialized practices, etc. to sup-
port teachers giving classes based on this book.

From the outset of the writing of this book, the authors were aware of the funda-
mental change they proposed to the education in software engineering. Therefore,
they wanted the book to be meticulously reviewed before publication. The book
has been reviewed in 5 phases, each being presented as a draft. About 1000 com-
ments have been given by more than 25 reviewers and each comment has been
discussed and acted upon. We are very grateful for the help we received from the
following people (alphabetically ordered) in making this a book we are very proud
of: Giuseppe Calavaro, A. Chamundeswari, Gorkem Giray, Emanuel Grant, Deba-
sish Jana, Eréndira Miriam Jiménez Hernandez, Reyes Juarez-Ramirez, Winifred
Menezes, Marcello Missiroli, Barry Myburgh, Anh Nguyen Duc, Hanna Oktaba,
Don O’Neill, Gunnar Overgaard, Pinakpani Pal, Cecile Peraire, Boris Pozin, Antony
Henao Roqueme, Anthony Ruocco, Vladimir Savic, Armando Augusto Cabrera Silva,
Kotrappa Sirbi, Nebojsa Trninic, Hoang Truong Anh, Eray Tiiziin, Murat Paga Uysal,

xxviii

Preface

Ervin Varga, Monica K. Villavicencio Cabezas, Bernd G. Wenzel, Carlos Mario Zap-
ata Jaramillo.

As you can see from these acknowledgments, many people have contributed to
where we are today with Essence and its usage. Some people have made seminal
technical contributions without which we wouldn’t have been able to create a kernel
for software engineering. Some other people have contributed significant time and
effort to move these technical contributions into a high-quality standard to be
widely adopted. Some people have been instrumental in identifying the vision and
leading the work through all the pitfalls that an endeavor can encounter when it is
as huge as the SEMAT in fact is. Finally, some people have made huge efforts and
with high passion marketed the work and the result to break through the barriers
that fundamentally new ideas always face. We have not made an effort to rank all
these contributions here, but we hope all these individuals are assured that we
know about them and we are tremendously grateful for all they have done.

We would also like to thank the team at Windfall Software for carefully copy
editing and preparing the content of this book. We are especially grateful to their
professional developmental editor, who was instrumental in this endeavor and put
in a huge effort to achieve this high-quality result.

THE ESSENCE OF
SOFTWARE
ENGINEERING

We live at an exciting time in the history of computer and network technologies
where software has become a dominant aspect of our everyday life. Wherever you
look and wherever you turn, software is there. It is in almost everything you use
and affects most everything you do. Software is in many things such as microwaves,
ATMs, smart TVs, machines running vehicles, and factories, as well as being uti-
lized in all types of organizations.

Although software provides many opportunities for improving many aspects of
our society, it presents many challenges as well. One of them is development, de-
ployment, and sustainment of high-quality software on a broad scale. Another is
the challenge of utilizing technology advancements in new domains, for instance,
intelligent homes and Smarter Cities. Here, the evolution of the mobile internet,
apps, the internet of things (I0T), and the availability of big data and cloud comput-
ing, as well as the application of artificial intelligence and deep learning, are some
of the latest “game-changers” with more still to come.

This book provides you with fundamental knowledge you will need for address-
ing the challenges faced in this era of rapid technology change. Part I will introduce
you to software engineering through the lens of a kernel of fundamental con-
cepts that have been provided by the Object Management Group’s standard called
Essence 1. Essence is rapidly becoming a “lingua franca” for software engineering.
The authors are convinced that this approach will provide a perspective that will
be a lasting contribution to your knowledge base and prepare you to participate in
teams that can develop and sustain high-quality software.

Copyrighted material

From Programming to
Software Engineering

This chapter sets the scene with respect to the relationship between programming
und software engineeering. The important issue is that software engineering is
much more than just programming. Of course, the running system created by an act
of programming is an essential and rewarding ingredient of what the right system
will become, and it is important that the reader is actually able to use and apply
a programming language to create a program, at least a small one. But is it by no
means everything. Thus, this chapter

e introduces the notion of software development and that it is more than just
putting a program together;

e shows what additionally is needed beyond programming, i.e., shows the
differences between programming, software development, and software en-
gineering;

e shows the motivations for the discipline of software engineering;

e introduces some important elements of software engineering that actually
show the differences between software engineering and programming, and
shows how they relate to each other.

What is fascinating about this aspect of software development is that it is more
than just programming. Rather, it is to learn the whole picture and as a software
engineer to solve a problem or exploit an opportunity that the users may have.

As a new student, understanding what software engineering is about is not easy,
because there is no way we can bring its realities and complexities into the student’s
world. Nevertheless, it is a student’s responsibility to embark on this journey of
learning and discovery into the world of software engineering.

Throughout this entire book, we will trace the journey of a young chap, named
Smith, from his days in school learning about programming through to becoming

4 Chapter1 From Programming to Software Engineering

1.1

Sidebar 1.1 Programming

Programming is used here as a synonym for implementation and coding. From Wikipedia
we quote: “Related tasks include testing, debugging, and maintaining the source
code, These might be considered part of the programming process, but often the
term software development is used for this larger process with the term programming,
implementation, or coding reserved for the actual writing of source code.”

a software engineering professional and continuing his on-going learning process
in this ever-changing and growing field. In a way, we are compressing time into
the pages of this book. If you are a new student, you are considered to be the pri-
mary audience for this book. Smith will be your guide to the software engineering
profession, to help you understand what software engineering is about. If you are
already a software engineer by profession, or you teach and coach software engi-
neering, you can reflect on your own personal journey in this exciting profession.
As an experienced developer you will observe an exicting and fundamentally new
way to understand and practice software engineering. Regardless of your current
personal level of experience, through Smith’s experiences we will distill the essence
of software engineering.

Beginning with Programming
The focus of our book is not about programming (see Sidebar 1.1), but about
software engineering. However, understanding programming is an obvious place to
start. Before we delve deeper into it, we should clarify the relation of programming
to software development and to software engineering.

Thus we have chosen the following.

e Programming stands for the work related to implementation or coding of
source code.

e Software development is the larger process which, apart from programming,
includes working with requirements, design, test, etc.

e “Software engineering combines engineering techniques with software de-
velopment practices” (from Wikipedia). Moving from development to engi-
neering means more reliance on science and less on craft, which typically
manifests itself in some form of description of a designated way of work-
ing and higher-level automation of work. This allows for repeatability and
consistency from project to project. Engineering also means that teams, for
example, learn as they work and continuously improve their way of work-

Figure 1.1

1.1 Beginning with Programming 5

ing. Thus, stated in simple terms, software engineering is bringing engineering
discipline to software development.

Going forward, when introducing software engineering we will mean the larger
subject of “software development + engineering,” implicitly understood without
specifically separating out the two parts. This will be so even if in many cases the
discussion is more about the development aspect, because the approach we take is
chosen to facilitate the other aspect—engineering. When we sometimes talk about
software development we want to be specific and refer to the work: the activities
or the practices we use. We will not further try to distinguish these terms, so the
reader can in many cases see them as synonyms.

Asafrequentuser of applications like Facebook, Google, Snapchat, etc., whether
on his laptop or his mobile, Smith knew that software forms a major component
in these products. From this, Smith became strongly interested in programming
and enrolled in a programming course where he started to understand what pro-
gram code was and what coding was all about. More importantly, he knew that
programming was not easy. There were many things he had to learn.

The very first thing Smith learned was how to write a program that displays
a simple “Hello World” on his screen, but in this case, we have a “Hello Essence!”,
as in Figure 1.1. Through that he learned about programming languages,

<terminated> Helio [Java Application)] /Library/Java/JavaVirtualMachines/jak1.8.0_111 jak/Contents/Hom
Hello Essence!

ene® ® workspace - Java - Hello/src/essence/Hello.java - Eclipse
R QP APEE % O Q HG @ bivg
= ¥
|
l O - S = 1) *Hello java 1T “0 Fou g =0
=k - package essence; - -.“’ \ w ® %
|
| bl #:I-o . public class Hello { v
] b ey public static void mein(String args()) { & essence
i ¥ i essence System.out.println("Hello Essence!™) ; v O, Helio
{ g "® * meintstr il
| * W\ JRE System Li I} ngl
L
|
|
\
|
|
L)
| @ Console 33 i -
|
| X% xb &% 20-3-
)

Writable Smart Insert 8:1 105Mof 256M [

- - »

Hello Essence.

6 Chapter1 From Programming to Software Engineering

1.2

programming libraries, compilers, operating systems, processes and threads,
classes, and objects. These are things in the realm of computer technology. We ex-
pect that you, through additional classes, will have learned about these things. We
also expect you as a student to have some knowledge of these things as a prerequi-
site to reading this book. We expect that you have some knowledge of programming
languages like Java and JavaScript.

Programming Is Not Software Engineering

However, Smith quickly learned that programming on its own is not software
engineering. Itis one thing to develop a small program, such as the “Hello Essence”
program; it is a different thing to develop a commercial product.

Itis true that some fantastic products such as those that gave birth to Apple, Mi-
crosoft, Facebook, Twitter, Google, and Spotify once were developed by one or a few
individuals with a great vision but by just using programming as a skill. However, as
the great vision has been implemented, be sure that these companies are today not
relying on heroic programmers. Today, these companies have hired the top people
with long experience in software engineering including great programming skills.

So, what is software engineering? Before we answer this question, we must
first make it very clear that there is a remarkable difference between hacking
versus professional programming. Professional programming involves clear logical
thinking, beginning with the objective of the program, and refining the objective
into logically constructed expressions. Indeed, the expressions are a reflection of
the programmers’ thinking and analysis. Hacking on the other hand is an ad hoc
trial and error to induce the desired effect. When the effect is achieved, the hacker
marvels without really understanding why it worked. Professional programmers
understand why and how it worked.

As such, professional programming is highly disciplined. Software engineering
takes this discipline to software teams working on complex software. A typical soft-
ware development endeavor involves more than one person working on a complex
problem over a period of time to meet some objectives. Throughout Smith’s in-
troductory software engineering course, he worked on several assignments, which
frequently required him to work with his fellow students, and which included tasks,
such as:

1. brainstorming what an event calendar app would look like;
2. writing code for a simple event calendar in a small group;

3. writing code for the event calendar app, and hosting the app on the cloud;

1.2 Programming Is Not Software Engineering 7

4. reviewing a given piece of code to find issues in it, for example bugs, and

poor understandability; and

5. reviewing a fellow student’s code.

Through these assignments, Smith came to several conclusions. First, there is

no one true way to write code for a given problem. Writing good quality code that
fellow students can understand is not easy. It often takes more than one pair of eyes

to get it working and comprehensible. He learned the following.

Testing, i.e., checking that the program behaves as intended, is not easy.
There are so many paths that executing the code can follow and all have to
be tested.

Agreeing on what the application would do was challenging. Even for that
simple event calendar app, Smith and his team debated quite a while before
they came to a consensus on what functionality ought to be available, and
how the user interface should be laid out.

A simple application may require multiple programming languages. For
example, the event calendar app would need HTML5 and JavaScript for the
front end, and the Java and SQL database for the backend. Consequently,
Smith found that he had to spend a significant amount of time learning and
getting familiar with new programming languages and new programming
frameworks. Although he endeavored to learn about all these, it was certainly
not easy with the limited time that was available.

Time management is not easy because it is hard to estimate how much time
each activity will require—or when to stop fine-tuning a certain piece of code
to meet time constraints of the project.

As Smith was preparing for his industry internship interview, he tried to sum-
marize on a piece of paper, from those things he then understood, what software

engineering is about, and what he had learned thus far. Smith drew what he under-
stood many times, and he observed that he couldn’t get it quite right. In the end,
he settled for what is shown in Figure 1.2.

To Smith, software engineering was about taking some idea and forming a team
according to the requirements. The team then transforms the requirements into
a software product. To do this, the team engages in some kind of brainstorming,
consensus, writing and testing code, getting to a stable structure, maintaining user
satisfaction throughout, and finally delivering the software product. This requires

the team to have competencies in coding, analysis, and teamwork. In addition,

8 Chapter1 From Programming to Software Engineering

s Ae) o/ Start Evolve
What I think X 1 o T
software Sl :
. . Team
engineering
is about
7= = |5
— Idea Requirements oftware
° 'y d qui Sof
product
sk Competency
- [% - Coding {— Programming language
. « Analysis —}| - Java ‘
+ Teamwork * JavaScript

Figure 1.2 What software engineering is from the eyes of a student.

1.3

the team needs familiarity with some programming language, such as Java and
JavaScript, which Smith knew. What Smith didn’t yet know was that the tasks he
had been given were still relatively simple tasks compared to what is typical in the
software industry. Nevertheless, with this preparation, Smith marched toward his
internship interview.

From Internship to Industry

With some luck, Smith managed to join the company TravelEssence as an intern
trainee. Dave the interviewer saw some potential in Smith. Dave was particularly
intrigued that Smith managed to draw the picture in Figure 1.2. Most students
couldn’t, and would get stuck if they even attempted to.

TravelEssence is a fictitious company that we will be using as an example
throughout this book. TravelEssence provides online hotel booking services for
travelers (see Figure 1.3). In addition, TravelEssence provides Software as a Service
(SaaS) for the operation of hotels. SaaS means that the owner of the software, in
this case TravelEssence, provides software as a service over the internet and the
clients pay a monthly fee. Hotels can sign up and use the TravelEssence service to
check-in and check-out their customers, print bills, compute taxes, etc.

Smith’s stintin TravelEssence provided a whole new experience. To him, his new
colleagues seemed to come from two groups: those who stated what theywanted the
software to do, and those who wrote and tested the software. Figure 1.4 highlights
the dramatic changes Smith experienced. While everyone seemed to speak English,
they used words that he did not understand, especially the first group. As a diligent
person, Smith compiled a list of some of this jargon.

1.3 From Internship to Industry 9

TravelEssence Home | Hotels | Deals | Travel Blog | Contact

= LR e

Search f m-l otel

Gointo o

Check In Checla@ut. Roonts mﬂﬁ
(i vJ -""'""

Search

Figure 1.3 TravelEssence home page.

Start Evolve

s Ae) of
Speak the x 1
language and 1L b\

do no harm! Team
A Idea Requirements Software
e ° product
—
— Competency 0] Technology stack
; + Coding ﬁ@ » Java, JavaScript
+ Analysis * MongoDB, MySQL
+» Testing

= Teamwork

Figure 1.4 What software engineering is from the eyes of a student after internship.

Book. To sell or reserve rooms ahead of time.
No-Show. A guest who made a room reservation but did not check in.
Skipper. A guest who left with no intention of paying for the room.

PMS. Property Inventory Management System, which maintained records of
items owned by the hotel such as items in each room including televisions,
beds, hairdryers, etc.

10 Chapter1 From Programming to Software Engineering

POS. Point of Sale Systems (used in restaurants/outlets) that automated the
sale of items and managed purchases with credit or debit cards.

It took Smith a little while to get on “speaking terms” with his new colleagues and
mentors.

In his student days, Smith always wrote code from scratch, starting with an
empty sheet of paper. However, at TravelEssence it was mostly about implement-
ing enhancements to some existing code. The amount of code that Smith saw was
way above the toy problems he came across as a student. His development col-
leagues did not trust him to make any major changes to the system. Developers in
TravelEssence emphasized code reviews heavily and stressed the importance of “Do
no harm” repeatedly. They would repeatedly test his understanding of terminology
and their way of working. Smith felt embarrassed when he could not reply confi-
dently. He started to understand the importance of reviewing and testing his work.
After his internship, Smith attempted to summarize what he understood software
engineering to be (see Figure 1.4). This was quite similar to what he thought before
his internship (see Figure 1.2), but with new knowledge (indicated in red) and an
emphasis on testing and doing no harm as he coded changes to the software prod-
uct. Smith came to recognize the importance of knowledge in different areas, not
just about the code, but also about the problem domain (in this case, about hotel
management), and the technologies that were being used.

Competency not only involved analysis, coding, and teamwork, but also exten-
sive testing to ensure that Smith did no harm. Understanding programming lan-
guages was no longer sufficient; a good working knowledge of the technology stack
was critical. A technology stack is the set of software technologies, often called the
building blocks, that are used to create a software product. Smith was familiar with
multiple technologies that were being used including Java, JavaScript, MongoDB,
and MySQL. Never mind if you do not know these specific terms.

Note: There are myriads of technology stacks available, and it is not possible for
anyone to learn them all. Nevertheless, our recommendation to students is to gain
familiarity with a relevant technology stack of your choice.

Smith graduated and was employed at TravelEssence. A few years later, at a
get-together, Smith and his old classmates shared their newfound experiences in
the real commercial world. At this occasion Smith said: “At TravelEssence even
though everyone seemed to be using different terminology, and everyone did things
differently, there seemed to be something common to what they were all doing.”
One of his old classmates asked Smith if he could explain more, but Smith just
shook his head and said, “I don’t know exactly what it is.”

1.3 From Internship to Industry 11

Speak the

language and x of Bug fix " Start Evolve
IN—N—N—
1 4 -
do no harm! ‘ (? e Time
o - Changes

¢ @ B o B

Idea Requirements Software System

Stakeholders

Competency (1] Technology stack
Values % » Leadership Dlj « Java, JavaScript
Principles * Management * MongoDB, MySQL
Practices + Coding * SpringBoot

+ Analysis * ReactNative

+ Testing + Node.js, SpringCloud

» Teamwork » Docker, Rancher

Figure .5 What software engineering is from the eyes of a young professional.

Some years later, Smith became a technical lead for a small group at Travel-
Essence. As a technical lead he found himself continuously thinking about that
discussion with his old classmates as he tried to figure out just what it was that was
common about the way everyone worked at TravelEssence.

One evening the old classmates got together again. This time the discussions
were a blend between technologies and people management. The old classmates
were also talking more about their experiences dealing with people including their
colleagues, managers, and their customers; consequently, they were talking more
about the way work got done in their organizations. Managing stakeholders and
their expectations became more important as they started to take on more senior
positions.

After the meeting with classmates, Smith started to draw what he then thought
software engineering was about (see Figure 1.5). The changes compared to Smith's
internship experience are highlighted in red.

Stakeholder collaboration played an important part of Smith’s work. Collaborat-
ing well involved having an agreed-on set of values, principles, and practices. These
values included agreeing upon a common goal, and respecting and trusting team
members, as well as being responsible and dependable. All of these values are qual-
ities of a good and competent team player. Principles include, for instance, having
frequent and regular feedback, and fixing bugs as soon as they are detected. All of

12

Chapter 1 From Programming to Software Engineering

1.4

these principles identify good behaviors in a team. Practices are specific things the
team will do to deliver what is expected of the team consistent with the above values
and principles, as well as good quality software.

Journey into the Software Engineering Profession

Smith through his experience at TravelEssence thus far had started to appreciate
the complexities involved in producing and sustaining high-quality software that
meets the needs of stakeholders. He now appreciated that while programming is
an important aspect, there is much more involved. It is the engineering discipline
that is concerned with all aspects of the development and sustainment of software
products.

Smith then reflected upon the knowledge he had attained thus far in his career.
As a student with no other experience than having done some programming, it
is quite difficult to understand what more is involved in software engineering.
Typically, when creating a program in a course setting, the exercise starts from an
idea that may have been explained in a few words: say, less than one hundred words.
Based on the idea, Smith and his classmates developed a piece of software, meaning
theywrote code and made sure that it worked. After the assignment they didn’t need
to take care of it. These assignments were small and to perform them they really did
not need much engineering discipline. This situation is quite unlike what you have
to do in the industry, where code written will stay around for years, passing through
many hands to improve it. Here a sound approach to software engineering is a must.
Otherwise, it would be impossible to collaborate and update the software with new
features and bug fixes. Nevertheless, the experience in school is an important and
essential beginning, even though Smith wished that it were more like the industry.

The authors of this book have all experienced, through their personal journeys,
the importance of utilizing an engineering approach in providing high-quality soft-
ware. Thus, we can characterize, for you, what is important in respect to software
engineering.

Considering the software industry, let's put the success of Microsoft, Apple,
Google, Facebook, Twitter, etc. on the side because they are so unique—relying
on innovative ideas that found a vast commercial market—and programming,
per se, was not the root cause of their success. In a more normal situation you
will find yourself employed by a company that as part of their mission needs to
develop software to support their business or to sell a product needed by potential
customers. The company may be rather small or very large, and you will be part of
a team. The reasons you won't be alone are many. What needs to be done is more

1.4 Journey into the Software Engineering Profession 13

than what one person can do alone. If the software product is large your team will
most likely not be the only one; there will be many teams that have to work in some
synchronized way to achieve the objectives of your company.

As a young student having spent most of your life at school and not yet work-
ing in the industry, you may be more interested in the technologies related to
software—the computer, programming languages, operating systems, etc.—and
less interested in the practicalities of developing commercial software for a partic-
ular business.

However, this is going to change with this book.

First, let us consider the importance of a team. The team has a role in the com-
pany to develop some software. To do that, they need to know what the users of
the software need, or in other words they need to agree on the requirements. In
some cases, they will receive the requirements indicating that they want software
that does what another piece of software does. In these cases, the team must study
the other product and do something like that product or better. In other situations,
someone will just tell them what to do and be with the team while they do it. In more
regulated organizations, someone (or a group of people) has written a document
specifying what is believed to be some or all of the requirements. Typically, people
don’t specify all the requirements before starting the development, but some re-
quirements will be input to the team, so they can start doing something to show to
the future users of the product. Interacting with users on intermediary results will
reveal weaknesses and tell the team what they need to do next. These discussions
may imply that the team has to backtrack and redo parts of what they have done
and demonstrate the new results to the users. These discussions will also tell the
team what more needs to be done.

Anyway, the team will in one way or the other have to understand what re-
quirements they should use as input to the work of their team. Understanding the
requirements is normally not trivial. It may take as much time or even more as it
takes to program a solution. As we just stated, you will typically have to modify them
and sometimes throw away some of the requirements as well as work results before
the users of the software are reasonably satisfied with what they have received.

As a newcomer to software engineering but with some background in program-
ming, you may think that working with requirements is less rewarding and less
interesting than programming. Well, it is not. There is an entire discipline (require-
ments engineering) that specifies how you dig out the requirements, how you think
about them to create great user experiences supported by the software, and how you

14 Chapter1 From Programming to Software Engineering

modify them to improve and sustain the software. There are requirements manage-
ment tools to help you that are as interesting to work with as programming tools.
There are many books and other publications on how to work with requirements,
so there is a lot to learn as you advance in your career. Therefore, working with re-
quirements is one of the things to do that is more than programming but part of
software engineering.

Another thing to do that is more than programming is the design of the software.
Design means structuring the code in such a way that it is easy to understand,
easy to change to meet new requirements, easy to test, etc. You can describe your
design by using elements of a programming language such as component, class,
module, interface, message, etc. You can also use a visual language with symbols
for such elements that have a direct correspondence in the programming language
you are utilizing. In the latter case, you use a tool to draw diagrams with symbols
representing, for instance, components with interfaces. In short, you express the
design in a diagram form. The visual language can be quite sophisticated and allow
you to not just express your design; for example, you can do quality controls using a
visual language tool as well as testing the design to some extent. Doing design is as
interesting and rewarding as programming and it is an important part of software
engineering.

Apart from working with requirements and creating a design, there are many
other things we need to do when we engineer software. We do extensive testing
of the software; we deploy it on a computer so it can be executed and used. If
the software we have developed is successful, we will change it for many years to
come. In fact, most people developing software are engaged in changing existing
software that has been developed, often many years ago. This means we need to
deal with versions of existing software and if the software has been used at many
places (even around the world) we often need to have different versions of the
same original software at different locations in the world. Each version will change
independent of the other existing versions. And, the complexity of the software
product just continues to increase. The only way to deal with this complexity is to
use tools specifically designed for its purpose: testing, deployment, version and
configuration control, etc.

So, you see that software engineering is certainly much more than program-
ming. While definitions of software engineering are always a subject of debate
among professionals, the following neatly summarizes our view. Software engineer-
ing is the application of a systematic, disciplined, and quantifiable approach to the
development, testing, deployment, operation, and maintenance of software systems.

What Should You Now Be Able to Accomplish? 15

To us, “a systematic, disciplined, and quantifiable approach” means it is repeat-
able and consistent from one project to another, with continuous improvement
on the way. It means it is accompanied by some form of description of the way of
working and it allows us to automate more. Software engineering includes under-
standing what users and other stakeholders need and transforming those needs
into clear requirements that can be understood by programmers. It also includes
understanding the specific technologies needed to build and to test the software.
It requires teams that have the social skills to work together, so each piece of the
software works with other pieces to achieve the overall goal. So, software engi-
neering encompasses the collaboration of individuals to evolve software to achieve
some goal.

Programming is very rewarding since you immediately see the impact of your
work. However, as you will learn during your journey, the other activities in software
engineering—requirements, design, testing, etc.—are also fascinating for similar
reasons. It has been more difficult, though, to teach these other activities in a
systematic and generic manner. This is due to the fact that there are so many
variations of these activities and there has not been a commeon ground for teaching
them until now as presented in this book. You will find that most students who
study in the software domain have an initial desire to work with programming.
However, as these people become more and more experienced they gradually move
into the other areas of software engineering. This is not because programming is
not important. In fact, without programming there is no product to use and sell.
No, it is because they find the other areas to be more challenging; also, success in
these other areas requires more experience. By essentializing software engineering
as presented in this book, the full scope of the discipline will be easier to grasp and
to teach.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to:

e explain the terms programming, software development, and software engineer-
ing, and how they relate to each other;

e explain the difference between professional programming and hacking;

e understand how teamwork affects the dynamics of software engineering
(e.g., importance of code understandability);

16 Chapter1 From Programming to Software Engineering

s explain the importance of testing as a tool to promote safe modification of
existing code;

¢ understand how people management blends into software engineering and
why it is important to consider it;

® explain the role of requirements engineering.

In order to support your learning activities, we invite you to visit www.software-
engineering-essentialized.com. There one can find additional material, exercises
related to this chapter, and some questions one might encounter in an exam.

In addition to this you will find a short account of the history of software engi-
neering in Appendix A.

2.1

Software Engineering
Methods and Practices

In this chapter we present how the way of working to develop software is organized,
and to some extent what additional means are needed (e.g., notations for specifi-
cations). In particular, we

e describe the challenges in software engineering covering a wide range of
aspects like how to proceed step by step, involve people, methods and
practices;

e outline various key concepts of some commonly used software engineer-
ing methods created during the last four decades (i.e., waterfall methods,
iterative lifecycle methods, structured methods, component methods, agile
methods); and

e describe the motivation behind the initiative to create the Essence standard
as a basic and extendable foundation for software engineering.

This will also take the reader briefly through the development of software engi-
neering.

Software Engineering Challenges

From Smith’s specific single-person view of software engineering, we move to take
a larger worldview in this chapter and the next. We will return to Smith’s journey
in Chapter 4. From 2012-2014, the IEEE Spectrum published a series of blogs on
IT hiccups.! There are all kinds of bloopers and blunders occurring in all kinds of
industries, a few of which we outline here.

e According to the New Zealand Herald, the country’s police force in February
2014 apologized for mailing over 20,000 traffic citations to the wrong drivers.

1. http://spectrum.iece.org/riskfactor/computing/it/it-hiccups-of-the-week

18 Chapter2 Software Engineering Methods and Practices

2.2

Apparently, the NZ Transport Agency, which is responsible for automatically
updating drivers’ details and sending them to the police force, failed to do
so from October 22 to December 16, 2013. As a result, “people who had sold
their vehicles during the two-month period . . . were then incorrectly tick-
eted for offenses incurred by the new owners or others driving the vehicles.”
In New Zealand, unlike the U.S,, license plates generally stay on a vehicle for
its life.”

® The Wisconsin State Journal reported in February 2013 that “glitches” with
the University of Wisconsin’s controversial payroll and benefits system had
resulted in US $1.1 million in improper payments which the university would
likely end up having to absorb. This was after a news report in the previous
month indicated that problems with the University of Wisconsin’s payroll
system had resulted in $33 million in improper payments being made over
the past two years.?
These types of highlighted problems seem to be those which we can find

amusing; however they are really no laughing matter if you happen to be

one of the victims. What is more surprising is that the problem with these

situations is that they can be prevented, but they almost inevitably do occur.

The Rise of Software Engineering Methods and Practices

Just as we have compressed Smith’s journey from a young student to a seasoned
software engineer in a few paragraphs, we will attempt to compress some 50 years
of software engineering into a few paragraphs. We will do that with a particular
perspective in mind: what resulted in the development of a common ground in
software engineering—the Essence standard. A more general description of the
history is available in Appendix A.

However, the complexity of software programs did not seem to be the only root
cause of the so-called “software crisis.” Software endeavors and product develop-
ment are not just about programming; they are also about many other things such
as understanding what to program, how to plan the work, how to lead the people
and getting them to communicate and collaborate effectively.

2. http://spectrum.ieee.org/riskfactor/computing/it/new-zealand-police-admits-sending-20-000-
traffic-tickets-to-the-wrong-motorists

3. http://spectrum.ieee.org/riskfactor/computing/it/it-hiccups-of-the-week-university-of-wiscon
sin-loses-another-11-million-in-payroll-glitches

2.2.1

2.2 The Rise of Software Engineering Methods and Practices 19

For the purpose of this introductory discussion, we define a method as providing
guidance for all the things you need to do when developing and sustaining software.
For commercial products “all the things” are a lot. You need to work with clients
and users to come up with “the what” the system is going to do for its users—the
requirements. Further, you need to design, code, and test. However, you also need
to set up a team and get them up to speed, they need to be assigned work, and they
need a way of working.

These things are in themselves “mini-methods” or what many people today
would call practices. There are solution-related “practices,” such as work with re-
quirements, work with code, and conduct testing. There are endeavor-related prac-
tices, such as setting up a collaborative team and an efficient endeavor as well
as improving capability of the people and collecting metrics. There are of course
customer-related practices, such as making sure that what is built is what the cus-
tomers really want.

The interesting discovery we made more than a decade ago was that even if the
number of methods in the world was huge, it seemed that all these methods were
just compositions of a much smaller collection of practices, maybe a few hundred
of such practices in total. Practices are what we call reusable because they can be
used over and over again to build different methods.

To understand how we as a software engineering community have improved our
knowledge in software engineering, we provide a description of historical develop-
ments. Our purpose with this brief history is to make it easier for you to understand
why Essence was developed.

There Are Lifecycles

From the ad hoc approach used in the early years of computing came the water-
fall method around the 1960s; actually, it was not just one single method—it was
a whole class of methods. The waterfall methods describe a software engineering
project as going through a number of phases such as Requirements, Design, Imple-
mentation (Coding), and Verification (i.e., testing and bug-fixing) (see Figure 2.1).

While the waterfall methods helped to bring some discipline to software en-
gineering, many people tried to follow the model literally, which caused serious
problems especially on large complex efforts. This was because software engineer-
ing is not as simple as this linear representation indicates.

A way to describe the waterfall methods is this: What do you have once you think
you have completed the requirements? Something written on “paper.” (You may
have used a tool and created an electronic version of the “paper,” but the point is
thatitis just text and pictures.) But since it has not been used, do you know for sure

20 Chapter2 Software Engineering Methods and Practices

R
R Y
Requirements
D
Y
Design
I
i Y
Implementation
(Code) V

Verification
(Test)

Figure 2.1 Waterfall lifecycle.

at this point if they are the right requirements? No, you don’t. As soon as people
start to use the product being developed based on your requirements, they almost
always want to change it.

Similarly, what do you have after you have completed your design? More “paper”
of what you think needs to be programmed? But are you certain that it is what your
customer really intended? No, you are not. However, you can easily claim you are
on schedule because you just write less and with less quality.

Even after you have programmed according to the design, you still don't know
for sure. However, all of the activities you have conducted don’t provide proof that
what you did is correct.

Now you may feel you have done 80%. The only thing you have left is to test. At
this point the endeavor almost always falls apart, because what you have to test is
just too big to deal with as one piece of work. It is the code coming from all the
requirements. You thought you had 20% left but now you feel you may have 80%
left. This is a common well-known problem with waterfall methods.

There are some lessons learned. Believing you can specify all requirements up-
front is just a myth in the vast majority of situations today. This lesson learned has
led to the popularity of more iterative lifecycle methods. Iterating means you can
specify some requirements and you can build something meeting these require-
ments, but as soon as you start to use what you have built you will know how to
make it a bit better. Then you can specify some more requirements and build, and
test these until you have something that you feel can be released. But to gain confi-
dence you need to involve your users in each iteration to make sure what you have

Figure 2.2

2.2.2

2.2.2.1

2.2 The Rise of Software Engineering Methods and Practices 21

Iteration 1 Iteration 2 Iteration 3

-

/\/\/\z Time

NN

Iterative lifecycle.

provides value. These lessons gave rise at the end of the 1980s to a new lifecycle
approach called iterative development, a lifecycle adopted by the agile paradigm
now in fashion (see Figure 2.2).

New practices came into fashion. The old project management practices fell out
of fashion and practices relying on the iterative metaphor became popular. The
most prominent practice was Scrum, which started to become popular at the end
of the 1990s and still is very popular. We will discuss this more deeply in Part I1I of
the book.

There Are Technical Practices

Since the early days of software development, we have struggled with how to do the
right things in our projects. Originally, we struggled with programming because
writing code was what we obviously had to do. The other things we needed to do
were ad hoc. We had no real guidelines for how to do requirements, testing, con-
figuration management, project management, and many of these other important
things.

Later new trends became popular.

The Structured Methods Era

In the late 1960s to mid-1980s, the most popular methods separated the software
to be developed into the functions to be executed and the data that the functions
would operate upon: the functions living in a program store and the data living in a
data store. These methods were not farfetched because computers at that time had
a program store, for the functions translated to code, and a data store. We will just
mention two of the most popular methods at that time: SADT (Structured Analysis
and Design Technique) and SA/SD (Structured Analysis/Structured Design). As a
student, you really don’t need to learn anything more about these methods. They

22 Chapter 2 Software Engineering Methods and Practices

Figure 2.3

2.2.2.2

Control

l

Input — Function — Output

T

Mechanisms

SADT basis element.

were used for all kinds of software engineering. They were not the only methods in
existence. There were a large number of published methods available and around
each method there were people strongly defending it. It was at this time in the
history of software engineering that the methods war started. And, unfortunately, it
has not yet finished!

Every method brought with it a large number of practices such as requirements,
design, test, defect management, and the list goes on.

Each had its own blueprint notation or diagrams to describe the software from
different viewpoints and with different levels of abstraction (for example, see Fig-
ure 2.3 on SADT). Tools were built to help people use the notation and to keep
track of what they were doing. Some of these practices and tools were quite so-
phisticated. The value of these approaches was, of course, that what was designed
was close to the realization—to the machine: you wrote the program separate from
the way you designed your data. The problems were that programs and data are
very interconnected and many programs could access and change the same data.
Although many successful systems were developed applying this approach, there
were far many more failures. The systems were hard to develop and even harder to
change safely, and that became the Achilles’ heel for this generation of methods.

The Component Methods Era
The next method paradigm shift* came in early 1980 and had its high season until
the beginning of the 2000s.

In simple terms, a software system was no longer seen as having two major
parts: functions and data. Instead, a system was a set of interacting elements—

4. Wikipedia: “A paradigm shift, as identified by American physicist and philosopher Thomas
Kuhn, is a fundamental change in the basic concepts and experimental practices of a scientific
discipline.”

2.2 The Rise of Software Engineering Methods and Practices 23

Sidebar 2.1 Paradigm Shift in Detail

In more detail, this paradigm shift was inspired by a new programming metaphor—
object-oriented programming—and the trigger was the new programming language
Smalltalk. However, the key ideas behind Smalltalk were derived from an earlier
programming language, Simula 67, that was released in 1967. Smalltalk and Simula
67 were fundamentally different from previous generations of programming languages
in that the whole software system was a set of classes embracing its own data, instead
of programs (subroutines, procedures, etc.) addressing data types in some data store.
Execution of the system was carried out through the creation of objects using the
classes as templates, and these objects interacted with one another through exchanging
messages. This was in sharp contrast to the previous model in which a process was
created when the system was triggered, and this process executed the code line by line,
accessing and manipulating the concrete data in the data store. A decade later, around
1990, a complement to the idea of objects received widespread acceptance inspired, in
particular, by Microsoft. We got components.

components (see also Sidebar 2.1). Each component had an interface connecting
it with other components, and over this interface messages were communicated.
Systems were developed by breaking them down into components, which collabo-
rated with one another to provide for implementation of the requirements of the
system. What was inside a component was less important as long as it provided the
interfaces needed to its surrounding components. Inside a component could be
program and data, or classes and objects, scripts, or old code (often called legacy
code) developed many years ago. Components are still the dominating metaphor
behind most modern methods. An interesting development of components that
has become very popular is microservices, which we will discuss in Part III.

With components, a completely new family of methods evolved. The old meth-
ods with their practices were considered to be out of fashion and were discarded.
What started to evolve were in many cases similar practices with some significant
differences but with new terminology. In the early 1990s, about 30 different com-
ponent methods were published. They had a lot in common, but it was almost
impossible to find the commonalities since each method author created his/her
own terminology.

In the second half of the 1990s, OMG (a standards body called Object Manage-
ment Group) felt that it was time to at least standardize how to represent software
drawings, namely notations used to develop software. This led to a task force be-
ing created to drive the development of a new standard. The work resulted in the

24 Chapter2 Software Engineering Methods and Practices

Figure 2.4

T OO

Place Local Call
Calling Called
Subscriber O Subscriber

Place Long Distance Call

Retrieve Customer o E i
Billing Information Billing System

T—O

Get Call History
Customer

A diagram (in fact a Use-Case diagram) from the Unified Modeling Language standard.

Unified Modeling Language (UML; see Figure 2.4), which will be used later in the
book. This development basically killed all methods other than the Unified Process
(marketed under the name Rational Unified Process (RUP)). The Unified Process
dominated the software engineering world around the year 2000. Again, a sad step,
because many of the other methods had very interesting and valuable practices
that could have been made available in addition to some of the Unified Process
practices. However, the Unified Process became in fashion and everything else was
considered out of fashion and more or less thrown out.

Over the years, many more technical practices other than the ones supported
by the 30 component methods arrived. More advanced architectural practices or
sets of practices, e.g., for enterprise architecture (EA), service-oriented architecture
(SOA), product-line architecture (PLA), and recently architecture practices for big
data, the cloud, mobile internet, and the internet of things (IoT) evolved. At the mo-
ment, it is useful to see these practices as pointers to areas of software engineering
interest at a high level of abstractio: suffice it to say that EA was about large infor-
mation systems for, e.g., the finance industry; SOA was organizing the software as
a set of possibly optional service packages; and PLA was the counterpart of EA but
for product companies, e.g., in the telecom or defense industry. More important is
to know that again new methodologies grew up as mushrooms around each one

2.2.2.3

223

2.2 The Rise of Software Engineering Methods and Practices 25

of these technology trends. With each new such trend method authors started over
again and reinvented the wheel. Instead of “standing on the shoulders of giants,”
they preferred to stand on another author’s toes. They redefined already adopted

terminology and the methods war just continued.

The Agile Methods Era
The agile movement—often referred to just as agile—is now the most popular trend
embraced by the whole world. Throughout the history of software engineering,
experts have always been trying to improve the way software is being developed.
The goal has been to compress timescales to meet the ever-changing business
demands and realities. If agile were to have a starting date, one can pinpoint it
to the time when 17 renowned industry experts came together and penned the
words of the agile manifesto. We will present the manifesto in Part IV and how
Essence contributes to agile. But for now, it suffices to say that agile involves a set of
technical and people-related practices. Most important is that agile emphasizes an
innovative mindset such that the agile movement continuously evolves its practices.

Agile has evolved the technical practices utilized with components. However,
its success did not come from introducing many new technical practices, even if
some new practices, such as continuous integration, backlog-driven development,
and refactoring, became popular with agile. Continuous integration suggests that
developers several times daily integrate their new code with the existing code base
and verify it. Backlog-driven development means that the team keeps a backlog of
requirement items to work with in coming iterations. We will discuss this practice
in more detail when we discuss Scrum in Part III. Refactoring is to continuously
improve existing code iteration by iteration.

Agile rather simplified what was already in use to assist working in an iterative
style and providing releasable software over many smaller iterations, or sprints as
Scrum calls them.

There Are People Practices

As strange as it may sound, the methods we employed in the early days did not pay
much attention to the human factors. Everyone understood of course that software
was developed by people, but very few books or papers were written about how
to get people motivated and empowered in developing great software. The most

5. From Wikipedia: “The metaphor of dwarfs standing on the shoulders of giants . . . expresses
the meaning of ‘discovering truth by building on previous discoveries’.”

26 Chapter2 Software Engineering Methods and Practices

2.2.4

successful method books were quite silent on the topiec. It was basically assumed
that in one way or the other this was the task of management.

However, this assumption changed dramatically with agile methods. Before,
there was a high reliance on tools so that code could be automatically generated
from design documents such as UML diagrams. Accordingly, the role of program-
mers was downgraded, and other roles were more prestigious, such as project man-
agers, analysts, and architects. With agile methods programming became reevalu-
ated as a creative job. The programmers, the people who eventually created working
software, were “promoted” and coding became again a prestigious task.

With agile many new practices evolved, for instance self-organizing teams, pair
programming, and daily standups.

A self-organizing team includes members who are more generalists than
specialists—most know how to code even if some are experts. It is like a soccer
team—everyone knows how to kick the ball even if some are better at scoring goals
and someone else is better at keeping the ball out of the goal.

Pair programming means that two programmers are working side-by-side devel-
oping the same piece of code. It is expected that the code quality is improved and
that the total cost will be reduced. Usually one of the two, is more senior than the
other, so this is also a way to improve team competency.

Daily standup is a practice intended to reduce impediments that team members
have, as well as to retain motivation. Every morning the team meets for 15 min to
go through each member’s situation: what he/she has done and what he/she will
be doing. Any impediments are brought up but not addressed during the meeting.
The issues will be discussed in separate meetings. This practice is part of the Scrum
practice discussed in Part III.

Given the impact agile has had on the empowerment of programmers, it is easy
to understand that agile has become very popular. Moreover, given the positive
impact agile has had on our development of software, there is no doubt it has
deserved to become the latest paradigm.

Consequences

There is a methods war going on out there. It started 50 years ago, and it still goes
on. Jokingly, we can call it the Fifty Years’ War, and there is still no truce. In fact,
there are no signs that this will stop by itself.

e With every major paradigm shift such as the shift from structured methods
to component methods and from the latter to the agile methods, basically
the industry throws out all they know about software engineering and starts

2.2 The Rise of Software Engineering Methods and Practices 27

all over with new terminology with little relation to the old. Old practices are
viewed as irrelevant and new practices are hyped. To make this transition
from the old to the new is extremely costly to the software industry in the
form of training, coaching, and change of tooling.

e With every major technical innovation, for instance cloud computing, re-
quiring a new set of practices, the method authors also “reinvent the wheel.”
Although the costs are not as huge as in the previous point, since some of
the changes are not fundamental across everything we do (it is no paradigm
shift) and thus the impact is limited to, for instance, cloud development,
there is still foolish waste.

e Within every software engineering trend there are many competing meth-
ods. For instance, back as early as 1990 there were about 30 competing
object-oriented methods. When this book was written, there were about 10
competing methods on scaling agile to large organizations; some of the most
famous ones are Scaled Agile Framework (SAFe), Disciplined Agile Delivery
(DAD), Large Scale Scrum (LeSS), and Scaled Professional Scrum (SPS). They
typically include some basic widely used practices such as Scrum, user sto-
ries or alternatively use cases, and continuous integration, but the method
author has “improved” them—sarcastically stated. There is reuse of ideas,
but not reuse of original text, so the original inventor of the practice feels he
or she has been robbed of his/her work; there is no collaboration between
method authors, but instead they are “at war” as competing brands.

Within these famous methods, there are some often useful practices
that are specific for each one. The problem is that all these methods are
monolithic, not modular, which means that you cannot easily mix and match
practices from different methods. If you select one, you are more or less stuck
with it. This is not what teams want, and certainly not their companies. This
is, of course, what most method authors whose method is selected like, even
if it was never what they intended.

Typically, every recognized method has a founding parent, sometimes more
than one parent. If successful, this parent is raised to guru status. The guru more or
less dictates what goes into his/her method. Thus, once you have adopted a method,
you get the feeling you are in a method prison controlled by the guru of that method.
Ivar Jacobson, together with Philippe Kruchten, was once such a guru governing
the Unified Process prison. Jacobson realized that this was “the craziest thing in
the world,” a situation unworthy in any industry and in particular in such a huge
industry as the software industry. To eradicate such unnecessary method wars and

28 Chapter2 Software Engineering Methods and Practices

2.3

method prisons, the SEMAT (Software Engineering Method and Theory) initiative
was founded.

The SEMAT Initiative

As of the writing of this book there are about 20 million software developers® in the
world and the number is growing year by year. It can be guesstimated that there are
over 100,000 different methods to develop software, since basically every team has
developed their own way of working even if they didn’t describe it explicitly.

Over time, the number of methods is growing much faster than the number of
reusable practices. There is no problem with this. In fact, this is what we want to
happen, because we want every team or organization to be able to set up its own
method. The problem is that until now we have not had any means to really do that.
Until now, creating your own method has invited the method author(s) to reinvent
everything they liked to change. This has occurred because we haven't had a solid
common ground that we all agreed upon to express our ideas. We didn’t have a
common vocabulary to communicate with one another, and we didn’t have a solid
set of reusable practices from which we could start creating our own method.

In 2009, several leaders of the software engineering community came together,
initiated by Ivar Jacobson, to discuss the future of software engineering. Through
that, the SEMAT (Software Engineering And Theory) initiative commenced with two
other leaders founding it: Bertrand Mayer and Richard Soley.

The SEMAT call for action in 2009 read as follows.

Software engineering is gravely hampered today by immature practices. Specific
problems include:

e The prevalence of fads more typical of fashion industry than of an engi-
neering discipline.

e The lack of a sound, widely accepted theoretical basis.

e The huge number of methods and method variants, with differences little
understood and artificially magnified.

e The lack of credible experimental evaluation and validation.

e The split between industry practice and academic research.

6. https://www.infoq.com/news/2014/01/IDC-software-developers

2.4

2.4 Essence: The OMG Standard 29

We support a process to re-found software engineering based on a solid theory,
proven principles, and best practices that:

e Include a kernel of widely agreed elements, extensible for specific uses
e Address both technology and people issues
e Are supported by industry, academia, researchers and users

e Support extension in the face of changing requirements and technology.

This call for action was signed by around 40 thought leaders in the world coming
from most areas of software engineering and computer science; 20 companies
and about 20 universities have signed it, and more than 2,000 individuals have
supported it. You should see the “specific problems” identified earlier as evidence
that the software world has severe problems. When it comes to the solution “to
re-found software engineering” the keywords here are “a kernel of widely agreed
elements,” which is what this book has as a focus.

It was no easy task to get professionals around the world to agree on what
software engineering is about, let alone how to do it. It led, of course, to significant
controversy. However, the supporters of SEMAT persevered. Never mind that the
world is getting more complex, and there is no single answer, but there ought to be
some common ground—a kernel.

Essence: The OMG Standard

After several years of hard work, the underlying language and kernel of software
engineering was accepted in June 2014 as a standard by the OMG and it was
given the name Essence. As is evident from the call for action, the SEMAT leaders
realized already at the very start that a common ground of software engineering
(a kernel) needed to be widely accepted. In 2011, after having worked two years
together and having reached part of a proposal for a common ground, we evaluated
where we were and understood that the best way to get this common ground
widely accepted was to get it established as a formal standard from an accredited
standards body. The choice fell on OMG. However, it took three more years to get
it through the process of standardization. Based upon experience from the users
of Essence, it continues to be improved by OMG through a task force assigned to
this work.

In the remainder of this part of the book, we will introduce Essence, the key
concepts and principles behind Essence, and the value and use cases of Essence.

30 Chapter2 Software Engineering Methods and Practices

This material is definitely useful for all students and professionals alike. Readers

interested in learning more, please see Jacobson et al. [2012, 2013a, 2013b], and
Ng [2014].

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to:

explain the meaning of a method (as providing guidance for all the things
you need to do when developing and sustaining software);

explain the meaning of a practice and its types (i.e., solution-related prac-
tices, endeavor-related practices, customer-related practices);

explain the meaning of waterfall methods and their role in the history of
software engineering;

explain the iterative lifecycle methods, structured methods, component
methods, and agile methods, as well as their characteristics;

give examples of some practices (e.g., self-organizing teams, pair program-
ming, and daily standups as examples of agile practices);

explain the “method prison” issue discussed in the chapter; and

explain the SEMAT initiative and the motivation behind the Essence stan-
dard.

Again we point to additional reading, exercises, and further material at

www.software-engineering-essentialized.com.

Essence in a Nutshell

In this chapter we present key ideas resulting in Essence as a common ground
for all software engineering methods. Basic concepts of Essence, the notion of a
method and the architecture of Essence are introduced. In particular, this chapter
introduces and explains

e the key ideas resulting in Essence and why they are important for software
engineering;

e the concept of composition as a way to combine practices to form a method
to guide a development endeavor;

e the common ground Essence as consisting of a language and a kernel of
essential elements;

e the concepts of practices and methods built of top of Essence forming a
method architecture; and

e the concept of cards as a means to give the abstract elements of Essence an
attractive and tangible user experience.

This chapter shows that the main idea behind Essence is to focus on the most
important things to think about when developing software (focus on the essentials
only).

Essence became a standard in 2014 as aresponse to “the craziest thing in the world”
presented in Chapters 1 and 2.

In this chapter, we will present some key ideas used as input when designing
Essence. We will also separately motivate each idea and describe how it has been
realized with Essence.

32 Chapter 3 Essence in a Nutshell

3.1

3.2

The ldeas

Essence relies on the following insights.

e Methods are compositions of practices.

= There are a huge number of methods (guesstimated to be > 100,000)
in the world, some of which are recognized and have a large user
base.

= There are only a few hundred reusable practices in the world. With n
practices the number of theoretically possible combinations of these
practices can quickly grow very large.

® Thereisacommon ground, ora kernel, shared among all these methods and
practices.

e Focus on the essentials is needed when providing guidelines for a method
or practice.

e Providing an engaging user experience is possible when teaching and learn-
ing methods and practices.

Methods Are Compositions of Practices

As explained in Chapter 2, a method is created with the intention to guide the
software development team(s) through everything they need to do during the de-
velopment process: that is, giving them all the practices they need. A practice is
like a mini-method in that it guides a team in how to carry out one particular thing
in their work. For instance, “requirements management” is a potential practice
dealing with what a software system should do. It is obviously not all you need to
do when you develop software; you need many other such practices, for instance,
“design, implement, and test,” “organize your team,” “perform project manage-
ment,” etc. For small endeavors, it is not uncommon that you need a dozen such
mini-methods/practices.

Because a method is attempting to give complete guidance for the work, it relies
on a composition of practices. Thisis an operation merging two or more practices to
form the method. Such a composition operation has to be defined mathematically
in order to be unambiguous and precise. It has to be specified by a method expert
with the objective to resolve potential overlaps and conflicts among the practices,
if there are any. Usually most practices can be composed easily by setting them side

3.2 Methods Are Compositions of Practices 33

by side because there are no overlaps and conflicts, but in some cases, these have
to be taken care of.

This is because, while practices are separate, they are not independent. They
are not like components that have interfaces over which communication/inter-
operation will happen. They also share elements, so let us briefly look at what these
might be. Inside a practice are, for instance, guidelines for activities that a user
(e.g., a developer) is supposed to perform, and guidelines for work products (e.g.,
components) that a user is expected to produce. Although two practices may share
the same work product, they contribute separate guidelines to this work product,
and composing these two practices, resolving potential overlaps and conflicts, will
require that you specify how the contributions must be combined in a meaningful
and constructive way.

However, not just methods are compositions, but also practices can be compo-
sitions of smaller practices. Scrum, for instance, can be seen as a composition of
three smaller practices: Daily Standup, Backlog-Driven Development, and Retro-
spective. (We will discuss these later when we come to Scrum in Part II1.)

We will come back later to compositions when we have more details about prac-
tices in our knowledge bag. (If you want to have a peek into more on compositions
now, take a look at Chapter 19.)

What eventually becomes a method or a practice is just a practical decision. To
reiterate, a method is closer to the complete guidance you need whereas a prac-
tice (composed or not) is just one aspect (or several) of what you need to guide
the team(s) to deal with all the “things” they need to deal with when developing
software. An individual can create one or a few practices based on experience, but
a method is always too big to be created by one individual without “borrowing”
practices from others. We say “borrowing” within quotes, because it is an act with-
out consent of the originator. Practices are successful because of the knowledge
they provide, whereas methods are usually branded (like RUP, SAFe, DAD, Nexus,
Less) and success is more about great marketing than about knowledge being
provided.

When we say that a practice guides a team, we mean it is described one way or
another to indicate what to do. How explicit a practice should be, i.e., how detailed
the descriptions should be, depends on two factors: capabilities and background.

Capability. Capability refers to team members’ ability, based upon the knowl-
edge they already have, to figure things out for themselves. Team members
with high skill and capability need only a few reminders and examples to

34 Chapter 3 Essence in a Nutshell

Tacit Explicit
High| practices practices

sufficient needed

Capability

Tacit Explicit

practices practices
Low! ™ \ith with
coaching coaching
Common Different
Background

Figure 3.1 How explicit practices depend on capability and background.

3.3

get going. Others may need training and coaching to learn how to apply a
practice effectively.

Background. If the team has worked together using a practice in the past or
have gone through the same training, then they have a shared background.
In this case, practices can be tacit. On the other hand, if team members
have been using different practices, e.g., some have been using traditional
requirements specifications while others have been using user story (a more
modern way of dealing with requirements), then they have different back-
grounds. In this case, practices should be described to avoid miscommuni-
cation.

How these two factors interact and influence the form that your practices should
take is summarized in Figure 3.1.

As an example, in the case where a team’s requirements challenges relate to
different backgrounds and members do not know that much about requirements
collaboration techniques, the team needs explicit practices and some coaching
which a more experienced team member can provide out of the box. Additional
factors to be considered, contributing to the need for practices, include the size of
the team and how its members are geographically distributed.

There Is a Common Ground

Using a common ground as a basis for presenting guidelines for all practices will
make it easier to teach, learn, use, and modify practices and easier to compare
practices described using the same common ground.

3.3 There Is a Common Ground 35

Kernel Language Essence

Figure 3.2 Essence and its parts.

Essentialized methods

use

Essentialized practices O

use

The Essence kernel @

uses

The Essence language

Figure 3.3 Essence method architecture.

Figure 3.2 illustrates Essence as this common ground, providing both a lan-
guage and a kernel of software engineering.

The Essence language is very simple, intuitive, and practical, as we will show
later in this section.

As previously described, it was left to the software engineering community to
contribute practices, which can then be composed to form methods. Figure 3.3
depicts the relationships between methods composed using practices, which are
described using the Essence kernel and the Essence language. As you can see in
Figure 3.3, the notation used in the Essence language for practices is the hexagon,
and for methods it is the hexagon enclosing two minor hexagons.

The practices are essentialized, meaning they are described using Essence—the
Essence kernel and the Essence language. Consequently, the methods we will de-
scribe are also essentialized. In Part 111 you will see many examples of essentialized
practices.

36 Chapter3 Essencein a Nutshell

Method

Backlog
- Driven

Essence

Figure 3.4 A method is a composition of practices on top of the kernel.

Essentializing not only means that the method/practice is described using
Essence; it also focuses the description of the method/practice on what is essential.
It doesn’t mean changing the intent of the practice or the method. This provides
significant value. We as a community can create libraries of practices coming from
many different methods. Teams can mix and match practices from many methods
to obtain a method they want. If you have an idea for a new practice, you can just
focus on essentializing that practice and add it to a practice library for others to
select; you don't need to “reinvent the wheel” to create your own method (see, e.g.,
Figure 3.4. This liberates that practice from monolithic methods, and it will open
up the method prisons and let companies and teams get out to an open world.

As mentioned earlier, a team usually faces a number of challenges and will
need the guidance of several practices. Starting with the kernel, a team can select
a number of practices and support tools to make up its way-of-working. The set of
practices that they select for their way-of-working is their method.

When learning a new practice or method, perhaps about use cases, or user
stories, it is sometimes difficult to see how it will fit with your current way-of-
working. By basing the practices on a common ground, you can easily relate new
practices to what you already have. You learn the kernel once and then you just
focus on what is different with each new practice.

Even if there are many different methods (every team or at the least every orga-
nization has one), they are not as different as it may seem. Examples of common
practices are user story, test-driven development (TD), and backlog driven devel-
opment. These terms may not mean much to you now, but in Part III we will give
meaning to them. Right now, this combination serves just as an example of the
relationship between a method and its practices.

3.4

3.5

3.5 Providing an Engaging User Experience 37

Sidebar 3.1 How Much Does a Developer Need to Know About Methods?

You may be asking yourself at this point, do I really need to care about all of this method
theory? Remember, a method is a description of the team’s way of working and it
provides help and guidance to the team as they perform their tasks. What the kernel
does is help you structure what you do in a way that supports incremental evolution
of the software system. In other words, it puts you in control of the way you work and
provides the mechanism to change it.

The idea of describing practices on top of the kernel is a key theme of this book.
A further discussion of how they are formed this way is found in Part III (see also
Sidebar 3.1).

Focus on the Essentials
Our experience is that developers rarely have the time and interest to read detailed
methods or practices. Starting to learn the essentials gets teams ready to start
working significantly earlier than if they first have to learn “all” there is to say about
the subject.

These essentials are usually just a small fraction of what an expert knows about
a subject—we suggest 5%—but with the essentials you can participate in conver-
sations about your work without having all the details. It helps to grow T-shaped
people—people who have expertise in a particular field, but also broad knowledge
across other fields. Such people are what the industry needs as work becomes more
multi-disciplinary. Once you have learned the essentials it is relatively straightfor-
ward to find out more by yourself from different sources.

Some teams and organizations need more than the essentials, so different levels
of details must be made optional.

Providing an Engaging User Experience
Many books have been written to teach software engineering. Some people inter-
ested in learning about ideas and trends in this space read these books, but the
vast majority of software development practitioners don’t—not even if they have
bought the books. Thus, textbooks are not the best way to teach practices to prac-
titioners. Modern method-authors have taken a different approach by presenting
their methods as a navigable website.

Essence has taken a different approach by providing a hands-on, tangible user
experience focused on supporting software professionals as they carry out their
work. For example, the kernel can be accessed (and actually touched) through the

38 Chapter 3 Essence in a Nutshell

() Requirements
What the software system must

do o address the opportunity and
satisfy the stakeholders.

Lo

1

Nq“m = WNO Mulnn‘l-!m. D R;;I‘lll‘lﬂ.ﬂﬁ Q M‘"’"’ﬂt Q’

= pounded 8 IS 7 O Eng Am""d' %‘Mh
= [Rsgursments shared Acceptatie sohson descri ¢ ~.
N M“’:; © Requirements’ rgin 37 | () Change under control gmbh., VQM F‘M ™~
e O e PP T 5 Ratonaie clesr O Value 10 ba eaized cea g Palzng oY Piem | M
o ’w,aﬂ o succes®) Conficts addressad O Claar how coportunity & MW‘"M “5\..,,.'.Q N
u_,‘-ﬂ‘:;w O e ™ T ennia character e S G satie "9 opg W‘
e | Sha e S
o o e O
priomaat” o
L;;::-wf‘f"f: 0 Team knows & agrees 60
o |
e L] [) 3
1 5l = 0
e E= o | © - 9 L7
4 o
o

Figure 3.5 Cards make the kernel and practices tangible.

use of cards (see Figure 3.5). The cards provide concise reminders and cues for team
members as they go about their daily tasks. By providing practical check-lists and
prompts, as opposed to conceptual discussions, the kernel becomes something
the team uses on a daily basis. This is a fundamental difference from traditional
approaches, which tend to emphasize method description over method use and

tend to be consulted only by people new to the team.

Cards have proven to be a lightweight and practical way to remember, but also
to use in practice in a team. They make the kernel and the practices easy to digest

and use. For this reason, throughout the book we will use cards to present elements
in the kernel and in practices.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

e name the key elements of Essence;

e distinguish between a practice and a method (give some examples of both);

What Should You Now Be Able to Accomplish? 39

e explain the concept of composition as a key technique to build methods
using practices (and to support extensibility in Essence);

e explain the concept of tacit vs. explicit practices;

e explain the role of capability and background in deciding how explicit a
practice should be; and

explain the layered architecture of Essence and its elements.

Again, we point to additional reading, exercises, and further material at
www.software-engineering-essentialized.com.

Given that the reader is now equipped with ability to distinguish essential (i.e.,
the important) steps/aspects/decisions from those of minor importance, more
knowledge can now be gained by proceeding in a given project and by working
on the project with other people/stakeholders involved.

Copyrighted material

4.1

Identifying the Key
Elements of Software
Engineering

The goal of this chapter is to present the key elements of the development endeavor,
which later become “alphas,” the building blocks of Essence—the things we work
with when developing software. In this chapter, we discuss

e the key elements within software engineering that deliver value to the
customer;

e the key elements in software engineering that are related to the targeted
solution and development endeavor; and

e the role and importance of different stakeholders, requirements, and team

composition.

This knowledge will help us to lay out a model of software engineering with areas
of concern and key elements, which will create the basis for our understanding of
Essence. To understand this model in practical application, we now rejoin Smith

in his journey into software development.

Getting to the Basics

After Smith had been working in the software industry for several years, he had his
fair share of ups and downs. He wished there were more ups than downs. Without a
doubt, software engineering is a creative process, but Smith had come to recognize
that there are some fundamental basics—some things to be mindful of, to avoid
making unnecessary mistakes.

42 Chapter 4 Identifying the Key Elements of Software Engineering

Smith’s colleagues also recognized that, but they had difficulty articulating these
fundamentals due to their different backgrounds, experience, and, consequently,
the different terms they used. It seemed that every time a new team was formed,
members had to go through a “storming and norming” process to iron out these
terms before starting to deal with the challenges.

If you have been in the software industry for some time, you can empathize
with Smith. For students new to software engineering, we want you to appreciate
the complexities of a software development endeavor as you read this chapter and
compare that against the complexities of your class, or of project assignments that
you have worked on.

Essence was developed to help people like Smith and companies like Travel-
Essence who rely heavily on software to run their business. What the contributors
to Essence did was to lay down the foundation of software engineering for folks like
Smith and yourself to cut short this startup period and ensure health and speed as
your software development endeavors progress. The term health is discussed and
defined later on for the area of software development. See, for example, Chapter 11
for a more detailed discussion.

Let’s begin with some commonly used terms found in software engineering,
which we will briefly introduce in italics. Regardless of size and complexity, all
software development endeavors involve the following facets (see Figure 4.1):

e There are customers with needs to be met.
= Someone has a problem or opportunity to address.

» There are stakeholders who use and/or benefit from the solution
produced, and some of these will fund the endeavor.

e There is a solution to be delivered.

= There are certain requirements to be met.

= A software system of one form or another will be developed.
e There is an endeavor to be undertaken.

= The work must be initiated.

= An empowered team of competent people must be formed, with an
appropriate way of working.

These terms map out what software engineering is about. When something goes
wrong, it is normally an issue with one or more of these facets. The way we handle
these issues has a direct impact on the success or failure of the endeavor. We will

Figure 4.1

4.2

4.2.1

4.2 Software Engineering Is about Delivering Value to Customers 43

- ™
z
3
Qo
" - _/
(\ﬁ |
c
2
E Requirements Software Y
c /ﬂtem
v
AN 4
- N
f Team —_—
8
z
=
=
23]
A J

The things involved in all development endeavors.

now look at each of these facets in turn. Later, in Chapter 6, we will once more
discuss issues and their relationships.

Software Engineering Is about Delivering Value to Customers
First, software engineering is about delivering value to customers. This value can
be in improvements to existing capabilities or in providing new capabilities that
are needed by the customer. (In our TravelEssence mode, customers are the users.
They can be travelers or travel agents who make reservations on behalf of actual
travelers.) Different customers would have different needs. If the endeavor does
not deliver value, then it is a waste of time and money. As the saying goes, life is too
short to build something that nobody wants!

Opportunity

Every endeavor is an opportunity for success or failure. It is therefore very important
to understand what the opportunity is about. Perhaps you have heard of Airbnb.
Airbnb started out in 2008 with two men, Brian Chesky and Joe Gebbia, who were

44 Chapter4 Identifying the Key Elements of Software Engineering

4.2.2

struggling to pay rent. They came up with the idea of renting out three airbeds
on their living-room floor and providing their guests with breakfast. It turned
out that during that time, there was an event going on in their city and many
participants weren’t able to book accommodations. Brian and Joe realized they
were onto something. To cut the story short, Airbnb became a 1.3 billion USD
business in 2016.

However, not all businesses grow and are successful like that. In fact, far more
companies do not make it, and miss many opportunities. In fact, there has been a
90% failure rate for startups.! Many successful companies become failures due to
missed opportunities. Thus, understanding opportunities is critical.

An opportunity is a chance to do something, including fixing an existing prob-
lem. In our context, an opportunity involves building or enhancing software to meet
a need. Regardless of what the opportunity is, it can either succeed or fail. It can
deliver real value, or it could be something that nobody wants.

As an example, our TravelEssence model revealed that customers like to engage
travel staff because of the recommendations that the staff provides. The opportu-
nity here is that if TravelEssence can provide recommendations online through a
software solution, it can provide better service to customers, thereby shortening
the time customers need to make a purchase decision. Of course, whether this op-
portunity is truly viable depends on many factors.

Thus, when working with an opportunity it is important to continuously evaluate
the viability of the opportunity as it gets implemented.

* When the opportunity is first conceived, some due diligence is necessary to
determine if it truly addresses a real need or a real new idea that customers
are willing to pay money for.

e It would likely be the case that different solution options are available to
address the opportunity, and some difficult choices will have to be made.

¢ When the solution goes live, it normally takes some time before the benefits
become visible to customers.

Stakeholders

For opportunities to be taken up, there must be some people involved in the
decision. The name we have for those individuals, organizations, or groups is
stakeholders. Stakeholders who have some interest or concern in the system being
developed are known as external stakeholders; those interested in the development

1. https://www.forbes.com/sites/neilpatel/2015/01/16/90-of-startups-will-fail-heres-what-you-
need-to-know-about-the-10/#43f76e846679

4.3

4.3.1

4.3 Software Engineering Delivers Value through a Solution 45

endeavor itself are called internal stakeholders. In our TravelEssence case, internal
stakeholders include a development team assembled to develop the new services
for travelers, along with key managers in the organization who need to agree to
the new venture. Examples of external stakeholders being affected by the system
include a manager in our TravelEssence organization who needs to agree to fund
the new software effort, or a traveler who might benefit by using the new services.

One of the biggest challenges in a development endeavor is getting stakeholders
to agree. Before that can occur, they must first be involved in some way. The worst
thing that could happen is that when all is said and done, someone says, “This is
not what we want.” This happens too often.

Thus, it is really important early in the endeavor to:

¢ understand who the stakeholders are and what their concerns are;
e ensure that they are adequately represented and involved in the process; and

e ensure that they are satisfied with the evolving solution.

Software Engineering Delivers Value through a Solution

What sets a software development endeavor apart from other endeavors is that the
solution thataddresses the opportunity is via a good piece of software. Nobody wants
a poor-quality product. Customers’ needs are ever evolving, so the solution needs
to evolve as well, and for that to happen it has to be extensible. This extensibility
applies to both the requirements of the solution and the software system that realizes
the requirements.

In TravelEssence, the requirements for the solution cover different usage sce-
narios for different kinds of customers (e.g., new travelers, frequent travelers, cor-
porate travelers, agents, etc.). The software system involves a mix of mobile appli-
cations and a cloud-based backend.

Requirements

Requirements provide the stakeholders’ view of what they expect the software
system to provide. They indicate what the software system must do, but do not
explicitly express how it must be done. They identify the value of the system in
respect to the opportunity and indicate how the opportunity will be pursued via
the creation of the system.

As such, requirements serve like a medium between the opportunity and the
software system. Among the biggest challenges software teams face are changing
requirements. Usually, there is more than one stakeholder in an endeavor, and
stakeholders will of course have different and even conflicting preferences and

46 Chapter4 Identifying the Key Elements of Software Engineering

4.3.2

opinions. Even if there is only one stakeholder, he/she might have different opin-
ions at different times. Moreover, the software system will evolve together with the
requirements. What we see affects what we want. Thus, requirement changes are
inevitable because the team’s understanding of what’s needed will evolve. What we
want to prevent is unnecessary miscommunication and misunderstanding.

At TravelEssence, Smith encountered this when working on a discount program.
The team had thought that this enhancement would be very simple. However, the
stakeholders had different ideas on how long the program should last, which group
of users the discount program should focus on, the impact of the discount program
on reservation rates, etc. They had wanted to launch the discount program within
a month’s time, yet there was a great deal of debate even to the very last hour.

Thus, how a team works with requirements is absolutely crucial, with principles
like:

* ensuring that requirements are continuously anchored to the opportunity;

e organizing the requirements in a way that facilitates understanding and
resolves conflicting requirements;

e ensuring that the requirements are testable, i.e., that one can verify that the
software system does indeed fulfill the requirements without ambiguity; and

¢ using the requirements to drive the development of the software system. In
fact, code needs to be well structured and easy to relate back to the require-
ments. Progress is measured in terms of how many of the requirements have
been completed.

Software System

The primary outcome of a software endeavor is of course the software system itself.
This software system can come in one of many different forms. It could be the
app running on your mobile phone; it could be embedded in your air conditioner;
it could help you register for your undergraduate program,; it could tally election
votes. It could run on a single machine or be distributed on a server farm in data
centers or across a vast network as in the Internet today.

Whatever the case, there are three important characteristics of software systems
necessary before they can be of value to users and stakeholders: functionality,
quality, and extensibility.

The need to have functionality is obvious. Software systems are designed and
built to make the lives of humans easier. They each must serve some functions,
which are derived from the software system’s requirements.

4.3 Software Engineering Delivers Value through a Solution 47

The need for quality is easy to understand. Nobody likes a software system that
is of poor quality. You do not want your word processor to crash when you are
finishing your report, especially if you have not saved your work. You want your
social media posts to be instantaneous. Thus, quality attributes like reliability
and performance are important. Other qualities, such as ease of use or a rich
user experience, are becoming more important as software systems become more
ubiquitous. Of course, the extent of quality needed depends on the context itself.
This again can be derived from the software system’'s requirements.

The third characteristic is that of being extensible. It can be said that this is an-
other aspect of quality, but we want to call this out separately. Software engineering
is about changing and evolving the software system, from one version to the next,
giving it more and more functionality to serve its users. This evolution occurs over
time as a series of increments of more functionality, where every increment is de-
scribed by more requirements. This is illustrated in Smith’s job at TravelEssence,
which involves introducing changes to the existing travel reservation software sys-
tem when TravelEssence introduces new discount programs, initiates membership
subscription incentives, integrates with new accommeodation providers, etc.

There are several important aspects of this evolution. First, it does not merely
entail hacking or patching code into the software system. Otherwise, as the software
system grows in size, itwill be harder to add new functionality. Consequently, teams
often organize software systems into interconnecting parts known as components.
Each component realizes part of the requirements and has a well-defined scope
and interface. As a student, the lessons you will learn about object orientation, etc.
are about organizing the software system into manageable components.

Second, code needs to be well structured and easy to relate back to the re-
quirements. Just as the requirements will evolve, the software system needs to be
extensible to such changes.

Third, the evolution involves transitioning the software system across different
environments, from the developer’s machines, to some test environment, to what
is known as the production environment, where actual users will be using the soft-
ware system. It is not unusual to find that software that works on the developer's
machines will have defects (or bugs) in the test or production environment. Many
senior developers get irritated when they hear novices say: “But it works on my
machine.” A developer’s job is not done until they system works well in the produc-
tion environment. A quality software system must:

e have a design that is a solution to the problem and agreed to;

e have demonstrated critical interfaces;

48 Chapter4 Identifying the Key Elements of Software Engineering

4.4

4.4.1

s be usable, adding value to stakeholders; and

e have operational support in place.

Software Engineering Is Also about Endeavors

An endeavor is any action that we take with the purpose of achieving an objective,
which in our case means both delivering value according to the given opportunity
and satisfying stakeholders. Within software engineering, an endeavor involves a
conscious and concerted effort of developing software from the beginning to the
end. It is a purposeful activity conducted by a software team that achieves its goals
by doing work according to a particular way of working.

Team

Software engineering involves the application of many diverse competencies and
skills in a manner similar to a sports team. As such, a team typically involves several
people and has a profound effect upon any development endeavor. Without the
team there will be no software.

Good teamwork is essential for high performance. It creates a synergy, where
the combined effect of the team is much greater than the sum of individual efforts.
But getting to a high-performance state does not come naturally; instead, it results
from a deliberate attempt to succeed.

To obtain this high level of performance, the team members should reflect on
the way they work together and how they focus on the team goal.

Teams need to:

* be formed with enough people to start the work;
* be composed of personnel possessing the right competencies/skills;
¢ work together in a collaborative way; and

e continuously adapt to their changing environment.

When working in TravelEssence, Smith belonged to a development team. Al-
though members of Smith’s team had slightly different skill sets, they collaborated
to achieve the team’s goal together. Smith was particularly focused on backend
technologies (i.e., the part of the software system running on the cloud), whereas
Grace, a colleague, focused on front-end JavaScript and React Native technologies.
(Since these technologies are not the emphasis of this book, you don’t need to
know them. Moreover, technologies change rather quickly. Instead, what we want to

4.4.2

4.4.3

4.4 Software Engineering Is Also about Endeavors 49

emphasize is that effective teams have to address the opportunity presented to them
to satisfy stakeholders.)

Work

When a team comes together to do the work of making the opportunity a reality
in the software system they build, the purpose of all their efforts is to achieve a
particular goal. In general, there is a limited amount of time to reach this goal:
they must get things done fast but with high quality. The team members must
be able to prepare, coordinate, track, and complete (stop) their work. Success in
this has a profound effect upon meeting commitments and delivering value to
stakeholders. Thus, the team members must understand how to perform their work
and recognize if the work is progressing in a satisfactory manner.
Doing the work, then, involves:

e getting prepared;
e communicating the work to be done;
e ensuring that progress and risk are under control; and

e providing closure to the work.

In TravelEssence, Smith and his team managed their work through a backlog.
The backlog is a list of things to do, which originated from requirements. They
communicated regularly with their stakeholders to make sure that their backlog
was accurate, up-to-date, and represented the stakeholders’ priorities. In this way,
they could focus on getting the right things done.

Way of Working

A team can perform their work in different ways and this may lead to different
results. It can be performed in an ad hoc manner, meaning that you decide how to
work while doing the work. For instance, while cooking a soup, you may not follow
a recipe—you might decide on the fly which ingredients to use and in what order to
mix and cook them together. When following an ad hoc way of working, the result
may or may not be of high quality. This depends on many factors: among them, the
skill of the people involved and the number of people involved in the process.

All of us are acquainted with the saying “too many cooks spoil the broth.” If
too many cooks cook the soup in an ad hoc manner, the soup won't taste good.
Translating the analogy to software, if too many people participate in agreeing on
how to do the job, the job will probably not be done well. There are many reasons

50 Chapter4 Identifying the Key Elements of Software Engineering

for this. One of them is that each person has his/her own idea of how to conduct
the job and, often, they do not work in an orchestrated manner.

Smith’s team addressed this issue by regularly looking at their prioritized back-
log. They made sure that they correctly understood the scope of each item in the
backlog, checking with stakeholders and getting feedback from them. Smith’s team
regularly examined their method or, in other words, their way of working. If things
did not seem right, they made changes.

It is therefore important for team members to come into some kind of con-
sensus regarding their way of working. Disagreements about the way of working
are significant barriers to team performance. You would think that coming to an
agreement would be easy. The truth of the matter is that it is not. On a small scale,
within a single team, there is still a need for members to agree on the founda-
tions and principles, followed by specific practices and tools. This would of course
need to be adapted to the team’s context, and evolve as the environment and needs
change.

The way of working must:

® include a foundation of key practices and tools;
® be used by all the team members; and

* be improved by the team when needed.

In an industry scale, one of the things we hope to achieve through Essence is to
simplify the process of reaching a common agreement. We do that at this scale by
identifying a common ground or a kernel and having a way to deal with diversity
of approaches. In the subsequent chapters, we will discuss the approach taken by
Essence in greater detail.

In this chapter, we have introduced the following terms: opportunity, stakehold-
ers, requirements, software system, work, team, and way of working. Essence will
give these terms greater rigor and provide guidance to software teams on how to
build a stronger foundation to achieve their goals.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to:

¢ list and explain the things involved in all development endeavors, related to
the customer (i.e., opportunity, stakeholders), solution (i.e., requirements,
software system), and endeavor (i.e., work, team, way of working);

s give examples of different types of stakeholders, together with their interests
and concerns;

What Should You Now Be Able to Accomplish? 51

e explain the mediating role of requirements;

e name and explain the three key characteristics of software systems (i.e.,
functionality, quality, and extensibility); and

e explain what makes a good team.

Understanding the facets of software engineering covered in this chapter provides
an overview of the main core of Essence. This core may seem fairly abstract at this
point, but as you read on, you will recognize all these facets in the Essence alphas,
and be able to apply them in more and more practical and detailed ways.

Copyrighted material

9.1

The Language of
Software Engineering

The goal of this chapter is to present how the concepts discussed in the previous
chapter are expressed as a language similar to how a programming language is
expressed in computer science. Thus, we learn the concepts of alpha, alpha state,
work product, activity, activity space, competency, and pattern, and how these
concepts are expressed. We will show in this chapter

¢ the language constructs of Essence;
¢ the role of alpha states in two alphas and related checklists;
e the meaning and benefits of essentializing a practice; and

e the concept of cards as a practical way to use the various language elements
of Essence.

What you learn here provides the necessary handles to use Essence in practice!

A Simple Practice Example

Essence provides a precise and actionable language to describe software engineer-
ing practices. Just as there are constructs like nouns and verbs in English, there
are constructs in the Essence language in the form of shapes and icons. Just as
a child learns a language by first using sentences without understanding the un-
derlying grammar, we will introduce the Essence language through a simple pair
programming practice. We choose this very simple practice because it is easily
understandable even for students new to software engineering. We will introduce
more sophisticated ones in later parts of the book.

We describe this programming practice as follows.

¢ The purpose of this practice is to produce higher quality code. In this case,
we assume that the concept of code quality is understandable to the different
members of the team.

54 Chapter 5 The Language of Software Engineering

Figure 5.1

9.2

Requirements Software System
provides
input and is
* progressed by >
Development ; produces >
<requires S
competency
i i / Write Code Code

Testing

Simple programming practice (pair programming) described using Essence language.

e Two persons (students) work in pairs to turn requirements into a software
system by writing code together.

® Writing code is part of implementing the system.

Essence uses shapes and icons to communicate the Things to Work With, the
Things to Do, and Competencies. We shall describe each of these categories in turn
and at the same time demonstrate how Essence provides explicit and actionable
guidance for them, delivered through associated checklists and guidelines.

Figure 5.1 shows the elements in our simple programming practice. The shapes
and icons are the constructs, i.e., the “nouns” and “verbs,” in the Essence language.

These different shapes and icons each have different meanings, as quickly
enumerated in Table 5.1. As the text continues, we will go into greater depth for
each one of them and explain their significance.

The Things to Work With

The “things to work with” in our programming practice are requirements, software
systems, and code. If you compare the icons in Figure 5.1 with their definitions in
Table 5.1, you will see that two of these are alphas, but one is a work product.
Essence distinguishes between elements of health and progress, which
are called alphas, versus elements of documentation, which are known as work
products. Alphas are the important intangible things we work with when conduct-

