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Introduction

ew mathematical concepts, if any, have an impact on as
many aspects of our visual and intellectual lives as the
golden ratio. In the simplest form, the golden ratio refers to
the division of a given line segment into a unique ratio that
gives us an aesthetically pleasing proportion. This
proportion is formed in the following way: The longer segment (L)

is to the shorter segment (S) as the entire original segment (L+S) is
_L*D

to the longer segment. Symbolically, this is written as s T

Let us consider a rectangle whose length is L and whose width is
S, and whose dimensions are in the golden ratio. We call this a
golden rectangle, which derives its name from the apparent beauty
of its shape: a view supported through numerous psychological
studies in a variety of cultures. The shape of the golden rectangle
can be found in many architectural masterpieces as well as in
famous classical works of art.

When the golden ratio is viewed in terms of its numerical value,
it seems to infiltrate just about every aspect of mathematics. We
have selected those manifestations of the golden ratio that allow the
reader to appreciate the beauty and power of mathematics. In some
cases, our endeavors will open new vistas for the reader; in other
cases, they will enrich the reader's understanding and appreciation
for areas of mathematics that may not have been considered from
this unusual vantage point. For example, the golden ratio is a value,

frequently referred to by the Greek letter ¥ (phi), which has the
unique characteristic in that it differs from its reciprocal by 1, that

1 |
is, ¢ ¢ . This unusual characteristic leads to a plethora of

fascinating properties and genuinely connects ¥ to such familiar
topics as the Fibonacci numbers and the Pythagorean theorem.

In the field of geometry, the applications of the golden ratio are
practically boundless, as are their beauty. To fully appreciate their
visual aspects, we will take you through a journey of geometric
experiences that will include some rather unusual ways of
constructing the golden ratio, as well as exploring the many
surprising geometric figures into which the golden ratio is
embedded. All this requires of the reader is to be merely fortified
with nothing more than some elementary high school geometry.

Join us now as we embark on our journey through the many
wonderful appearances of the golden ratio, beginning with a history
of these sightings dating from before 2560 BCE all the way to the




present day. We hope that throughout this mathematical excursion,
you will get to appreciate the quotation by the famous German
mathematician and scientist Johannes Kepler (1571-1630), who
said, “Geometry harbors two great treasures: One is the
Pythagorean theorem, and the other is the golden ratio. The first we
can compare with a heap of gold, and the second we simply call a

priceless jewel.”! This “priceless jewel” will enrich, entertain, and
fascinate us, and perhaps open new doors to unanticipated vistas.



Chapter 1

Defining and Constructing
the Golden Ratio

As with any new concept, we must first begin by defining the key
elements. To define the golden ratio, we first must understand that
the ratio of two numbers, or magnitudes, is merely the relationship
obtained by dividing these two quantities. When we have a ratio of

1:3, or 3, we can conclude that one number is one-third the other.
Ratios are frequently used to make comparisons of quantities. One
ratio stands out among the rest, and that is the ratio of the lengths of
the two parts of a line segment which allows us to make the
following equality of two ratios (the equality of two ratios is called
a proportion): that the longer segment (L) is to the shorter segment

(S) as the entire original segment (L+S) is to the longer segment (L).
L+S

Symbolically, this is written as § L . Geometrically, this may
be seen in figure 1-1;:

A P B
R ——_——
& Y
[ S
~igure |-

This is called the golden ratio or the golden section—in the latter
case we are referring to the “sectioning” or partitioning of a line
segment. The terms golden ratio and golden section were first
introduced during the nineteenth century. We believe that the
Franciscan friar and mathematician Fra Luca Pacioli (ca. 1445-
1514 or 1517) was the first to use the term De Divina Proportione
(The Divine Proportion), as the title of a book in 1509, while the
German mathematician and astronomer Johannes Kepler (1571-
1630) was the first to use the term sectio divina (divine section).
Moreover, the German mathematician Martin Ohm (1792-1872) is
credited for having used the term Goldener Schnitt (golden section).
In English, this term, golden section, was used by James Sully in

1875.1

You may be wondering what makes this ratio so outstanding that
it deserves the title “golden.” This designation, which it richly
deserves, will be made clear throughout this book. Let's begin by
seeking to find its numerical value, which will bring us to its first
unique characteristic.



[

To determine the numerical value of the golden ratio § we will
L L+S L _L.S

change this equation § L or § L L to its equivalent, when
X = = y) o 1 +l
5, to get=: - X.

We can now solve this equation for x using the quadratic

formula, which you may recall from high school. (The quadratic

formula for solving for x in the general quadratic equation ax? + bx
. _1" o — i\!.;". —4dac _ _ ) .

+c=0is da . See the appendix for a derivation of this

formula.) We then obtain the numerical value of the golden ratio:

£_1,_1+\/§
y - 3 =

[ —

which is commonly denoted by the Greek letter, phi2: ¢’

L _1++5 1+2.236067977499789696409173668731276235440
S 2 2

¢_

~3.236067977499789696409173668731276235440

2
=~ 1.61803.
L

Notice what happens when we take the reciprocal of §, namely
S_1
L ¢:

1 § 2

@ L 1++/5

1—+/3
which when we multiply by 1 in the form of 1-+/5 , we get

2 1=+5 _2:(1-45) _2:(1=v5) 1-5 5-1 =\f§+‘_1=¢_1
1445 1=5  1-5 —4 —2 ‘ :
~0.61803.

But at this point you should notice a very unusual relationship.
| I

The value of @ and ¢ differ by 1. That is, 0 - ¢ = 1. Flrom the

normal relationship of reciprocals, the product of @ and 7 is also



A=

equal to 1, thatis, © ¢ . Therefore, we have two numbers, (P and
I

¢, whose difference and product is 1—these are the only two
numbers for which this is true! By the way, you might have noticed
that

7 +l,:\/§.. since V5 +1 + V51 =./5.

& 2 2

We will often refer to the equations X2 —x—1=0and x> +x—1 =0
during the course of this book because they hold a central place in
the study of the golden ratio. For those who would like some

reinforcement, we can see that the value ¢ satisfies the equation x?

—x—1=0, as is evident here:

\/§+l]: V5 +1 _5+2J§+1_2(\/§+1)

.
4

¢__¢_1:( 2 2 4 4

S+245+1-245-2-4 _
4

The other solution of this equation is

-5 W5-1_ 1
2 2 o

|

0.

while _{ satisfies the equation x2 + x — 1 = 0, as you can see here:

| il Y
5 T fee

Fe—

1=0.

0P+ (=) 1= — 1=

1
The other solution to this equation is ¢.

Having now defined the golden ratio numerically, we shall
construct it geometrically. There are several ways to construct the
golden section of a line segment. You may notice that we appear to
be using the terms golden ratio and golden section interchangeably.
To avoid confusion, we will use the term golden ratio to refer to the

numerical value of @ and the term golden section to refer to the
geometric division of a segment into the ratio th



GOLDEN SECTION CONSTRUCTION 1

Our first method, which is the most popular, is to begin with a unit
square ABCD, with midpoint M of side AB, and then draw a circular
arc with radius MC, cutting the extension of side AB at point E. We
now can claim that the line segment AE is partitioned into the
golden section at point B. This, of course, has to be substantiated.

F

Figure -2

To verify this claimé we *g’ould have to apply the definition of the
AB _ AE

ogolden section: BE 4B, and see if it, in fact, holds true.

Substituting the values obtained by applying the Pythagorean

theorem to AMBC as shown in figure 1-2, we get the following:

s 1 5 J5

MC*=MB*+BC*= (—] + 1 =—+ 1 ==: therefore, MC =—.

2 4 4 2

It follows that

BE =ME - MB=MC-MB =

Vs 1 45-1
) )

Z 2 Z ,and
AE=AB + BE =1 + V5-1 =3+‘/5'1=‘/§+1.
2 2 2 2

AB A

E
We then can find the value of BE 4B, that is,



\/§+1

L __ 2
J5 -1 1
.

P

which turns out to be a true proportion, since the cross products are
equal. That is,

= 1.

)

—

J§1)_ \/§7+1)=1_1

—

We can also see from figure 1-2 that point B can be said to divide
the line segment AE into an inner golden section, since

AB ] _ ] =\/5—1=l
AE l+\/§—1 J5 +1 2 (é'
2 2

Meanwhile, point E can be said to divide the line segment AB into
an outer golden section, since

J5 -1

AE YT 541
AB l )

You ought to take notice of the shape of the rectangle AEFD in
figure 1-2. The ratio of the length to the width is the golden ratio:

\,/g+l

AE 5 5+1
g

P-

EF l 2

This appealing shape is called the golden rectangle, which will be
discussed in detail in chapter 4.

P-

GOLDEN SECTION CONSTRUCTION 2

Another method for constructing the golden section begins with the
construction of a right triangle with one leg of unit length and the



other twice as long, as is shown in figure 1-3.# Here we will
partition the line segment AB into the golden ratio. The partitioning

may not be obvious yet, so we urge readers to have patience until
we reach the conclusion.

Figure |-3

With AB = 2 and BC = 1, we apply the Pythagorean theorem to

AABC. We then find that AC =v2 +1° = /5. With the center
at point C, we draw a circular arc with radius 1, cutting line segment

AC at point F. Then we draw a circular arc with the center at point
A and the radius AF, cutting AB at point P.

Because Al = \/g —], we get AP ='\/§ — 1. Therefore,
BP=2—(/5—1)=3—4/5,
AP J5-1

To determine the ratio BP, we will set up the ratio 3—+/5, and
then to make some sense of it, we will rationalize the denominator

3445
by multiplying the ratio by 1 in the form of 3 ++/5.

We then find that

5-1 3445 _3J545-3-4/5 24542 3(\5“)_@“ 5 ~ 1.61803
3-45 3445 3 -(/5) 9-5 4 2 i

which is the golden ratio! Therefore, we find that point P cuts the
line segment AB into the golden ratio.

GOLDEN SECTION CONSTRUCTION 3

We have yet another way of constructing the golden section.



Consider the three adjacent unit squares shown in figure 1-4,. We

construct the angle bisector of Z BHE. There is a convenient
geometric relationship that will be very helpful to us here; that is,
that the angle bisector in a triangle divides the side to which it is

drawn proportionally to the two sides of the angles being %1{5{ect%d >
C

In figure 1-4 we then derive the following relationship: £H — CE.

Applying the Pythagorean theorem to AHFE, we get HE = \/:
We can now evaluate the earlier proportion by subsututmg the

2

I
f <—X, from which we get 5 +1, which is the reciprocal of
5

S
Therefore, * ~ ¢ 0.61803
J' 1
1
A v
1
Figure |-4

Thus, we can then conclude that point B divides the line segment
AC into the golden section, since

AB_ 1 _\/;+1 ~ [.61803

BC x 2 , the recognized value of the
golden ratio.

GOLDEN SECTION CONSTRUCTION 4

Analogous to the previous construction is one that begins with two
congruent squares as shown in figure 1-5. A circle is drawn with its
center at the midpoint, M, of the common side of the squares, and a
radius half the length of the side of the square. The point of
intersection, C, of the circle and the diagonal of the rectangle
determines the golden section, AC, with respect to a side of the



square, AD.

1 D'
LD

Figure |-5

1 V5
With AD = 1 and DM = 2, we get AM = 2 by applying the
Pythagorean theorem to triangle AMD. (Siee fig. 1-6.) Since CM is

also a radius of the circle, CM = DM = 2. We can then conclude
that

Jg+l

AC=AM+cM =5 L _¥5+1_,
> 2 2

Furthermore,

J§+1 5-1
2 ¢

We have thus constructed the golden section and its reciprocal.

BC=AB-AC=+5-



~igure |-6

GOLDEN SECTION CONSTRUCTION 5

In this rather simple construction we will show that the semicircle
on the side (extended) of a square, whose radius is the length of the
segment from the midpoint of the side of the square to an opposite
vertex, creates a line segment where the vertex of the square
determines the golden ratio. In figure 1-7, we have square ABCD
and a semicircle on line AB with center at the midpoint M of AB and

radius CM. We encountered a similar situation with Construction 1,
AB AE

where we concluded that B£ " and 48
D _———~C

F A M B E

~igure |-/

However, here we have an extra added attraction: DE and BC
partition each other into the golden section at point P. This is easily
justified in that triangles DPC and EBP are similar and their
corresponding sides, DC and BE, are in the golden ratio. Hence, all



the corresponding sides are in the golden ratio, which here is
— DP _

PB PE

GOLDEN SECTION CONSTRUCTION 6

Some of the constructions of the golden section are rather creative.®
Consider the inscribed equilateral triangle ABC with line segment
PT bisecting the two sides of the equilateral triangle at points Q and
S as shown in figure 1-8.

[

~igure |-8

We will let the side length of the equilateral triangle equal 2, which
then provides us with the segment lengths as shown in ﬁgut&l_a

I.S
The proportionality there gives us CDl AC* which ]then by
RS _ 1 1
substituting appropriate values yields 1 ~ 27 and so RS = 2.

A useful geometric theorem will enable us to find the length of
the segments PQ = ST = x due to the symmetry of the figure. The
theorem states that the products of the segments of two intersecting
chords of a circle are equal. From that theorem, we find



PS-ST=AS-SC

(x+1)x=1-1
x+x—=1=0
J5—1
X= .
>

-

Therefore, the segment QT is partitioned into the golden section at
point S, since

: )
0S5 1 2 ‘/§+|=1.6]803.,

ST x +/5—1 ,

which we recognize as the value of the golden ratio. We can
generalize this construction by saying that the midline of an
equilateral triangle extended to the circumcircle is partitioned into
the golden section by the sides of the equilateral triangle.

GOLDEN SECTION CONSTRUCTION 7

This is a rather easy construction of the golden ratio in that it simply
requires constructing an isosceles triangle inside a square as shown
in figure 1-9. The vertex E of AABE lies on side DC of square
ABCD, and altitude EM intersects the inscribed circle of AABE at
point H. The golden ratio appears in two ways here. First, when thle
side of the square is 2, then the radius of the inscribed circle r = ¢,

and second when the pomt H partitions EM into the golden ratio as
EM — ¢,

HM




A M B

~igure |-9

To justify this construction, we will let the side of the square
have length 2. This gives us BM = 1 and EM = 2. Then, with the
Pythagorean theorem applied to triangle MEB, we derive

AE=BE=+/5 whereupon we recognize that GE =+/5 — | (fig.
1-10).”



A M B

~igure |-10

For the second appearance, again we apply the Pythagorean
theorem, this time to AEGI, giving us EI? = GI? + GE2. Put another

way, (2-r)y=r'+H/5-1) . therefore,

4—4r+r°=r+5-25+1. This determines the length of
the radius of the inscribed circle

Js—1 1
2 ¢
Now, with some simple substitution, we have EM = 2 and HM = 2r,

EM _ 2

Yy

L
yielding the ratio #M — 2»  » ¢

r=

GOLDEN SECTION CONSTRUCTION 8

A somewhat more contrived construction also yields the golden
section of a line segment. To do this, we will construct a unit square
with one vertex placed at the center of a circle whose radius is the
length of the diagonal of the square. On one side of the square we
will construct an equilateral triangle. This is shown in figure 1-11.



~igure |-1 |

Again applying the Pythagorean theorem to triangle ACD, we get

the radius of the circle as V2 , which gives us the lengths of AD,
AG, and AJ. Because of symmetry, we have BH = CF = x. Again
applying the theorem involving intersecting chords of a circle (as in
Construction 6), we get the following:

GB:-BJ=HB- -BF
(V2+DA2=-D=x(x+1)
J5-1

2

X =

Once again we find the segment BF is partitioned into the golden
section at point C, since

BC 1 2 +5+1

~ 1.61803

CF «x \/g -] 2 , which we recognize
as the value of the golden ratio.

GOLDEN SECTION CONSTRUCTION 9



We can derive the equation x4 + x — 1 = 0, the so-called golden
equation, in a number of other ways, one of which involves
constructing a circle with a chord AB, which is extended to a point
P so that when a tangent from P is drawn to the circle, its length
equals that of AB. We can see this in figure 1-12, where PT = AB =
1.

Figure |-12

Here we will apply a geometric theorem which states that when,
from an external point, P, a tangent (PT) and a secant (PB) are
drawn to a circle, the tangent segment is the mean proportional

between the entire secant and the external segment, that is,
PB _ PT

PT — PA. This yields PT?2 = PB - PA, or PT? = (PA + AB) - PA. If
we let PA = x, then 12 = (x + 1)x, or x? +x—1=0, and, as before,
we can conclude that point A determines the golden section of line
segment PB, since the solution to this equation is the golden ratio.
The next method we present is a bit convoluted. Yet, it begins
with the famous 3-4-5 right triangle — probably one of the earliest
to be recognized as a true right triangle, going back to the so-called

rope-stretchers of ancient Egypt.%

GOLDEN SECTION CONSTRUCTION 10

In figure 1-13 we have the 3-4-5 right triangle ABC. The bisector of

Z_ABC intersects side AC at point G. With G as its center, a circle

of radius GC is drawn and can be shown to be tangent to both BC
and AB.




2
T
2
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4
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Figure |-13

As we noted earlier, the bisector of an angle of a triangle divides the
side to which it is drawn propmrtmnally to the angle's two sides.

4(:_ 43
Therefore, GC ~ BC ™ 3 or AG = aGC

..i..l

~ With A(;}{ ¥ GC 3= 4, we get
3 GC+GC= 3 GC=4, or GC= 2. So we can determine that
AG=3

GC GD = GE = GF are radii of the circle, so we then have
FG= E, and GL= E. Applying the Pythagorean theorem to

L 9 —45

AGBC we GB*=BC"+GC =9 + 4. Therefore,
GB =245

We are now ready to show that the point E partitions the line
segment BF into the golden ratio:

BF GF +GB 2* NG 5+l

FE GF+GE 3 3 2

2 2

~ |.61803,

which by now is easily recognizable as the golden ratio.
A similar construction with a 3-4-5 right triangle was discovered



by Gabries Bosia while pondering the knight's moves in chess.?

GOLDEN SECTION CONSTRUCTION 11

In figure 1-14, we see three concentric circles with radii of lengths
1, 2, and 4 units, respectively. PR is tangent to the inner circle at T
and cuts the other circles at points P, Q, and R.

~igure |-14

With AM = AB = 1 and BC = 2, we apply the Pythagorean theorem
to AMQT and AMRT, and get QT:‘/'?'- - =\/§, and
RT=+4"=1"=/15.

have

A we
PR=RT+PT=RT+QT=vI5+V3=vV3(\/5+1), and
PO=PIl+01I= 2\/3, we derive

PR _N3(V5+1) 54

_ — ~ |.61803.
PQ

J3 ,

which is again recognizable as the golden ratio.

GOLDEN SECTION CONSTRUCTION 12

We have yet another way of constructing the golden section, this



time with three circles. Consider the three adjacent congruent
circles with radius r = 1, as shown in figure 1-15.

Figure |-15
In figure 1-15, we have AE = 2 and BE = 4. We apply the
Pythagorean theorem to AABE to get

AB =\/2: +4° =+/20 =245, Because of the symmetry, AC =
BD and CD = 2, we then have AB = AC + CD + BD = 2AC + BD =

2AC + 2. Therefore, 2AC +3=2\/§ . It then follows that

AC:\/S— 1 and
AD=AB-BD=AB-AC=25-(\5-1)=5+1

5
,1[)_\/f+1:___1‘6]803

The ratio CD 2 again denotes the golden
ratio.

You may notice that each time we have been using a unit
measure as our basis. We could have used a variable, such as x, and
we would have gotten the same result; however, using 1 rather than
x is just a bit simpler.

GOLDEN SECTION CONSTRUCTION 13

When we place the three equal unit circles tangent to each other and
tangent to the semicircle, as shown in figure 1-16, we have the
makings for another construction of the golden section.




Figure |-16

First, we note that AM = BM = JM = KM = LM = R, and GH = GM
=CE=DF (=r)=1(and also CM =DM =EG =FG =2) and EM =
R —r =R - 1. When we apply the Pythagorean theorem to ACEM in
figure 1-16, we get EM? = CM? + CE?, or (R—1)% =22 + 1.

When we solve this equation for R, we get

R'-2R+1=5
R°-2R-4=0
R=1+4/5.
Since a radius cannot be negative, we only use the positive root of
R; therefore, /X = | + ﬁ :

R _
We then take the ratio » =V/5+ l. Yet, half this ratio will give
us the golden ratio:

1(R\_5+1
)

s

—

IM R R _\/§+|_¢ 1.61803.

Therefore, HM  2r 2 2
HM — CM
Additionally, the ratios /. and A4C also produce the golden ratio,

since with R—2r=R-2=1 +45-2=+/5-1. which then

gives us




HM CM  2r 2 5+l
HI AC R-2r J5-1 2

GOLDEN SECTION CONSTRUCTION 14

Another construction of the golden section was popularized by Hans

Walser,1 who placed the three circles on a coordinate grid as
shown in figure 1-17. This construction can be further expanded as
we show here. A circle with radius length 1 is enclosed by two
circles of radius length 3.

]
i
E
|

i

Figure |-17

With AE = EF = GH = 3 and BC = 2, we can find the length of AM
by applying the Pythagorean theorem to AAEM, whereupon AM =

\/3: —2°=4/5. Since AB=AM +BM =+/5+ 1, then we can
establish

48 = J§+l == 1.61803,

BC 2

which is again recognizable as the golden ratio.

BC
Also, the ratio 4’ demonstrates the golden section:

AC AM-CM +J5-—1 ,

BC BC 2 J5+1



We now present the classic construction of the golden section based
on the work of Euclid, which is a pleasant variation of the first
construction we offered. Perhaps one of the greatest contributions to
our knowledge of mathematics is Elements by Euclid, a work
divided into thirteen books that covers plane geometry, arithmetic,
number theory, irrational numbers, and solid geometry. It is, in fact,
a compilation of the knowledge of mathematics that existed up to
his time, approximately 300 BCE. We have no records of the dates
of Euclid's birth and death, and little is known about his life, though
we do know that he lived during the reign of Ptolemy I (305-285
BCE) and taught mathematics in Alexandria, now Egypt. We
conjecture that he attended Plato's Academy in Athens, studying
mathematics from Plato's students, and later traveled to Alexandria.
At the time, Alexandria was the home to a great library created by
Ptolemy, known as the Museum. It is believed that Euclid wrote his
FElements there since that city was also the center of the papyrus
industry and book trade. To date, Elements, after over one thousand
editions, presents synthetic proofs for his propnsitions and thereby
set a standard of logical thinking that impressed many of the
greatest minds of our civilization. Notable among them is Abraham
Lincoln, who carried a copy of Elements with him as a young
lawyer and would study the presented propositions on a regular
basis to benefit from its logical presentations.

I-_

GOLDEN SECTION CONSTRUCTION 15

So now we come to Euclid's construction of the golden section. In
figure 1-18, a right triangle, AABC, is constructed with legs of

length 1 and ". An arc is drawn with center C and radius of length
BC, and AC is extended to point D. A second arc is drawn with
center A and tangent to the first arc, naturally passing through \/_pomt

D. Using the Pythagorean theorem, we can see that 2 ; we
will let the length of AD be x.



A
—
Figure |-18
x=AE=AD=CD —AC=BC-AC=£-—1=‘E—], and
7 2 3
5—1 3-—4/5
BE=AB-AE=1-x= 1—‘@ - 2’f.

This sets up the ratio

J5—1
AE  ~ 5 A5-1 \5-1 3445

BE 3—+5 3—5 3—+5 3++5

2

_3\/§+5—3—\/§_2«/§+2_\/§+1

9—-35 - 2

which is again recognizable as the golden ratio.

=¢ = 1.61803,
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The last in our collection of constructions of the golden section is
one that may look a bit overwhelming but actually is very simple, as

it uses only a compass! All we need is to draw five circles.!!

~igure |-19

In figure 1-19, we begin by constructing circle c; with center M
and radius ry = r. Then, with a randomly selected point M5 on circle
c1, we construct a circle, ¢, with center M> and radius ry = r;
naturally M{M, = r. We indicate the points of intersection of the
two circles, cq and ¢y, as A and B. Constructing circle c3 with center
B and radius AB = r3 will intersect circles ¢ and ¢y at points C and
D. (Note that the points D, M1, M», and C are collinear.) We now
construct circle ¢4 with center at M and radius M{C = rq = 2r.
Finally, circle cg with center M, and radius My D = r5 = rg = 2r is
constructed so that it intersects circle c4 at points E and F.




C3

Figure |-20

From figure 1-20, as a result of obvious symmetry, AE = BF, AF =
BE, AM = BM, FM FM, and CM = DM MMI = MM,. WE can
AB BF _ {p (p
then get AE (or analogously, ).
This can be _]LlStlflEd rather simply by msertmg a few line
segments. The radius of the first circle is r{ = r = AM;, and the

radius of the fourth circle is ry = 2r = CMy = EMy. We can apply

the Pythagorean theorem to AAMM); to get AM1{%2 = AM? + MM;?,
or

r-=AM° +(£) b
9

.
which then determines AM = 5\/3 Then, applying the
Pythagorean theorem to AEMM;, we get EM2 (= CM1%) = EM? +

MM12, or

_., B
2r) = EM* +{ =
@y =7 +(3

L]



r -
whereupon EM =73 ‘/B

We now seek to show that the ratio we asserted above is in fact
the golden ratio.

)

AB AM+BM  2am 25V3

AE EM—-AM EM—AM T [Z T
V1523

23 2 .«/§+1_\/§+|¢
BE5-1) 5-1 6+ 2 7

Now the second ratio that we must check is

BE EM+BM EM +AM
AB AM + BM 2AM

In both cases we have shown that the golden ratio is in fact
determined by the five circles we constructed.

We should not want to give the impression that we have covered
all possible constructions of the golden section. There currently
exist about forty such constructions of the golden section—with
new methods being developed continually. As we mentioned, there
exist a host of curious geometric configurations where the golden
section can be found, but we shall leave these hiding places for later
in the book. Notice, however, that our goal for construction of the

golden section is to somehow get a length equal to V35 . For now, we
simply want to introduce the numerical value of the golden ratio and
its sightings algebraically and geometrically, as it can be seen
partitioning a line segment.



Chapter 2
The Golden Ratio in History

One can never say with certainty where the golden ratio first
appeared in the civilized world. To the best of our knowledge, the
earliest use of the golden ratio occurred in the ancient Egyptians’
construction of the Great Pyramid at Giza, the only one of the
“seven wonders of the ancient world” that still exists today. We
might someday yet discover older examples where this ratio may be
seen. What is still unknown to this day is whether the architect of
this structural wonder, Hemiunu (ca. 2570 BCE), consciously chose
the dimensions that yield the golden ratio, as he strove to achieve
beauty in this structure, or it arose simply by chance. This and other
questions about the structure of the pyramid have prompted the
writing of numerous books, and yet the issue is still without a
definitive conclusion.

This colossal structure, built about 2560 BCE, is the oldest and
largest of three pyramids in the Giza Necropolis near modern-day
Cairo, Egypt.
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The Great Pyramid of Giza. Photo courtesy of Wolfgang Randt.

For years archaeologists have studied this famous pyramid inside
and out. Yet for our purposes, we shall focus on its outer
dimensions. We will use the cubit as the unit measure, since that
was what was used in the time of the construction. (A cubit is the
first recorded unit of length used in ancient times. It is the measure



from the elbow to the tip of the middle finger, and was assumed to
be a length of 52.25 cm.) The diagram of the pyramid (fig. 2-1)
shows its height to be 280 cubits, half its base length as 220 cubits,

and its slant height as 356 cubits.

Figure 2-|

The ratio of the slant height to half the base length is
i_ ha, _ 356 _E

BC a/2 220 55 =1.61818, which is approximately equal to
the golden ratio of 1.61803.

Furthermore, as if that isn't enough to convince you that this
marvelous pyramid is based on the golden ratio, consider the ratio
of the height of the pyramid to half the base length, namely
280 _ 14 _ =127272
220 11 .., which is very close to the square root of ¢
, or approximately 1. 2720196.... Were we to divide each of the

dimensions of triangle ABC (fng_Z_l) by 220 we would get a
triangle with the dimensions shown in .




1.27272..

= V A

Figure 2-2

These values approximate the golden ratio in various forms, as we

can see in figure 2-3a, where we have in terms of ® the dimensions
of a similar right triangle.

 f c

Figure 2-3a

According to the Greek historian Herodotus (ca. 484—424 BCE), the
Khufu (Cheops) Pyramid at Giza was constructed in such a way that
the square of the height of the pyramid is equal to the area of one of

the lateral sides.” Once we analyze this curious relationship, we will
get some rather surprising results.
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Figure 2-3b
We begin by applying the Pythagorean theorem to triangle ABC in
figure 2-3b to arrive at the following: hi: % + h'.t:“

A=5h,.

The area of one of the lateral triangles is 2
Using the curious relationship Herodotus ascribed to the Giza
2_p2 al_a_a

a . — ] . - :.r_" r
If we divide both sides of the equation 2 h.—"- hl 4 h} 2 hl,

Pyramid, we get:

a
h, o h
ek PO
a h, a
we get ﬂE By letting 2, and then taking the
2 1
reciprocal, hy X and then substituting in the equation above, we

—yr_1
l=x- v, which just happens to generate

— x — 1 = 0, whose solution is the golden

get a simplified equation:
the (golden) equation x?

1
ratio xq = P and Xy =— @. By now you realize that x, is negative and

holds no real meaning for us geometrically; so we won't consider it
here.

Using today's measurement capabilities, this great pyramid has
the following dimensions (see fig. 2-1):



Cheops Length of the | Height of | Pyramid | A, &
pyvramid side of the lateral height a 20
hase: a triangle: 1, | A, 2
measurements | 230.56 m I86.54 m 146.65 m | 1.61813471 (=¢) | 3.144357313 (=m)

Lo and behold, the ratio of the height of the lateral triangle to halt
its base is

h—*‘=1ﬁ]8134?1
i
v,

Was this done intentionally by the design of a genius architect? No
one knows. We can only point out what has been found by
measurement and historical clues.

In the history of the golden ratio, the next significant sighting
would be that of the Pythagoreans, who, among other applications,
used it in their music investigations. The first recorded direct
reference to this famous ratio is found in Euclid's Elements, which
as we mentioned earlier, was a compilation of everything that was
known about mathematics at the time of its writing, which was
about 300 BCE. This monumental work consisted of thirteen books,
in which there are two references made to the golden ratio: In book
2, proposition 11, he constructs a straight line (segment), which is
cut so that a rectangle is formed by the whole segment and one of
its parts (segment), that is equal to the square on the remaining
segment. This can be demonstrated pictorially, as shown in figure 2-
4. There we begin with the line segment ACB, where point C cuts
the segment so that CB is used to form rectangle ABHF, where CB
= HB, and square ACGD has the same area as the rectangle ABHF.

This equality of areas canﬁbe expressed as AC* = AB-CB, which
A _ AC

then can be converted to AC — B, and which then is referred to in
a second citation in Elements.>




Here Euclid refers to a given straight line that is cut—or sectioned

— into a mean and extreme ratio,* namely for the line segment AB,
A8 _ AC

containing point C, thus we get A~ (B. This is precisely our
definition of the golden section.

As we survey the history of the golden ratio, we find its next
prominent display in the works of the great Greek sculptor Phidias
(ca. 490—ca. 430 BCE). His design for the construction of the
Parthenon in Athens, Greece (fig. 2-5), as well as the sculptures he
made to adorn this structure, such as the famous statue of Zeus, are
said to be reflective of this beautiful ratio. As a matter of fact, the

Greek letter ¢ is used by many mathematicians today (as well as in
this book) to represent the golden section, as it is the first letter of

Phidias's name when written in Greek as PEIOIAS5 A you can see
in figure 2-5, the Parthenon in Athens, Greece, fits nicely into a
golden rectangle—that is, a rectangle where the quotient of the sides
is the golden ratio (see chapter 4). Furthermore, in figure 2-5a you
will notice a number of additional golden ratios. Yet even today, no
one can say with certainty that Phidias had the golden ratio in mind
when he designed the structure.



Figure 2-5, Parthenon in Athens, Greece.

And some more:

o} T o ¢

Figure 2-52

As we continue to trace the history of the golden ratio, we find the
next significant sighting in a three-volume book titled De Divina
Proportione (The Divine Proportion), written in 1509 by the
Franciscan friar and mathematician Fra Luca Pacioli (ca. 1445-
1514 or 1517). The book contains drawings by the Italian painter,
sculptor, architect, and also mathematician® Leonardo da Vinci
(1452-1519) of the five Platonic solids. DaVinci also drew the
Vitruvian Man (fig. 2-6), in about 1487. This is a picture of a man's
body, which clearly exhibits a very close approximation to the



golden ratio.
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Da Vinci provided notes based on the work of Marcus Vitruvius
Pollio (ca. 84—ca. 27 BCE), an ancient Roman writer, architect, and
engineer. The drawing, which is in the possession of the Gallerie
dell” Accademia in Venice, Italy, is often considered one of the
early breakthroughs of pictorially depicting a perfectly proportioned
human body. Apparently da Vinci derived these geometric
proportions from Vitruvius's treatise De Architectura, book 3.

The drawing shows a male figure in two superimposed positions
with his arms and legs apart and inscribed in a circle and square,
which are tangent at only one point. The golden ratio is exhibited in
that the distance from the navel to the top of his head divided by the
distance from the soles of the man's feet to his navel (which appears
to be at the center of the circle, as shown in figure 2-7), which is
about 0.656, approximates the golden ratio (which we know is
0.618...).
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Figure 2-7

Had the square's upper vertices been somewhat closer to the circle,
then the golden ratio would have been attained. This can be seen in
figure 2-8, where the radius of the circle is selected to be 1, and the

side of the square is 1.618, approximately equal to q'b, the golden

ratio.
n _
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Figure 2-8

To what extent architects and artists consciously used the golden
section in their work will remain a mystery because there are no
documents that clearly establish its use. Our desire to find examples
of the golden ratio might also play into the many sightings. Still,
there are countless examples of where it is believed that the golden
ratio appears in art and architecture. Many such examples appear



throughout the Internet’ There are also those who are skeptical
about the authenticity of these sightings, such as Dan Pedoe,?
George Markowsky,” Marguerite Neveux,'’ and Roger Herz-
Fischler.1 On the other hand, there are structures (for example, by
Le Corbusier),!2 sculptures (such as by Etienne Béothy)13 or
paintings and graphics (for example, by Jo Niemeyer)!4 that

document the use of the golden section in their design.!>

In chapter 3 we will explore the extraordinary relationship
between the golden ratio and the Fibonacci sequence, which was
popularized by the French mathematician Edouard Lucas (1842—
1891) and named after the Italian mathematician Fibonacci (or
Leonardo of Pisa, ca. 1175—-after 1240). Not only is Lucas credited
with discovering characteristics of the numbers based on the
regeneration of rabbits problem found in chapter 12 of Fibonacci's
book Liber Abaci (1202), but he is also responsible for establishing
an analogous sequence of numbers that carries his name. Among the
relationships he discovered is that which relates the Lucas numbers
and the Fibonacci numbers to the golden ratio. These relationships
and much more will be explored in chapter 3.



Chapter 3

The Numerical Value
of the Golden Ratio
and Its Properties

In the previous chapters, we have established that the golden ratio
at+b _b

betweenaand bis /s ~ a, where a and b are positive real numbers.

As with all ratios, this one has a very specific numerical value. To get

the numerical value of this ratio, we first must set up the equation that

we get from this ratio by equating the product of the means and

extremes, namely b* = a (a + b) = a* + ab. This equation can be
written as b2 — ab — a? = 0 and can be solved for either a or b; say, we

solve for b. Using the formula for solving quadratic equations,! we
find that

b

_all+y5)_ 5+
) B =

e i

Since a length (a, b) cannot be negative, we ignored the negative root

a(:l—\gl) \/.E—I‘

- -
2 2

Therefore, by dividing both sides of this equation by a, we get

b \E+l

(1 2

L]

which is then the value of the golden ratio, ‘fb Numerically, this is
approximately? equal to:

b= \/;'.: I

d—

~1.6180339887498948482045868343656381177203091798057628621
354486227052604628189024497072072041893911374847540880753
868917521266338622235369317931800607667263544333890865959
3958290563832266131992829026788067520876689250171169620703



2221043216269548626296313614438149758701220340805887954454
749246185695364864449241044320771344947049565846788509874
3394422125448770664780915884607499887124007652170575179788
34166256249407589069704000281210427621771117778053153171410
11704666599146697987317613560067087480710131795236894275219
484353056783002287856997829778347845878228911097625003026
9615617002504643382437764861028383126833037242926752631165
33924731671112115881863851331620384005222165791286675294654
906811317159934323597349495850904094762132229810172610705961
164562990981629055520852479035240602017279974717534277759
27786256194320827505131218156285512224809394712341451702237
358057727861600868838295230459264787801788992199027077690
38953219681986151437803149974110692608867429622675756052317
2777520353613936, which we approximate to 1.61803.

| ),
[ +4/5 —_———
p= 5
Now if we take the reciprocal of 2 to get g 14 \/‘_
-5
|=—=
and then multl\[}ly this fractmn by 1 in the form of | — \/: , we get

| + \/E | — ‘\/g 2 d , which then gives us the approximate
value®:

1 J5—1
o 2

~.61803398874989484820458683436563811772030917980576286213
544862270526046281890244970720720418939113748475408807538
689175212663386222353693179318006076672635443338908659593
9582905638322661319928290267880675208766892501711696207032
2210432162695486262963136144381497587012203408058879544547
492461856953648644492410443207713449470495658467885098743
3944221254487706647809158846074998871240076521705751797883
416625624940758906970400028121042762177111777805315317141011
7046665991466979873176135600670874807101317952368942752194
843530567830022878569978297783478458782289110976250030269
6156170025046433824377648610283831268330372429267526311653
39247316711121158818638513316203840052221657912866752946549
06811317159934323597349498509040947621322298101726107059611
645629909816290555208524790352406020172799747175342777592
77862561943208275051312181562855122248093947123414517022373
580577278616008688382952304592647878017889921990270776903
89532196819861514378031499741106926088674296226757560523172
777520353613936, which we approximate to 0.61803.

We see that the value of ¢ has a unique characteristic. Aside from




the usual fact that the product of a number and its reciprocal is

1,
pl=1 1
which, here, givesus © ¢ | the difference of ffb and its reciprocal, ¢
1=
is surprisingly also 1, that is, @ 1. This is the only number for
which this is true!
The not-too-well-known mathematician Michael Maestlin (1550—

1631), who happened to be one of Johannes Kepler's teachers and later

b

his friend, is credited with the first expansion of the value of ? to a

five-place accuracy, as 0~ 1.6180340, in 1597, while at the University
of Tiibingen (Germany). As with most famous numbers in
mathematics, there is always a desire to seek greater accuracy of a
value. This means calculating the value to a larger number of decimal
places. Naturally, today we can use computers to facilitate this goal;
here is a short history of these milestones of the recent past.

Year Number of places Mathematician

of the value of ¢
1966 4,599 M. Berg
1976 10,000 J. Shallit
1996 10,000,000 G. J. Fee and S. Plouffe
2000 1,500,000,000 X. Gourdon and P. Sebah
2007 5,000,000,000 A. Irlande
2008 17,000,000,000 A. Irlande
2008 31,415,927,000 X. Gourdon and P. Sebah
2008 100,000,000,000 S. Kondo and S. Pagliarulo
2010 1,000,000,000,000 A. Yee

Having now established the numerical value of the golden ratio, let us
inspect some of the properties of this most unusual number. We begin

by considering the irrationality of 9. To do this, we will embark on a
nifty little excursion through some simple number theory. The realm
of real numbers is composed of rational and irrational numbers. They
can be either positive or negative. When expressed in decimal form,
the rational numbers are either terminating decimals or repeating
decimals, while the irrational numbers do not repeat with any
repeating pattern and continue indefinitely. Another way of
distinguishing these numbers is that only the rational numbers can be
expressed as quotients of integers.
Here are some examples:



)

Rational numbers:

L=—-0.5000...=-0.50=0.5:
..=0.6.

oy | ST 08 o
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—
N
-y
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Irrational numbers: /2 =1.414213562 ...:
T=3.141592653 ...:
e=2.718281828 ...

We claim that the number ? is an irrational number—one that has an
unending decimal value—one that has no repeating pattern. We can

establish that \E is irrational and therefore

J5+1
7 =9

i

would also be irrational. To prove that V5 is irrational, we begin by
supposing the contrary, namely that V5 s rational, implying that

-_P

4, a fraction that may be assumed to be in lowest terms.

Squaring both sides and clearing denominators, we get 5g = p?. Thus
the left-hand side is divisible by 5 and therefore so is the right-hand

side. But 5 is a prime. Therefore, since 5 divides p?, it must also divide
p. Thus, p = 5r, for some r. Then we have 5q2 = p2 = 25r2, so that q2 =

5r2. Repeating the previous argument, we find that g is also divisible
by 5, contradicting our assumption that the fraction was in lowest

terms. Therefore, \/§ is not rational. Thus, (}5 must then be an
irrational number.

As we will see in chapter 4, the irrationality of O will be realized by
the fact that the diagonal of a regular pentagon is incommensurate
with a side of the pentagon, which means they have no common
measure. Similarly, the irrationality of m is seen by the fact that the
diameter of a circle and its circumference have no common measure.

We continue by considering the powers of . To do so, we first

must find the value of ¢’2 in terms of ¢’
Since



)
, (5+1) 542541
PRl ) T e T
2\/§4+6=\/§7+3=\/§7+l+l=¢+1

You may find this equation 92 = 9 + 1 somewhat familiar, as we have
encountered it at several points already. From this equation, we can
generate an interesting mathematical expression to express the value

of ¢ in a very unusual fashion. By taking the square root of both sides,

this equation can be rewritten as ¢’_\/¢'+l Or t,b—*\/l +0 we
will now replace ¢ under the radical sign with its equivalent

P=\1+0 (o get
¢ = Jl+ [+¢ \/I+\/I+¢

Then, repeating this process (i.e., replacing the last O with ?=V1+¢

3

we get

1+ 414149

Continuing this process gives us

¢=\]l+\/l+\/l+\/l+¢)~

and so on, until you realize that this will go on to infinity and look
something like

N
P= I+v+\]+‘\I+\Jl+\l+\I+\]+\iHNH\IHJH\/HJHJHR'

Suppose we now consider the following analogous nest of radicals:




.Y=Vl—\l—01—\l—\l—\l—\l—\l—wI—Ml—\ll—\/l—\/l—\/l—\h—\/:.

We can evaluate this value for x by using the following technique:
There is an infinite number of radicals in this nest. Without loss of
accuracy, we can temporarily “ignore” the outermost radical and see
that the remaining expression is actually the same as the original one:

1

I
X = —\1—\1-\“— l—\I—NI—NI—\II—-‘]—\I—JI—JI—JI—JI—T.

So if we substitute this value of x into the original expression, we get

x=+/1-x. By squaring both sides, we get the following quadratic

equation: x2 = 1 — x, or x* + x — 1 = 0. When we apply the quadratic
formula to this equation, we get (ignoring the negative root)

J5 -1

X= ~(.61803,
2

which is #. Again, we have a most unusual relationship between ¢ and
|

@

o=1\[1+A|1+4/1+4/]+ 1+\I+V1+Jl+\l+wl+wl+\/l+\/1+\/l+\/l+..}l+....

and

N
éz\ﬂ—\l—w—\l—\l—Vl—wl—\l—\l—\

Let us now investigate powers of ¢ In order to inspect the successive

powers of ¢, we will break them down into their component parts. It
may at first appear more complicated than it really is. You should try
to follow each step (it's really not difficult—and yet very rewarding!)

and then extend it to further powers of 0,
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=P(P+1)=¢ +d=(d+1)+p=2¢+1
¢’ =(¢+1)(¢+1)=¢°+2¢+1=(¢+1)+2¢+1=3¢+2
”(b =20+ 1)(0+1)=2¢"+30+1=2(¢+1)+3¢+1=5¢+3
=2¢+1)2¢+1)=4¢ > +40+1=4(d+1)+4d+1=8¢+5
=3¢+2)(20+1)=6¢"+Td+2=6(d+1)+Tdp+2=13¢+8
cp =(3¢+2)(3¢+2)=9¢° +l’?¢5+4 Nop+1)+12¢0+4=21¢+13
=00 =(50+3)(30+2)=15¢>+199+6=15(¢+ 1)+ 19¢+6=34¢ +21
0 =9 ¢’=(5¢+3)(59+3)=25¢"+30¢+9=25(¢ +1)+30¢+9=55¢+34
and so on....

By this point, you should be able to see a pattern emerging. As we
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take further powers of (fb, the end result of each power of D is actually
equal to a multiple of ¢ plus a constant. Further inspection shows that

the coefficients of ‘fb and the constants follow the pattern 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144,.... This sequence of numbers is famous and

is known as the Frbonaccx sequence.* Beginning with two 1s, each
successive number is the sum of the two preceding numbers. The
Fibonacci numbers are perhaps the most ubiquitous numbers in all of
mathematics; they come up in just about every field of the subject.
Yet, as we mentioned earlier, they only made their “debut” in the
Western world in chapter 12 of a 1202 publication, Liber Abaci, by
Leonardo of Pisa, most commonly known today as Fibonacci (ca.
1175—after 1240), in the solution of a simple problem about the
breeding of rabbits.

We recently discovered that the Fibonacci numbers were described

in early Indian mathematics writings.> The earliest appearance can be
found under the name matrameru (Mountain of Cadence), which
appeared in Chandahstitras (Art of Prosody) by the Sanskrit
grammarian Pingala (between the fifth and second century BCE). In a
more complete fashion were the writings of Virahinka (sixth century
CE) and Acirya Hemacandra (1089-1172), who cites the Fibonacci
numbers. It is speculated that Fibonacci may have come to these
numbers from his Arabic sources, which exposed him to these Indian
writings.

Sometime before his death in 1564, the German calculation master
Simon Jacob® made the first published connection between the golden
ratio and the Fibonacci series, but it appears to have been something of

a side note.” Jacob had published a numerical solution for the golden
ratio. In the margin of the page discussing the Euclidean algorithm
from the second proposition of book 7 of Euclid's Elements, he wrote
the first twenty-eight terms of the Fibonacci sequence and stated:

In following this sequence one comes nearer and nearer to that proportion
described in the 11th proposition of the 2nd book and the 30th of the 6th
book of Euclid, and though one comes nearer and nearer to this proportion it
is impossible to reach or to overcome it.



We will use the symbol F7 to represent the seventh Fibonacci number,
and F, to represent the nth Fibonacci number, or as we say, the

general Fibonacci number, that is, any Fibonacci number. Therefore,
in general terms, we would write the rule of the Fibonacci numbers as
Fnip = Fp+F 41 withn>1, and F1=F>=1.

Let us look at the first thirty Fibonacci numbers.

F =1 F. =89 F, =10,946
F,=1 F, =144 F,, =17,711
F,=2 F. =233 F,, = 28,657
F,=3 F, =377 F,, = 46,368
F.=5 F.. =610 F,. = 75,025
F,=8 F, = 987 F, = 121,393
F, =13 F.,=1,597 F,, = 196,418
F, =21 F, =258 F,, = 317,811
F, =34 F., = 4,18 F,, = 514,229
F,, =55 F,, = 6,765 F,, = 832,040

The list of powers of O can easily be extended by using the Fibonacci
numbers directly in the pattern we developed above.
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Since the Fibonacci numbers appear as the coefficients of t,b’ as well as

the constants, we can write all powers of ? in a linear form: @1 = ¢
+b, where a and b are consecutive Fibonacci numbers. In the general

case, we can write this as: (n = Fn¢’+F n-1, withn>1 and Fy = 0. (See
the appendix for a proof of this statement.)

You should also take note that each power of ¢ is the sum of the

two immediately preceding powers of ?. We can develop another
amazing pattern involving the Fibonacci numbers and the golden ratio.
This will involve a structure that is called a continued fraction. We

will begin with a brief introduction to continued fractions.® A
continued fraction is a fraction in which the denominator contains a

mixed number (a whole number and a proper fraction). We can take an
13

improper fraction such as 7 and express it as a mixed number:

, P &
| % | L+ 7. Without changing the value, we could then write this as

1+fi=l4~l—.
7 1
6

which in turn could be written (again without any value change) as



| + l

l+l_
6

This is a continued fraction. We could have continued this process, but
I

when we reach a unit fraction? (as in this case, the unit fraction is 6),
we are essentially finished.

To enable you to get a better grasp of this technique, we will create
|2

another continued fraction. We will convert 7 to a continued fraction
form. Notice that, at each stage, when a proper fraction is reached, we
take the reciprocal of the reciprocal (e.g., change

as we will do in the example that follows), which does not change its
value:

12 5 I l l l
—=]+=-=1+ =1+ =1+ =1+
7 7 7 2 1 l
-_ 1+ — l+§ | + l
o 5 J L
2 2

If we break up a continued fraction into its component parts (called

convergents),!? we get closer and closer to the actual value of the
original fraction.

First convergent of % L.
_—r 12 by
Second convergent of R 1+ T 2.
Third convergent of — 1 + - 1+ = = lg = E
7 | l J 3 3
_|.
2
Fourth convergent of %: I + : = E
1+ 1 !
2+



The above examples are all finite continued fractions, which are
equivalent to rational numbers (those that can be expressed as simple
fractions). It would then follow that an irrational number would result
in an infinite continued fraction. And that is exactly the case. A simple

example of an infinite continued fraction is that of V2.

V2 =1+ l

2+...

We have a short way to write a long (in this case infinitely long)
continued fraction: [1; 2,2,2,2,2,2,2,...], or when there are these

endless repetitions, we can write it in an even shorter form as [1;2 L
where the bar over the 2 indicates that the 2 repeats endlessly.
In general, we can represent a continued fraction as

|
dy + ’

a X

an +

(!3+

l

. |
dp—1

a,,

where a; are real numbers and a; # 0 for i > 0. We can write this in
short fashion as [ag; a1, a», as,..., a,_1, a,l.

Now that the concept of a continued fraction has been described, we

can apply it to the goldlen ratio. We begin withl the equation of the

golden ratio: ¢ = 1+¢. If we substitute 1+¢ for the ¢ in the
denominator of the fraction of this equation, we get



I

and then continue this process by substituting the value ¢ = 149 in
each case for the last denominator of the previous equation, we will
get the following:

o=1+ =[1; 1, 1, ¢].

| + l
(1
| +—

. @

Repeating this procedure, we get an infinite continued fraction that
looks like this:

o=1+ ,
| +

|+

| +
| +

| +

|+

]
| +...

| +

or = 15 1L 1, 1]=[i] (See the appendix.)

This gives our now already famous ¢ another unique characteristic,
namely that it is equal to the most primitive infinite continued fraction
—one with all 1s.

Let us take the value of this continued fraction in successive parts
(which are called convergents), each of which will successively bring
us closer to the value of the infinite continued fraction. The successive
convergents are as follows:
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F. 5
1+ | =1+ | -
l 1 |
1+ : I+ l I+ —
| + | + I+
1 1 3
l+—]' | +— -
1+ — 2 ’
l
=l == =D
l I 8 8
[ + 5 1+? -
I+ — - .
3 3
=£=£=[l; 1,1,1,1,1] =1.625
F, 8
1 _ | _ 1
I + — 1+ — 1+
1 1 1
1+ 1+ I+
1 I 1
[+ 1+ L+
1 l 1
[+ 1 I+ — I+
l+— [+ Py
1 2 2
1
=1+ _] =1+ 1 =1+ l =|+L=2
1 1 l 13 13
1+ |+ —— 14— —
1 | 8 8
1+—2 1+? .
14— - .
3 3
F, 21

T =2 oM 1L 1L,1,1,1,1]1=1.615384
F, 13
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3
=14+ =510 =33 = 11,1 111 1,1,1,11=1.61764705882352941
34 F, 34
21

As they progress, you will notice how these convergents seem to

“sandwich in,” or converge, to the value of ¢, with which we are now
quite familiar, approximately 1.618034. What also emerges from these
continually increasing convergents is that the final simple fractional
values of these convergents happen to be composed of the Fibonacci
numbers.

Aside from the continued fraction

=1+

| +
| +

| +

| +

1+

| + |

1 +...

|+

getting ever closer to the value of ¢ as we increase its length, we shall

now see another surprising relationship of ® and the Fibonacci
numbers.
In the following chart, we can see that the ratios of consecutive

members of the Fibonacci sequence also approach the value of ?. In
mathematical terms, we say that the limit of the quotient/ratio of two
consecutive Fibonacci numbers,

n+l

~ | 1

"



is the value of ﬁb Mathematicians typically write this as

lim 2L =g
n —®* oo F
n

The famous Scottish mathematician Robert Simson (1687-1768), who
wrote an English-language book based on Euclid's Elements, which is
largely responsible for the development of the foundation of the high
school geometry course taught in the United States, was the first to
popularize the notion that the ratio

F

n+1

r

i

of two consecutive Fibonacci numbers will approach the value O of
the golden ratio. Yet it was Johannes Kepler (1571-1630) whom we
credit with discovering that the reciprocal quotient

F

N

F:Hl

of two consecutive Fibonacci numbers approaches the reciprocal of
I

the golden ratio ¢.
We can see this in the left column of the following table, where F/,

represents the nth Fibonacci number and F,+; the next, or (n+1)st,
Fibonacci number.

The Ratios of Consecutive Fibonacci Numbers!!



Fn+l T
F F

I n+l

1.000000000 1.000000000

.JI g _Id

-

b

%: 2.000000000 > =0.500000000
3=1.500000000 —iz 0.666666667
—2—'- 1.666666667/ %:0 600000000
% 1.600000000 %:0 625000000
1_;= 1.625000000 % ~(0.615384615
-1’-_3: 1.615384615 !.—31"'-0 619047619
?t 1.619047619 *-—--0 617647059
“*— 1.617647059 = ~0.618181818
“—9*— .618181818 “—"‘--0 617977528
'44 ~ 1.617977528 144 ~ 0.618055556
:_:-- 1.618055556 ,',4;: 0.618025751
3772 1.618025751 233+ 0618037135
‘:‘_},‘7’ 1.618037135 %*— 0.618032787
“)37.._ }]0-- 4 Wi ¥i
—-= 1.618032787 o= 0.618034448

By taking the reciprocals of each of the fractions on the left side, we
get the column on the right side—also, as expected, approaching the

120618034 12 ..

value of ¢ again we notice this most unusual

l —
relationship between ¢ and ¢, namely that ¢= s T l—this time via the
Fibonacci numbers.

THE BINET FORMULA

Until now, we accessed the Fibonacci numbers as members of their
sequence. If we wish to find a specific Fibonacci number without
listing all of its predecessors, we have a general formula to do just
that. In other words, if you would like to find the thirtieth Fibonacci
number without writing the sequence of Fibonacci numbers up to the



twenty-ninth member (Fpq) (which is a procedure that is somewhat
cumber-some), you would use the Binet formula. In 1843 the French

mathematician Jacques-Philippe Marie Binet!> (1786-1856) developed
this formula, which allows us to find any Fibonacci number without
actually listing the sequence as we would otherwise have to do.

The Binet formula'? is as follows:

or without using the ‘fb, we have

L [(1+5) (1=+5)
.r.'_\/g [\ 2 - >,

| 4
which will give us the Fibonacci number (F,,) for any natural number
n (a proof of this formula can be found in the appendix).

As is often the case in mathematics when a formula is named after a
mathematician, controversies arise as to who was actually the first to
discover it. Even today, when a mathematician comes up with what
appears to be a new idea, others are usually hesitant to attribute the
work to that person. They often say something like: “It looks original,
but how do we know it wasn't done by someone else earlier?” Such is
the case with the Binet formula. When he publicized his work, there
were no challenges to Binet, but in the course of time, some claims
have surfaced that Abraham de Moivre (1667—-1754) was aware of it in
1718, Nicolaus Bernoulli (1687-1759) knew it in 1728, and his cousin

Daniel Bernoulli (1700-1782)} also seems to have known the
formula before Binet. Also, the prolific mathematician Leonhard Euler
(1707-1783) is said to have known it in 1765. Nevertheless, it is still
known today as the Binet formula.

Let's stop and marvel at this wonderful formula. For any natural

number n, the irrational numbers in the form of V5 seem to disappear
in the calculation, and a Fibonacci number appears. In other words, the
Binet formula delivers the possibility of obtaining any Fibonacci

number, and can also be expressed in terms of the golden ratio, ¢

So, now we shall use this formula. Let's try using it to find a
Fibonacci number, say, the 128th Fibonacci number. We would
ordinarily have a hard time getting to this Fibonacci number—that is,
by writing out the Fibonacci sequence with 128 terms until we arrive
at it.

Applying the Binet formula, and using a calculator of course, for n
= 128 we get:



=251,728,825,683,549,488,150,424,261.

| 1R\ i . 12K . 128"
- l | 128 | I | ] l+\/§.| I_\/Ell .1
fdl_ ‘D ( ) >, “

"

il IJ ]

As we claimed earlier, we can also express the Fibonacci numbers (in
Binet form) exclusively in terms of the golden ratio, ¢’, as

n

@

F,= i ., Where n> 1.
¢+
@

Familiarity with the Fibonacci numbers reminds us of their recursive
definition: F,+» — F,+1 — F,, = 0, which comes from the original

definition of the Fibonacci numbers: F,» = F, + F,,+1, where n > 1
and Fy = F» = 1. Recall the Fibonacci number sequence:

n 11 2

K11

n

N

6 o & 9 10 11 2 13 4 Ly 16
8 13 21 34 55 89 144 233 377 610 9387

2| W

4
3

N

Rather than beginning with 1 and 1, suppose we were to begin with 1
and 2. Then we would still generate a similar sequence, except we

would be missing the first 1. Edouard Lucas!® (1842-1891), the
French mathematician who is largely responsible for bringing the
Fibonacci numbers to light in recent years, suggested an analogous
sequence; however, this time beginning with 1 and 3. That is, for the
(now-called) Lucas numbers: L,,» =L, + L,,1, whenn > 1, and Ly =

1 and Ly = 3. The sequence looks like this:

p |23 40 o ¢+ 8 9 W N 12 13 A4 D 16
.1l 37 - 11 .18 29 ‘47 76 123 199 222 521 843 1,364 2,207

n

Once again, our golden ratio comes into play in that we can also
express the Lucas numbers in terms of the golden ratio:

n

L,=¢" + (—l , Where n= 1.

. 0

L

n+l

Let's admire the continued fraction development of L, , and notice



F

n+l °

how it differs from that of F;I

Only the last denominator is different. It is a 3 instead of a 1—this is
also the difference in the beginning of the Lucas sequence of numbers:
The second number is a 3 instead of a 1, as with the Fibonacci
numbers.

For example, consider the following two examples:

e 13 l L, 29 l
== ]+ | and —=—= |+ 1
Fe 8 [+ ] Ly 18 1+ i
[+ 1+

1 l

1+ 1+

l l

| +- ] +—

| 3

In general and in the shortened format we have the following:

£=1=03]=3

F=4=[1;3]=13

2=I1=[1;13]=175

r=l=11;1,1,3]= 1571428

E=8-11;1,1,13]= 183

F=22[1;1,1,1,1,3] = 1.6]

2=4-11;1,1,1,1,1,3] = 1.620689655 172413793 1034482758
2=I6-11;1,1,1,1,1,1,3)

=1.6170212765957446808510638297872340425531914893
s %z[l [,1,1,1,1,1,1,3] = 1.618421052631578947361, etc.

o

—

One might then ask if this can be extended to any starting pair of
numbers. That is, were we to begin a Fibonacci-like sequence with
other starting numbers, would we also be able to express the numbers

in terms of $?
Suppose we choose the starting numbers of such a sequence to be
f1 = 7 and f» = 13 with the same recursive relationship as before,

where f,,+2 = f,; + f+1 (with n > 1). We would then have the following

sequence, which does not have a particular name, as the Fibonacci or
Lucas sequences do:



il 2 3 4 5 67 & 9 40 Al A2 13 14 15
f.l7 13 20 33 53 86 139 225 364 589 953 1,542 2,495 4,037 6,532

Yet the big surprise is that the ratio of consecutive members of the
sequence will tend toward the golden ratio as the numbers increase—
as was the case with the Fibonacci and the Lucas numbers before. In

fn+l

the chart below, notice how the ratio of i 4 approaches ¢
=1.6180339887498948482...as a limit. It is believed that the

Fibonacci numbers provide the best approximation of ¢, though this is

not easily seen from the chart.!/

Fout L, fusi

n F L '7‘”_

l | 3 [.857142857
2 2 1.333333333 1.538461538
3 1.5 .75 .65

4 .666666666 1.571428571 1.606060606
S [.6 [.636363636 1.622641509
6 [.625 611111111 1.616279069
] .615384615 .620689655 1.618705035
8 1.619047619 1.617021276 Le17777777
9 .617647058 1.618421052 1.618131868

10 [.618181818 |.617886178 1.617996604
11 1.617977528 1.618090452 [.618048268
12 1.618055555 1.618012422 1.618028534
13 [.618025751 1.618042226 1.618036072
14 .618037135 [.618030842 1.618033192

15 .618032786 [.618035190 1.618034292
16 1.618034447 [.618033529 1.618033872
|7 [.618033813 1.618034164 1.618034033
I8 .618034055 .618033921] 1.618033971

19 1.618033963 1.618034014 1.618033995
20 | 1.618033998 | 1.618033978 | 1.618033986
[00 | 1.618033988 | 1.618033988 | 1.618033988

We can see this better when we take the fifty-place approximation of
the value of



{ = 1.6180339887498948482045868343656381177203091798057.....
Now compare this value to the approximations below for n = 100:

/
T =1.6180339887498948482045868343656381177203127439637...

L,
L_ =1.6180339887498948482045868343656381177203056156477...
foel

,« =1.6180339887498948482045868343656381177203082783971...

Curiously enough, if we take the ratio of the Lucas numbers to the
[

Fibonacci numbers, f‘_, it seems to approach V5=2.236067977
..., as shown in the chart below.



2.2
6 2.25
Jj 2.230769230
8 2.238095238
Y 2.235294117
[0 2.236363636
| ] 2.235955056
|2 2.236111111
|3 2.236051502
14 2.236074270
15 2.236065573
16 2.236068895
|/ 2.236067626
18 2.23606811 1
19 2.236067926
20 2.236067997
100 236067977

You may be impressed further by observing that if we take the ratio of
alternating Fibonacci numbers, the limit as the numbers increase will

approach the value (+1. Another WE}.Y of saying this is that by taking

increasing Fibonacci numbers for F. | we gradually approach the
value of ¢+1 as shown in the chart below:



Approximation Approximation

Fn+2 - Ff:ﬂ-l n+2 : 'F:'r+2

. F, L F = \/ F,
" 2 —y

! L = > £ =\/§ 1.414213562
Fyoo \ £, 1
F 3 L)

2 —= - 3 [E" = \/3 1.732050807
Iy o VE V1
F. 5 .

3 | === |25 g 1= 1.581138830
Fy 2 VE V2
i 18 . Q

4 !j oA 2.666666666 / i = \/ § 1.63299316]
i \ F, 3
F 13

s | 2= 2.6 2o |12 | 1612451549
Fs 0O \ F. 5
F, 21 -

6 L= — 2.625 i = 2 1.620185174
['E: 8 \ ]‘;] 8
o 34 >

7 > === | 2.615384615 £y _ 3% ] 1.617215080
F; 13 \VE, V13
F o »

8 = 2.619047619 Fio - /5 1.618347187
Fg 21 VE V2i
F, 89 >

9 +=— | 2.617647058 u = [82 | 1.617914416
F, 34 V£ V34
I 144

10 == ——1 2.618181818 /F;E = /144 1.618079669
Fig 33 ViFs NS5
J DU .

100 |: == 2.618033988 Froa 1.618033988
F;m:u \ Han

Yet, if we consider the series

FfHE
\ F,
it approaches the golden ratio, ¢, as compared to the value reached by

F,

e+l

the series /. , which tends toward ¢+1. If you consider that we

already established that P11 = ¢2, the relationship above should not be

completely unexpected.1?

One more little tidbit relating the Fibonacci numbers to the golden
ratio can be seen by taking the series of reciprocals of Fibonacci
numbers in the position of powers of 2.

Lk & i) a0l 2 o 1 1 S :
F +F:.1 +F4 +F:~:+F1.:,+“' +F~.-J=+"' =4 —-¢=~2.3819660112501051517,

or written another way,



