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We must know. We shall know.
David Hilbert

Speech about mathematical problems in 1930, on the occasion of his
honorary citizenship of Kénigsberg."



Preface

Mathematics is a vast, ever-growing, ever-changing subject.
Among the innumerable questions that mathematicians ask,
and mostly answer, some stand out from the rest: prominent
peaks that tower over the lowly foothills. These are the really
big questions, the difficult and challenging problems that any
mathematician would give his or her right arm to solve. Some
remained unanswered for decades, some for centuries, a few
for millennia. Some have yet to be conquered. Fermat's last
theorem was an enigma for 350 years until Andrew Wiles
dispatched it after seven years of toil. The Poincaré conjecture
stayed open for over a century until it was solved by the
eccentric genius Grigori Perelman, who declined all academic
honours and a million-dollar prize for his work. The Riemann
hypothesis continues to baffle the world’s mathematicians,
impenetrable as ever after 150 years.

The Great Mathematical Problems contains a selection of
the really big questions that have driven the mathematical
enterprise in radically new directions. It describes their origins,
explains why they are important, and places them in the
context of mathematics and science as a whole. It includes
both solved and unsolved problems, which range over more
than two thousand years of mathematical development, but its
main focus is on questions that either remain open today, or
have been solved within the past fifty years.

A basic aim of mathematics is to uncover the underlying
simplicity of apparently complicated questions. This may not
always be apparent, however, because the mathematician’s
conception of ‘simple’ relies on many technical and difficult
concepts. An important feature of this book is to emphasise the
deep simplicities, and avoid — or at the very least explain in
straightforward terms — the complexities.

Mathematics is newer, and more diverse, than most of us
imagine. At a rough estimate, the world’s research



mathematicians number about a hundred thousand, and they
produce more than two million pages of new mathematics
every year. Not ‘new numbers’, which are not what the
enterprise is really about. Not ‘new sums’ like existing ones,
but bigger — though we do work out some pretty big sums. One
recent piece of algebra, carried out by a team of some 25
mathematicians, was described as ‘a calculation the size of
Manhattan’. That wasn'’t quite true, but it erred on the side of
conservatism. The answer was the size of Manhattan; the
calculation was a lot bigger. That's impressive, but what
matters is quality, not quantity. The Manhattan-sized
calculation qualifies on both counts, because it provides
valuable basic information about a symmetry group that seems
to be important in quantum physics, and is definitely important
in mathematics. Brilliant mathematics can occupy one line, or
an encyclopaedia — whatever the problem demands.

When we think of mathematics, what springs to mind is
endless pages of dense symbols and formulas. However,
those two million pages generally contain more words than
symbols. The words are there to explain the background to the
problem, the flow of the argument, the meaning of the
calculations, and how it all fits into the evergrowing edifice of
mathematics. As the great Carl Friedrich Gauss remarked
around 1800, the essence of mathematics is ‘notions, not
notations’. Ideas, not symbols. Even so, the usual language for
expressing mathematical ideas is symbolic. Many published
research papers do contain more symbols than words.
Formulas have a precision that words cannot always match.

However, it is often possible to explain the ideas while
leaving out most of the symbols. The Great Mathematical
Problems takes this as its guiding principle. It illuminates what
mathematicians do, how they think, and why their subject is
interesting and important. Significantly, it shows how today’s
mathematicians are rising to the challenges set by their
predecessors, as one by one the great enigmas of the past
surrender to the powerful techniques of the present, which
changes the mathematics and science of the future.
Mathematics ranks among humanity’s greatest achievements,



and its great problems — solved and unsolved — have guided
and stimulated its astonishing power for millennia, both past
and yet to come.

Coventry, June 2012
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1
Great problems

TELEVISION PROGRAMMES ABOUT MATHEMATICS are rare,
good ones rarer. One of the best, in terms of audience
involvement and interest as well as content, was Fermat’s last
theorem. The programme was produced by John Lynch for the
British Broadcasting Corporation’s flagship popular science
series Horizon in 1996. Simon Singh, who was also involved in
its making, turned the story into a spectacular bestselling

book.2 On a website, he pointed out that the programme’s
stunning success was a surprise:

It was 50 minutes of mathematicians talking about mathematics,
which is not the obvious recipe for a TV blockbuster, but the result
was a programme that captured the public imagination and which
received critical acclaim. The programme won the BAFTA for best
documentary, a Priz ltalia, other international prizes and an Emmy
nomination — this proves that mathematics can be as emotional
and as gripping as any other subject on the planet.

| think that there are several reasons for the success of both
the television programme and the book and they have
implications for the stories | want to tell here. To keep the
discussion focused, I'll concentrate on the television
documentary.

Fermat's last theorem is one of the truly great mathematical
problems, arising from an apparently innocuous remark which
one of the leading mathematicians of the seventeenth century
wrote in the margin of a classic textbook. The problem became
notorious because no one could prove what Pierre de Fermat’s
marginal note claimed, and this state of affairs continued for
more than 300 years despite strenuous efforts by
extraordinarily clever people. So when the British
mathematician Andrew Wiles finally cracked the problem in
1995, the magnitude of his achievement was obvious to
anyone. You didn’t even need to know what the problem was,



let alone how he had solved it. It was the mathematical
equivalent of the first ascent of Mount Everest.

In addition to its significance for mathematics, Wiles’s
solution also involved a massive human-interest story. At the
age of ten, he had become so intrigued by the problem that he
decided to become a mathematician and solve it. He carried
out the first part of the plan, and got as far as specialising in
number theory, the general area to which Fermat’s last
theorem belongs. But the more he learned about real
mathematics, the more impossible the whole enterprise
seemed. Fermat's last theorem was a baffling curiosity, an
isolated question of the kind that any number theorist could
dream up without a shred of convincing evidence. It didn’t fit
into any powerful body of technique. In a letter to Heinrich
Olbers, the great Gauss had dismissed it out of hand, saying
that the problem had ‘little interest for me, since a multitude of
such propositions, which one can neither prove nor refute, can

easily be formulated’.3 Wiles decided that his childhood dream
had been unrealistic and put Fermat on the back burner. But
then, miraculously, other mathematicians suddenly made a
breakthrough that linked the problem to a core topic in number
theory, one on which Wiles was already an expert. Gauss,
uncharacteristically, had underestimated the problem’s
significance, and was unaware that it could be linked to a
deep, though apparently unrelated, area of mathematics.

With this link established, Wiles could now work on Fermat's
enigma and do credible research in modern number theory at
the same time. Better still, if Fermat didn’t work out, anything
significant that he discovered while trying to prove it would be
publishable in its own right. So off the back burner it came, and
Wiles began to think about Fermat’s problem in earnest. After
seven years of obsessive research, carried on in private and in
secret — an unusual precaution in mathematics — he became
convinced that he had found a solution. He delivered a series
of lectures at a prestigious number theory conference, under

an obscure title that fooled no one.? The exciting news broke,
in the media as well as the halls of academe: Fermat's last
theorem had been proved.



The proof was impressive and elegant, full of good ideas.
Unfortunately, experts quickly discovered a serious gap in its
logic. In attempts to demolish great unsolved problems of
mathematics, this kind of development is depressingly
common, and it almost always proves fatal. However, for once
the Fates were kind. With assistance from his former student
Richard Taylor, Wiles managed to bridge the gap, repair the
proof, and complete his solution. The emotional burden
involved became vividly clear in the television programme: it
must have been the only occasion when a mathematician has
burst into tears on screen, just recalling the traumatic events
and the eventual triumph.

You may have noticed that | haven’t told you what Fermat’s
last theorem is. That's deliberate; it will be dealt with in its
proper place. As far as the success of the television
programme goes, it doesn’t actually matter. In fact,
mathematicians have never greatly cared whether the theorem
that Fermat scribbled in his margin is true or false, because
nothing of great import hangs on the answer. So why all the
fuss? Because a huge amount hangs on the inability of the
mathematical community to find the answer. It's not just a blow
to our self-esteem: it means that existing mathematical
theories are missing something vital. In addition, the theorem
is very easy to state; this adds to its air of mystery. How can
something that seems so simple turn out to be so hard?

Although mathematicians didn’t really care about the
answer, they cared deeply that they didn’t know what it was.
And they cared even more about finding a method that could
solve it, because that must surely shed light not just on
Fermat’'s question, but on a host of others. This is often the
case with great mathematical problems: it is the methods used
to solve them, rather than the results themselves, that matter
most. Of course, sometimes the actual result matters too: it
depends on what its consequences are.

Wiles’s solution is much too complicated and technical for
television; in fact, the details are accessible only to

specialists.5 The proof does involve a nice mathematical story,
as we’'ll see in due course, but any attempt to explain that on



television would have lost most of the audience immediately.
Instead, the programme sensibly concentrated on a more
personal question: what is it like to tackle a notoriously difficult
mathematical problem that carries a lot of historical baggage?
Viewers were shown that there existed a small but dedicated
band of mathematicians, scattered across the globe, who
cared deeply about their research area, talked to each other,
took note of each other’s work, and devoted a large part of
their lives to advancing mathematical knowledge. Their
emotional investment and social interaction came over vividly.
These were not clever automata, but real people, engaged
with their subject. That was the message.

Those are three big reasons why the programme was such a
success: a major problem, a hero with a wonderful human
story, and a supporting cast of emotionally involved people.
But | suspect there was a fourth, not quite so worthy. The
majority of non-mathematicians seldom hear about new
developments in the subject, for a variety of perfectly sensible
reasons: they’re not terribly interested anyway; newspapers
hardly ever mention anything mathematical; when they do, it's
often facetious or trivial; and nothing much in daily life seems
to be affected by whatever it is that mathematicians are doing
behind the scenes. All too often, school mathematics is
presented as a closed book in which every question has an
answer. Students can easily come to imagine that new
mathematics is as rare as hen’s teeth.

From this point of view, the big news was not that Fermat’s
last theorem had been proved. It was that at last someone had
done some new mathematics. Since it had taken
mathematicians more than 300 years to find a solution, many
viewers subconsciously concluded that the breakthrough was
the first important new mathematics discovered in the last 300
years. I'm not suggesting that they explicitly believed that. It
ceases to be a sustainable position as soon as you ask some
obvious questions, such as ‘Why does the Government spend
good money on university mathematics departments?’ But
subconsciously it was a common default assumption,
unquestioned and unexamined. It made the magnitude of



Wiles’s achievement seem even greater.

One of the aims of this book is to show that mathematical
research is thriving, with new discoveries being made all the
time. You don’t hear much about this activity because most of
it is too technical for non-specialists, because most of the
media are wary of anything intellectually more challenging than
The X Factor, and because the applications of mathematics
are deliberately hidden away to avoid causing alarm. ‘What?
My iPhone depends on advanced mathematics? How will | log
in to Facebook when | failed my maths exams?’

Historically, new mathematics often arises from discoveries in
other areas. When Isaac Newton worked out his laws of
motion and his law of gravity, which together describe the
motion of the planets, he did not polish off the problem of
understanding the solar system. On the contrary,
mathematicians had to grapple with a whole new range of
questions: yes, we know the laws, but what do they imply?
Newton invented calculus to answer that question, but his new
method also has limitations. Often it rephrases the question
instead of providing the answer. It turns the problem into a
special kind of formula, called a differential equation, whose
solution is the answer. But you still have to solve the equation.
Nevertheless, calculus was a brilliant start. It showed us that
answers were possible, and it provided one effective way to
seek them, which continues to provide major insights more
than 300 years later.

As humanity’s collective mathematical knowledge grew, a
second source of inspiration started to play an increasing role
in the creation of even more: the internal demands of
mathematics itself. If, for example, you know how to solve
algebraic equations of the first, second, third, and fourth
degree, then you don’t need much imagination to ask about
the fifth degree. (The degree is basically a measure of
complexity, but you don’t even need to know what it is to ask
the obvious question.) If a solution proves elusive, as it did,
that fact alone makes mathematicians even more determined
to find an answer, whether or not the result has useful



applications.

I’'m not suggesting applications don’t matter. But if a
particular piece of mathematics keeps appearing in questions
about the physics of waves — ocean waves, vibrations, sound,
light — then it surely makes sense to investigate the gadget
concerned in its own right. You don’t need to know ahead of
time exactly how any new idea will be used: the topic of waves
is common to so many important areas that significant new
insights are bound to be useful for something. In this case,

those somethings included radio, television, and radar.% If
somebody thinks up a new way to understand heat flow, and
comes up with a brilliant new technique that unfortunately
lacks proper mathematical support, then it makes sense to sort
the whole thing out as a piece of mathematics. Even if you
don'’t give a fig about how heat flows, the results might well be
applicable elsewhere. Fourier analysis, which emerged from
this particular line of investigation, is arguably the most useful
single mathematical idea ever found. It underpins modern
telecommunications, makes digital cameras possible, helps to
clean up old movies and recordings, and a modern extension

is used by the FBI to store fingerprint records.”

After a few thousand years of this kind of interchange
between the external uses of mathematics and its internal
structure, these two aspects of the subject have become so
densely interwoven that picking them apart is almost
impossible. The mental attitudes involved are more readily
distinguishable, though, leading to a broad classification of
mathematics into two kinds: pure and applied. This is
defensible as a rough-and-ready way to locate mathematical
ideas in the intellectual landscape, but it's not a terribly
accurate description of the subject itself. At best it
distinguishes two ends of a continuous spectrum of
mathematical styles. At worst, it misrepresents which parts of
the subject are useful and where the ideas come from. As with
all branches of science, what gives mathematics its power is
the combination of abstract reasoning and inspiration from the
outside world, each feeding off the other. Not only is it
impossible to pick the two strands apart: it's pointless.



Most of the really important mathematical problems, the
great problems that this book is about, have arisen within the
subject through a kind of intellectual navel-gazing. The reason
is simple: they are mathematical problems. Mathematics often
looks like a collection of isolated areas, each with its own
special techniques: algebra, geometry, trigonometry, analysis,
combinatorics, probability. It tends to be taught that way, with
good reason: locating each separate topic in a single well-
defined area helps students to organise the material in their
minds. It's a reasonable first approximation to the structure of
mathematics, especially long-established mathematics. At the
research frontiers, however, this tidy delineation often breaks
down. It's not just that the boundaries between the major areas
of mathematics are blurred. It's that they don't really exist.

Every research mathematician is aware that, at any moment,
suddenly and unpredictably, the problem they are working on
may turn out to require ideas from some apparently unrelated
area. Indeed, new research often combines areas. For
instance, my own research mostly centres on pattern formation
in dynamical systems, systems that change over time
according to specific rules. A typical example is the way
animals move. A trotting horse repeats the same sequence of
leg movements over and over again, and there is a clear
pattern: the legs hit the ground together in diagonally related
pairs. That is, first the front left and back right legs hit, then the
other two. Is this a problem about patterns, in which case the
appropriate methods come from group theory, the algebra of
symmetry? Or is it a problem about dynamics, in which case
the appropriate area is Newtonian-style differential equations?

The answer is that, by definition, it has to be both. It is not
their intersection, which would be the material they have in
common — basically, nothing. Instead, it is a new ‘area’, which
straddles two of the traditional divisions of mathematics. It is
like a bridge across a river that separates two countries; it links
the two, but belongs to neither. But this bridge is not a thin strip
of roadway; it is comparable in size to each of the countries.
Even more vitally, the methods involved are not limited to
those two areas. In fact, virtually every course in mathematics



that | have ever studied has played a role somewhere in my
research. My Galois theory course as an undergraduate at
Cambridge was about how to solve (more precisely, why we
can’t solve) an algebraic equation of the fifth degree. My graph
theory course was about networks, dots joined by lines. | never
took a course in dynamical systems, because my PhD was in
algebra, but over the years | picked up the basics, from steady
states to chaos. Galois theory, graph theory, dynamical
systems: three separate areas. Or so | assumed until 2011,
when | wanted to understand how to detect chaotic dynamics
in a network of dynamical systems, and a crucial step
depended on things I'd learned 45 years earlier in my Galois
theory course.

Mathematics, then, is not like a political map of the world,
with each speciality neatly surrounded by a clear boundary,
each country tidily distinguished from its neighbours by being
coloured pink, green, or pale blue. It is more like a natural
landscape, where you can never really say where the valley
ends and the foothills begin, where the forest merges into
woodland, scrub, and grassy plains, where lakes insert regions
of water into every other kind of terrain, where rivers link the
snow-clad slopes of the mountains to the distant, low-lying
oceans. But this ever-changing mathematical landscape
consists not of rocks, water, and plants, but of ideas; it is tied
together not by geography, but by logic. And it is a dynamic
landscape, which changes as new ideas and methods are
discovered or invented. Important concepts with extensive
implications are like mountain peaks, techniques with lots of
uses are like broad rivers that carry travellers across the fertile
plains. The more clearly defined the landscape becomes, the
easier it is to spot unscaled peaks, or unexplored terrain that
creates unwanted obstacles. Over time, some of the peaks
and obstacles acquire iconic status. These are the great
problems.

What makes a great mathematical problem great? Intellectual
depth, combined with simplicity and elegance. Plus: it has to
be hard. Anyone can climb a hillock; Everest is another matter



entirely. A great problem is usually simple to state, although
the terms required may be elementary or highly technical. The
statements of Fermat’s last theorem and the four colour
problem make immediate sense to anyone familiar with school
mathematics. In contrast, it is impossible even to state the
Hodge conjecture or the mass gap hypothesis without invoking
deep concepts at the research frontiers — the latter, after all,
comes from quantum field theory. However, to those versed in
such areas, the statement of the question concerned is simple
and natural. It does not involve pages and pages of dense,
impenetrable text. In between are problems that require
something at the level of undergraduate mathematics, if you
want to understand them in complete detail. A more general
feeling for the essentials of the problem — where it came from,
why it's important, what you could do if you possessed a
solution — is usually accessible to any interested person, and
that's what | will be attempting to provide. | admit that the
Hodge conjecture is a hard nut to crack in that respect,
because it is very technical and very abstract. However, it is
one of the seven Clay Institute millennium mathematics
problems, with a million-dollar prize attached, and it absolutely
must be included.

Great problems are creative: they help to bring new
mathematics into being. In 1900 David Hilbert delivered a
lecture at the International Congress of Mathematicians in
Paris, in which he listed 23 of the most important problems in
mathematics. He didn’t include Fermat’s last theorem, but he
mentioned it in his introduction. When a distinguished
mathematician lists what he thinks are some of the great
problems, other mathematicians pay attention. The problems
wouldn’t be on the list unless they were important, and hard. It
is natural to rise to the challenge, and try to answer them. Ever
since, solving one of Hilbert's problems has been a good way
to win your mathematical spurs. Many of these problems are
too technical to include here, many are open-ended
programmes rather than specific problems, and several appear
later in their own right. But they deserve to be mentioned, so

I've put a brief summary in the notes.8



That's what makes a great mathematical problem great.
What makes it problematic is seldom deciding what the answer
should be. For virtually all great problems, mathematicians
have a very clear idea of what the answer ought to be — or had
one, if a solution is now known. Indeed, the statement of the
problem often includes the expected answer. Anything
described as a conjecture is like that: a plausible guess, based
on a variety of evidence. Most well-studied conjectures
eventually turn out to be correct, though not all. Older terms
like hypothesis carry the same meaning, and in the Fermat
case the word ‘theorem’ is (more precisely, was) abused — a
theorem requires a proof, but that was precisely what was
missing until Wiles came along.

Proof, in fact, is the requirement that makes great problems
problematic. Anyone moderately competent can carry out a
few calculations, spot an apparent pattern, and distil its
essence into a pithy statement. Mathematicians demand more
evidence than that: they insist on a complete, logically
impeccable proof. Or, if the answer turns out to be negative, a
disproof. It isn’t really possible to appreciate the seductive
allure of a great problem without appreciating the vital role of
proof in the mathematical enterprise. Anyone can make an
educated guess. What'’s hard is to prove it’s right. Or wrong.

The concept of mathematical proof has changed over the
course of history, with the logical requirements generally
becoming more stringent. There have been many highbrow
philosophical discussions of the nature of proof, and these
have raised some important issues. Precise logical definitions
of ‘proof’ have been proposed and implemented. The one we
teach to undergraduates is that a proof begins with a collection
of explicit assumptions called axioms. The axioms are, so to
speak, the rules of the game. Other axioms are possible, but
they lead to different games. It was Euclid, the ancient Greek
geometer, who introduced this approach to mathematics, and it
is still valid today. Having agreed on the axioms, a proof of
some statement is a series of steps, each of which is a logical
consequence of either the axioms, or previously proved
statements, or both. In effect, the mathematician is exploring a



logical maze, whose junctions are statements and whose
passages are valid deductions. A proof is a path through the
maze, starting from the axioms. What it proves is the
statement at which it terminates.

However, this tidy concept of proof is not the whole story. It's
not even the most important part of the story. It’s like saying
that a symphony is a sequence of musical notes, subject to the
rules of harmony. It misses out all of the creativity. It doesn’t
tell us how to find proofs, or even how to validate other
people’s proofs. It doesn’t tell us which locations in the maze
are significant. It doesn't tell us which paths are elegant and
which are ugly, which are important and which are irrelevant. It
is a formal, mechanical description of a process that has many
other aspects, notably a human dimension. Proofs are
discovered by people, and research in mathematics is not just
a matter of step-by-step logic.

Taking the formal definition of proof literally can lead to
proofs that are virtually unreadable, because most of the time
is spent dotting logical i’'s and crossing logical t's in
circumstances where the outcome already stares you in the
face. So practising mathematicians cut to the chase, and leave
out anything that is routine or obvious. They make it clear that
there’s a gap by using stock phrases like ‘it is easy to verify
that’ or ‘routine calculations imply’. What they don’t do, at least
not consciously, is to slither past a logical difficulty and to try to
pretend it's not there. In fact, a competent mathematician will
go out of his or her way to point out exactly those parts of the
argument that are logically fragile, and they will devote most of
their time to explaining how to make them sufficiently robust.
The upshot is that a proof, in practice, is a mathematical story
with its own narrative flow. It has a beginning, a middle, and an
end. It often has subplots, growing out of the main plot, each
with its own resolution. The British mathematician Christopher
Zeeman once remarked that a theorem is an intellectual
resting point. You can stop, get your breath back, and feel
you’ve got somewhere definite. The subplot ties off a loose
end in the main story. Proofs resemble narratives in other
ways: they often have one or more central characters — ideas



rather than people, of course — whose complex interactions
lead to the final revelation.

As the undergraduate definition indicates, a proof starts with
some clearly stated assumptions, derives logical
consequences in a coherent and structured way, and ends
with whatever it is you want to prove. But a proof is not just a
list of deductions, and logic is not the sole criterion. A proof is a
story told to and dissected by people who have spent much of
their life learning how to read such stories and find mistakes or
inconsistencies: people whose main aim is to prove the
storyteller wrong, and who possess the uncanny knack of
spotting weaknesses and hammering away at them until they
collapse in a cloud of dust. If any mathematician claims to
have solved a significant problem, be it a great one or
something worthy but less exalted, the professional reflex is
not to shout ‘hurray!” and sink a bottle of champagne, but to try
to shoot it down.

That may sound negative, but proof is the only reliable tool
that mathematicians have for making sure that what they say is
correct. Anticipating this kind of response, researchers spend a
lot of their effort trying to shoot their own ideas and proofs
down. It's less embarrassing that way. When the story has
survived this kind of critical appraisal, the consensus soon
switches to agreement that it is correct, and at that point the
inventor of the proof receives appropriate praise, credit, and
reward. At any rate, that's how it usually works out, though it
may not always seem that way to the people involved. If you're
close to the action, your picture of what's going on may be
different from that of a more detached observer.

How do mathematicians solve problems? There have been few
rigorous scientific studies of this question. Modern educational
research, based on cognitive science, largely focuses on
education up to high school level. Some studies address the
teaching of undergraduate mathematics, but those are
relatively few. There are significant differences between
learning and teaching existing mathematics and creating new
mathematics. Many of us can play a musical instrument, but



far fewer can compose a concerto or even write a pop song.

When it comes to creativity at the highest levels, much of
what we know — or think we know — comes from introspection.
We ask mathematicians to explain their thought processes,
and seek general principles. One of the first serious attempts
to find out how mathematicians think was Jacques Hadamard’s
The Psychology of Invention in the Mathematical Field, first

published in 1945.2 Hadamard interviewed leading
mathematicians and scientists of his day and asked them to
describe how they thought when working on difficult problems.
What emerged, very strongly, was the vital role of what for lack
of a better term must be described as intuition. Some feature
of the subconscious mind guided their thoughts. Their most
creative insights did not arise through step by step logic, but by
sudden, wild leaps.

One of the most detailed descriptions of this apparently
illogical approach to logical questions was provided by the
French mathematician Henri Poincaré, one of the leading
figures of the late nineteenth and early twentieth centuries.
Poincaré ranged across most of mathematics, founding
several new areas and radically changing many others. He
plays a prominent role in several later chapters. He also wrote
popular science books, and this breadth of experience may
have helped him to gain a deeper understanding of his own
thought processes. At any rate, Poincaré was adamant that
conscious logic was only part of the creative process. Yes,
there were times when it was indispensable: deciding what the
problem really was, systematically verifying the answer. But in
between, Poincaré felt that his brain was often working on the
problem without telling him, in ways that he simply could not
fathom.

His outline of the creative process distinguished three key
stages: preparation, incubation, and illumination. Preparation
consists of conscious logical efforts to pin the problem down,
make it precise, and attack it by conventional methods. This
stage Poincaré considered essential: it gets the subconscious
going and provides raw materials for it to work with. Incubation
takes place when you stop thinking about the problem and go



off and do something else. The subconscious now starts
combining ideas with each other, often quite wild ideas, until
light starts to dawn. With luck, this leads to illumination: your
subconscious taps you on the shoulder and the proverbial light
bulb goes off in your mind.

This kind of creativity is like walking a tightrope. On the one
hand, you won'’t solve a difficult problem unless you make
yourself familiar with the area to which it seems to belong —
along with many other areas, which may or may not be related,
just in case they are. On the other hand, if all you do is get
trapped into standard ways of thinking, which others have
already tried, fruitlessly, then you will be stuck in a mental rut
and discover nothing new. So the trick is to know a lot,
integrate it consciously, put your brain in gear for weeks ... and
then set the question aside. The intuitive part of your mind then
goes to work, rubs ideas against each other to see whether the
sparks fly, and notifies you when it has found something. This
can happen at any moment: Poincaré suddenly saw how to
solve a problem that had been bugging him for months when
he was stepping off a bus. Srinivasa Ramanujan, a self-taught
Indian mathematician with a talent for remarkable formulas,
often got his ideas in dreams. Archimedes famously worked
out how to test metal to see if it were gold when he was having
a bath.

Poincaré took pains to point out that without the initial period
of preparation, progress is unlikely. The subconscious, he
insisted, needs to be given plenty to think about, otherwise the
fortuitous combinations of ideas that will eventually lead to a
solution cannot form. Perspiration begets inspiration. He must
also have known — because any creative mathematician does
— that this simple three-stage process seldom occurs just once.
Solving a problem often requires more than one breakthrough.
The incubation stage for one idea may be interrupted by a
subsidiary process of preparation, incubation, and illumination
for something that is needed to make the first idea work. The
solution to any problem worth its salt, be it great or not,
typically involves many such sequences, nested inside each
other like one of Benoit Mandelbrot’s intricate fractals. You



solve a problem by breaking it down into subproblems. You
convince yourself that if you can solve these subproblems,
then you can assemble the results to solve the whole thing.
Then you work on the subproblems. Sometimes you solve one;
sometimes you fail, and a rethink is in order. Sometimes a
subproblem itself breaks up into more pieces. It can be quite a
task just to keep track of the plan.

| described the workings of the subconscious as ‘intuition’.
This is one of those seductive words like ‘instinct’, which is
widely used even though it is devoid of any real meaning. It's a
name for something whose presence we recognise, but which
we do not understand. Mathematical intuition is the mind’s
ability to sense form and structure, to detect patterns that we
cannot consciously perceive. Intuition lacks the crystal clarity
of conscious logic, but it makes up for that by drawing attention
to things we would never have consciously considered.
Neuroscientists are barely starting to understand how the brain
carries out much simpler tasks. But however intuition works, it
must be a consequence of the structure of the brain and how it
interacts with the external world.

Often the key contribution of intuition is to make us aware of
weak points in a problem, places where it may be vulnerable to
attack. A mathematical proof is like a battle, or if you prefer a
less warlike metaphor, a game of chess. Once a potential
weak point has been identified, the mathematician’s technical
grasp of the machinery of mathematics can be brought to bear
to exploit it. Like Archimedes, who wanted a firm place to stand
so that he could move the Earth, the research mathematician
needs some way to exert leverage on the problem. One key
idea can open it up, making it vulnerable to standard methods.
After that, it's just a matter of technique.

My favourite example of this kind of leverage is a puzzle that
has no intrinsic mathematical significance, but drives home an
important message. Suppose you have a chessboard, with 64
squares, and a supply of dominoes just the right size to cover
two adjacent squares of the board. Then it’s easy to cover the
entire board with 32 dominoes. But now suppose that two



diagonally opposite corners of the board have been removed,
as in Figure 1. Can the remaining 62 squares be covered using
31 dominoes? If you experiment, nothing seems to work. On
the other hand, it's hard to see any obvious reason for the task
to be impossible. Until you realise that however the dominoes
are arranged, each of them must cover one black square and
one white square. This is your lever; all you have to do now is
to wield it. It implies that any region covered by dominoes
contains the same number of black squares as it does white
squares. But diagonally opposite squares have the same
colour, so removing two of them (here white ones) leads to a
shape with two more black squares than white. So no such
shape can be covered. The observation about the combination
of colours that any domino covers is the weak point in the
puzzle. It gives you a place to plant your logical lever, and
push. If you were a medieval baron assaulting a castle, this
would be the weak point in the wall — the place where you
should concentrate the firepower of your trebuchets, or dig a
tunnel to undermine it.

_

Fig 1 Can you cover the hacked chessboard with dominoes, each




covering two squares (top right)? If you colour the domino (bottom
right) and count how many black and white squares there are, the
answer is clear.

Mathematical research differs from a battle in one important
way. Any territory you once occupy remains yours for ever.
You may decide to concentrate your efforts somewhere else,
but once a theorem is proved, it doesn’t disappear again. This
is how mathematicians make progress on a problem, even
when they fail to solve it. They establish a new fact, which is
then available for anyone else to use, in any context
whatsoever. Often the launchpad for a fresh assault on an
age-old problem emerges from a previously unnoticed jewel
half-buried in a shapeless heap of assorted facts. And that’s
one reason why new mathematics can be important for its own
sake, even if its uses are not immediately apparent. It is one
more piece of territory occupied, one more weapon in the
armoury. lts time may yet come — but it certainly won't if it is
deemed ‘useless’ and forgotten, or never allowed to come into
existence because no one can see what it is for.



2
Prime territory
Goldbach Conjecture

SOME OF THE GREAT PROBLEMS show up very early in our
mathematical education, although we may not notice. Soon after we
are taught multiplication, we run into the concept of a prime number.
Some numbers can be obtained by multiplying two smaller numbers
together; for example, 6 = 2 x 3. Others, such as 5, cannot be
broken up in this manner; the best we candois 5 =1 x 5, which
doesn’t involve two smaller numbers. Numbers that can be broken
up are said to be composite; those that can’t are prime. Prime
numbers seem such simple things. As soon as you can multiply
whole numbers together you can understand what a prime number
is. Primes are the basic building blocks for whole numbers, and they
turn up all over mathematics. They are also deeply mysterious, and
they seem to be scattered almost at random. There’s no doubting it:
primes are an enigma. Perhaps this is a consequence of their
definition — not so much what they are as what they are not. On the
other hand, they are fundamental to mathematics, so we can't just
throw up our hands in horror and give up. WWe need to come to terms
with primes, and ferret out their innermost secrets.

A few features are obvious. With the exception of the smallest
prime, 2, all primes are odd. With the exception of 3, the sum of their
digits can’t be a multiple of 3. With the exception of 5, they can’'t end
in the digit 5. Aside from these rules, and a few subtler ones, you
can’t look at a number and immediately spot whether it is prime.
There do exist formulas for primes, but to a great extent they are
cheats: they don’t provide useful new information about primes; they
are just clever ways to encode the definition of ‘prime’ in a formula.
Primes are like people: they are individuals, and they don’t conform
to standard rules.

Over the millennia, mathematicians have gradually increased their
understanding of prime numbers, and every so often another big
problem about them is solved. However, many questions still remain
unanswered. Some are basic and easy to state; others are more
esoteric. This chapter discusses what we do and don’t know about
these infuriating, yet fundamental, numbers. It begins by setting up



some of the basic concepts, in particular, prime factorisation — how
to express a given number by multiplying primes together. Even this
familiar process leads into deep waters as soon as we start asking
for genuinely effective methods for finding a number’s prime factors.
One surprise is that it seems to be relatively easy to test a number
to determine whether it is prime, but if it's composite, finding its
prime factors is often much harder.

Having sorted out the basics, we move on to the most famous
unsolved problem about primes, the 250-year-old Goldbach
conjecture. Recent progress on this question has been dramatic, but
not yet decisive. A few other problems provide a brief sample of
what is still to be discovered about this rich but unruly area of
mathematics.

Prime numbers and factorisation are familiar from school arithmetic,
but most of the interesting features of primes are seldom taught at
that level, and virtually nothing is proved. There are sound reasons
for that: the proofs, even of apparently obvious properties, are
surprisingly hard. Instead, pupils are taught some simple methods
for working with primes, and the emphasis is on calculations with
relatively small numbers. As a result, our early experience of primes
is a bit misleading.

The ancient Greeks knew some of the basic properties of primes,
and they knew how to prove them. Primes and factors are the main
topic of Book VII of Euclid’s Elements, the great geometry classic.
This particular book contains a geometric presentation of division
and multiplication in arithmetic. The Greeks preferred to work with
lengths of lines, rather than numbers as such, but it is easy to
reformulate their results in the language of numbers. Euclid takes
care to prove statements that may seem obvious: for example,
Proposition 16 of Book VII proves that when two numbers are
multiplied together, the result is independent of the order in which
they are taken. That is, ab, = ba, a basic law of algebra.

In school arithmetic, prime factors are used to find the greatest
common divisor (or highest common factor) of two numbers. For
instance, to find the greatest common divisor of 135 and 630, we
factorise them into primes:

135=33x5 630=2x32x5x7
Then, for each prime, we take the largest power that occurs in both
factorisations, obtaining 32 x5, Multiply out to get 45: this is the



greatest common divisor. This procedure gives the impression that
prime factorisation is needed to find greatest common divisors.
Actually, the logical relationship goes the other way. Book VII
Proposition 2 of the Elements presents a method for finding the
greatest common divisor of two whole numbers without factorising
them. It works by repeatedly subtracting the smaller number from
the larger one, then applying a similar process to the resulting
remainder and the smaller number, and continuing until there is no
remainder. For 135 and 630, a typical example using smallish
numbers, the process goes like this. Subtract 135 repeatedly from
630:

630-135= 495
495-135= 360
360-135= 225
225-135=90
Since 90 is smaller than 135, switch to the two numbers 90 and 135:
135-90=45
Since 45 is smaller than 90, switch to 45 and 90:
90-45=45
45-45=0
Therefore the greatest common divisor of 135 and 630 is 45.

This procedure works because at each stage it replaces the
original pair of numbers by a simpler pair (one of the numbers is
smaller) that has the same greatest common divisor. Eventually one
of the numbers divides the other exactly, and at that stage we stop.
Today’s term for an explicit computational method that is guaranteed
to find an answer to a given problem is ‘algorithm’. So Euclid’s
procedure is now called the Euclidean algorithm. It is logically prior
to prime factorisation. Indeed, Euclid uses his algorithm to prove
basic properties about prime factors, and so do university courses in
mathematics today.

Euclid’'s Proposition 30 is vital to the whole enterprise. In modern
terms, it states that if a prime divides the product of two numbers —
what you get by multiplying them together — then it must divide one
of them. Proposition 32 states that either a number is prime or it has
a prime factor. Putting the two together, it is easy to deduce that
every number is a product of prime factors, and that this expression
is unigue apart from the order in which the factors are written. For
example,



60=2x2x3x5=2x3x2x5=5x3x2x2

and so on, but the only way to get 60 is to rearrange the first
factorisation. There is no factorisation, for example, looking like 60 =
7 x something. The existence of the factorisation comes from
Proposition 32. If the number is prime, stop. If not, find a prime
factor, divide to get a smaller number, and repeat. Uniqueness
comes from Proposition 30. For example, if there were a
factorisation 60 = 7 x something, then 7 must divide one of the
numbers 2, 3, or 5, but it doesn't.

At this point | need to clear up a small but important point: the
exceptional status of the number 1. According to the definition as
stated so far, 1 is clearly prime: if we try to break it up, the best we
candois 1 =1 x 1, which does not involve smaller numbers.
However, this interpretation causes problems later in the theory, so
for the last century or two, mathematicians have added an extra
restriction. The number 1 is so special that it should be considered
as neither prime nor composite. Instead, it is a third manner of
beast, a unit. One reason for treating 1 as a special case, rather
than a genuine prime, is that if we call 1 a prime then uniqueness
fails. In fact, 1 x 1 = 1 already exhibits the failure, and 1 x 1 x 1 x 1
x1x1x1x%x1=1rubs ournoses in it. We could modify uniqueness
to say ‘unique except for extra 1s’, but that’s just another way to
admit that 1 is special.

Much later, in Proposition 20 of Book IX, Euclid proves another
key fact: ‘Prime numbers are more than any assigned multitude of
prime numbers.’ That is, the number of primes is infinite. It's a
wonderful theorem with a clever proof, but it opened up a huge can
of worms. If the primes go on for ever, yet seem to have no pattern,
how can we describe what they look like?

We have to face up to that question because we can’t ignore the
primes. They are essential features of the mathematical landscape.
They are especially common, and useful, in number theory. This
area of mathematics studies properties of whole numbers. That may
sound a bit elementary, but actually number theory is one of the
deepest and most difficult areas of mathematics. We will see plenty
of evidence for that statement later. In 1801 Gauss, the leading
number theorist of his age — arguably one of the leading
mathematicians of all time, perhaps even the greatest of them all -
wrote an advanced textbook of number theory, the Disquisitiones
Arithmeticae (‘Investigations in arithmetic’). In among the high-level



topics, he pointed out that we should not lose sight of two very basic
issues: ‘The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into their prime
factors is known to be one of the most important and useful in
arithmetic.’

At school, we are usually taught exactly one way to find the prime
factors of a number: try all possible factors in turn until you find
something that goes exactly. If you haven’t found a factor by the
time you reach the square root of the original number — more
precisely, the largest whole number that is less than or equal to that
square root — then the number is prime. Otherwise you find a factor,
divide out by that, and repeat. It's more efficient to try just prime
factors, which requires having a list of primes. You stop at the
square root because the smallest factor of any composite number is
no greater than its square root. However, this procedure is
hopelessly inefficient when the numbers become large. For
example, if the number is

1, 080, 813, 321, 843, 836, 712, 253
then its prime factorisation is
13, 929, 010, 429 x 77, 594, 408, 257

and you would have to try the first 624,401,249 primes in turn to find
the smaller of the two factors. Of course, with a computer this is
fairly easy, but if we start with a 100-digit number that happens to be
the product of two 50-digit numbers, and employ a systematic
search through successive primes, the universe will end before the
computer finds the answer.

In fact, today’s computers can generally factorise 100-digit
numbers. My computer takes less than a second to find the prime

factors of 1099 + 1, which looks like 1000 ... 001 with 98 zeros. It is
a product of 13 primes (one of them occurs twice), of which the
smallest is 7 and the largest is

141, 122, 524, 877, 886, 182, 282, 233, 539, 317, 796, 144, 938,
305, 111, 168, 717

But if | tell the computer to factorise 10199 + 1, with 200 digits, it
churns away for ages and gets nowhere. Even so, the 100-digit
calculation is impressive. What's the secret? Find more efficient
methods than trying all potential prime factors in turn.

We now know a lot more than Gauss did about the first of his
problems (testing for primes) and a lot less than we’d like to about



the second (factorisation). The conventional wisdom is that primality
testing is far simpler than factorisation. This generally comes as a
surprise to non-mathematicians, who were taught at school to test
whether a number is prime by the same method used for
factorisation: try all possible divisors. It turns out that there are slick
ways to prove that a number is prime without doing that. They also
allow us to prove that a number is composite, without finding any of
its factors. Just show that it fails a primality test.

The great grand-daddy of all modern primality tests is Fermat’s
theorem, not to be confused with the celebrated Fermat’s last
theorem, chapter 7. This theorem is based on modular arithmetic,
sometimes known as ‘clock arithmetic’ because the numbers wrap
round like those on a clock face. Pick a number — for a 12-hour
analogue clock it is 12 — and call it the modulus. In any arithmetical
calculation with whole numbers, you now allow yourself to replace
any multiple of 12 by zero. For example, 5 x 5 = 25, but 24 is twice
12, so subtracting 24 we obtain 5 x 5 = 1 to the modulus 12.
Modular arithmetic is very pretty, because nearly all of the usual
rules of arithmetic still work. The main difference is that you can't
always divide one number by another, even when it's not zero.
Modular arithmetic is also useful, because it provides a tidy way to
deal with questions about divisibility: which numbers are divisible by
the chosen modulus, and what is the remainder when they’re not?
Gauss introduced modular arithmetic in the Disquisitiones
Arithmeticae, and today it is widely used in computer science,
physics, and engineering, as well as mathematics.

Fermat’s theorem states that if we choose a prime modulus p, and
take any number a that is not a multiple of p, then the (p — 1) th
power of a is equal to 1 in arithmetic to the modulus p. Suppose, for
example, that p = 17 and a = 3. Then the theorem predicts that

when we divide 316 by 17, the remainder is 1. As a check,
316 =43, 046, 721 = 2, 532, 160 x 17 + 1

No one in their right mind would want to do the sums that way for,
say, 100-digit primes. Fortunately, there is a clever, quick way to
carry out this kind of calculation. The point is that if the answer is not
equal to 1 then the modulus we started with is composite. So
Fermat's theorem forms the basis of an efficient test that provides a
necessary condition for a number to be prime.

Unfortunately, the test is not sufficient. Many composite numbers,
known as Carmichael numbers, pass the test. The smallest is 561,



and in 2003 Red Alford, Andrew Granville, and Carl Pomerance
proved, to general amazement, that there are infinitely many. The
amazement was because they found a proof; the actual result was
less of a surprise. In fact, they showed that there are at least 227
Carmichael numbers less than or equal to x if x is large enough.

However, more sophisticated variants of Fermat’s theorem can be
turned into genuine tests for primality, such as one published in
1976 by Gary Miller. Unfortunately, the proof of the validity of Miller's
test depends on an unsolved great problem, the generalised
Riemann hypothesis, chapter 9. In 1980 Michael Rabin turned
Miller's test into a probabilistic one, a test that might occasionally
give the wrong answer. The exceptions, if they exist, are very rare,
but they can’t be ruled out altogether. The most efficient
deterministic (that is, guaranteed correct) test to date is the
Adleman-Pomerance-Rumely test, named for Leonard Adleman,
Pomerance, and Robert Rumely. It uses ideas from number theory
that are more sophisticated than Fermat’s theorem, but in a similar
spirit.

| still vividly recall a letter from one hopeful amateur, who proposed
a variant of trial division. Try all possible divisors, but start at the
square root and work downwards. This method sometimes gets the
answer more quickly than doing things in the usual order, but as the
numbers get bigger it runs into the same kind of trouble as the usual
method. If you try it on my example above, the 22-digit number
1,080,813,321,843,836,712,253, then the square root is about
32,875,725,419. You have to try 794,582,971 prime divisors before
you find one that works. This is worse than searching in the usual
direction.

In 1956 The famous logician Kurt Gédel, writing to John von
Neumann, echoed Gauss’s plea. He asked whether trial division
could be improved, and if so, by how much. Von Neumann didn’t
pursue the question, but over the years others answered Goédel by
discovering practical methods for finding primes with up to 100
digits, sometimes more. These methods, of which the best known is
called the quadratic sieve, have been known since about 1980.
However, nearly all of them are either probabilistic, or they are
inefficient in the following sense.

How does the running time of a computer algorithm grow as the
input size increases? For primality testing, the input size is not the
number concerned, but how many digits it has. The core distinction



cryptanalysis, the dark art of code-breaking. Many novel codes have
been devised, and one of the most famous, invented by Ron Rivest,
Adi Shamir, and Leonard Adleman in 1978, uses prime numbers.
Big ones, about a hundred digits long. The Rivest-Shamir-Adleman
system is employed in many computer operating systems, is built
into the main protocols for secure Internet communication, and is
widely used by governments, corporations, and universities. That
doesn’t mean that every new result about primes is significant for
the security of your Internet bank account, but it adds a definite
frisson of excitement to any discovery that relates primes to
computation. The Agrawal-Kayal-Saxena test is a case in point.
Mathematically, it is elegant and important, but it has no direct
practical significance.

It does, however, cast the general issue of Rivest-Shamir-
Adleman cryptography in a new and slightly disturbing light. There is
still no class P algorithm to solve Gauss’s second problem,
factorisation. Most experts think nothing of the kind exists, but
they’re not quite as sure as they used to be. Since new discoveries
like the Agrawal-Kayal-Saxena test can lurk unsuspected in the
wings, based on such simple ideas as polynomial versions of
Fermat's theorem, cryptosystems based on prime factorisation might
not be quite as secure as we fondly imagine. Don’t reveal your cat’s
name on the Internet just yet.

Even the basic mathematics of primes quickly leads to more
advanced concepts. The mystery becomes even deeper when we
ask subtler questions. Euclid proved that the primes go on for ever,
so we can't just list them all and stop. Neither can we give a simple,

useful algebraic formula for successive primes, in the way that x2
specifies squares. (There do exist simple formulas, but they ‘cheat’
by building the primes into the formula in disguise, and don'’t tell us

anything new.'") To grasp the nature of these elusive, erratic
numbers, we can carry out experiments, look for hints of structure,
and try to prove that these apparent patterns persist no matter how
large the primes become. For instance, we can ask how the primes
are distributed among all whole numbers. Tables of primes strongly
suggest that they tend to thin out as they get bigger. Table 1 shows
how many primes there are in various ranges of 1000 consecutive
numbers.

The numbers in the second column mostly decrease as we move
down the rows, though sometimes there are brief periods when they



go the other way: 114 is followed by 117, for instance. This is a
symptom of the irregularity of the primes, but despite that, there is a
clear general tendency for primes to become rarer as their size
increases. The reason is not far to seek: the bigger a number
becomes, the more potential factors there are. Primes have to avoid
all of these factors. It’s like fishing for non-primes with a net: the finer
the net becomes, the fewer primes slip through.

range number of
primes
1-1000 168
1001-2000 135
2001-3000 127
30071-4000 119
4001-5000 118
5001-6000 114
6001-7000 117
7001-8000 106
8001-2000 110
9001-10,000 111

Table 1 The number of primes in successive intervals of 1000
numbers.

The ‘net’ even has a name: the sieve of Eratosthenes.
Eratosthenes of Cyrene was an ancient Greek mathematician who
lived around 250 BC. He was also an athlete with interests in poetry,
geography, astronomy, and music. He made the first reasonable
estimate of the size of the Earth by observing the position of the Sun
at noon in two different locations, Alexandria and Syene — present-
day Aswan. At noon, the Sun was directly overhead at Syene, but
about 7 degrees from the vertical at Alexandria. Since this angle is
one fiftieth of a circle, the Earth’s circumference must be 50 times
the distance from Alexandria to Syene. Eratosthenes couldn’t
measure that distance directly, so he asked traders how long it took
to make the journey by camel, and estimated how far a camel
typically went in a day. He gave an explicit figure in a unit known as
a stadium, but we don’t know how long that unit was. Historians



generally think that Eratosthenes’s estimate was reasonably
accurate.

His sieve is an algorithm to find all primes by successively
eliminating all multiples of numbers already known to be prime.
Figure 2 illustrates the method on the numbers up to 102, arranged
to make the elimination process easy to follow. To see what’s going
on, | suggest you construct the diagram for yourself. Start with just
the grid, omitting the lines that cross numbers out. Then you can
add those lines one by one. Omit 1 because it’s a unit. The next
number is 2, so that’s prime. Cross out all multiples of 2: these lie on
the horizontal lines starting from 4, 6, and 8. The next number not
crossed out is 3, so that’s prime. Cross out all multiples of 3: these
lie on the horizontal lines starting from 6, already crossed out, and 9.
The next number not crossed out is 5, so that’'s prime. Cross out all
multiples of 5: these lie on the diagonal lines sloping up and to the
right, starting at 10. The next number not crossed out is 7, so that’s
prime. Cross out all multiples of 7: these lie on the diagonal lines
sloping down and to the right, starting at 14. The next number not
crossed out is 11, so that’s prime. The first multiple of 11 that has
not already been crossed out because it has a smaller divisor is 121,
which is outside the picture, so stop. The remaining numbers,
shaded, are the primes.
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Fig 2 The sieve of Eratosthenes.

The sieve of Eratosthenes is not just a historical curiosity; it is still
one of the most efficient methods known for making extensive lists
of primes. And related methods have led to significant progress on
what is probably the most famous unsolved great problem about
primes: the Goldbach conjecture. The German amateur



mathematician Christian Goldbach corresponded with many of the
famous figures of his time. In 1742 he stated a number of curious
conjectures about primes in a letter to Leonhard Euler. Historians
later noticed that René Descartes had said much the same a few
years before. The first of Goldbach’s statements was: ‘Every integer
which can be written as the sum of two primes, can also be written
as the sum of as many primes as one wishes, until all terms are
units.” The second, added in the margin of his letter, was: ‘Every
integer greater than 2 can be written as the sum of three primes.’
With today’s definition of ‘prime’ there are obvious exceptions to
these statements. For example, 4 is not the sum of three primes,
because the smallest prime is 2, so the sum of three primes must be
at least 6. But in Goldbach’s day, the number 1 was considered to
be prime. It is straightforward to rephrase his conjectures using the
modern convention.

In his reply, Euler recalled a previous conversation with Goldbach,
when Goldbach had pointed out that his first conjecture followed
from a simpler one, his third conjecture: ‘Every even integer is the
sum of two primes.” With the prevailing convention that 1 is prime,
this statement also implies the second conjecture, because any
number can be written as either

n+ 1 orn+2where nis even. If nis the sum of two primes, the
original number is the sum of three primes. Euler’s opinion of the
third conjecture was unequivocal: ‘I regard this as a completely
certain theorem, although | cannot prove it.” That pretty much sums
up its status today.

The modern convention, in which 1 is not prime, splits Goldbach’s
conjectures into two different ones. The even Goldbach conjecture
states:

Every even integer greater than 2 is the sum of two primes.
The odd Goldbach conjecture is:

Every odd integer greater than 5 is the sum of three primes.

The even conjecture implies the odd one, but not conversely.12 It

is useful to consider both conjectures separately because we still
don’t know whether either of them is true. The odd conjecture seems
to be slightly easier than the even one, in the sense that more
progress has been made.



Some quick calculations verify the even Goldbach conjecture for

small numbers:

4=2+2
6=3+3

§=5+3
10=7+3=5+5
12=7+5
14=1143=7+7
16=13+3=11+35
18=134+5=11+7
20=17+3=13+7

It is easy to continue by hand up to, say, 1000 or so — more if you ‘re
persistent. For example 1000 = 3 + 997, and 1,000,000 = 17 +
999,993. In 1938 Nils Pipping verified the even Goldbach conjecture
for all even numbers up to 100,000.

It also became apparent that as the number concerned gets
bigger, there tend to be more and more ways to write it as a sum of
primes. This makes sense. If you take a big even number, and keep
subtracting primes in turn, how likely is it that all of the results will be
composite? It takes just one prime to turn up among the resulting list
of differences and the conjecture is verified for that number. Using
statistical features of primes, we can assess the probability of such
an outcome. The analysts Godfrey Harold Hardy and John
Littlewood performed such a calculation in 1923, and derived a
plausible but non-rigorous formula for the number of different ways
to express a given even number n as a sum of two primes:

approximately » /[2(log r?)z} This number increases as n becomes

larger, and it also agrees with numerical evidence. But even if this
calculation could be made rigorous, there might just be an
occasional rare exception, so it doesn’t greatly help.

The main obstacle to a proof of Goldbach’s conjecture is that it
combines two very different properties. Primes are defined in terms
of multiplication, but the conjectures are about addition. So it is
extraordinarily difficult to relate the desired conclusion to any
reasonable features of primes. There seems to be nowhere to insert



several times in the relevant quarter of the table. Why? Because 20
sums have to fit into a set with only 13 members. So on average
each boldface number appears about 1.5 times. (The actual number
of sums is 27, so a better estimate shows that each boldface
number appears twice.) If any even numbers are missing, the
overlap must be bigger still.

We can play the same game with a larger upper limit — say 1
million. A formula called the prime number theorem, chapter 9,
provides a simple estimate for the number of primes up to any given
size x. The formula is x/logx. Here, the estimate is about 72,380.
(The exact figure is 78,497.) The corresponding shaded region
occupies about one quarter of the table, so it provides about

1n* /4 = 250 billion boldface numbers: sums of two primes in this

range. This is vastly larger than the number of even numbers in the
range, which is half a million. Now the amount of overlap has to be
gigantic, with each sum occurring on average 500,000 times. So the
chance of any particular even number escaping is greatly reduced.

With more effort, we can turn this approach into an estimate of the
probability that some even number in a given range is not the sum of
two primes, assuming that the primes are distributed at random and
with frequencies given by the prime number theorem — that is, about
x/logx primes less than any given x. This is what Hardy and
Littlewood did. They knew that their approach wasn’t rigorous,
because primes are defined by a specific process and they’re not
actually random. Nevertheless, it's sensible to expect the actual
results to be consistent with this probabilistic model, because the
defining property of primes seems to have very little connection with
what happens when we add two of them together.

Several standard methods in this area adopt a similar point of
view, but taking extra care to make the argument rigorous. Sieve
methods, which build on the sieve of Eratosthenes, are examples.
General theorems about the density of numbers in sums of two sets
— the proportion of numbers that occur, as the sets become very
large — provide other useful tools.

When a mathematical conjecture eventually turns out to be correct,
its history often follows a standard pattern. Over a period of time,
various people prove the conjecture to be true provided special
restrictions apply. Each such result improves on the previous one by
relaxing some restrictions, but eventually this process runs out of
steam. Finally, a new and much cleverer idea completes the proof.



For example, a conjecture in number theory may state that every
positive integer can be represented in some manner using, say, Six
special numbers (prime, square, cube, whatever). Here the key
features are every positive integer and six special numbers. Initial
advances lead to much weaker results, but successive stages in the
process slowly improve them.

The first step is often a proof along these lines: every positive
integer that is not divisible by 3 or 11, except for some finite number
of them, can be represented in terms of some gigantic number of

special numbers — say 10966, The theorem typically does not specify
how many exceptions there are, so the result cannot be applied
directly to any specific integer. The next step is to make the bound

effective: that is, to prove that every integer greater than 101042 can
be so represented. Then the restriction on divisibility by 3 is
eliminated, followed by a similar advance for 11. After that,

successive authors reduce one of the numbers 10886 or 1010%
often both. A typical improvement might be that every integer

greater than 5.8 x 107 can be represented using at most 4298
special numbers, for instance.

Meanwhile, other researchers are working upwards from small
numbers, often with computer assistance, proving that, say, every

number less than or equal to 1012 can be represented using at most
six special numbers. Within a year, 1012 has been improved in five

stages, by different researchers or groups, to 11.0337 x 102%. These
improvements are neither routine nor easy, but the way they are
achieved involves intricate special methods that provide no hint of a
more general approach, and each successive contribution is more
complicated and longer. After a few years of this kind of incremental
improvement, applying the same general ideas but with more

powerful computers and new tweaks, this number has risen to 1043,
But now the method grinds to a halt, and everyone agrees that
however much tweaking is done, it will never lead to the full
conjecture.

At that point the conjecture disappears from view, because no one
is working on it any more. Sometimes, progress pretty much stops.
Sometimes, twenty years pass with nothing new ... and then,
apparently from nowhere, Cheesberger and Fries announce that by
reformulating the conjecture in terms of complex meta-ergodic
guasiheaps and applying byzantine quisling theory, they have



obtained a complete proof. After several years arguing about fine
points of logic, and plugging a few gaps, the mathematical
community accepts that the proof is correct, and immediately asks if
there’s a better way to achieve the same result, or to push it further.

You will see this pattern work itself out many times in later
chapters. Because such accounts become tedious, no matter how
proud Buggins and Krumm are of their latest improvement of the
exponent in the Jekyll-Hyde conjecture from 1.773 to 1.771 + € for
any positive g, | will describe a few representative contributions and
leave out the rest. This is not to deny the importance of the work of
Buggins and Krumm. It may even have paved the way to the great
Cheesberger-Fries breakthrough. But only experts, following the
developing story, are likely to await the next tiny improvement with
bated breath.

In future I'll provide less detail, but let’s see how it goes for
Goldbach.

Theorems that go some way towards establishing Goldbach'’s
conjecture have been proved. The first big breakthrough came in
1923, when Hardy and Littlewood used their analytic techniques to
prove the odd Goldbach conjecture for all sufficiently large odd
numbers. However, their proof relied on another big conjecture, the
generalised Riemann hypothesis, which we discuss in chapter 9.
This problem is still open, so their approach had a significant gap. In
1930 Lev Schnirelmann bridged the gap using a fancy version of
their reasoning, based on sieve methods. He proved that a nonzero
proportion of all numbers can be represented as a sum of two
primes. By combining this result with some generalities about adding
sequences together, he proved that there is some number C such
that every integer greater than 1 is a sum of at most C prime
numbers. This number became known as Schnirelmann’s constant.
Ilvan Matveyevich Vinogradov obtained similar results in 1937, but
his method also did not specify how big ‘significantly large’ is. In
1939 K. Borozdin proved that it is no greater than 314 348.907 gy
2002 Liu Ming-Chit and Wang Tian-Ze had reduced this ‘upper
bound’ to 3190 which is about 2 x 107346_ This is a lot smaller, but

it is still too big for the intermediate numbers to be checked by
computer.

In 1969 N.I. Klimov obtained the first specific estimate for
Schnirelmann’s constant: it is at most 6 billion. Other
mathematicians reduced that number considerably, and by 1982



Hans Riesel and Robert Vaughan had brought it down to 19.
Although 19 is a lot better than 6 billion, the evidence pointed to
Schnirelmann’s constant being a mere 3. In 1995 Leszek Kaniecki
reduced the upper bound to 6, with five primes for any odd number,
but he had to assume the truth of the Riemann hypothesis. His
results, combined with J. Richstein’s numerical verification of the

Riemann hypothesis up to 4 x 1014, would prove that
Schnirelmann’s constant is at most 4, again assuming the Riemann
hypothesis. In 1997 Jean-Marc Deshouillers, Gove Effinger, Herman
te Riele, and Dmitrii Zinoviev showed that the generalised Riemann
hypothesis (chapter 9) implies the odd Goldbach conjecture. That is,
every odd number except 1, 3, and 5 is the sum of three primes.
Since the Riemann hypothesis is currently not proved, it is worth
trying to remove this assumption. In 1995 the French mathematician
Olivier Ramaré reduced the upper estimate for representing odd
numbers to 7, without using the Riemann hypothesis. In fact, he
proved something stronger: every even number is a sum of at most
six primes. (To deal with odd numbers, subtract 3: the result is even,
so it is a sum of six or fewer primes. The original number is this sum
plus the prime 3, requiring seven or fewer primes.) The main
breakthrough was to improve existing estimates for the proportion of
numbers, in some specified range, that are the sum of two primes.

Ramaré’s key result is that for any number n greater than e%7 (about

1.25 x 1029), at least one fifth of the numbers between n and 2n are
the sum of two primes. Using sieve methods, in conjunction with a
theorem of Hans-Heinrich Ostmann about sums of sequences,
refined by Deshouillers, this leads to a proof that every even number

greater than 1030 is a sum of at most six primes.

The remaining obstacle is to deal with the gap between 4 x 1014,
where Jorg Richstein had checked the theorem by computer, and

1030, As is common, the numbers are too big for a direct computer
search, so Ramaré proved a series of specialised theorems about
the number of primes in small intervals. These theorems depend on
the truth of the Riemann hypothesis up to specific limits, which can
be verified by computer. So the proof consists mainly of conceptual
pencil-and-paper deductions, with computer assistance in this
particular respect. Ramaré ended his paper by pointing out that in
principle a similar approach could reduce the number of primes from
7 to 5. However, there were huge practical obstacles, and he wrote
that such a proof ‘can not be reached by today’s computers’.



In 2012 Terence Tao overcame those difficulties with some new
and very different ideas. He posted a paper on the Internet, which as
| write is under review for publication. Its main theorem is: every odd
number is a sum of at most five primes. This reduces
Schnirelmann’s constant to 6. Tao is renowned for his ability to solve
difficult problems in many areas of mathematics. His proof throws
several powerful techniques at the problem, and requires computer
assistance. If the number 5 in Tao’s theorem could be reduced to 3,
the odd Goldbach conjecture would be proved, and the bound on
Schnirelmann’s constant reduced to 4. Tao suspects that it should
be possible to do this, although further new ideas will be needed.

The even Goldbach conjecture seems harder still. In 1998
Deshouillers, Saouter, and te Riele verified it for all even numbers

up to 1014, By 2007, Tomas Oliveira e Silva had improved that to

108, and his computations continue. We know that every even
integer is the sum of at most six primes — proved by Ramaré in
1995. In 1973 Chen Jing-Run proved that every sufficiently large
even integer is the sum of a prime and a semiprime (either a prime
or a product of two primes). Close, but no cigar. Tao has stated that
the even Goldbach conjecture is beyond the reach of his methods.
Adding three primes together creates far more overlap in the
resulting numbers — in the sense discussed in connection with
Figure 3 — than the two primes needed for the even Goldbach
conjecture, and Tao’s and Ramare’s methods exploit this feature
repeatedly.

In a few years’ time, then, we may have a complete proof of the
odd Goldbach conjecture, in particular implying that every even
number is the sum of at most four primes. But the even Goldbach
conjecture will probably still be just as baffling as it was for Euler and
Goldbach.

In the 2300 years since Euclid proved several basic theorems about
primes, we have learned a great deal more about these elusive, yet
vitally important, numbers. But what we now know puts into stark
perspective the long list of what we don’t know.

We know, for instance, that there are infinitely many primes of the
form 4k + 1 and 4k + 3; more generally, that any arithmetic
sequence13 ak + b for fixed a and b contains infinitely many primes
provided a and b have no common factor. For instance, suppose
thata=18. Then b=1,5,7, 11, 13, or 17. Therefore there exist



3
The puzzle of pi Squaring the Circle

PRIMES ARE AN OLD IDEA, but circles are even older. Circles led to
a great problem that took more than 2000 years to solve. It is one of
several related geometric problems that have come down to us from
antiquity. The central character in the story is the number 1 (Greek
‘pi’) which we meet at school in connection with circles and spheres.
Numerically it is 3.14159 and a bit; often the approximation 22/7 is
used. The digits of T never stop, and they never repeat the same
sequence over and over again. The current record for calculating
digits of is 10 trillion digits, by Alexander Yee and Chigeru Kondo

in October 2011.14 Computations like this are significant as ways to
test fast computers, or to inspire and test new methods to calculate
T, but very little hinges on the numerical results. The reason for
being interested in 1 is not to calculate the circumference of a circle.
The same strange number appears all over mathematics, not just in
formulas related to circles and spheres, and it leads into very deep
waters indeed. The school formulas are important, even so, and
they reflect 1’s origins in Greek geometry.

There, one of the great problems was the unsolved task of
squaring the circle. This phrase is often employed colloquially to
indicate a wrong-headed approach to something, rather like trying to
fit a square peg into a round hole. Like many common phrases
extracted from science, this one’s meaning has changed over the

centuries.'® In Greek times, trying to square the circle was a
perfectly reasonable idea. The difference in the two shapes —
straight or curved — is totally irrelevant: similar problems have valid

solutions.® However, it eventually turned out that this particular
problem cannot be solved using the specified methods. The proof is
ingenious and technical, but its general nature is comprehensible.

In mathematics, squaring the circle means constructing a square
whose area is the same as that of a given circle, using the traditional
methods of Euclid. Greek geometry actually permitted other
methods, so one aspect of the problem is to pin down which
methods are to be used. The impossibility of solving the problem is
then a statement about the limitations of those methods; it doesn’t
imply that we can’t work out the area of a circle. We just have to find



another approach. The impossibility proof explains why the Greek
geometers and their successors failed to find a construction of the
required kind: there isn’t one. In retrospect, that explains why they
had to introduce more esoteric methods. So the solution, despite
being negative, clears up what would otherwise be a big historical
puzzle. It also stops people wasting time in a continuing search for a
construction that doesn’t exist — except for a few hardy souls who
regrettably seem unable to get the message, no matter how

carefully it is explained.”

In Euclid’s Elements the traditional methods for constructing
geometric figures are idealised versions of two mathematical
instruments: the ruler and the compass. To be pedantic, compass
es, for the same reason that you cut paper with scissor s, not with a
scissor — but | will follow common parlance and avoid the plural.
These instruments are used to ‘draw’ diagrams on a notional sheet
of paper, the Euclidean plane.

Their form determines what they can draw. A compass comprises
two rigid rods, hinged together. One has a sharp point, the other
holds a sharp pencil. The instrument is used to draw a circle, or part
of one, with a specific centre and a specific radius. A ruler is simpler:
it has a straight edge, and is used to draw a straight line. Unlike the
rulers you buy in stationery shops, Euclid’s rulers have no marks on
them, and this is an important restriction for the mathematical
analysis of what they can create.

The sense in which the geometer's ruler and compass are
idealisations is straightforward: they are assumed to draw infinitely
thin lines. Moreover, the straight lines are exactly straight and the
circles are perfectly round. The paper is perfectly flat and even. The
other key ingredient of Euclid’s geometry is the notion of a point,
another ideal. A point is a dot on the paper, but it is a physical
impossibility: it has no size. ‘A point’, said Euclid, in the first
sentence of the Elements, ‘is that which has no part.” This sounds a
bit like an atom, or if you're clued into modern physics, a subatomic
particle, but compared to a geometric point, those are gigantic. From
an everyday human perspective, however, Euclid’s ideal point, an
atom, and a pencil dot on a sheet of paper, are similar enough for
the purposes of geometry.

These ideals are not attainable in the real world, however carefully
you make the instruments and sharpen the pencil, and however
smooth you make the paper. But idealism can be a virtue, because



these requirements make the mathematics much simpler. For
instance, two pencil lines cross in a small fuzzy region shaped like a
parallelogram, but mathematical lines meet at a single point. Insights
gained from ideal circles and lines can often be transferred to real,
imperfect ones. This is how mathematics works its magic.

Two points determine a (straight) line, the unique line that passes
through them. To construct the line, place your ideal ruler so that it
passes through the two points, and run your ideal pencil along it.
Two points also determine a circle: choose one as the centre, and
place the compass point there; then adjust it so that the tip of the
pencil lies on the other point. Now swing the pencil round in an arc,
keeping the central point fixed. Two lines determine a unique point,
where they cross, unless they are parallel, in which case they don't
cross, but a Pandora’s box of logical issues yawns wide. A line and
a circle determine two points, if they cross; one point, if the line cuts
the circle at a tangent; nothing at all if the circle is too small to meet
the line. Similarly two circles either meet in two points, one, or none.

Distance is a fundamental concept in the modern treatment of
Euclidean geometry. The distance between any two points is
measured along the line that joins them. Euclid managed to get his
geometry working without an explicit concept of distance, by finding
a way to say that two line segments have the same length without
defining length itself. In fact, this is easy: just stretch a compass
between the ends of one segment, transfer it to the second, and see
if the ends fit. If they do, the lengths are equal; if they don't, they're
not. At no stage do you measure an actual length.

From these basic ingredients, geometers can build up more
interesting shapes and configurations. Three points determine a
triangle unless they all lie on the same line. When two lines cross,
they form an angle. A right angle is especially significant; a straight
line corresponds to two right angles joined together. And so on, and
so on, and so on. Euclid’s Elements consists of 13 books, delving
ever deeper into the consequences of these simple beginnings.

The bulk of the Elements consists of theorems — valid features of
geometry. But Euclid also explains how to solve geometric
problems, using constructions’ based on ruler and compass. Given
two points joined by a segment of a line, construct their midpoint. Or
trisect the segment: construct a point exactly one third of the way
along it. Given an angle, construct one that bisects it — is half the
size. But some simple constructions proved elusive. Given an angle,
construct one that trisects it — is one third the size. You can do that



for line segments, but no one could find a method for angles.
Approximations, as close as you wish, yes. Exact constructions
using only an unmarked ruler and a compass: no. However, no one
really needs to trisect angles exactly anyway, so this particular issue
didn’t cause much trouble.

More embarrassing was a construction that could not be ignored:
given a circle, construct a square that has the same area. This is the
problem of squaring the circle. From the Greek point of view, if you
couldn’t solve that, you weren’t entitled to claim that a circle had an
area. Even though it visibly encloses a well-defined space, and
intuitively the area is how much space. Euclid and his successors,
notably Archimedes, settled for a pragmatic solution: assume circles
have areas, but don’t expect to be able to construct squares with the
same area. You can still say a lot; for instance, you can prove, in full
logical rigour, that the area of a circle is proportional to the square of
its diameter. What you can’t do, without squaring the circle, is to
construct a line whose length is the constant of proportionality.

The Greeks couldn’t square the circle using ruler and compass, so
they settled for other methods. One used a curve called a

quadratrix.18 The importance they attached to using only ruler and
compass was exaggerated by some later commentators, and it's not
even clear that the Greeks considered squaring the circle to be a
vital issue. By the nineteenth century, however, the problem was
becoming a major nuisance. Mathematics that was unable to answer
such a straightforward question was like a cordon bleu cook who
didn’t know how to boil an egg.

Squaring the circle sounds like a problem in geometry. That’s
because it is a problem in geometry. But its solution turned out to lie
not in geometry at all, but in algebra. Making unexpected
connections between apparently unrelated areas of mathematics
often lies at the heart of solving a great problem. Here, the
connection was not entirely unprecedented, but its link to squaring
the circle was not at first appreciated. Even when it was, there was a
technical difficulty, and dealing with that required yet another area of
mathematics: analysis, the rigorous version of calculus. Ironically,
the first breakthrough came from a fourth area: number theory. And
it solved a geometric problem that the Greeks would never in their
wildest dreams have believed to possess a solution, and as far as
we can tell never thought about: how to construct, with ruler and
compass, a regular polygon with 17 sides.



