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ZERO

THE KNOWN
UNKNOWNS



Everyone by nature desires to know.

—Aristotle, Metaphysics

E very week, headlines announce new breakthroughs in our

understanding of the universe, new technologies that
will transform our environment, new medical advances that
will extend our lives. Science is giving us unprecedented
insights into some of the big questions that have challenged
humanity ever since we've been able to formulate them.
Where did we come from? What is the ultimate destiny of the
universe? What are the building blocks of the physical world?
How does a collection of cells become conscious?

In the last ten years alone we've landed a spaceship on a
comet, built robots that can create their own language, used
stem cells to repair the pancreas of diabetic patients,
discovered how to use the power of thought to manipulate a
robotic arm, and sequenced the DNA of a 50,000-year-old cave
girl. Science magazines are bursting with the latest
breakthroughs emerging from the world’s laboratories. We
know so much.



Science is our best weapon in our fight against fate.
Instead of giving in to the ravages of disease and natural
disaster, we have created vaccines to combat deadly viruses
like polio and Ebola. As the world’s population continues to
escalate, scientific advances provide the best hope of feeding
the 9.6 billion people who are projected to be alive in 2050.
Science warns us about the deadly impact we are having on
our environment and gives us the chance to do something
about it before it is too late. An asteroid might have wiped out
the dinosaurs, but science is our best shield against any
future direct hits. In the human race’s constant battle with
death, science is its best ally.

Science is king not only when it comes to our fight for
survival but also in improving our quality of life. We are able
to communicate with friends and family across vast distances.
We have created virtual worlds to which we can escape in our
leisure time and we can re-create in our living rooms the
great performances of Mozart, Miles, and Metallica at the
press of a button.

The desire to know is programmed into the human
psyche. Early humans with a thirst for knowledge were the
ones who survived to transform their environment. Those not
driven by that craving were left behind. Evolution has
favored the mind that wants to know the secrets of how the
universe works. The adrenaline rush that accompanies the
discovery of new knowledge is nature’s way of telling us that
the desire to know is as important as the drive to reproduce.
As Aristotle suggested in the opening line of Metaphysics,
understanding how the world works is a basic human need.

When I was a schoolkid, science very quickly captivated
me. I fell in love with its extraordinary power to reveal the



workings of the universe. The fantastic stories that my
science teachers told me seemed even more fanciful than the
fiction I'd been reading at home. I persuaded my parents to
buy me a subscription to New Scientist and devoured Scientific
American in our local library. 1 hogged the television each
week to watch episodes of Horizon and Tomorrow’s World. T was
enthralled by Jacob Bronowski’s Ascent of Man, Carl Sagan’s
Cosmos, and Jonathan Miller’s Body in Question. Every
Christmas, the Royal Institution Christmas Lectures provided
a dollop of science alongside our family turkey. My stocking
was stuffed with books by George Gamow and Richard
Feynman. It was a heady time, with new breakthroughs
announced each week.

Alongside these stories of discovery, I began to get fired
up by the untold tales. What we knew lay in the past but we
didn’t yet know the future, my future. I became obsessed with
the puzzle books of Martin Gardner that my math teacher
gave me. The excitement of wrestling with a conundrum and
the sudden release of euphoria as I cracked each puzzle got
me addicted to the drug of discovery. Those puzzles were my
training ground for the greater challenge of tackling
questions that didn’t have an answer in the back of the book.
It was the unanswered questions, the mathematical mysteries
and scientific puzzles that no one had cracked, that would
become the fuel for my life as a scientist.

It is quite extraordinary how much more we have
understood about the universe even in the half century that
I've been alive. Technology has extended our senses so we can
see things that were beyond the conception of the scientists
who excited me as a kid. A new range of telescopes that look
out at the night sky enabled us to discover planets like Earth



that could be home to intelligent life. They have revealed the
amazing fact that three quarters of the way into the lifetime
of our universe, its expansion started to accelerate. I
remember reading as a kid that we were in for a big crunch,
but now it seems that we have a completely different future
awaiting us.

Particle colliders like the Large Hadron Collider at CERN
have allowed us to penetrate the inner workings of matter
itself, revealing new particles—like the top quark discovered
in 1994 and the Higgs boson discovered in 2012—that were
bits of speculative mathematics when I was reading my New
Scientist at school. And since the early '90s the fMRI scanner
has allowed us to look inside the brain and discover things
that were not even considered part of the remit of science
when I was a kid back in the ’70s. The brain was the preserve
of philosophers and theologians, but today technology can
reveal when you are thinking about Jennifer Aniston or
predict what you are going to do next even before you know
it yourself.

Biology has seen an explosion of breakthroughs. In 2003 it
was announced that scientists had mapped an entire human
DNA sequence consisting of 3 billion letters of genetic code. In
2011 the complete neuronal network of the C. elegans worm
was published, providing a complete picture of how the 302
neurons in the worm are connected. Chemists, too, have been
breaking new territory. A totally new form of carbon was
discovered in 1985, which binds together like a football; and
chemists surprised us again in 2003 by creating the first
examples of graphene, showing how carbon can form a
honeycomb lattice one atom thick.



We stand on the shoulders of giants, as Newton famously
declared. And so my own journey to the frontiers of
knowledge has pushed me to explore how others have
articulated their work, to listen to lectures and seminars by
those immersed in the fields I'm trying to understand, and to
talk to those pushing the boundaries of what is known,
questioning contradictory stories and consulting the
evidence recorded in scientific journals. How much can you
trust any of these stories? Just because the scientific
community accepts a story as the current best fit doesn’t
mean it is true. Time and again, history reveals the opposite
to be the case, and this must always act as a warning that
current scientific knowledge is provisional. Mathematics has
a slightly different quality, as a proof provides the chance to
establish a more permanent state of knowledge. But even
when I am creating a new proof, I will often quote results by
fellow mathematicians whose proofs I haven’t checked
myself. To do so would mean running in order to keep still.

For any scientist the real challenge is not to stay within
the secure garden of the known but to venture out into the
wilds of the unknown. That is the challenge at the heart of
this book.

WHAT WE DON’'T KNOW

Despite all the breakthroughs made over the last centuries,
there are still lots of deep mysteries waiting out there for us
to solve. Things we don’t know. The knowledge of what we
don’t know seems to expand faster than our catalog of
breakthroughs. The known unknowns outstrip the known



knowns. And it is those unknowns that drive science. A
scientist is more interested in the things he or she can’t
understand than in telling all the stories we already know the
answers to. Science is a living, breathing subject because of
all those questions we can’t answer.

For example, the stuff that makes up the physical
universe we interact with seems to account for only 4.9
percent of the total matter content of our universe. So what is
the other 95.1 percent of so-called dark matter and dark
energy made up of? If our universe’s expansion is
accelerating, where is all the energy coming from that fuels
that acceleration?

Is our universe infinite? Are there infinitely many other
infinite universes parallel to our own? If there are, do they
have different laws of physics? Were there other universes
before our universe emerged from the Big Bang? Did time
exist before the Big Bang? Does time exist at all, or does it
emerge as a consequence of more fundamental concepts?

How can we unify Einstein’s theory of general relativity,
the physics of the very large, with quantum physics, the
physics of the very small? This is the search for something
called quantum gravity, an absolute necessity if we are ever
going to understand the Big Bang.

And what of the understanding of our human body,
something so complex that it makes quantum physics look
like a high school exercise? We are still trying to come to
grips with the complex interaction between gene expression
and our environment. Can we find a cure for cancer? Is it
possible to beat aging? Could there be someone alive today
who will live to be a thousand years old?



And what about where humans came from? Evolution is a
process of random mutations, so would a different roll of the
evolutionary dice still produce organisms with eyes? If we
rewound evolution and pressed “play,” would we still get
intelligent life, or are we the result of a lucky roll of the dice?
Is there intelligent life elsewhere in our universe? And what
of the technology we are creating? Can a computer ever
attain consciousness? Will I eventually be able to download
my consciousness so that my mind can survive the death of
my body?

Mathematics, too, is far from finished. Despite popular
belief, Fermat’s Last Theorem was not the last theorem.
Mathematical unknowns abound. Are there any patterns in
prime numbers, or are they outwardly random? Will we be
able to solve the mathematical equations for turbulence? Will
we ever understand how to factorize large numbers
efficiently?

Despite so much that is still unknown, scientists are
optimistic that these questions won’t remain unanswered
forever. The last few decades give us reason to believe that we
are in a golden age of science. The rate of discoveries in
science appears to grow exponentially. In 2014 the science
journal Nature reported that the number of scientific papers
has been doubling every nine years since the end of World
War II. Computers are also developing at an extraordinary
rate. Moore’s Law has it that computer processing power will
double every two years. Ray Kurzweil believes that the same
applies to technological progress: that the rate of change over
the next hundred years will be comparable to what we've
experienced in the last 20,000 years.



Can scientific discovery really sustain this growth?
Kurzweil talks about the Singularity, a moment when the
intelligence of our technology will exceed human
intelligence. Is scientific progress destined for its own
singularity, a moment when we know it all? Surely at some
point we might actually discover the underlying equations
that explain how the universe works. We will discover the
final particles that make up the building blocks of the
physical universe and how they interact with each other.
Some scientists believe that the current rate of scientific
progress will lead to a moment when we might discover a
theory of everything. They even give it a name: ToE.

As Stephen Hawking declared in A Brief History of Time, “I
believe there are grounds for cautious optimism that we may
be near the end of the search for the ultimate laws of nature.”
He concludes dramatically with the provocative statement
that then “we would know the mind of God.”

Is such a thing possible? To know everything? Would we
want to know everything? Scientists have a strangely
ambivalent relationship with the unknown. On the one hand,
what we don’t know is what intrigues and fascinates us, and
yet the mark of success as a scientist is resolution and
knowledge, to make the unknown known.

Are there limits to what we can discover? Are there quests
that will never be resolved? Are some regions beyond the
predictive powers of science and mathematics—like time
before the Big Bang? Are there ideas so complex that they
exceed the conception of our finite human brains? Can brains
really investigate themselves, or does the analysis enter an
infinite loop from which it is impossible to rescue itself? Are



there mathematical conjectures that can never be proved
true?

It seems defeatist, even dangerous, to acknowledge such
questions. While the unknown is the driving force for doing
science, the unknowable is science’s nemesis. As a fully
signed-up member of the scientific community, I hope that
we can ultimately answer the big open questions. So it seems
important to know whether the expedition I've joined will hit
boundaries beyond which we cannot proceed. Are there in
fact any questions that won’t ever get closure?

That is the challenge I've set myself in this book. I want to
know whether there are things that, by their very nature, we
will never know. Are there things that will always be beyond
the limits of knowledge? Despite the marauding pace of
scientific advances, are there things that will remain beyond
the reach of even the greatest scientists? Mysteries that will
forever remain part of the great unknown?

It is, of course, very risky at any point in history to try to
articulate the Things We Cannot Know. How can you know
what new insights will suddenly pull the unknown into the
knowable? This is partly why it is useful to look at the history
of how we came to know the things we know, because it
reveals how often we’ve been at a point where we think we
have reached the frontier, only to find a greater landscape
beyond.

Take the statement made by French philosopher Auguste
Comte in 1835 about the stars: “We shall never be able to
study, by any method, their chemical composition or their
mineralogical structure.” An absolutely fair statement given
that this knowledge seemed to depend on our visiting the
star. What Comte hadn’t considered was the possibility that



by those with political power. This is the domain of delusion.
Repressed thoughts. The Freudian unconscious.

I would love to tell you about the unknown unknowns, but
then they’d be known! Nassim Taleb, author of The Black Swan,
believes that the emergence of unknowns is responsible for
the biggest changes in society. For Kelvin, relativity and
quantum physics turned out to be the great unknown
unknown that he was unable to imagine. My hope in this book
is to articulate the known unknowns and ask whether any
will remain forever unknown.

I have called these unknowns “Edges.” There are seven of
them, and each one represents the horizon beyond which we
cannot see. My journey to the Seven Edges of knowledge will
pass through the known knowns, to demonstrate how we
have traveled beyond what we previously thought were the
limits of knowledge. This journey will also test my own ability
to grasp what is known, because it’s becoming increasingly
challenging as a scientist to know even the knowns.

As much as this book is about what we cannot know, it is
also important to understand what we do know and how we
know it. My journey to the frontiers of knowledge will take
me through the terrain that scientists have already mapped,
to the very limits of today’s breakthroughs. On the way 1 will
stop to consider those moments when scientists thought they
had hit a wall beyond which progress was no longer possible,
only for the next generation to find a way. This will give us an
important perspective on those problems that we might think
are unknowable today. By the end of our journey, I hope this
book will provide a comprehensive survey not just of what we
cannot know but also of the things we do know.



To help me through these areas of science that are outside
my comfort zone, I have enlisted the help of experts to guide
me as [ reach each science’s Edge and to test whether it is my
own limitations or limitations inherent in the questions I am
tackling that make these questions unknowable.

What happens then if we encounter a question that
cannot be answered? How does one cope with not knowing?
Dare I admit to myself that some things will forever remain
beyond my reach? How do we cope with not knowing? That
challenge has elicited some interesting responses from
humans across the millennia, not least the creation of an idea
called God.

TRANSCENDENCE

There is another reason why I have been driven to investigate
the unknowable, which is also related to my new job. The
previous incumbent of the chair for the Public Understanding
of Science was a certain Richard Dawkins. When I took over
the position from Dawkins I braced myself for the onslaught
of questions that T would get, not about science, but about
religion. The publication of The God Delusion and his feisty
debates with creationists resulted in Dawkins spending the
later years of his tenure debating questions of religion and
God.

So it was inevitable that when I took up the chair people
would be interested in my stance on religion. My initial
reaction was to distance myself from the debate about God.
My job was to promote scientific progress and to engage the
public in the breakthroughs happening around them. I was



keen to move the debate back to questions of science rather
than religion.

In an urban environment like London, football has taken
over the role that religion played in society of binding a
community together, providing rituals that they can share.
For me, the science that I began to learn as a teenager did a
pretty good job of pushing out any vaguely religious thoughts
I had as a kid. I sang in my local church choir, which exposed
me to the ideas that Christianity had to offer for
understanding the universe. School education in the 1970s in
the United Kingdom was infused with mildly religious
overtones: renditions of “All Things Bright and Beautiful” and
the Lord’s Prayer in assemblies. Religion was dished up as
something too simplistic to survive the sophisticated and
powerful stories that I would learn in the science labs at my
secondary school. Religion was quickly pushed out.
Science . .. and football . . . were much more attractive.

Inevitably the questions about my stance on religion
would not be fobbed off with such a flippant answer. I
remember that during one radio interview on a Sunday
morning on BBC Northern Ireland I was gradually sucked into
considering the question of the existence of God. I guess I
should have seen the warning signs. On a Sunday morning in
Northern Ireland, God isn’t far from the minds of many
listeners.

As a mathematician I am often faced with the challenge of
proving the existence of new structures or coming up with
arguments to show why such structures cannot exist. The
power of the mathematical language to produce logical
arguments has led a number of philosophers throughout the
ages to resort to mathematics as a way of proving the



existence of God. But I always have a problem with such an
approach. If you are going to prove existence or otherwise in
mathematics, you need a very clear definition of what it is
that you are trying to prove exists.

So after some badgering by the interviewer about my
stance on the existence of God, I pushed him to try to define
what God meant for him so that I could engage my
mathematical mind. “It is something which transcends
human understanding.” At first I thought: what a cop-out.
You have just defined it as something that by its very nature I
can’t get a handle on. But I became intrigued by this
definition. Perhaps it wasn’t such a cop-out after all.

What if you define God as the things we cannot know. The
gods in many ancient cultures were often placeholders for the
things people couldn’t explain or understand. Our ancestors
found volcanic eruptions or eclipses so mysterious that they
became acts of gods. As science has explained such
phenomena, these gods have retreated.

This definition has some things in common with a God
commonly called the “God of the gaps.” This phrase was
generally used as a derogatory term by religious thinkers who
could see that this God was shrinking in the face of the
onslaught of scientific knowledge, and a call went out to
reject this kind of God. The phrase “God of the gaps” was
coined by the Oxford mathematician and Methodist church
leader Charles Coulson, when he declared: “There is no ‘God
of the gaps’ to take over at those strategic places where
science fails.”

But the phrase is also associated with a fallacious
argument for the existence of God, one that Richard Dawkins
spends some time shooting down in The God Delusion: if there



are things that we can’t explain or know, there must be a God
at work filling the gap. I am more interested not in the
existence of a God to fill the gap, but in equating God with the
abstract idea of the things we cannot know. Not in the things
we currently don’t know, but the things that by their nature
we can never know—the things that will always remain
transcendent.

Religion is more complex than the simple stereotype often
offered up by modern society. For many ancient cultures in
India, China, and the Middle East, religion was not about
worshiping a supernatural intelligence so much as it was an
attempt to appreciate the limits of our understanding and of
language. As the theologian Herbert McCabe declared, “To
assert the existence of God is to claim that there is an
unanswered question about the universe.” Science has
pushed hard at those limits. So is there anything left? Will
anything always be beyond the limit? Does McCabe’s God
exist?

This is the quest at the heart of this book. But first we
need to know if, in fact, anything will remain unanswered
about the universe. Is there really anything we cannot know?



knowing how it will land. Dice are the ultimate symbol of the
unknowable. The future seems knowable only when it
becomes the past.

I have always been extremely unsettled by things that I
cannot work out. I don’t mind not knowing something,
provided there is some way ultimately to calculate the answer
—with enough time. Is the fate of this perfect Las Vegas die
truly unknowable? Or with enough information can I actually
deduce its next move? Surely it’s just a matter of applying the
right laws of physics and solving the appropriate
mathematical equations. Surely this is something I can figure
out. Or is it?

My subject, mathematics, was invented to give people a
glimpse of what’s out there, to look into the future—to
become masters of fate, not its servants. Mathematics is the
science of patterns. Being able to spot a pattern is a powerful
tool in the evolutionary fight for survival. The pattern of the
sun means that I can rely on its rising in the sky tomorrow or
on the moon running through twenty-eight sunrises before it
becomes full again. The caves in Lascaux show how counting
thirteen quarters of the moon from the first winter rising of
the Pleiades will bring you to a time in the year when the
horses are pregnant and easy to hunt. Being able to predict
the future is the key to survival.

But some things appear to have no pattern or appear to
have patterns so complex that they are beyond our ability to
spot them. An individual roll of the dice is not like the rising
of the sun. There seems to be no way of knowing which of the
six faces will be pointing upward once the die finally comes to
rest. This is why dice have been used since antiquity as a way
to decide disputes, to play games, to wager money.



On a recent trip to Israel 1 took my children to an
archeological dig at Beit Guvrin. It was such a popular
settlement in ancient times that the site consists of layer
upon layer of cities built on top of one another. There is so
much stuff in the ground that the archeologists are happy to
enlist amateurs like me and my kids to help excavate the site,
even if a few pots are broken along the way. Sure enough, we
pulled out lots of pottery shards, but we also kept unearthing
animal bones. We thought they were the remains of dinner,
but our guide explained that in fact they were the earliest
form of dice.

Archeological digs of settlements dating back to Neolithic
times have revealed a disproportionately high density of heel
bones of sheep and other animals among the shattered
pottery and flints that are usually found in such sites. These
bones are, in fact, the ancestors of my casino dice. When
thrown, the bones naturally land on one of four sides. Often
there are letters or numbers carved into each side. These
early dice are thought to have been used for divination,
connecting the outcome of the roll of the dice to the will of
the gods. Knowledge of how the dice would land was believed
to transcend human understanding.

Over time, dice assumed a more prosaic place as part of
our world of leisure. The first cube-shaped dice like the one
on my desk were found around Harappa in what is now
northeast Pakistan, where one of the first urban civilizations
evolved, dating back to the third millennium BC. At the same
time, you find four-faced pyramid dice appearing in a game
that was discovered in the city of Ur, in ancient Mesopotamia.
The Romans and Greeks were addicts of games of dice, as
were medieval soldiers, who returned from the Crusades with



a new game called hazard, derived from the Arabic word for
dice: al-zahr. It was an early version of craps, the game that is
being played in the casinos in Vegas.

If I could predict the roll of the dice, the many games that
depend on them would never have caught on. The excitement
of backgammon or craps comes from not knowing what
number you will throw. So perhaps gamers won’t thank me as
I try to break the mystery and predict the roll of my dice.

For centuries no one even thought that such a feat was
possible. The ancient Greeks, who were among the first to
develop mathematics as a tool to navigate their environment,
didn’t have any clue as to how to tackle such a dynamic
problem. Their mathematics was a static, rigid world of
geometry, not one that could cope with things tumbling
across the floor. They could produce formulas to describe the
contours of a cube, but once the cube started moving they
were lost.

Aristotle believed that events could essentially be
classified into three categories: “certain events” that happen
by necessity following the laws of nature; “probable events”
that happen in most cases but could have a few exceptions;
and finally “unknowable events” that happened by pure
chance. Aristotle put the roll of dice firmly in the last
category.

As Christian theology made its impact on philosophy,
matters worsened. Since the roll of the dice was in the hands
of God, it was not something that humans could aspire to
know. As St. Augustine put it, “We say that those causes that
are said to be by chance are not non-existent but are hidden,
and we attribute them to the will of the true God.”



There was no such thing as chance, no free will. The
unknowable was known to God, who determined the
outcome. Any attempt to predict the roll of the dice was the
work of a heretic, someone who dared to think they could
know the mind of God. King Louis XI of France even went as
far as to prohibit the manufacture of dice, believing that
games of chance were ungodly. It wasn’t until the sixteenth
century that dice were wrestled out of the hands of God and
put into the hands, and minds, of humans.

I've put two more dice next to my beautiful Las Vegas die.
So here’s a question: If I throw all three dice, is it better to bet
on a score of 9 or a score of 10 coming up? Prior to the
sixteenth century no tools were available to answer such a
simple question. And yet anyone who had played for long
enough would know that if 1 were throwing only two dice
then it would be wise to bet on 9 rather than 10. Experience
would tell you before too long that, on average, you get 9 a
third more often than you get 10. With three dice it is harder
to get a feel for which way to bet, because 9 and 10 seem to
occur equally often. But is that really true?

In Italy at the beginning of the sixteenth century, an
inveterate gambler by the name of Girolamo Cardano first
realized that there are patterns that can be exploited in a
game of dice. They weren’t patterns that could be used on an
individual throw. Rather, they emerged over the long run,
patterns that a gambler like Cardano, who spent many hours
throwing dice, could use to his advantage. So addicted was he
to gambling that on one occasion he even sold his wife’s
possessions to raise the funds for the table stakes.

Cardano had the clever idea of counting how many
different futures the dice could have. If I throw two dice,



there are thirty-six different futures. They are depicted in the
following diagram.
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Only three of them total 10, while four give you a score of
9. So Cardano reasoned that if you are throwing two dice, it
makes sense to bet on 9 rather than 10. It did not help in any
individual game, but in the long run it meant that Cardano
would come out on top. Unfortunately, while he was a
disciplined mathematician, he wasn’t very disciplined when it
came to gambling. He managed to lose all of his father’s
inheritance and would regularly get into knife fights with his
opponents when the dice went against him.

He was nevertheless determined to get one prophecy
correct. He had predicted the date of his death: September 21,
1576. To make sure he got this bet right he took matters into
his own hands and committed suicide when the date finally
struck. As much as I crave knowledge, I think this is going a
little far. Indeed, knowing the date of your death is something
that most people would prefer to opt out of. But Cardano was
determined to win, even when he was dicing with Death.

Before taking his life, he wrote what many consider to be
the first book that made inroads into predicting the behavior
of dice as they roll across the table. Although written around



different future scenarios and divide the spoils according to
which version of the future favored which player.

It is easy to get fooled here. There seem to be three
scenarios. Fermat wins the next round and pockets sixty-four
francs. Pascal wins the next round, resulting in a final round
that either man wins. Fermat wins in two out of these three
scenarios, so perhaps he should get two thirds of the
winnings. This was the trap that de Méré fell into. Pascal
argued that this wasn’t correct: “The Chevalier de Méré is
very talented but he is not a mathematician; this is, as you
know, a great fault.” A great fault, indeed!

Pascal argued that the spoils should be divided
differently. There was a 50:50 chance that Fermat would win
in one round, in which case he would get sixty-four francs.
But if Pascal won the next round, then the two friends were
equally likely to win the final round, so could divide the spoils
thirty-two francs each. In either case, Fermat is guaranteed
thirty-two francs. So the other thirty-two francs should be
split equally, giving Fermat forty-eight francs in total.

Fermat, writing from his home near Toulouse, concurred
with Pascal’s analysis: “You can now see that the truth is the
same in Toulouse as in Paris.”

Pascal and Fermat’s analysis of the game of points could
be applied to much more complex scenarios. Pascal
discovered that the secret to deciding the division of the
spoils is hidden inside something now known as Pascal’s
triangle.



1 5 10 10 5 1

The triangle is constructed in such a way that each
number is the sum of the two numbers immediately above it.
The numbers you get are key to dividing the spoils in any
interrupted game of points. For example, if Fermat needs two
points for a win while Pascal needs four, then you consult the
2 + 4 = 6th row of the triangle and add the first four numbers
together and the last two. This is the proportion in which you
should divide the spoils. In this case it’'sa 1 + 5 + 10 + 10 = 26 to
1+ 5 = 6 division. So Fermat gets 26/32 x 64 = F52 and Pascal
gets 6/32 x 64 = F12. In general, a game where Fermat needs n
points to Pascal’s m points can be decided by consulting the (n
+ m)th row of Pascal’s triangle.

The French may have been beaten by several millennia to
the discovery that this triangle is connected to the outcome
of games of chance. The Chinese were inveterate users of dice
and other methods like the I Ching to try to predict the future.
The text of the I Ching dates back some three thousand years
and contains precisely the same table that Pascal produced to
analyze the outcomes of tossing coins, but today the triangle
is attributed to Pascal rather than the Chinese.

Pascal wasn’t interested only in dice. He famously applied
his new mathematics of probability to one of the great
unknowns: the existence of God.



“God is, or He is not.” But to which side shall we incline?
Reason can decide nothing here. There is an infinite chaos
which separated us. A game is being played at the extremity of
this infinite distance where heads or tails will turn up. . . . Which
will you choose then? Let us see. Since you must choose, let
us see which interests you least. You have two things to lose,
the true and the good; and two things to stake, your reason and
your will, your knowledge and your happiness; and your nature
has two things to shun, error and misery. Your reason is no
more shocked in choosing one rather than the other, since you
must of necessity choose. . . . But your happiness? Let us
weigh the gain and the loss in wagering that God is. . . . If you
gain, you gain all; if you lose, you lose nothing. Wager, then,
without hesitation that He is.

Called Pascal’s wager, the argument is hardly compelling.
It hinges on the belief that the payout would be much greater
if one opted for a belief in God. You lose little if you are
wrong and win eternal life if correct. On the other hand,
wager against the existence of God and losing results in
eternal damnation, while winning gains you nothing beyond
the knowledge that there is no God. The argument falls to
pieces if the probability of God existing is actually zero. Even
if it isn’t, the cost of belief might be too high when set against
the probability of God’s existence.

The probabilistic techniques developed for dealing with
uncertainty by mathematicians like Fermat and Pascal were
incredibly powerful. Phenomena that were regarded as the
expression of the gods were beginning to be within reach of
the minds of men. Today these probabilistic methods are our
best weapon for trying to navigate everything from the
behavior of particles in a gas to the ups and downs of the
stock market. Indeed, the very nature of matter itself seems
to be at the mercy of the mathematics of probability, as we



shall discover in the Third Edge, when we apply quantum
physics to predict what fundamental particles are going to do
when we observe them. But for someone searching for
certainty, these probabilistic methods represent a frustrating
compromise.

I certainly appreciate the great intellectual breakthrough
that Fermat, Pascal, and others made, but it doesn’t help me
to know the outcome when I throw my dice. As much as I've
studied the mathematics of probability, it has always left me
with a feeling of dissatisfaction. The one thing any course on
probability drums into you is that it doesn’t matter how many
times in a row you get a 6: this has no influence on what will
happen on the next throw.

So is there some way of knowing how my dice will land?
Or is that knowledge always going to be out of reach? Not
according to the revelations of a scientist in England.

THE MATHEMATICS OF NATURE

Isaac Newton is my all-time hero in the fight against the
unknowable. The idea that I could possibly know everything
about the universe has its origins in Newton’s revolutionary
work Philosophiae Naturalis Principia Mathematica. First
published in 1687, the book is dedicated to developing a new
mathematical language that promised to unlock how the
universe behaves. It was a dramatically new model of how to
do science. The work “spread the light of mathematics on a
science which up to then had remained in the darkness of
conjectures and hypotheses,” declared the French physicist
Alexis Clairaut in 1747.



The Principia Mathematica is also an attempt to unify, to
create a theory that describes the celestial and the earthly,
the big and the small. Johannes Kepler had come up with laws
that described the motions of the planets, laws he'd
developed empirically by looking at data and trying to come
up with equations that would explain the data. Galileo had
described the trajectory of a ball flying through the air. It was
Newton’s genius to understand that these were two examples
of a single phenomenon: gravity.

Born on Christmas Day in 1643 in the Lincolnshire town of
Woolsthorpe, Newton was always trying to tame the physical
world. He made clocks and sundials, constructed miniature
mills powered by mice, sketched countless plans for buildings
and ships, and drew elaborate illustrations of animals. The
family cat disappeared one day, carried away by a hot-air
balloon that Newton had made. His school reports, however,
did not anticipate a great future, describing him as
“inattentive and idle.”

Idleness is not necessarily such a bad trait in a
mathematician. It can be a powerful incentive to look for
some clever shortcut to solve a problem rather than relying
on hard labor. But it’s not generally a quality that teachers
appreciate. Newton was doing so badly at school that his
mother decided the whole thing was a waste of time and that
he’d be better off learning how to manage the family farm in
Woolsthorpe. Unfortunately, Newton was equally hopeless at
managing the family estate, so he was sent back to school.
Although probably apocryphal, it is said that Newton’s
sudden academic transformation coincided with a blow to the
head that he received from the school bully. Whether true or
not, his academic transformation saw him suddenly excelling



take an even smaller snapshot. What about halving the window of
time again:

(10.25x 10.25 - 10 x 10)/0.25 = 20.25 meters per second.

| hope the mathematician in you has spotted the pattern. If | take
a window of time that is x seconds, the average speed over this time
will be 20 + x meters per second. The speed as | take smaller and
smaller windows of time is getting closer and closer to twenty meters
per second. So, although to calculate the speed at 10 seconds looks
like | have to figure out the calculation 0/0, the calculus makes sense
of what this should mean.

Everything around us is in a state of flux, so it was
perhaps no wonder that his discovery would be so influential.
But for Newton calculus was a means to an end, a personal
tool that helped him reach the scientific conclusions that he
documents in the Principia, the great treatise published in
1687 that describes his ideas on gravity and the laws of
motion.

Writing in the third person, he explained that his calculus
was key to the scientific discoveries contained inside: “By the
help of this new Analysis Mr. Newton found out most of the
propositions in the Principia.” And yet no account of the “new
analysis” is published. He privately circulated his ideas
among friends, but he felt no urge to publish them for others
to appreciate.

Fortunately calculus is now widely taught. It is a language
that 1 spent years learning and gaining fluency in as a
mathematical apprentice. To know my dice, I will need to mix
Newton’s mathematical breakthrough with his great
contribution to physics: the famous laws of motion with
which he opens his Principia.



A THEORY OF EVERYTHING

Newton outlines in the Principia three simple laws from which
so much of the dynamics of the universe evolve.

Newton'’s First Law of Motion: A body will continue in a state
of rest or uniform motion in a straight line unless it is compelled to
change that state by forces acting on it.

This sounds obvious, but it was not so obvious to the likes
of Aristotle. If you roll a ball along a flat surface it comes to a
rest. It looks like you need a force to keep it moving. There is,
however, a hidden force that is changing its speed: friction. If
I throw my dice in outer space, away from any gravitational
fields, then they will carry on flying in a straight line at
constant speed ad infinitum.

In order to change an object’s speed or direction you need
a force to act against it. Newton’s second law explained how
that force would change its motion. Calculus has already
allowed me to calculate the speed of my die as it falls down
toward the table. The rate of change in that speed may be
deduced by applying calculus again. Newton’s second law
holds that there is a direct relationship between the force
being applied and the rate of change in speed.

Newton’s Second Law of Motion: The rate of change of
motion, or acceleration, is proportional to the force that is acting on
it and inversely proportional to its mass.

To understand the speed of my cascading dice, I need to
understand the forces acting on them. Newton’s Universal
Law of Gravitation identified one of the principal forces
affecting everything from the fall of an apple to the
movement of a planet through the solar system. The law



states that the force acting on a body of mass m, by another

body of mass m, that is a distance of r away is equal to

Gxm xm,
rZ
where G is an empirical physical constant that controls how
strong gravity is in our universe.

With these laws I can now describe the trajectory of a ball
flying through the air, or a planet traveling through the solar
system, or of dice falling from my hand. The next problem
occurs when the dice hit the table. What happens then?
Newton has a third law, which provides a clue.

Newton’s Third Law of Motion: When one body exerts a force
on a second body, the second body simultaneously exerts a force
equal in magnitude and opposite in direction to that of the first
body.

Newton himself used these laws to deduce an
extraordinary string of observations about the solar system.
As he wrote, “I now demonstrate the system of the World.” To
apply his ideas to the trajectory of the planets, he began by
reducing each planet to a point located at the center of mass
and assumed that all the planet’s mass was concentrated at
this point. Then, by applying his laws of motion and his new
mathematics, he successfully deduced Kepler’'s laws of
planetary motion.

He was now able to calculate the relative masses of the
large planets, the Earth and the sun, and to explain a number
of the curious irregularities in the motion of the moon due to
the pull of the sun. He deduced that the Earth is not a perfect
sphere and suggested it must be squashed between the poles



due to its rotation, causing a centrifugal force. The French
thought the opposite was true: that the Earth should be
pointy in the direction of the poles. An expedition set out in
1733 that proved Newton—and the power of mathematics—
correct.

It was an extraordinary feat. Newton’s three laws meant
that all motion of particles in the universe could potentially
be deduced. He had come up with the seeds of a Theory of
Everything. It took other scientists to grow these seeds and
apply them to more complex settings. In their original form,
Newton’s laws were not suited to describing the motion of
less rigid bodies or bodies that deform. It was the great
eighteenth-century Swiss mathematician Leonhard Euler who
would provide equations that generalized Newton’s laws.
Euler’s equations could be applied more generally to
something like a vibrating string or a swinging pendulum.

After Newton, more equations were developed that
explained various natural phenomena. Euler produced
equations for nonviscous fluids. At the beginning of the
nineteenth century, French mathematician Joseph Fourier
found equations to describe heat flow. Compatriots Pierre-
Simon Laplace and Siméon-Denis Poisson took Newton’s
equations to produce more generalized equations for
gravitation, which were then seen to control other
phenomena like hydrodynamics and electrostatics. The
behaviors of viscous fluids were described by the Navier-
Stokes equations, and electromagnetism by James Clerk
Maxwell’s equations.

With the discovery of calculus and the laws of motion, it
seemed that Newton had turned the universe into a
deterministic  clockwork  mechanism  controlled by



mathematical equations. Scientists believed they had indeed
discovered the Theory of Everything. In his Philosophical Essay
on Probabilities published in 1812, the mathematician Pierre-
Simon Laplace summed up most scientists’ belief in the
extraordinary power of mathematics to explain everything
about the physical universe: “We may regard the present
state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would
know all forces that set nature in motion, and all positions of
all items of which nature is composed; if this intellect were
also vast enough to submit these data to analysis, it would
embrace in a single formula the movements of the greatest
bodies of the universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the future just
like the past would be present before its eyes.”

This view that the universe was knowable, both past,
present and future, became dominant among scientists in the
centuries following Newton’s great opus. It seemed as if any
thought of God acting in the world had been completely
removed. God might be responsible for getting things up and
running, but from that point on, mathematics and physics
took over.

So what of my lowly die? Surely with the laws of motion at
hand I can simply combine my knowledge of its geometry
with information on its motion and subsequent interactions
with the table to predict the outcome. I've written out the
equations on my notepad, and they look pretty daunting.

Newton, as it turns out, also contemplated the problem of
how to predict the role of dice. His interest was prompted by
a letter he received from Samuel Pepys, who wanted



just needs to apply Newton’s second law to map out the
course of the planets into the distant future. The trouble was
that the math was extremely tricky.

Newton had solved the behavior of two planets (or a
planet and a sun). They would follow elliptical paths, with
their common focal point being the common center of
gravity. This would repeat itself periodically to the end of
time. But Newton was stumped when he introduced a third
planet. Trying to calculate the behavior of a solar system
consisting of the sun, the Earth, and the moon seemed simple
enough, but already you are facing an equation with eighteen
variables: nine for the positions and nine for the speeds of the
three planets. Newton conceded that “to consider
simultaneously all these causes of motion and to define these
motions by exact laws admitting of easy calculation exceeds,
if I am not mistaken, the force of any human mind.”

King Oscar II of Norway and Sweden decided to mark his
sixtieth birthday in 1889 by offering a prize for solving a
problem in mathematics. There are not many monarchs
around the world who would choose math problems to
celebrate their birthdays, but Oscar had enjoyed the subject
ever since he had excelled at it as a student at Uppsala
University.

His majesty Oscar Il, wishing to give a fresh proof of his interest
in the advancement of mathematical science, has resolved to
award a prize on January 21, 1889, to an important discovery in
the field of higher mathematical analysis. The prize will consist
of a gold medal of the eighteenth size bearing his majesty’s
image and having a value of a thousand francs, together with
the sum of two thousand five hundred crowns.



Three eminent mathematicians convened to choose a
number of suitable challenges and to judge the entries. One of
the questions they posed was to establish mathematically
whether the solar system was stable. Would it continue to
turn like clockwork, or, at some point in the future, might the
Earth spiral off into space and disappear from our solar
system?

To answer this question it would be necessary to solve the
equation that had stumped Newton. Poincaré believed that he
had the skills to win the prize. One of the common tricks used
by mathematicians is to attempt a simplified version of the
problem first, to see if it is tractable. So Poincaré started with
three bodies. This was still far too difficult, so he decided to
simplify the problem further. Instead of the sun, Earth, and
moon, why not try to understand two planets and a speck of
dust? The two planets won’t be affected by the dust particle,
so he could assume, thanks to Newton’s solution, that they
just repeated ellipses around each other. The speck of dust,
on the other hand, would experience the gravitational force
of the two planets. Poincaré set about trying to describe the
path traced by the speck of dust. Some understanding of its
trajectory would form an interesting contribution to the
problem.

Although he couldn’t crack the problem completely, the
paper he submitted was more than good enough to secure
King Oscar’s prize. He’d managed to prove the existence of an
interesting class of paths that would repeat themselves, so-
called periodic paths. Periodic orbits were by their nature
stable because they would repeat themselves over and over,
like the ellipses that two planets would be guaranteed to
execute.



The French authorities were very excited that the award
had gone to one of their own. The nineteenth century had
seen Germany steal a march on French mathematics, so the
French academicians excitedly heralded Poincaré’s win as
proof of a resurgence of French mathematics. Gaston
Darboux, the permanent secretary of the French Academy of
Sciences, declared, “From that moment on the name of Henri
Poincaré became known to the public, who then became
accustomed to regarding our colleague no longer as a
mathematician of particular promise but as a great scholar of
whom France has the right to be proud.”

Preparations began for the publication of Poincaré’s
solution in a special edition of the Royal Swedish Academy of
Science’s journal Acta Mathematica. Then came the moment
every mathematician dreads. Poincaré thought his work was
safe. He'd checked every step in the proof. But just before
publication, one of the editors of the journal raised a question
over one of the steps in his mathematical argument.

Poincaré had assumed that a small change in the positions
of the planets, a little rounding up or down here or there, was
acceptable, as it would result in only a small change in their
predicted orbits. It seemed a fair assumption. But there was
no justification given for why this would be so. And in a
mathematical proof, every step, every assumption, must be
backed up by rigorous mathematical logic.

The editor wrote to Poincaré for some clarification on this
gap in the proof. But as Poincaré tried to justify this step, he
realized he’d made a serious mistake. He wrote to Gosta
Mittag-Leffler, the head of the prize committee, hoping to
limit the damage to his reputation:



The consequences of this error are more serious than | first
thought. | will not conceal from you the distress this discovery
has caused me. . . . | do not know if you will still think that the
results which remain deserve the great reward you have given
them. (In any case, | can do no more than to confess my
confusion to a friend as loyal as you.) | will write to you at length
when | can see things more clearly.

Mittag-Leffler decided he needed to inform the other
judges. He did so in a letter:

Poincaré’s memoir is of such a rare depth and power of
invention, it will certainly open up a new scientific era from the
point of view of analysis and its consequences for astronomy.
But greatly extended explanations will be necessary and at the
moment | am asking the distinguished author to enlighten me
on several important points.

As Poincaré struggled away he soon saw that he was
simply mistaken. Even a small change in the initial conditions
could result in wildly different orbits. He couldn’t make the
approximation that he’d proposed. His assumption was
wrong.

Poincaré telegraphed Mittag-Leffler to break the bad news
and tried to stop the paper from being printed. Embarrassed,
he wrote:

It may happen that small differences in the initial conditions
produce very great ones in the final phenomena. A small error
in the former will produce an enormous error in the latter.
Prediction becomes impossible.

Mittag-Leffler was “extremely perplexed” to hear the
news:



It is not that | doubt that your memoir will be in any case
regarded as a work of genius by the majority of geometers and
that it will be the departure point for all future efforts in celestial
mechanics. Don't therefore think that | regret the prize. . . . But
here is the worst of it. Your letter arrived too late and the
memoir has already been distributed.

Mittag-Leffler’s reputation was on the line for not having
picked up the error before they’d publicly awarded Poincaré
the prize. This was not the way to celebrate his monarch’s
birthday! “Please don’t say a word of this lamentable story to
anyone. I'll give you all the details tomorrow.”

The next few weeks were spent trying to retrieve the
printed copies without raising suspicion. Mittag-Leffler
suggested that Poincaré should pay for the printing of the
original version. Poincaré, who was mortified, agreed, even
though the bill came to over 3,500 crowns, 1,000 crowns more
than the prize he’d originally won.

In an attempt to rectify the situation, Poincaré set about
trying to sort out his mistake, to understand where and why
he had gone wrong. In 1890 Poincaré wrote a second,
extended paper explaining his belief that very small changes
could cause an apparently stable system suddenly to fly apart.

What Poincaré discovered, thanks to his error, led to one
of the most important mathematical concepts of the
twentieth century: chaos theory. It was a discovery that
placed huge limits on what we humans could ever hope to
know. I may have written down all the equations for my die,
but what if it behaves like the planets in the solar system?
According to Poincaré’s discovery, if I make just one small
error in recording its starting location, that error could
expand into a large difference in the outcome by the time the



trajectory it won't alter the course of the planet much. But
the solar system seems to be playing a slightly more
interesting game of billiards than the ones I played as a
student.

Rather surprisingly, if you change the shape of the billiard
table this intuition turns out to be wrong. If you shoot balls
around a billiard table shaped like a stadium with
semicircular ends but straight sides, the paths can diverge
dramatically even if the balls started off heading in almost
exactly the same direction. This is the signature of chaos
theory: sensitivity to very small changes in the initial
conditions.

Two quickly diverging paths taken by a billiard ball around a
stadium-shaped billiard table

So the challenge is to determine whether the fall of my
dice can be predictable, like a conventional game of billiards,
or whether we are playing a giant game of chaotic billiards.

Poincaré is generally credited as the father of chaos
theory, but the sensitivity of dynamic systems to small
changes was not very well known for decades into the
twentieth century. It really took the rediscovery of the
phenomenon by scientist Edward Lorenz, who like Poincaré



thought he’d made some mistake, before the ideas of chaos
theory became more widely known.

While working as a meteorologist at the Massachusetts
Institute of Technology in 1963, Lorenz had been running
equations for the change of temperature in a dynamic fluid
on his computer when he decided he needed to rerun one of
his models for longer. So he took some of the data that had
been output earlier in the run and re-entered it, expecting to
be able to restart the model from that point.

When he returned from coffee, he discovered to his
dismay that the computer hadn’t reproduced the previous
data and that it had very quickly generated a wildly divergent
prediction. At first he couldn’t understand what was
happening. If you input exactly the same numbers into an
equation, you don’t expect to get a different answer at the
other end. It took him a while to realize what was going on:
he hadn’t input the same numbers. The computer printout of
the data he’d used had only printed the numbers to three
decimal places, while it had been calculating using the
numbers to six decimal places.

Even though the numbers were different, they differed
only in the fourth decimal place. You wouldn’t expect this to
make that big a difference, but Lorenz was struck by the
impact of such a small difference on the resulting data. Here
are two graphs created using the same equation, where the
data that are put into the equations differ very slightly. One
graph uses the input data 0.506127 and the second graph
approximates this to 0.506. Although the graphs start out
following similar paths, they very quickly behave completely
differently.



The model that Lorenz was running was a simplification
of weather models that analyzed how the flow of air behaves
when subjected to differences in temperature. His
rediscovery of how small changes in starting conditions can
have such a big impact on future outcomes would have huge
implications for our attempts to use mathematical equations
to predict the future. As Lorenz wrote, “Two states that were
imperceptibly different could evolve into two considerably
different states. Any error in the observation of the present
state—and in a real system, this appears to be inevitable—
may render an acceptable prediction of the state in the
distant future impossible.”

When Lorenz sought to explain his findings to a colleague,
he was told, “Edward, if your theory is correct, one flap of a
seagull’s wings could alter the course of history forever.” The
seagull would eventually be replaced by the now famous
butterfly when Lorenz presented his findings in 1972 at the
American Association for the Advancement of Science in a
paper titled “Does the Flap of a Butterfly’s Wings in Brazil Set
off a Tornado in Texas?”

Curiously, both the seagull and the butterfly might have
been preempted by the grasshopper. It seems that already in
1898 Professor W. S. Franklin had realized the devastating



effect that the insect community could have on the weather.
In a book review, he posited, “An infinitesimal cause may
produce a finite effect. Long-range detailed weather
prediction is therefore impossible, and the only detailed
prediction which is possible is the inference of the ultimate
trend and character of a storm from observations of its early
stages; and the accuracy of this prediction is subject to the
condition that the flight of a grasshopper in Montana may
turn a storm aside from Philadelphia to New York!”

This is an extraordinary position to be in. Science offers a
completely deterministic description of the evolution of
many dynamic systems like the weather. And yet in many
cases we are denied access to its predictions, as any
measurement of the location or wind speed of a particle is
inevitably going to be an approximation of its true
conditions.

The National Weather Service, when making weather
predictions, takes the data recorded by weather stations
dotted across a region and then, instead of running equations
on these data, the meteorologists do several thousand runs,
varying the data over a range of values. The predictions stay
close for a while, but by about five days into the future the
results have often diverged so wildly that one set of data
predicts a heat wave while a few changes in the decimal
places of the data result in drenching rain.

“There is a maxim which is often quoted, that ‘The same
causes will always produce the same effects,”
Scottish scientist James Clerk Maxwell in his book Matter and
Motion, published in 1877. “There is another maxim which

wrote the great

must not be confounded with this, which asserts that ‘Like
causes produce like effects.” This is only true when small



variations in the initial circumstances produce only small
variations in the final state of the system.” The discovery of
chaos theory in the twentieth century revealed this maxim to
be false.

Of course, there are times when small changes don’t alter
the course of the equations dramatically, like the paths in the
classic billiard table. So how can you know the point when
you can’'t know what is going to happen next? Robert May
discovered a beautiful example when he analyzed the
equations for population growth.

Born in Australia in 1938, May had originally trained as a
physicist working on superconductivity, but his academic
work took a dramatic turn when he was exposed in the late
1960s to the newly formed movement for social responsibility
in science. His attention shifted from the behavior of
collections of electrons to the more pressing questions of the
behavior of population dynamics in animals. Biology, at the
time, was not a natural environment for the mathematically
minded, but following May’s work that would change. This
fusion of the hardcore mathematical training he’d received as
a physicist with a new interest in biology led to his great
breakthrough.

In a paper in Nature called “Simple Mathematical Models
with Very Complicated Dynamics,” published in 1976, May
explored the dynamics of a mathematical equation describing
population growth from one season to the next. He revealed
how even a quite basic equation can produce extraordinarily
complex results. His equation for population dynamics wasn’t
some complicated differential equation but a simple, discrete
feedback equation that anyone with a calculator could
explore.



was going on in this higher region. And it was what he called
chaos.

Beyond r = 3.56995 (or, more precisely, the limit point of a
system of equations of increasing degree), the result becomes
very sensitive to what the initial population looks like.
Change the initial number of animals by a minute amount
and a totally different result can ensue.

[0 9
I
boonk
< 0871 A )
S I l|,r|i I
= BRIRY |
a. f'ii'w ! I
. T ||
Qo_o"rﬂ "l-”-i | It
02 TN FLI
i Vi
L/
o Y f
20 30 40
\{cws

Two populations with r = 4 that start off with a difference of just
one animal in a thousand. Although they start behaving similarly,
by year 15 they are demonstrating very different behaviors.

As 1 turn up the dial on r, there can still be pockets of
regular behavior, as Jim Yorke had discovered. For example,
take r = 3.627 and the population becomes periodic again,
bouncing around between six different values. Keep dialing r
up and the six changes to twelve, which becomes twenty-
four, doubling each time until chaos strikes again.

Bob May recognized just what a warning shot such a
simple system was to anyone who thought they knew it all:
“Not only in research, but in the everyday world of politics



and economics, we would be better off if more people realized
that simple systems do not necessarily possess simple
dynamic properties.”

THE POLITICS OF CHAOS

Bob May is currently practicing what he preaches. Or perhaps
I should say Lord May of Oxford, as I was corrected by a man
in a top hat who greeted me at the door to the entrance of the
House of Lords. May has in recent years combined his
scientific endeavors with energetic political activism. He now
sits as a cross-party member of the House of Lords, where 1
popped in for lunch to find out how he was faring in his
mission to alert politicians to the impact of chaotic systems
on society.

Ushered through the entrance to the Lords by the man in
the top hat and policemen with machine guns, I found May
waiting for me on the other side of metal detectors and X-ray
machines. May has no truck with all these formal titles and,
in his earthy Australian manner, still insists on being called
Bob. “I'm afraid T messed up and already ate lunch but T’ll
come and eat cake while you get some lunch,” he said with a
guileless smile. As I ate my fish he consumed an enormous
piece of chocolate cake. At seventy-nine, May is as energetic
and engaged as ever, and he was rushing off after his second
lunch to a select committee discussing the impact of a new
rail link between London and northwest England. Before
joining the Lords, May was chief scientific adviser both to
John Major’s Conservative government and Tony Blair’s Labor
government. I asked how tricky a balancing act such a



political position is for a man who generally is not scared to
tell it like it is.

“At the interview I was told that there would be occasions
where 1 would be called upon to defend the decisions of a
minister and how would I feel about that? I said that I would
never under any circumstances deny a fact. On the other
hand, I'm fairly good at the kind of debating competition
where you’re given a topic and according to a flip of a coin
you've got to argue for either side of the debate. So I said I'd
be happy explaining why the minister’s choice was arrived at.
I simply wouldn’t agree to endorse it if it wasn't right.”

A typical mathematician’s response. Set up the minister’s
axioms and then demonstrate the proof that led to the
conclusion—a judgment-free approach. That’s not to say that
May isn’t opinionated and prepared to give his own views on
the subject at hand.

I was curious as to how governments deal with the
problems that chaos theory creates when trying to make
policy decisions. How do politicians cope with the challenges
of predicting or manipulating the future, given that we can
have only partial knowledge of the systems being analyzed?

“I think that’s rather a flattering account of what goes on
here,” he said. “With some notable exceptions it’s mostly a
bunch of very egotistical people, very ambitious people, who
are primarily interested in their own careers.”

What about May personally? What impact did the
discoveries he’d made have on his view of science’s role in
society?

“It was weird. It was the end of the Newtonian dream.
When I was a graduate student it was thought that with
better and better computer power we would get better and



better weather predictions because we knew the equations
and we could make more realistic models of the Earth.” But
May is cautious not to let the climate change deniers use
chaos theory as a way to undermine the debate.

“Not believing in climate change because you can’t trust
weather reports is a bit like saying that because you can’t tell
when the next wave is going to break on Bondi beach you
don’t believe in tides.”

May likes to quote a passage from Tom Stoppard’s play
Arcadia to illustrate the strange tension that exists between
the power of science to know some things with extraordinary
accuracy and chaos theory, which denies us knowledge of
many parts of the natural world. One of the protagonists,
Valentine, declares, “We’re better at predicting events at the
edge of the galaxy or inside the nucleus of an atom than
whether it’ll rain on auntie’s garden party three Sundays
from now.” May jokes that his most cited works are not the
high-profile academic papers he’s published in prestigious
scientific journals like Nature, but the program notes he wrote
for Stoppard’s play when it was first staged at the National
Theater in London. “It makes a mockery of all these citation
indexes as a way of measuring the impact of scientific
research.”

So what are the big open questions of science that May
would like to know the answer to? Consciousness? An infinite
universe?

“I think I'd look at it in a less grand way, so I'd look at it
more in terms of the things I am working on at the moment.
Largely by accident I've been drawn into questions about
banking.”



That was a surprise. The question of how to create a stable
banking system seemed very parochial, but May has recently
been applying his models of the spread of infectious diseases
and the dynamics of ecological food webs to understanding
the banking crisis of 2008. Working with Andrew Haldane at
the Bank of England, he has been considering the financial
network as if it were an ecosystem. Their research has
revealed how financial instruments intended to optimize
returns with seemingly minimal risk can cause instability in
the system as a whole.

May believes that the problem isn't necessarily the
mechanics of the market itself. It’s the way small things in
the market are amplified and perverted by how humans
interact with them. For him, the most worrying thing about
the banking mess is getting a better handle on this contagious
spreading of worry.

“The challenge is: How do you put human behavior into
the model? 1 don’t think human psychology is
mathematizable. Here we are throwing dice with our future.
But if you're trying to predict the throw of the dice, then you
want to know the circumstance of who owns the dice.”

That was something I hadn’t taken into account. Perhaps I
should factor in who sold me the casino die in the first place.

“I think many of the major problems facing society are
outside the realm of science and mathematics,” he said. “It’s
the behavioral sciences that are the ones we are going to have
to depend on to save us.”

Looking around the canteen at the House of Lords, you
could see the sheer range and complexity of human behavior
at work. It makes the challenge of mathematizing even the
interactions in this tiny microcosm of the human population



throw of the evolutionary dice. But there is a second
important strand to Darwin’s proposal, which is the idea of
natural selection. Some of those random changes will give
offspring an increased chance of survival, while others will
result in a disadvantage. The point of evolution by natural
selection is that the organism with the advantageous change
will be more likely to survive long enough to reproduce.

Suppose, for example, that I start with a population of
giraffes with short necks. The environment of the giraffes
changes such that there is more food in the trees, so that any
giraffe born with a longer neck is going to have a better
chance of survival. Let’s suppose that I throw my Vegas die to
determine the chance of a mutation for each giraffe born in
the next generation following this environmental change. A
roll of a 1, 2, 3, 4, or 5 condemns the giraffe to a neck of the
same size or shorter, while a throw of a 6 corresponds to a
chance mutation that causes a longer neck. The lucky longer-
necked giraffes get the food, and the shorter-necked giraffes
don’t survive to reproduce. So it is just the longer-necked
giraffes that get the chance to pass on their DNA.

In the next generation the same thing happens. Roll a 1, 2,
3, 4, or 5 on the die and the giraffe doesn’t grow any taller
than its parents. But another 6 and the giraffe’s neck grows a
bit more. The taller giraffes survive again. The environment
favors the giraffes that have thrown a 6. Each generation ends
up a bit taller than the last generation until there comes a
point when it is no longer an advantage to grow any further.

The combination of chance and natural selection results
in our seeing more giraffes with ancestors that all threw 6s.
In retrospect it looks like amazing serendipity that you would
see sO many 6s in a row. But the point is that you don’t see



any of the other rolls of the dice because they don’t survive.
What looks like a rigged game is just the result of the
combination of chance and natural selection. There is no
grand design at work. The run of consecutive 6s isn’t a lucky
streak; it is the only thing we would expect to see from such a
model.

It’s a beautifully simple model, but, given the complexity
of the changes in the environment and the range of
mutations that can occur, this simple model can produce
extraordinary complexity, which is borne out by the sheer
variety of species that exist on Earth. Although the model is
simple, it is frustratingly inadequate at making predictions.
One of the reasons I never really fell in love with biology is
that there seemed to be no way to explain why we got cats
and zebras out of this evolutionary model and not some other
strange selection of animals. It all seemed so arbitrary, so
random. But is that really right?

There is an interesting debate going on in evolutionary
biology about how much chance there is in the outcomes we
are seeing. If we rewound the story of life on Earth to some
point in the past and threw the dice again, would we see very
similar animals appearing or could we get something
completely different? This is the question that May raised at
the end of our lunch.

It does appear that some parts of our evolutionary process
seem inevitable. It is striking that throughout evolutionary
history, the eye evolved independently fifty to a hundred
times. This is strong evidence for the fact that the different
rolls of the dice that have occurred across different species
seem to have produced species with eyes regardless of what is
going on around them. Lots of other examples illustrate how



some features, if they are advantageous, seem to rise to the
top of the evolutionary swamp. This is illustrated every time
you see the same feature appearing more than once in
different parts of the animal kingdom. Dolphins and bats, for
example, use echolocation, but they evolved this trait
independently at very different points on the evolutionary
tree.

But it isn’t clear how far these outcomes are guaranteed
by the model. If there is life on another planet, will it look
anything like the life that has evolved here on Earth? This is
one of the big open questions in evolutionary biology. As
difficult as it may be to answer, I don’t believe it qualifies as
something we can never know. It may remain something we
will never know, but there is nothing by its nature that makes
it unanswerable.

Are there other great unsolved questions of evolutionary
biology that might be contenders for things we can never
know? For example, why, 542 million years ago, at the
beginning of the Cambrian period, was there an explosion in
the diversity of life on Earth? Before this moment life
consisted of single cells that collected into colonies. But over
the next twenty-five million years, a relatively short period
on the scale of evolution, there is a rapid diversification of
multicellular life that ends up resembling the diversity that
we see today. An explanation for this exceptionally fast pace
of evolution is still missing. This is in part due to lack of data
from that period. Can we ever recover that information, or
could this always remain a mystery?

Chaos theory is usually a limiting factor in what we can
know about the future. But it can also imply limits on what
we can know about the past. We see the results, but deducing



the cause means running the equations backward. Without
complete data, the same principle applies backward as
forward. We might find ourselves at two very divergent
starting points that can explain very similar outcomes. But
we’ll never know which of those origins was ours.

One of the big mysteries in evolutionary biology is how
life got going in the first place. The game of life may favor
runs of 6s on the roll of the evolutionary dice, but how did the
game itself evolve? Various estimates have been proposed for
the chances of everything lining up to produce molecules that
replicate themselves. In some models, the origin of life is
equivalent to nature having thrown thirty-six dice and
getting them all to land on 6. For some, this is proof of the
existence of God or of some form of a grand designer to rig
the game. But this is to misunderstand the huge time scale
that we are working on.

Miracles do happen . . . given enough time. Indeed, it
would be more striking if we didn’t get these anomalies. The
point is that the anomalies stick out. They get noticed, while
the less exciting rolls of the dice are ignored.

The lottery is a perfect test bed for the occurrence of
miracles in a random process. On September 6, 2009, the
following six numbers were the winning numbers in the
Bulgarian state lottery: 4, 15, 23, 24, 35, 42. Four days later,
the same six numbers came up again. Incredible, you might
think. The government in Bulgaria certainly thought so and
ordered an immediate investigation into the possibility of
corruption. But what it failed to take into account is that each
week, across the planet, different lotteries are being run.
They have been running for decades. If you do the math, it



would be more surprising not to see such a seemingly
anomalous result.

The same principle applies to the conditions for
producing self-replicating molecules in the primeval soup
that made up the Earth before life emerged. Mix together
plenty of hydrogen, water, carbon dioxide, and some other
organic gases and subject them to lightning strikes and
electromagnetic radiation, and already experiments in the lab
show the emergence of organic material found only in living
things. No one has managed to spontaneously generate
anything as extraordinary as DNA in the lab. The chances of
that are very small.

But that’s the point. Given the billion billion or so possible
planets available in the universe on which to try out this
experiment, together with a billion or so years to let the
experiment run, it would be more striking if that outside
chance of creating something like DNA didn’t happen. Keep
rolling thirty-six dice on a billion billion different planets for
a billion years and you’d probably get one roll with all thirty-
six dice showing 6. Once you have a self-replicating molecule,
it has the means to propagate itself, so you only need to get
lucky once to kick off evolution.

THE FRACTAL TREE OF LIFE

Our problem as humans is that we have not evolved minds
able to navigate very large numbers. Probability is something
we have little intuition for. But it’s not only the mathematics
of probability that is at work in evolution. The evolutionary



outcomes of the mechanism of evolution by speeding up time.
But the model will only be as good as our hypotheses. If we've
got the model wrong, it won’t tell us what is really happening
in nature.

Computer models such as these hold the key to answering
the question Poincaré first tackled when he discovered chaos:
Will there even be a stable Earth orbiting the sun for
evolution to continue playing its game of dice? How safe is
our planet from the vagaries of chaos? Is our solar system
stable and periodic, or do I have to worry about a grasshopper
disrupting our orbit around the sun?

A BUTTERFLY CALLED MERCURY

Poincaré wasn’t able to answer the King of Sweden’s question
about the solar system, that is, whether it would remain in a
stable equilibrium or fly apart in a catastrophic exhibition of
chaotic motion. His discovery that some dynamic systems can
be sensitive to small changes in data opened up the
possibility that we may never know the precise fate of the
solar system much in advance of any potentially devastating
scenario unfolding.

It is possible that the solar system is in a safe, predictable
region of activity, but the evidence suggests we can’t console
ourselves with this comforting mathematical hope. Recent
computer modeling has provided us with new insights, which
reveal that the solar system is indeed within a region
dominated by the mathematics of chaos. We can now measure
how big an effect a small change will have on the outcome of
a closed system using something called the Lyapunov



exponent. If the Lyapunov exponent is positive, it means that
if I make a small change in the initial conditions then the
distance between the paths will diverge exponentially.

Using this new equation, several groups of scientists have
confirmed that our solar system is indeed chaotic. They have
calculated that the distance between two initially close
orbital solutions increases by a factor of ten every ten million
years. This is certainly on a different timescale to our
inability to predict the weather. Nevertheless, it means that 1
can have no definite way of knowing what will happen to the
solar system over the next five billion years.

If you're wondering in despair whether we can know
anything about the future, then take heart in the fact that
mathematics isn’t completely hopeless at making predictions.
There is an event that the equations guarantee will occur if
we make it to five billion years from now, but it’s not good
news. At this point, the sun will run out of fuel and evolve
into a red giant that will engulf Earth and the other planets in
our solar system. But until this solar blowout, I am faced with
trying to solve chaotic equations if I want to know which
planets will still be around to see that red giant.

If I want to know what will happen, I have no choice but
to run simulations in which I vary the precise locations and
speeds of the planets. The forecast is in some cases rather
frightening. In 2009 French astronomers Jacques Laskar and
Mickael Gastineau ran several thousand models of the future
evolution of our solar system. Their experiments have
identified a potential butterfly: Mercury.

The simulations start by feeding in the records we have of
the positions and velocities of the planets to date, but it is
difficult to know these with one hundred percent accuracy.



So each time they run the simulation they make small
changes to the data. Because of the effects of chaos theory, a
small change could result in a large deviation in the
outcomes.

For example, astronomers know the dimensions of the
ellipse of Mercury’s orbit to an accuracy of several meters.
Laskar and Gastineau ran 2,501 simulations varying these
dimensions over a range of less than a centimeter. Even this
small perturbation resulted in startlingly different outcomes
for our solar system.

If the solar system were to be ripped apart, you might
expect one of the big planets, like Jupiter or Saturn, would be
the culprit. But the orbits of the gas giants are extremely
stable. It’s the rocky terrestrial planets that are the
troublemakers. In one percent of simulations, Laskar and
Gastineau found that tiny Mercury posed the biggest risk. The
models show that Mercury’s orbit could start to extend due to
a certain resonance with Jupiter, with the possibility that
Mercury could collide with its closest neighbor, Venus. In one
simulation, a close miss was enough to throw Venus out of
kilter, with the result that Venus collides with Earth. Even
close encounters with the other planets would be enough to
cause such tidal disruption that the effect would be disastrous
for life on our planet.

This isn’t simply a case of abstract mathematical
speculation. Evidence of such collisions has been observed in
the planets orbiting the binary star Upsilon Andromedae.
Their current strange orbits can be explained only by the
ejection of an unlucky planet sometime in the star’s past. But
before we head for the hills, the simulations reveal that it will



take several billion years before Mercury might start to
misbehave.

INFINITE COMPLEXITY

What of my more modest goal of predicting the throw of my
die? Laplace would have said that provided I can know its
dimensions, the distribution of its atoms, the speed at which
it is launched, and its relationship to its surrounding
environment, theoretically the calculation is possible. But the
discoveries of Poincaré and those who followed have revealed
that just a few decimal places could be the difference between
a 6 or a 2. The die is designed to have only six different
outcomes, yet the input data range over a potentially
continuous spectrum of values. The question is whether the
dynamics of the die are truly chaotic—or could they be
simpler than one might expect? If I vary the angle at which
the die leaves my hand, is there a moment when the outcome
flips from a 6 to a 2, or is it much more sensitive to small
changes?

A Polish research team recently analyzed the throw of a
die mathematically, and by combining this with the use of
high-speed cameras they have revealed that my die may not
be as chaotic and unpredictable as I feared. It just depends on
the conditions of the table onto which you are throwing your
die. The research group consists of a father-and-son team,
Tomasz and Marcin Kapitaniak, together with Jaroslaw
Strzalko and Juliusz Grabski, and they are based in Lédz. The
model they considered, published in a paper in the journal
Chaos in 2012, assumes that the die is perfectly balanced, like



