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Preface Hxvl

provides a good vehicle through which one could teach general topics in
computer science.

I also hope that this text demonstrates the ease with which one can
embed a domain-specific language in Haskell. In a more general sense,
this might actually be the most profitable niche for Haskell, as there have
been a number of success stories in this area already.

In any case, I hope that you enjoy working through the various mul-
timedia programs as much as I have enjoyed creating them. At the same
time, I hope that this text might help Haskell to find its niche and thus
avoid the fate of obscurity described earlier. Haskell really is a beautiful
language.

Why I Wrote This Book, and How to Read It

At the time I began writing this book there were not many other books
about programming specifically in Haskell. But that wasn't the main rea-
son I decided to tackle this task. More importantly, there was a need for
a book that described how te solve problems using a functional language
such as Haskell. As with any major class of languages, there is a cer-
tain mind-set for contemplation, a certain viewpoint of the world, and a
certain approach to problem solving that collectively work best. If you
teach only Haskell language details to a C programmer, she is likely to
write very ugly, incomprehensible functional programs. But if you teach
her how to think differently, how to see problems in a different light,
functional solutions will come easily, and elegant Haskell programs will
result, That, in a nutshell, is my goal in this textbook. As Samuel Silas
Curry once said:

All expression comes from within outward, from the center to the surface,
from a hidden source to outward manifestation. The study of expression
as a natural process brings you into contact with cause and makes you
feel the source of reality.
(http: //www.curry.edu:8080/history/history.html)

1 encourage the seasoned programmer having experience only with
conventional imperative and/or object-oriented languages to read this
text with an open mind. Many things will be different, and will likely feel
awkward. There will be a tendency to rely on old habits when writing new
programs, and to ignore my suggestions about how to approach things
differently. If you can manage to resist these tendencies, I am confident
that you will have an enjoyable learning experience. Many of those who
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succeed in this process find that many of the things that they learn about
functional programming can be applied to imperative and object-oriented
languages - after all, most of these other languages contain a significant
functional subset - and that their imperative coding style changes for the
better as a result.

I also ask the experienced programmer to be patient while in the ear-
lier chapters I explain things like “syntax,” “operator precedence,” and
others because my goal is that this text should be readable by someone
having only modest prior programming experience. With patience the
more advanced ideas will appear soon enough.

If you are a novice programmer, I suggest taking your time with the
book; work through the exercises, and don't rush things. If, however,
you don't fully grasp an idea, feel free to move on, but try to reread
difficult material at a later time when you have seen more examples of
the concepts in action. For the most part this is a “show by example”
textbook, and you should try to execute as many of the programs in this
text as you can, as well as every program that you write. Learn-by-doing
is the corollary to show-by-example.

Finally, although the text begins quite gently, it moves at a fairly rapid
pace, and covers many advanced ideas in functional programming, some
of which are not covered in any other text that I am aware of. So there
is much here even for those who are already familiar with the basics of
functional programming.

Suggestions to Instructors

All of the material in this textbook can be covered in one semester as an
advanced undergraduate course. For lower-level courses, including pos-
sible use in high school, some of the mathematics may cause problems,
but for bright students I suspect most of the material can still be covered.

I strongly encourage sticking to the order of the chapters in the book,
which introduces Haskell language features as they are demanded by the
underlying application themes (generally the chapters alternate between
“concepts” and “applications”). If you are an experienced functional pro-
grammer, vou will see instances early in the book where a lambda expres-
sion here, or eta-conversion there, will simplify things, but [ have chosen
to delay such simplifications in most cases. Flooding the student with too
many features early on can be overwhelming.

The only exception to following the given chapter order is that Chap-
ters 20 to 22 provide a somewhat independent thread on computer music,
and can be covered anytime after Chapter 11. The most difficult chapter
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is probably Chapter 15, and the most dispensible chapters are probably
Chapters 17 and 22. Also, if you want to omit nonmultimedia applica-
tions you might consider skipping Chapter 6, although that chapter con-
tains the first introduction to infinite lists. Finally, Chapters 23 and 24
are short “tours” of the PreludeList Module and Standard Type Classes,
respectively, and could be assigned as auxiliary reading, or covered piece-
meal as related topics are introduced.

The web page http://haskell.org/soe contains a great deal of use-
ful information related to the text, including libraries, source code for
each chapter, PowerPoint slides, and errata. You can send email to me at
paul.hudak@yale.edu with feedback, questions, corrections, etc.

Haskell Implementations

There are several good implementations of Haskell, all available free on
the Internet through the Haskell home page at http://haskell.org.
One that I especially recommend is the Hugs implementation, a very
easy-to-use and easy-to-install Haskell interpreter. Hugs runs on a vari-
ety of platforms, including PC's (Windows 95/NT), various flavors of Unix
(Linux, Solaris, HP), and Mac OS. The Glasgow Haskell Compiler (GHC)
supports the same libraries as Hugs, and has the benefit of being a true
compiler instead of an interpreter.

All of the code in the book is compliant with the Haskell '98 standard,
and has been tested on the Hugs '98 implementation of Haskell. Unfor-
tunately, the graphics and animation applications rely on a library that
was originally developed only for Windows 95/NT. You should consult
the SOE web page for the latest information regarding compatibility with
other platforms.
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CHAPTER ONE

Problem Solving, Programming,
and Calculation

Programming, in its broadest sense, is problem solving. It begins when we
look out into the world and see problems that we want to solve, problems
that we think can and should be solved using a digital computer. Under-
standing the problem well is the first - and probably the most important -
step in programming, because without that understanding we may find
ourselves wandering aimlessly down a dead-end alley, or worse, down a
fruitless alley with no end. “Solving the wrong problem” is a phrase often
heard in many contexts, and we certainly don’t want to be victims of that
crime. So the first step in programming is answering the question, “What
problem am I trying to solve?”

Once you understand the problem, then you must find a solution. This
may not be easy, of course, and in fact you may discover several solutions,
so we also need a way to measure success. There are various dimensions
in which to do this, including correctness (“Will I get the right answer?")
and efficiency (“Will I have enough resources?”). But the distinction of
which solution is better is not always clear, because the number of di-
mensions can be large, and programs will often excel in one dimension
and do poorly in others. For example, there may be one solution that
is fastest, one that uses the least amount of memory, and one that is
easiest to understand. Choosing can be difficult and is one of the more
interesting challenges that you will face in programming.

The last measure of success mentioned above - clarity of a program -
is somewhat elusive, most difficult to measure, and, quite frankly, some-
times difficult to rationalize. But in large software systems clarity is an
especially important goal, because the most important maxim about such
systems is that they are never really finished! The process of continuing
work on a software system after it is delivered to users is what software
engineers call software maintenance, and is the most expensive phase of
the so-called “software lifecycle.” Software maintenance includes fixing

H1 R
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The above calculations are fairly trivial, of course. But we will be doing
much more sophisticated operations soon enough. For starters - and to
introduce the idea of a function - we could generalize the arithmetic
operations performed in the previous example by defining a function to
perform them for any numbers x, y, and z:

simplexyz = x%(y+2)

This equation defines simple as a function of three arguments, x, v, and
z. In mathematical notation, we might see the above written slightly dif-
ferently, namely:

simple(x,y,z) =xx (v + z)

In any case, it should be clear that “simple 3 9 5" is the same as
“3 % (9 + 5)." In fact the proper way to calculate the result is:

simple 395
= 3% (9+3)
= 3%14

= 42

The first step in this calculation is an example of unfolding a function
definition: 3 is substituted for x, 9 for y, and 5 for z on the right-hand
side of the definition of simple. This is an entirely mechanical process,
not unlike what the computer actually does to execute the program.

When I wish to say that an expression e evaluates (via zero, one, or
possibly many more steps) to the value v, [ will write e = v (this arrow
is longer than that used earlier). So we can say directly, for example,
that simple 395 = 42, which should be read “simple 3 9 5 evaluates
1o 42."

With simple now suitably defined, we can repeat the sequence of arith-
metic calculations as often as we like, using different values for the ar-
guments to simple. For example, simple4 32 = 20.

We can also use calculation to prove properties about programs. For
example, it should be clear that for any a, b, and ¢, simple a b ¢ should
yield the same result as simple a ¢ b. For a proof of this, we calculate
symbolically; that is, using the symbols a, b, and ¢ rather than concrete
numbers such as 3, 5, and 9:

simple a b c

= ax(b+c)
= ax(c+b)
= simpleach
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The same notation will be used for these symbolic steps as for con-
crete ones, In particular, the arrow in the notation reflects the direction
of our reasoning, and nothing more. In general, if el = 2, thenit's also
true thate2 = el.

I will also refer to these symbolic steps as “calculations,” even though
the computer will not typically perform them when executing a program
(although it might perform them before a program is run if it thinks
that it might make the program run faster). The second step in the
calculation above relies on the commutativity of addition (namely that,
for any numbers x and y, x + ¥ = ¥ + X). The third step is the reverse of
an unfold step, and is appropriately called a fold calculation. It would be
particularly strange if a computer performed this step while executing a
program, because it does not seem to be headed toward a final answer.
But for proving properties about programs, such “backward reasoning”
is quite important.

When I wish to make the justification for each step clearer, whether
symbolic or concrete, a calculation will be presented with more detail, as
in:

simplea b ¢

= { unfold }
a*x(b+c)

= { commutativity }
ax*(c+b)

= {fold }
simpleach

In most cases, however, this will not be necessary.

Proving properties of programs is another theme that will be repeated
often in this text. As the world relies more and more on computers to ac-
complish not just ordinary tasks such as writing term papers and sending
email, but also life-critical tasks such as controlling medical procedures
and guiding spacecraft, then the correctness of programs gains in impor-

tance. Proving complex properties of large, complex programs is not easy,
and is rarely if ever done in practice. However, that should not deter us
from proving simpler properties of the whole system, or complex prop-
erties of parts of the system, because such proofs may uncover errors,
and if not, at least help us to gain confidence in our effort.

If you are already an experienced programmer, the idea of computing
everything by calculation may seem odd at best and naive at worst. How
does one write to a file, draw a picture, or respond to mouse clicks? If
you are wondering about these things, have patience reading the early
chapters and find delight reading the later chapters where the full power
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of this approach begins to shine. [ will avoid, however, most comparisons
between Haskell and conventional programming languages such as C,
C++, Ada, Java, or even Scheme or ML (two "almost functional” languages),
because for those who have programmed in these other languages the
differences will be obvious, and for those who haven't the comments
would be superfluous.

In many ways this first chapter is the most difficult chapter in the
entire text because it contains the highest density of new concepts. If
you have trouble with some of the ideas here, keep in mind that we will
return to almost every idea at later points in the text. And don't hesitate
to return to this chapter later to reread difficult sections; they will likely
be much easier to grasp at that time.

Exercise 1.1 Write out all of the steps in the calculation of the value of
simple (simple 2 34) 56

Exercise 1.2 Prove by calculation that simple (a—b) ab = a° - b°.

DETAILS

In this text the need will often arise to explain some aspect of Haskell in more
detail, without distracting too much from the primary line of discourse. In
those circumstances | will offset the comments and precede them with the
word “Details,” such as is done with this paragraph, so that you know the
nature of what is to follow, These details will sometimes concern the syntax
of Haskell (i.e., the notation used to write Haskell programs) or its semantics
(i.e., how to calculate with the language features).

1.2 Expressions, Values, and Types

In this section we will take a much closer look at the idea of computation
by calculation. In Haskell, the objects that we perform calculations on
are called expressions, and the objects that result from a calculation (i.e.,
“the answers") are called values. It is helpful to think of a value just as
an expression on which no more calculation can be carried out.
Examples of expressions include atomic (meaning indivisible) expres-
sions such as the integer 42 and the character ‘a,’ as well as structured
(meaning made from smaller pieces) expressions such as the list [1, 2, 3]
and the pair (‘b,’4) (lists and pairs are different in a subtle way, to be
described later). Each of these examples is also a value, because by them-
selves there is no calculation that can be carried out. As another example,
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1 + 2 is an expression, and one step of calculation yields the expression
3, which is a value, because no more calculations can be performed on
it.

Sometimes, however, an expression has only a never-ending sequence
of calculations. For example, if x is defined as:

x = x+1
then here’s what happens when we try to calculate the value of x:

X

= x+1

= (x+1)+1

= ((x+1)+1)+1

= (((x+1)+1)+1)+1

This is clearly a never-ending sequence of steps, in which case we say that
the expression does not terminate, or is nonterminating. In such cases,
the symbol 1, pronounced “bottom,” is used to denote the value of the
expression.

Every expression (and therefore every value) also has an associated
type. You can think of types as sets of expressions (or values) in which
members of the same set have much in common. Examples include the
atomic types Integer (the set of all fixed-precision integers) and Char (the
set of all characters), as well as the structured types [Integer] (the set of
all lists of integers) and (Char, Integer) (the set of all character/integer
pairs). The association of an expression or value with its type is very
important, and there is a special way of expressing it in Haskell. Using
the examples of values and types above, we write:

42 = Integer

‘a = Char

[1,2,3] = [Integer]
('b',4) = (Char, Integer)

DETAILS
Literal characters are written enclosed in single forward quotes, as in ‘a’,
AL 'R, )Y, T a space), ete. (There are some exceptions, however; see

the Haskell Report for details.)

The “::” should be read “has type,” as in “42 has type Integer.”
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DETAILS

Note that the names of specific types are capitalized, such as Integer and
Char, but the names of values are not, such as simple and x. This is not just
a convention; it is required when programming in Haskell. In addition, the
case of the other characters matters. For example, test, teSt, and tEST are
all distinct names for values, as are Test, TeST, and TEST for types.

Haskell's type system ensures that Haskell programs are well-typed,
that is, that the programmer has not mismatched types in some way. For
example, it does not make much sense to add together two characters,
so the expression @’ + 'b’ is ill-typed. The best news is that Haskell's type
system will tell you if your program is well-typed before you run it. This
is a big advantage, because most programming errors are manifested as
typing errors.

The idea of dividing the world of values into types should be familiar
to most people. We do it all the time for just about every kind of object.
Take boxes, for example. Just as we have integers and reals, lists and tu-
ples, etc., we also have large boxes and small boxes, cardboard boxes and
wooden boxes, and so on. And just as we have lists of integers and lists of
characters, we also have boxes of nails and boxes of shoes. And just as we
would not expect to be able to take the square of a list or add two charac-
ters, we would not expect to be able to use a box to pay for our groceries,

Types help us to make sense of the world by organizing it into groups
of common shape, size, functionality, and others. The same is true for
programming, where types help us to organize values into groups of com-
mon shape, size, and functionality, among others. Of course, the kinds
of commonality between values will not be the same as those between
objects in the real world, and in general, we will be more restricted - and
more formal - about just what we can say about types and how we say it.

Function Types and Type Signatures

What should the type of a function be? It seems that it should at least
convey the fact that a function takes values of one type - T1, say - as
input and returns values of (possibly) some other type - T2, say - as out-
put. In Haskell this is written T1 — T2, and we say that such a function
“maps values of type T1 to values of type T2." If there is more than one
argument, the notation is extended with more arrows. For example, if
our intent is that the function simple defined in the previous section has
type Integer — Integer — Integer — Integer, we can declare this fact by
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to associate the name pi with the number 3.14159. The second line above
is called an equation. The type signature in the first line declares pi to be
a floating-point number, which mathematically, and in Haskell, is distinct
from an integer.® Now we can use the name pi in expressions whenever we
want; it is an abstract representation, if you will, of the number 3.14159.
Furthermore, if we ever need to change a named value (which hopefully
won't ever happen for pi, but could certainly happen for other values),
we would only have to change it in one place, instead of in the possibly
large number of places where it is used.

Suppose now that we are working on a problem whose solution re-
quires writing some expression more than once. For example, we might
find ourselves computing something such as:

X i Float

x = fla-b+2)+gyla-b+2)

The first line declares x to be a floating-point number, while the second is
an equation that defines the value of x. Note on the right-hand side of this
equation that the expression a — b + 2 is repeated - it has two instances -
and thus, applying the abstraction principle, we wish to separate it from
these instances. We already know how to do this - it's called naming - so
we might choose to rewrite the single equation above as two:

c = a-b+2
X fc+gyce

1}

If, however, the definition of ¢ is not intended for use elsewhere in
the program, then it is advantageous to “hide” the definition of ¢ within
the definition of x. This will avoid cluttering up the namespace, and pre-
vents ¢ from clashing with some other value named c. To achieve this,
we simply use a let expression:

X = letc = a-b+2
infc+gyc

A let expression restricts the visibility of the names that it creates to the
internal workings of the let expression itself. For example, if we write:

¢ = 42
x = letc = a-b+2
infc+gyce

then there is no conflict of names; the “outer” ¢ is completely different

6 1 will have more to say about floating-point numbers later in this chapter.
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from the “inner” one enclosed in the let expression. Think of the inner
¢ as analogous to the first name of someone in your household. If your
brother's name is “John" he will not be confused with John Thompson
who lives down the street when you say, “John spilled the milk."

DETAILS

An equation such as ¢ = 42 is called a binding. A simple rule to remember
when programming in Haskell is never to give more than one binding for
the same name in a context where the names can be confused, whether at
the top level of your program or nested within a let expression. For example,
this is not allowed:

a = 42
a8 = 43
nor is this:
a = 42
b = 43
a = 44

S0 you can see that naming - using either top-level equations or equa-
tions within a let expression - is an example of the abstraction principle
in action. It's often the case, of course, that we anticipate the need for
abstraction; for example, directly writing down the final solution above,
because we knew that we would need to use the expression a — b + 2
more than once.

1.4.2 Functional Abstraction

Let's now consider a more complex example. Suppose we are computing
the sum of the areas of three circles with radii r1, r2, and r3, as expressed
by

totalArea : Float
totalArea = pixr1 "2+ pikr2 2 +pi*xri 2

DETAILS
(") is Haskell’s integer exponentiation operator. In mathematics we would
write 11 % r* or just 7rr? instead of pi  r 2.
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Although there isn’t an obvious repeating expression here as there
was in the last example, there is a repeating pattern of operations, namely,
the operations that square some given quantity - in this case the radius -
and then multiply the result by 1. To abstract a sequence of operations
such as this, we use a function, which we will give the name circleArea,
that takes the “given quantity” - the radius - as an argument. There are
three instances of the pattern, each of which we can expect to replace
with a call to circleArea. This leads to:

circleArea 1 Float — Float
circleArear = pixr-2
totalArea = circleArea rl + circleArea r2 + circleArea r3

Using the idea of unfolding described earlier, it is easy to verify that this
definition is equivalent to the previous one.

This application of the abstraction principle is sometimes called furc-
tional abstraction, because the sequence of operations is abstracted as a
function, in this case circleArea. Actually, it can be seen as a generaliza-
tion of the previous kind of abstraction: naming. That is, circleArea r1 is
just a name for pi % r1°2, circleArea r2 for pi % r2°2, and circleArea r3
for pi * ¥3°2. In other words, a named quantity, such as ¢ or pi defined
previously, can be thought of as a function with no arguments.

Note that circleArea takes a radius (a floating-point number) as an
argument and returns the area (also a floating-point number) as a result.
This is reflected in its type signature.

The definition of circleArea could also be hidden within totalArea
using a let expression as we did in the previous example:

totalArea = let circleArear = pixr"2
in circleArea rl + circleArea r2 + circleArea r3

On the other hand, it is more likely that computing the area of a circle
will be useful elsewhere in the program, so leaving the definition at the
top level is probably preferable in this case.

1.4.3 Data Abstraction

The value of totalArea is the sum of the areas of three circles. But what
if in another situation we must add the areas of five circles, or in other
situations, even more? In situations where the number of things is not
certain, it is useful to represent them in a list whose length is arbitrary.
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So imagine that we are given an entire list of circle areas whose length
isn't known when we write the program. What now?

I will define a function listSum to add the elements of a list. Before
doing so, however, there is a bit more to say about lists.

Lists are an example of a data structure, and when their use is mo-
tivated by the abstraction principle, I will say that we are applying data
abstraction. Earlier we saw the example [1, 2, 3] as a list of integers,
whose type is thus [Integer]. Not surprisingly, a list with no elements is
written [ ], and pronounced “nil." To add a single element x to the front
of a list xs, we write x : x5. (Note the naming convention used here; xs
is the plural of x, and should be read that way.) In fact, the list [1, 2, 3]
is equivalent to 1:(2:(3:[])), which can also be written 1:2:3:[]
because the infix operator (:) is “right associative.”

DETAILS

In mathematics we rarely worry about whether the notation a + b + ¢ stands
for (a + b) + ¢ (in which case + would be “left associative”) or a + (b + ¢)
{in which case + would “right associative”). This is because in situations
where the parentheses are left out the operator usually is mathematically
associative, meaning that it doesn’t matter which interpretation we choose.
If the interpretation does matter, mathematicians will include parentheses
to make it clear. Furthermore, in mathematics there is an implicit assump-
tion that some operators have higher precedence than others; for example,
2xa+ bisinterpreted as (2 x a) + b, not 2 x (a + b).

In most programming languages, including Haskell, each operator is de-
fined as having some precedence level and to be either left or right associa-
tive. For arithmetic operators, mathematical convention is usually followed;
for 2 % a + b is interpreted as (2 * a) + b in Haskell. The predefined list-
forming operator (:) is defined to be right associative. Just as in mathematics,
this associativity can be overridden by using parentheses: thus (a: b) : c is
a valid Haskell expression (assuming that it is well-typed), and is very dif-
ferent from a : b : c. | will explain later how to specify the associativity and
precedence of new operators that we define.

Examples of predefined functions defined on lists in Haskell include
head and tail, which return the “head” and “tail” of a list, respectively.
That is, head (x: xs) = x and tail (x:xs) = xs(we will define these
two functions formally in Section 5.1). Another example is the function
(++), which concatenates, or appends, together its two list arguments. For
example, [1, 2, 3] +[4, 5,6] = [1,2, 3, 4,5, 6] ((+) will be defined
in Section 11.2).



1.4 Abstraction, Abstraction, Abstraction E15 0

Returning to the problem of defining a function to add the elements
of a list, let's first express what its type should be:

listSum :: [Float] — Float

Now we must define its behavior appropriately. Often in solving prob-
lems such as this, it is helpful to consider, one by one, all possible cases
that could arise. To compute the sum of the elements of a list, what
might the list look like? The list could be empty, in which case the sum
is surely 0. So we write:

listSum[] = 0

The other possibility is that the list isn't empty (i.e., it contains at least
one element) in which case the sum is the first number plus the sum of

the remainder of the list. So we write:

listSum (x: xs) = x + listSum xs

Combining these two equations with the type signature brings us to the
complete definition of the function listSum:

listSum :: [Fleat] — Float
listSum [ ] =0
listSum (x : xs) X + listSum xs

DETAILS
Although intuitive, this example highlights an important aspect of Haskell:
pattern matching. The left-hand sides of the equations contain patterns such
as [ ] and x: xs. When a function is applied, these patterns are matched
against the argument values in a fairly intuitive way ([ ] only matches the
empty list, and x : xs will successfully match any list with at least one el-
ement, while naming the first element x and the rest of the list xs). If the
match succeeds, the right-hand side is evaluated and returned as the result
of the application. If it fails, the next equation is tried, and if all equations
fail, an error results. All of the equations that define a particular function
must appear together, one after the other.

Defining functions by pattern matching is quite common in Haskell, and
you should eventually become familiar with the various kinds of patterns
that are allowed; see Appendix B for a concise summary.

This is called a recursive function definition because listSum “refers to
itself” on the right-hand side of the second equation. Recursion is a very
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arbitrary amount of memory to represent it - even an infinite amount!
Clearly, for example, we cannot represent an irrational number such as
m exactly; the best we can do is approximate it, or possibly write a pro-
gram that computes it to whatever (finite) precision we need in a given
application. But even integers (and therefore rational numbers) present
problems, because any given integer can be arbitrarily large.

Most programming languages do not deal with these problems very
well. In fact, most programming languages do not have exact forms of
any of these number systems. Haskell does slightly better than most, in
that it has exact forms of integers (the type Integer) as well as rational
numbers (the type Rational, defined in the Ratio Library). But in Haskell
and most other languages, there is no exact form of real numbers, for
example, which are instead approximated by floating-point numbers with
either single-word precision (Fleat in Haskell) or double-word precision
(Double). What's worse, the behavior of arithmetic operations on floating-
point numbers can vary somewhat depending on the CPU being used, al-
though hardware standardization in recent years has lessened the degree
of this problem.

The bottom line is that, as simple as numbers seem, great care must be
taken when programming with them. Many computer errors, some quite
serious and renowned, have been rooted in numerical incongruities. The
field of mathematics known as numerical analysis is concerned precisely
with these problems, and programming with floating-point numbers in
sophisticated applications often requires a good understanding of nu-
merical analysis to devise proper algorithms and write correct programs.

As a simple example of this problem, consider the distributive law,
expressed here as a calculation in Haskell and used earlier in this chapter
in calculations involving the function simple:

ax(b+c) = axb+axc

For most floating-point numbers, this law is perfectly valid. For
example, in the Hugs implementation of Haskell, the expressions
pi % (3.52 + 4.75) and pi * 3.52 + pi % 4.75 both yield the same result:
25.981. But funny things can happen when the magnitude of b + ¢ dif-
fers significantly from the magnitude of either b or c. For example, the
following two calculations are from Hugs:

5 % (=0.123456 + 0.123457) = 4.99189e - 006
5 % (—0.123456) + 5 * (0.123457) = 5.00679e - 006

Although the error here is small, its very existence is worrisome, and
in certain situations it could be disastrous. The nature of floating-point
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numbers will not be discussed much further in this text, but just remem-
ber that they are approximations to the real numbers. If real-number ac-
curacy is important to yvour application, further study of the nature of
floating-point numbers is probably warranted.

On the other hand, the distributive law (and many others) is valid in
Haskell for the exact data types Integer and Ratio Integer (i.e., rational
numbers). However, another problem arises: Although the representation
of an Integer in Haskell is not normally something that we are concerned
about, it should be clear that the representation must be allowed to grow
to an arbitrary size. For example, Haskell has no problem with the fol-
lowing number:

veryBigNumber : Integer
veryBigNumber = 43208345720348593219876512372134059

and such numbers can be added, multiplied, etc., without any loss of
accuracy. However, such numbers cannot fit into a single word of com-
puter memory, most of which are limited to 32 bits. Worse, because the
computer system does not know ahead of time exactly how many words
will be required, it must devise a dynamic scheme to allow just the right
number of words to be used in each case. The overhead of implementing
this idea unfortunately causes programs to run slower.

For this reason, Haskell provides another integer data type called Int,
which has maximum and minimum values that depend on the word size
of the CPU. In other words, every value of type Int fits into one word
of memory, and the primitive machine instructions for integers can be
used to manipulate them very efficiently.® Unfortunately, this means that
overflow or underflow errors could occur when an Int value exceeds either
the maximum or minumum values. However, most implementations of
Haskell (as well as most other languages) do not even tell you when this
happens. For example, in Hugs, the following Int value:

i Int
i =1234567890

works just fine, but if you multiply it by 2, Hugs returns the value
—1825831516! This is because twice i exceeds the maximum allowed

8 The Haskell Report requires that every implementation support Ints in the
range -229 to 22% - 1, inclusive. The Hugs implementation running on a Pentium
processor, for example, supports the range -23! to 231 - 1.
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value, so the resulting bits become nonsensical® and are interpreted in
this case as a negative number of the given magnitude.

This is alarming! Indeed, why should anyone ever use Int when Integer
is available? The answer, as mentioned earlier, is efficiency, but clearly,
care should be taken when making this choice. If you are indexing into a
list, for example, and you are confident that you are not performing index
calculations that might result in the above kind of error, then Int should
work just fine, because a list longer than 23! will not fit into memory
anyway! But if you are calculating the number of microseconds in some
large time interval or counting the number of people living on earth, then
Integer would most likely be a better choice. Choose your number data
types wisely!

In this text the data types Integer, Int, Float, and Rational will be
used for a variety of different applications; for a discussion of the other
number types, consult the Haskell Report. As 1 use these data types, I will
do so without much discussion; this is not, after all, a book on numerical
analysis. But I will issue a warning whenever reasoning about numbers in
a way that might not be technically sound.

9 Actually, they are perfectly sensible in the following way: The 32-bit bi-
nary representation of i is 01001001100101100000001011010010, and twice
that is 10010011001011000000010110100100. But the latter number is seen
as negative because the 32nd bit (the highest-order bit on the CPU on
which this was run) is a one, which means it is a negative number in
“twos-complement” representation. The twos-complement of this number is in
mrn 01101100110100111111101001011100, whose decimal representation is
1825831516.
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A Module of Shapes: Part |

In the previous chapter you learned quite a few techniques for problem
solving via calculation in Haskell. [t's time now to apply these ideas to
a larger example, which will require learning even more problem-solving
skills and Haskell language features.

Our job will be to design a simple module of geometric shapes, that
is, a collection of functions and data types for computing with geometric
shapes such as circles, squares, triangles, and others. Users of this mod-
ule will be able to create new instances of geometric shapes and compute
their areas. You will learn lots of new things in building this module, in-
cluding how to design vour own data types. Then in Chapter 4 we will
extend this functionality with the ability to draw geometric shapes, and
in Chapter 6 compute their perimeters.

In the description above I refer to the end product as a module,
through which a user has access to certain well-defined functionalities.
A module can be seen as a way to conveniently wrap up an application
in such a way that only the functionality intended for the end-user is
visible; everything else needed to implement the system is effectively
hidden.

In Haskell we can create a module named Shape in the following way:

module Shape (- - -) where

..body-of-module...

The “(- - -)" after the name Shape will ultimately be a list of names of
the functions and data types that the end-user is intended to use, and is
sometimes called the interface to a module. At the end of this chapter
we will fill in the details of the interface once we know what they should
be. The ...body-of-modiile... is of course where we will place all the code
developed in this chapter.

E21 1m
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DETAILS
Maodule names must always be capitalized (just like type names).

2.1

A user of our shape module can later import it into a module that he or
she is constructing, by writing:

import Shape

Indeed, we will do exactly this in later chapters where new modules will
be created in which users will be able to draw shapes, compute their
perimeters, combine them into larger “regions,” color them, scale them,
and place them on a “virtual desktop." This desktop will be displayed on
your computer screen, and will be designed in such a way that regions
will rise to the surface of the desktop when they are clicked, just like
windows do in a windows-based user-interface.

Geometric Shapes

Our first job will be to design a single data type to represent all of the
possible geometric shapes of interest to us. Aside from the fact that this
is intuitively appealing, there are several pragmatic reasons for doing so.
For example, in Section 1.4.2 we saw a function for computing the area
of a circle, and later a function for computing the area of a square. If
we were to define functions for computing the areas of, say, n different
shapes, we would end up with n functions, each with a different name.
Similarly, we would have n functions for drawing shapes and n functions
for computing their perimeters. In contrast, if we had a single data type
that captured all of the geometric shapes, we could (hopefully) define a
single function for each of these tasks.

In Haskell, new data types such as this are defined using a data dec-
laration:

data Shape = Circle Float
| Square Float

This declaration can be read: “There are two kinds of Shapes: a circle
of the form Circle r where r is a radius of type Float, and a square of
the form Sguare s where s is the length (also of type Float) of one side.”
Because Circle and Square construct new values in this data type, they
are called constructors.
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But, you might point out, with the Polygon constructor we can create
polygons with an arbitrary number of sides, each with an arbitrary length,
so why include the special cases of rectangle and right triangle? In other
words, why not just define functions rectangle and rtTriangle in terms
of Polygon? Good question! One answer, as mentioned earlier, is in the
interest of pedagogy: I am trying to illustrate a variety of programming
techniques. Another answer is that the algorithms for computing the ar-
eas of rectangles and right triangles are simpler than the algorithm for
computing the area of a general polygon. A final answer is that there may
be lower-level graphics commands, say, that are more efficient at draw-
ing rectangles and/or right triangles than general polygons. In any case,
let's proceed with our design and investigate its consequences later.

Exercise 2.1 Define functions rectangle and rtTriangle in terms of
Polygon.

Exercise 2.2 Define a function regularPolygon :: Int — Side— Shape
such that regularPolygon n s is a regular polygon with n sides, each of
length s. (Hint: Consider using some of Haskell's trigonometric functions,
such as sin :: Float — Float, cos :: Float—Float, and tan :: Float — Float.)

Areas of Shapes

Returning to the problem in Section 1.4.2 of computing areas, we will
define a function:

area  Shape — Float

by defining its behavior on each of the Shape constructors. We know how
to do this for a rectangle:

area (Rectangle s1 s2) = sl % s2

And the area of a right triangle is just as easy:

area (RtTriangle s1 s2) = sl * 5§2/2

Before proceeding, note that this way of writing function definitions -
by pattern matching on the arguments - is just like the way we defined
the function listSum in Section 1.4.3. There, listSum was defined by its
behavior on the two constructors in the list data types, [ ] and (:). In
the case of the Shape data type, we happen to have four constructors to
consider instead of two.
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Figure 2.1. Computing the Area of a Convex Polygon

Moving on, a standard geometry text tells us that the area of an ellipse
with radii r, and r; is just 7rr; r2. It is easy to see that this reduces to mr?
for a circle. Translated into Haskell, this becomes:

area (Ellipse r1 r2) = pi*rl xr2

What about the area of a general polygon? If the polygon is convex
(meaning that all of its interior angles are less than 180°), its area can be
computed fairly simply as follows (the case of concave polygons will be
an exercise):

1. Compute the area of the triangle formed by the first three vertices of
the polygon.

2. Delete the second vertex, forming a new polygon.

3. If there are at least three vertices in the new polygon, repeat this proce-
dure, returning as the total area the sum of the areas of the individual

triangles.

The intuition for this algorithm is shown pictorially in Fig. 2.1; it is
another example of solving a problem by solving a smaller problem first,
which at least slightly reduces the size of the larger one.

Although we haven't yet decided how to compute the area of a general
triangle, we can write out the above algorithm in Haskell as follows:

area (Polygon (v1:v2:v3:vs))

= triArea v1 v2 v3 + area (Polygon (v1 : v3 : vs))
area (Polygon _)

=0

DETAILS
The first line above is an example of a nested pattern; that is, the pattern
(vl :v2:v3: vs) is nested within the pattern Polygon ... .
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The second equation uses an “underscore” character “_" as a pattern.
This is called a wildcard pattern, and matches any argument. When more
than one equation is used to define a function, Haskell will try them in the
order that they appear. So in the case of area, an attempt is first made to
match a list containing at least three elements. If that fails, then the sec-
ond equation is tried, which of course succeeds immediately, yielding the
value 0.

This version of the algorithm has a more “declarative” feel than the
description given earlier and can be read: “The area of a (convex) polygon
is the area of the triangle formed by its first three vertices, plus the area
of the polygon resulting from deleting the second vertex.” In general, we
will try to write declarative definitions such as this directly.

However, note in the recursive call to area that the polygon is “recon-
structed” using the Polygon constructor; so the polygon is taken apart
and then put back together, so to speak, on each recursive call. Also
note that the first vertex never disappears,; it is always part of the recon-
struction. We can avoid these slight inefficiencies by defining an auxiliary
function polyArea that computes the area directly from a list of vertices,
as follows:

area (Polygon (v1:vs)) = polyArea vs
where polyArea ¢ [Vertex] — Float
polyArea (v2:v3:vs') triArea v1 v2 v3
+polyArea (v3 :vs')
polyArea _ =0

DETAILS

Note the use of a where expression. For the most part you can consider
exp where ...equations... to be equivalent to let ...equations... in exp. The
only difference is that a where expression is only allowed at the top level of
a function definition, where its visibility rules are slightly different (see the
Haskell Report for details).

What about triArea? Fortunately, there is a single formula for the
area of an arbitrary triangle with sides of lengths a, b, and ¢, due to
Heron:

A = Js(s—als-Db)(s-c) wheres=3}(@+b+c)
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or, in Haskell:

triArea . Vertex — Vertex — Vertex — Float
triArea vl v2v3 = leta = distBetween v1 v2

b = distBetween v2 v3

¢ = distBetween v3 vl

s 05%(a+b+c)

insqrt (sx (s—a) % (s—b) *(s—c))

Copyrighted material
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of equations. Thus, we can begin the equations on the same line as the
keyword, the next line, or whatever.

Be sure that the starting column is further to the right than the starting
column associated with any immediately surrounding clause (otherwise
it would be ambiguous). The “termination” of an equation happens when
something appears at or to the left of the starting column associated with
that equation.

Here distBetween computes the difference between two vertices - that is,
the length of each side of the triangle - and is defined by:

distBetween : Vertex — Vertex — Float
distBetween (x1, y1) (x2, y2)
= sgrt ((x1 —x2)"2 + (vl —y2)"2)

This definition is easy to see as an application of Pythagorean's theorem,
as shown graphically in Fig. 2.2.

In summary, by collecting the four equations for area, we see that we
have covered each of the constructors in the Shape data type:

area : Shape — Float
area (Rectangle s1 s2) = sl % 52
area (RtTriangle s1 s2) = s1 % 52/2

area (Ellipse r1 r2) = pixrlxr2
area (Polygon (v1 : vs)) polvArea vs

where polyArea i [Vertex] — Float
polyArea (v2:v3:vs') triArea v1 v2 v3
+polyArea (v3 : vs')

polyArea = 0
¥ b
v‘rxrx-; Hy ¥
¥2 | M
X; Xa

Figure 2.2, Computing the Distance between Two Vertices
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Simplifying a to s; and c to s, yields:

VS(s = 51)(s = b)(s - 52) (2.1)

where b = \/sf + 53 and s = 3(51 + b + 5).
We can simplify this further in two steps. First note:

s(s—b) = -’3{.':. +b+sz}(%(s; - b+s5))
=is+s2+b)(si+5—-b) = {((s + )2 - b?)
= 1((s1 + 8202 = (5 + 83)) = 1(s} + 2515 + 85 — (s + 53))

1. 1
= ;(25182) = 3818
And further note:

(s = s1)(s = $2) = 3(b =51+ ) (5(b+ 51 - 5))
= (B2 = (5 - 8)%) = 1((s] + 82) — (51 = $2))
= 1((s} + 88) = (sf — 2518, + §2))

= %S!SE

Combining these and continuing from point (1), we get:

V(s —s1) (s — b)(s - s2)
- \.'I{%SlSzl(%Slsz}
= 58182

This last formula is just the area of a right triangle with sides 5, and
§2. If you compare this mathematical proof with the corresponding proof
by calculation in Haskell, you will find that they are almost identical, ex-
cept for the notation used. So reasoning in Haskell is very often quite the
same as reasoning in mathematics. Because we often use mathematics
to specify the correct behavior of our programs, a proof by calculation
in Haskell is a proof both about the implementation and about the spec-
ification. This is why Haskell is sometimes referred to as an “executable
specification language.”

Unfortunately, as discussed in Section 1.6, care must be taken when
performing this kind of reasoning with floating-point numbers. As is of-
ten the case, numbers that do not approach the limits of floating-point
precision work perfectly well:

area (RtTriangle 3.652 5.126) = 9.36008
area (Polygon [(0, 0), (3.652, 0), (0, 5.126)]) = 9.36008
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whereas ones that do can yield inconsistent results:

area (RtTriangle 0.0001 5.126) = 0.0002563
area (Polygon [ (0, 0), (0.0001, 0), (0, 5.126)]) = 0.000256648

Exercise 2.3 Prove the following property:
area (Rectangle s1 s2)
= area (Polygon [(0, 0), (s1, 0), (51, 52), (0, 52)])

Exercise 2.4 Define a function convex :: Shape — Bool that determines
whether or not its argument is a convex shape (although we are mainly
interested in the convexity of polygons, you might as well define it for
each kind of shape).

Exercise 2.5 Hereis an alternative way to compute the area of a polygon.
Consider a polygon in quadrant 1 of the Cartesian plane (i.e., every vertex
has positive x and y coordinates). Then every pair of adjacent vertices
forms a trapeziod with respect to the x-axis. Starting at any vertex and
working clockwise, compute these areas one-by-one, counting the area
as positive if the x-coordinate increases, and negative if it decreases. The
sum of these areas is then the area of the polygon.

It is easy to see that this algorithm is correct for a convex polygon
by just looking at an example, as in Fig. 2.3. But the real beauty in this
algorithm is that it works for concave polygons as well (see figure), and
for a polygon located anywhere in the Cartesian plane. It is also more
efficient than our previous algorithm. (Why?)

Write a Haskell function to compute polygonal areas in this way.

(Note: Polygons can not only be convex or concave, but also self
crossing. Consider, for example, the four-vertex polygon that outlines a
“bowtie,” or the five-vertex polygon that outlines a five-pointed star. What
is the proper notion of area in this case, and do any of the algorithms dis-
cussed here compute it properly?)

ABC DE A BCDE

areal = AFGB + BGHD + DHIE - CJIE - AFJC
arcad = AFGB + BGHE - CIHE + C1JD - AFJD

Figure 2.3. Using Trapezoids to Compute Area of Polygon
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2.3 Cleaning Up

Recall the discussion at the beginning of this chapter about modules and
the desire to make visible only those named values that are of interest to
the user of a module, thereby hiding irrelevant details of the implemen-
tation. We can now fill in the module declaration details to achieve this
effect:

module Shape (Shape (Rectangle, Ellipse, RtTriangle, Polygon),
Radius, Side, Vertex,
square, circle, distBetween, area
) where

The list of names above are those entities that are intended to be visible,
or exported, from the module. These names come in three flavors:

1. Data types (in this case the data type Shape) that are listed with their
constructors in parentheses.

DETAILS

A data type and its list of constructors may be abbreviated by just listing the
name of the data type followed by (...). For example, the entire Shape data
type may be exported using the form Shape (...). There are many other rules
concerning the import and export of entities to and from modules. Some of
these rules will be used later in the text, but you should consult the Haskell
Report for all of the details.

2. Type synonyms (Radius, Side, and Vertex).
3. Ordinary values (in this case the functions square, circle, distBetween,
and area).

So, for example, the function triArea is not exported from the Shape mod-
ule, and thus is not available for use by someone importing the module.

DETAILS
It is sometimes desirable to export everything from a module. A shorthand
way to express this is to simply write:

module Shape where

(i.e., omitting the list of exports is equivalent to exporting everything).



CHAPTER THREE

Simple Graphics

In this chapter simple graphics programming in Haskell will be explained.
Graphics in Haskell is consistent with the notion of computation via cal-
culation, although it is special enough to warrant the use of special ter-
minology and notation. In the next chapter we will use the techniques
learned here to draw in a graphics window the geometric shapes defined
in the last chapter. The ideas developed in this chapter will be put into a
module called SimpleGraphics:

module SimpleGraphics where

There are many predefined functions and data types in Haskell, so
many, in fact, that they demand some organization. Entities that are
deemed essential to defining the fundamental nature of Haskell are con-
tained in what is called the Standard Prelude, a collection of modules
defining various categories of functionality. Entities that are deemed use-
ful but not essential are contained in one of several Standard Libraries,
also a collection of modules, The entire Standard Prelude is automati-
cally imported into every program that you write, whereas the Standard
Libraries need to be imported module-by-module.

Unfortunately, there is no standard graphics library for Haskell yet, al-
though there is one in popular use on Windows machines called Graphics.
The basic graphics functionality that we will use is defined in a library
called SOEGraphics, which is very similar to Graphics but is guaranteed
to work with this textbook, whereas the Graphics library may evolve over
time. To use SOEGraphics, it must be imported into the module that is
using it, as follows:

import SOEGraphics

Graphics is a special case of input/output (10) processing in Haskell,
and thus I will begin with a discussion of this more general idea.

E35 =
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3.1 Basic Input/Output

The Haskell Report defines the result of a program as the value of the
name main in the module Main. On the other hand, the Hugs implemen-
tation of Haskell allows you to type whatever expression you wish to the
Hugs prompt, and it will evaluate it for you. But in either case, the Haskell
system “executes a program” by evaluating an expression, which (for a
well-behaved program) eventually vields a value. The system must then
display that value on your computer screen in some way that makes sense
to you. Most systems will try to display the result in the same way that
you would type it in as part of a program. So an integer is printed as an
integer, a string as a string, a list as a list, and so on. I will refer to the
area of the computer screen where this result is printed as the standard
output area, which may vary from one implementation to another.

But what if a program is intended to write to a file or print a file on
a printer or, the main topic of this chapter, draw a picture in a graphics
window? These are examples of output, and there are related questions
about input. For example, how does a program receive input from a key-
board or a mouse?

In general, how does Haskell's “expression-oriented” notion of “com-
putation by calculation” accommodate these various kinds of input and
output?

The answer is fairly simple: In Haskell, there is a special kind of value
called an action. When a Haskell system evaluates an expression that
yields an action, it knows not to try to display the result in the stan-
dard output area, but rather to “take the appropriate action.” There are
primitive actions - such as writing a single character to a file or receiving
a single character from the keyboard - as well as compound actions -
such as printing an entire string to a file. Haskell expressions that eval-
uate to actions are commonly called commands, because they command
the Haskell system to perform some kind of action. Haskell functions that
vield actions when they are applied are also commonly called commands.

Commands are still just expressions, of course, and some commands
return a value for subsequent use by the program: keyboard input, for
instance. A command that returns a value of type T has type 10 T; if
no useful value is returned the command has type IO (). The simplest
example of a command is return x, which for a value x :: T immediately
returns x and has type IO T.

DETAILS
The type () is called the wnit type, and has exactly one value, which is
also written (). Thus return () has type IO (), and is often called a “noop”
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However, a list of actions is just a list of values; they actually don't do
anything until they are sequenced appropriately using a do expression,
and then returned as the value main of the overall program. Stll, it is
often convenient to place actions into a list as above, and the Haskell
Report and Libraries have some useful functions for turning them into
commands. In particular, the function sequence. in the Standard Prelude,
when used with IO, has type:

sequence. = [I0 a] — 10 ()

and can thus be applied to the actionList above to yield the single com-
mand:

main = sequence. actionList

Before I give you a more interesting example of this idea, I will tell
you a secret (more secrets will be revealed later in the text):

DETAILS
Haskell's strings are really lists of characters. In other words, String is a
shorthand - a type synonym - for a list of characters:

type String = [Char]

However, because strings are used so often, Haskell allows you to write
“Hello" instead of ['H", "e’, 'I', 'I', "0’]. But keep in mind that this is just
syntax — strings really are just lists of characters, and these two ways of
writing this string are identical from Haskell's perspective.

(Earlier the type synonym FilePath was defined for String. This shows
that type synonyms can be made for other type synonyms.)

Now back to the example. From the function putChar :: Char — 10 (),
which prints a single character to the standard output area, we can define
the function putStr used earlier, which prints an entire string. To do this,
let’s first define a function that converts a list of characters (i.e., a string)
into a list of IO actions:

putCharList = String — [10 ()]
putCharList [ ] []
putCharList (c: cs) putChar c : putCharlList cs

With this, putStr is easily defined:

putStr = String — 10 ()
putStr s = sequence. (putCharList s)
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3.2

Note that the expression putCharList s is a list of actions, and sequence_
is used to turn them into a single (compound) command, just as we did
earlier. (The function putStr can also be defined directly as a recursive
function, but I leave this as an exercise.)

I0 processing in Haskell is consistent with everything you have
learned about programming with expressions and reasoning through cal-
culation, although that may not be completely obvious yet. Indeed, it
turns out that a do expression is just syntax for a more primitive way of
combining actions using functions. This secret will be revealed in full in
Chapter 18.

Graphics Windows

Let’s now look at the particulars of graphics 10. Graphics commands are
no different in concept from those discussed earlier. However, there is
no “standard graphics area” on which to draw things. Instead, we must
create a fresh graphics window. Furthermore, because we may wish to
create several such windows, we need a way to distinguish them once
they are created, in order to specify in which window to draw at some
particular point in a program. Haskell accomplishes this by returning a
unique value of type Window at the time we create a window,

To see this concretely, let's look at the type of the openWindow com-
mand that (vou guessed it) opens a window:

openWindow : Title — Size — 10 Window
type Title String
type Size (Int, Int)

The Title is a string displayed in the title bar of the new graphics
window, and Size represents the size of the window as a pair of num-
bers indicating the width and height in pixel coordinates. A pixel is the
smallest dot that can be displayed on a computer screen; usually 100
or so pixels can be lined up along one inch. The Window that returns
from a call to openWindow is used in subsequent graphics commands
to tell the computer within which window to perform its action. In other
words, every call to openWindow creates a new, unique window, and the
Window value provides a way to distinguish between them in the rest of
the program.

Let’s write our first graphics program:

main(0
= runGraphics (
do w — openWindow
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“My First Graphics Program” (300, 300)
drawinWindow w (text (100, 200) “He11o GraphicsWorld")
k — getKey w
closeWindow w
)

It's not hard to guess what this program does: A 300 x 300-pixel gra-
phics window is opened, a greeting message is displayed in it, and the
window remains open until the user types a character on the keyboard.
The following five new functions are introduced by this example:

m runGraphics : 10 () — IO () runs a graphics “action.” This is needed
because of special operating system tasks that need to be set up to
perform graphics I10.

m drawInWindow :: Window — Graphic — 10 () draws a given Graphic
value on a given Window.

m text :: Point — String — Graphic creates a Graphic value consisting
of a String whose lower left-hand corner is at the location specified
by the Point argument, in pixel coodinates:

type Point = (Int, Int)

m getKey :: Window — IO () waits for the user to press (and release) a
key on the keyboard. In the above example getKey is used to prevent
the window from closing before the user has a chance to read what's
on the screen.

B closeWindow :: Window — IO () closes the specified window.

You should know enough about 10 at this point that these descrip-
tions are sufficient to fully understand the sample program given above,
except for one other detail: (0, 0) is the location of the upper left-hand
corner of the graphics window. As the x coordinate increases, the position
moves to the right, and as the y coordinate increases, the position moves
downward. Thus, in the above program, the bottom right-hand corner of
the graphics window is at coordinate (299, 299). I will have more to say
about this in the next chapter.

For convenience, [ will define the following command, which also
demonstrates how to write a loop using command sequencing:

spaceClose : Window — IO ()
spaceClose w
= do k — getKey w
if k ==" " then closeWindow w
else spaceClose w
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As a final example of the use of map, let's generate a list of eight
concentric circles:

conCircles = map circle [2.4, 2.1..0.3]

DETAILS

A list [a, b..c] is called an arithmetic sequence, and is special syntax for
the list [@,a+d, a+ 2 *d, ..., c] where d = b - a. Thus, [2.4, 2.1..0.3]
is shorthand for the list [2.4, 2.1, 1.8, 1.5, 1.2, 0.9, 0.6, 0.3].

We can pair each of these circles with a color:

coloredCircles =
zip [ Black, Blue, Green, Cyan, Red, Magenta, Yellow, White]
conCircles

DETAILS
The PreludeList function zip (see Chapter 23) takes two lists and returns a
list of the pairwise elements. For example:

zip [1,2,3][4,5,6] = [(1,4),(2,5),(3,6)]

It is defined as:
zip : (a=b—¢c)—[a]=[b]—|[c]
zip (@a:as) (b:bs) = (a, b):zip as bs
zZip._ =[]

(Recall that _is a wildcard pattern, which matches any argument.)

This list of color/circle pairs can then be drawn using drawShapes:

main
= runGraphics (
do w — openWindow "Bull’s Eye” (xWin, yWin)
drawShapes w coloredCircles
spaceClose w

)

Note that coloredCircles is ordered largest circle first; thus draw-
Shapes draws them in order of decreasing size (otherwise the larger cir-
cles would obscure the smaller ones!). A snapshot of main is shown in
Fig. 5.1.
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