B AS KELL
SCHOOL OF
,;_ MUSIC

PAUL HUDAK
DONYA QUICK

The Haskell School of Music

From Signals to Symphonies

PAUL HUDAK

DONYA QUICK
Stevens Institute of Technology

AMBRIDGE
NIVERSITY PRESS

CAMBRIDGE

UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi — 110025, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108416757
DOI: 10.1017/9781108241861

© Paul Hudak and Donya Quick 2018

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2018
Printed in the United States of America by Sheridan Books, Inc.
A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Hudak, Paul, author. | Quick, Donya, author.
Title: The Haskell school of music : from signals to symphonies / Paul Hudak, Donya Quick.
Description: Cambridge, United Kingdom ; New York, NY :

Cambridge University Press, 2018. | Includes bibliographical references and index.
Identifiers: LCCN 2018016879 | ISBN 9781108416757 (hardback : alk. paper)
Subjects: LCSH: Haskell (Computer program language) | Computer music—Instruction
and study. | Functional programming (Computer science)

Classification: LCC ML74.4.H37 H84 2018 | DDC 781.3/45133—dc23
LC record available at https:/lcen.loc.gov/2018016879

ISBN 978-1-108-41675-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

Contents

Preface
Acknowledgments

Computer Music, Euterpea, and Haskell

The Note versus Signal Dichotomy
Basic Principles of Programming
Computation by Calculation

Expressions and Values

Types

Function Types and Type Signatures
Abstraction, Abstraction, Abstraction
Haskell Equality versus Musical Equality
Code Reuse and Modularity

[Advanced] Programming with Numbers

Simple Music
Preliminari

Notes, Music, and Polymorphism
Convenient Auxiliary Functions
Absolute Pitches

Polymorphic and Higher-Order Functions

Polymorphic Types

Append

Fold

[Advanced] A Final Example: Reverse
Currying

Errors

Q

Q
Lo
>
—

SHREBERE SRRBNE BRERREE vk mrwb -~ B

<
-

FERE®

B

o
o b |—

SEERERET BOEY

zzee

JEBEEREY 2R

o o
s

Contents

E

Transcribing an Existing Score

E

Transcribing a More Complex Score

Simple Algorithmic Composition

Syntactic Magic
Sections

Anonymous Functions
List Comprehensions
Function Composition
Higher-Order Thinking
Infix Function Application

E

Delay and Repeat

Inversion and Retrograde
Computing Duration
Super-Retrograde

cul and remove

Removing Zeros

Truncating Parallel Composition
Trills

Percussion

A Map for Music
A Fold for Music

Complex Rhythms
Crazy Recursion

Qualified Types and Type Classes

Motivation

Equality

Defining Our Own Type Classes
Haskell’s Standard Type Classes

E

The Type of play
Reasoning with Type Classes

i

An Introduction to MIDI

SEEREEEERRRRRRE B2RSNER R2RDR

=
=

H
-
=

et
=
=)

—
-
o0

i RREEI

12

i

=B DESE™ EF

—

—
=
(3}

[

CEEF

13.2
13.3

14

14.1
14.2
4.3

15

15.1
152
153
154

Contents

MIDI Streams
Euterpea’s Playback Framework

Interpretation and Performance

Abstract Performance

Players
Putting It All Together

Self-Similar Music
Self-Similar Melody
Self-Similar Harmony

her Self-Similar Str res

Proof by Induction

Inducti IR ;

Examples of List Induction

Proving Function Equivalences

Useful Properties on Lists

Induction on the Music Data Type
[Advanced] Induction on Other Data Types

An Algebra of Music
Musical Equivalence
Some Simple Axioms
Other Musical Properties

L-Systems and Generative Grammars
A Simple Implementation

A More General Implementation

An L-System Grammar for Music

Random Numbers, Probability Distributions, and

Markov Chains
Random Numbers
Probability Distributions
Markov Chains

Basic Input/Output

10 in Haskell

do Syntax
Actions Are Just Values
Reading and Writing MIDI Files

vii

EEERE BB

,_.
N
%)

=
oo

—t
n
(o]

.._.
[

BEEERE

17

a6 B

17

=
oo
[SS) ~

— —_
% B
~] =

189

193
193

EEREE BR

viil

S~ PREEBER

17.1
17.2
17.3

S AIFEF

Contents

Higher-Order Types and Monads
The Functor Class

The Monad Class

The MonadPlus Class

State Monads

Type Class Type Errors

Musical User Interfaces
Introduction

Basic Concepts

The UISF Arrow

Non-Widget Signal Functions
Musical Examples

Special Purpose and Custom Widgets
Advanced Topics

Sound and Signals
The Nature of n

Digital Audio

Euterpea’s Signal Functions
The Type of Audio Signals
Generating Sound

Clipping

Instruments

Spectrum Analysis
Fourier’s Theorem

The Fast Fourier Transform
Further Pragmatics

Additive and Subtractive Synthesis
Additive Synthesis
Subtractive Synthesis

Amplitude and Frequency Modulation

Amplitude Modulation
Frequency Modulation

Examples

Physical Modeling
Introduction

23.2 Delay Lines

Contents

23.3 Karplus-Strong Algorithm
23.4 Waveguide Synthesis

Appendix A
Appendix B

Appendix C

The Preludel ist Module
Haskell’s Standard Type Classes
Built-In Types Are Not Special

Appendix D Pattern-Matching Details
Appendix E Haskell Quick Reference
Appendix F Euterpea Quick Reference
Appendix G HSoM Quick Reference
Bibliography

Index

X

340

355

5 B

370

E RS

Copyrighted material

Preface Xiii

musical experience (such as having taken a music appreciation course in school
or played an instrument at some point) who want to then explore music in the
context of a functional programming environment. Examples of musical con-
cepts that are considered prerequisites to this text are reading Western music
notation, the naming scheme for musical pitches as letters and octave numbers,
and the major and minor scales. That said, it is certainly not impossible to learn
Haskell and the Euterpea library from this book as a complete musical novice —
but you will likely need to consult other music-related resources to fill in the
gaps as you go along using a dictionary of musical terms. A wide array of
free music theory resources and tutorials for beginners are also freely available
online. Links to some useful music references and tutorials can be found on
the Euterpea website, www.euterpea.com.

Music Terminology

Some musical concepts have more than one term to refer to them, and which
synonym is preferred differs by region. For example, the following terms are
synonyms for note durations:

American English British English
Double whole note ~ Breve

Whole note Semibreve
Half note Minim
Quarter note Crotchet
Eight note Quaver
Sixteenth note Semiquaver

This book uses the American English versions of these musical terms. The
reason for this is that they more closely mirror the mathematical relationships
represented by the concepts they refer to, and they are also the basis for names
of a number of values used in the software this text describes. The American
English standard for naming note durations is both more common in computer
music literature and easier to remember for those with limited musical
experience — who may struggle to remember what a hemidemisemiquaver is.

Software

There are several implementations of Haskell, all available free on the Internet
through the Haskell website, haskell.org. However, the one that has dominated
all others, and on which Euterpea is based, is GHC [1], an easy-to-use and
easy-to-install Haskell compiler and interpreter. GHC runs on a variety of

Xiv Preface

platforms, including Windows, Linux, and Mac. The preferred way to install
GHC is using Haskell Platform [2]. Once Haskell is installed, you will have
access to what is referred to as the Standard Prelude, a collection of predefined
definitions that are always available and do not need to be specially imported.

Two libraries are needed to code along with this textbook: Euterpea and
HSoM. Euterpea is a language for representing musical structures in Haskell,
and many of its features are covered in this book. HSoM is a supplemental
library containing many of the longer code examples in the text and two
additional features: support for modeling musical performance (Chapter 9) and
music-related graphical widgets (Chapter 17).

Detailed setup information for Haskell Platform, Euterpea, and HSoM is
available on the Euterpea website: www.euterpea.com. Please note: software
setup details for Haskell Platform and the Euterpea library varies by archi-
tecture (32-bit vs 64-bit), operating system, and compiler version. As the
exact setup details are subject to change with every new release of Euterpea’s
dependencies, please see www.euterpea.com for the most up-to-date instal-
lation instructions. While most installations go smoothly with the relatively
simple instructions described in the next section, there are many potential
differences from one machine to another that can complicate the process.
The Euterpea website also contains troubleshooting information for commonly
encountered installation problems.

Installation Instructions
The following setup instructions require an Internet connection.

« Download the appropriate version of Haskell Platform from
www.haskell.org/platform/ and install it on your machine,

« Open a command prompt (Windows) or terminal (Mac/Linux) and run the
following commands:
cabal update
cabal install Euterpea
cabal install HSoM

« Mac and Linux users will also need to install a MIDI software synthesizer.
Please see the Euterpea website for instructions on how to do this.

The Euterpea website also contains basic walkthroughs for getting started
working with the GHC compiler and interpreter within a command prompt or
terminal, loading source code files, and so on.

Preface XV

Quick References

Brief references for the more commonly used features of Haskell, Euterpea,
and HSoM are listed in Appendices E, F, and G. These are intended to serve as
a fast way to look up function and value names when you already know a bit
about how to use them. A note to students: these few pages of ultra-condensed
material are not a substitute for reading the chapters!

Coding and Debugging

Errors are an inevitable part of coding. The best way to minimize the number
of errors you have to solve is to code a little bit and then immediately test
what you’ve done. If it’s broken, don’t wait — fix it then and there! Never press
onward and try to work on other things within a file that is broken elsewhere.
The reason for this is that one simple error can end up masking others. When
the compiler hits a serious problem, it may not even look at the rest of your file.
As a result, continuing to code without resolving error messages often results
in an explosion of new errors once the original one is fixed. You will save
yourself a lot of grief by developing good habits of incremental development
and not allowing errors to linger unsolved.

Coding style is also important. There are two reasons for this in Haskell.
The first is that Haskell is extremely sensitive to white space characters. Do
not mix spaces and tabs! Pick one and be consistent (spaces are typically
recommended). Indentation matters, and a small misalignment can sometimes
cause bizarre-looking error messages. Style is important, as is readability,
both by other programmers and by yourself at a later date. Many novice
programmers neglect good coding hygiene, which involves naming things
well, laying out code cleanly, and documenting complicated parts of the code.
This extra work may be tedious, but it is worthwhile. Coding large projects
is often very much dependent on the immediate state of mind. Without that
frame of reference, it’s not impossible that you could find your own code to be
impenetrable if you pick it up again later.

Acknowledgments

I wish to thank my funding agencies — the National Science Foundation,
the Defense Advanced Research Projects Agency, and Microsoft Research —
for their generous support of research that contributed to the foundations
of Euterpea. Yale University has provided me a stimulating and flexible
environment to pursue my dreams for more than thirty years, and I am
especially thankful for its recent support of the Computing and the Arts
initiative.

Tom Makucevich, a talented computer music practitioner and composer in
New Haven, was the original motivator, and first user, of Haskore, which pre-
ceded Euterpea. Watching him toil endlessly with low-level csound programs
was simply too much for me to bear! Several undergraduate students at Yale
contributed to the original design and implementation of Haskore. I would like
to thank in particular the contributions of Syam Gadde and Bo Whong, who
coauthored the original paper on Haskore. Additionally, Matt Zamec helped
me greatly in the creation of HasSound.

I wish to thank my more recent graduate students, in particular Hai (Paul)
Liu, Eric Cheng, Donya Quick, and Daniel Winograd-Cort, for their help
in writing much of the code that constitutes the current Euterpea library.
In addition, many students in my computer music classes at Yale provided
valuable feedback through earlier drafts of the manuscript.

Finally, I wish to thank my wife, Cathy Van Dyke, my best friend and ardent
supporter, whose love, patience, and understanding have helped me get through
some bad times, and enjoy the good.

Happy Haskell Music Making!

Paul Hudak,
January 2012

Xvi

1
Computer Music, Euterpea, and Haskell

Many computer scientists and mathematicians have a serious interest in music,
and it seems that those with a strong affinity or acuity in one of these disciplines
is often strong in the other as well. It is quite natural then to consider how the
two might interact. In fact, there is a long history of interactions between music
and mathematics, dating back to the Greeks’ construction of musical scales
based on arithmetic relationships, and including many classical composers
use of mathematical structures, the formal harmonic analysis of music, and
many modern music composition techniques. Advanced music theory uses
ideas from diverse branches of mathematics such as number theory, abstract
algebra, topology, category theory, calculus, and so on.

There is also a long history of efforts to combine computers and music.
Most consumer electronics today are digital, as are most forms of audio
processing and recording. But, in addition, digital musical instruments provide
new modes of expression, notation software and sequencers have become stan-
dard tools for the working musician, and those with the most computer science
savvy use computers to explore new modes of composition, transformation,
performance, and analysis.

This textbook explores the fundamentals of computer music using a
programming-language-centric approach. In particular, the functional pro-
gramming language Haskell is used to express all of the computer music
concepts. Thus, a by-product of learning computer music concepts will be
learning how to program in Haskell. The core musical ideas are collected into a
Haskell library called Euterpea. The name “Euterpea” is derived from Euterpe,
who was one of the nine Greek muses, or goddesses of the arts, specifically the
muse of music.

4 1 Computer Music, Euterpea, and Haskell

say much about what the composer thought as he or she wrote the music,
but a program often does. So, when you write your programs, write them for
others to see and aim for elegance and beauty, just like the musical result that
you desire.

Programming is itself a creative process. Sometimes programming solu-
tions (or artistic creations) come to mind all at once, with little effort. More
often, however, they are discovered only after lots of hard work! We may write
a program, modify it, throw it away and start over, give up, start again, and so
on. It is important to realize that such hard work and reworking of programs is
the norm, and in fact you are encouraged to get into the habit of doing so. Do
not always be satisfied with your first solution, and always be prepared to go
back and change or even throw away those parts of your program that you are
not happy with.

1.3 Computation by Calculation

It is helpful when learning a new programming language to have a good
grasp of how programs in that language are executed — in other words, an
understanding of what a program means. The execution of Haskell programs
is perhaps best understood as computation by calculation. Programs in Haskell
can be viewed as functions whose input is that of the problem being solved,
and whose output is the desired result — and the behavior of functions can be
effectively understood as computation by calculation.

An example involving numbers might help demonstrate these ideas. Num-
bers are used in many applications, and computer music is no exception. For
example, integers might be used to represent pitch, and floating-point numbers
might be used to perform calculations involving frequency or amplitude.

Suppose we wish to perform an arithmetic calculation such as 3 x (9 + 5).
In Haskell this would be written as 3 * (9 + 5), since most standard computer
keyboards and text editors do not support the special x symbol. The result can
be calculated as follows:

3%x(9+5)
= 3x14
= 42

It turns out that this is not the only way to compute the result, as evidenced by

this alternative calculation:2

2 This assumes that multiplication distributes over addition in the number system being used, a
point that will be returned to later in the text.

1.3 Computation by Calculation 5

3x(9+5)
=3%x9+3x%5
= 274+3%5
=27+ 15

= 42

Even though this calculation takes two extra steps, it at least gives the
same, correct answer. Indeed, an important property of each and every program
written in Haskell is that it will always yield the same answer when given the
same inputs, regardless of the order chosen to perform the calculations.® This
is precisely the mathematical definition of a function: for the same inputs, it
always yields the same output.

On the other hand, the first calculation above required fewer steps than
the second, and thus it is said to be more efficient. Efficiency in both space
(amount of memory used) and time (number of steps executed) is important
when searching for solutions to problems. Of course, if the computation returns
the wrong answer, efficiency is a moot point. In general, it is best to search first
for an elegant (and correct!) solution to a problem, and later refine it for better
performance. This strategy is sometimes summarized as “Get it right first!”

The above calculations are fairly trivial, but much more sophisticated
computations will be introduced soon enough. For starters, and to introduce the
idea of a Haskell function, the arithmetic operations performed in the previous
example can be generalized by defining a function to perform them for any
numbers x, y, and z:

simplexyz=x%(y+2)

This equation defines simple as a function of three arguments, x, y, and z.
Note the use of spaces in this definition to separate the function name, simple,
from its arguments, x, y, and z. Unlike many other programming languages,
Haskell functions are defined by providing first the function name and then any
arguments, separated by spaces. More traditional notations for this function
would look like this:

simple(x,y,z) = x X (y+ 2)
simple(x,y,z) =x-(y+2)
simple(x,y,z) = x(y 4+ 2)
simple(x,y,z) = x* (y+2)

3 This is true as long as a non-terminating sequence of calculations is not chosen, another issue
that will be addressed later.

6 1 Computer Music, Euterpea, and Haskell

Incidentally, the last one is also acceptable Haskell syntax — but it is not
interchangeable with the previous Haskell definition. Writing simple x y z
actually means something very different from writing simple (x,y,z) in
Haskell. Usage of parentheses around Haskell function arguments indicates
a tuple — a concept that will be discussed in more detail later in the text.

In any case, it should be clear that “simple 3 9 57 is the same as “3%(9+5),”
and that the proper way to calculate the result is:

simple 39 5
=3xO+5)
= 3% 14
=42

The first step in this calculation is an example of unfolding a function
definition: 3 is substituted for x, 9 for y, and 5 for z on the right-hand side
of the definition of simple. This is an entirely mechanical process, not unlike
what the computer actually does to execute the program.

simple 3 9 5 is said to evaluate to 42. To express the fact that an expression
e evaluates (via zero, one, or possibly many more steps) to the value v, we
will write ¢ = v (this arrow is longer than that used earlier). So we can
say directly, for example, that simple 3 9 5 = 42, which should be read
“simple 3 9 5 evaluates to 42.”

With simple now suitably defined, we can repeat the sequence of arithmetic
calculations as often as we like, using different values for the arguments to
simple. For example, simple 4 3 2 = 20.

We can also use calculation to prove properties about programs. For
example, it should be clear that for any a, b, and ¢, simple a b ¢ should yield
the same result as simple a ¢ b. For a proof of this, we calculate symbolically —
that is, using the symbols a, b, and ¢ rather than concrete numbers such as
3,5, and 9:

simple a b ¢

=ax(b+c)
=ax(c+b)
= simple a c b

Note that the same notation is used for these symbolic steps as for concrete
ones. In particular, the arrow in the notation reflects the direction of formal
reasoning, and nothing more. In general, if e/ = ¢2, then it is also true that
e2 = el.

These symbolic steps are also referred to as “calculations,” even though the
computer will not typically perform them when executing a program (although

1.3 Computation by Calculation 7

it might perform them before a program is run if it thinks that it might make
the program run faster). The second step in the calculation above relies on the
commutativity of addition (for any numbers x and y, x +y = y + x). The
third step is the reverse of an unfold step, and is appropriately called a fold
calculation. It would be particularly strange if a computer performed this step
while executing a program, since it does not seem to be headed toward a final
answer. But for proving properties about programs, such “backward reasoning”
is quite important.

When we wish to spell out the justification for each step, whether symbolic
or concrete, a calculation can be annotated with more detail, as in:

simple a b ¢

= {unfold}
ax(b+c)

= {commutativity}
a*(c+b)

= {fold}

simple ac b

In most cases, however, this will not be necessary.

Proving properties of programs is another theme that will be repeated
often in this text. Computer music applications often have some kind of a
mathematical basis, and that mathematics must be reflected somewhere in our
programs. But how do we know if we got it right? Proof by calculation is one
way to connect the problem specification with the program solution.

More broadly speaking, as the world begins to rely more and more on
computers to accomplish not just ordinary tasks such as writing term papers,
sending e-mail, and social networking but also life-critical tasks such as
controlling medical procedures and guiding spacecraft, the correctness of
programs gains in importance. Proving complex properties of large, complex
programs is not easy — and rarely, if ever, done in practice — but that should
not deter us from proving simpler properties of the whole system, or complex
properties of parts of the system, since such proofs may uncover errors, and if
not, will at least give us confidence in our effort.

If you are someone who is already an experienced programmer, the idea
of computing everything by calculation may seem odd at best and naive at
worst. How do we write to a file, play a sound, draw a picture, or respond
to mouse-clicks? If you are wondering about these things, it is hoped that
you have patience reading the early chapters, and that you find delight in
reading the later chapters where the full power of this approach begins
to shine.

8 1 Computer Music, Euterpea, and Haskell

In many ways this first chapter is the most difficult, since it contains the
highest density of new concepts. If the reader has trouble with some of the
concepts in this overview chapter, keep in mind that most of them will be
revisited in later chapters, and do not hesitate to return to this chapter later to
reread difficult sections; they will likely be much easier to grasp at that time.

Details: In the remainder of this textbook the need will often arise to
explain some aspect of Haskell in more detail, without distracting too
much from the primary line of discourse. In those circumstances the
explanations will be offset in a shaded box such as this one, proceeded
with the word “Details.”

Exercise 1.1 Write out all of the steps in the calculation of the value of
simple (simple 23 4) 5 6.

Exercise 1.2 Prove by calculation that simple (a — b) a b = a®> — b”.

1.4 Expressions and Values

In Haskell, the entities on which calculations are performed are called expres-
sions, and the entities that result from a calculation — i.e., “the answers” — are
called values. It is helpful to think of a value just as an expression on which no
more calculation can be carried out — every value is an expression, but not the
other way around.

Examples of expressions include atomic (meaning indivisible) values such
as the integer 42 and the character " a ', which are examples of two primitive
atomic values in Haskell. The next chapter introduces examples of constructor
atomic values, such as the musical notes C, D, Ef, Fs, etc., which in standard
music notation are written C, D, Eb, Ff, etc., and are pronounced C, D, E-flat,
F-sharp, etc. (In music theory, note names are called pitch classes.)

In addition, there are structured expressions (i.e., made from smaller pieces)
such as the list of pitches [C, D, Ef], the character/number pair (‘b’,4)
(lists and pairs are different in a subtle way, to be described later), and the
string "Euterpea". Each of these structured expressions is also a value,
since by themselves there is no further calculation that can be carried out. As
another example, 1 4 2 is an expression, and one step of calculation yields the
expression 3, which is a value, since no more calculations can be performed. As
a final example, as was explained earlier, the expression simple 3 9 5 evaluates
to the value 42.

1.6 Function Types and Type Signatures 11

Haskell’s type system ensures that Haskell programs are well-typed; that is,
that the programmer has not mismatched types in some way. For example, it
does not make much sense to add together two characters, so the expression
"a’ 4+ "b’ is ill-typed. The best news is that Haskell’s type system will tell
you if your program is well-typed before yvou run it. This is a big advantage,
since most programming errors are manifested as type errors.

1.6 Function Types and Type Signatures

What should the type of a function be? It seems that it should at least convey
the fact that a function takes values of one type — say, 7/ — as input, and returns
values of (possibly) some other type — say, T2 — as output. In Haskell this is
written 7/ — 72, and such a function is said to “map values of type 7/ to
values of type 72.7° If there is more than one argument, the notation is extended
with more arrows. For example, if the intent is that the function simple defined
in the previous section has type Integer — Integer — Integer — Integer, we
can include a type signature with the definition of simple:

simple :: Integer — Integer — Integer — Integer
simple xyz=x*(y+2)

Details: When writing Haskell programs using a typical text editor, there
will not be nice fonts and arrows as in Integer — Integer. Rather, you
will have to type Integer -> Integer.

Haskell’s type system also ensures that user-supplied type signatures such
as this one are correct. Actually, Haskell’s type system is powerful enough to
allow us to avoid writing any type signatures at all, in which case the type
system is said to infer the correct types.® Nevertheless, judicious placement of
type signatures, as was done for simple, is a good habit, since type signatures
are an effective form of documentation and help bring programming errors to
light. In fact, it is a good habit to first write down the type of each function you
are planning to define, as a first approximation to its full specification — a way
to grasp its overall functionality before delving into its details.

The normal use of a function is referred to as function application. For
example, simple 3 9 5 is the application of the function simple to the arguments
3,9, and 5. Some functions, such as (+), are applied using what is known as

3 In mathematics T1 is called the domain of the function and 72 the range.
There are a few exceptions to this rule, and in the case of simple, the inferred type is actually a
bit more general than that written in this chapter. Both of these points will be returned to later.

12 1 Computer Music, Euterpea, and Haskell

infix syntax; that is, the function is written between the two arguments rather
than in front of them (compare x + ytof x y).

Details: Infix functions are often called operators, and are distinguished
by the fact that they do not contain any numbers or letters of the alphabet.
Thus ~! and *# : are infix operators, whereas thisIsA Function and fYg are
not (but are still valid names for functions or other values). The only
exception to this is that the symbol ’ is considered to be alphanumeric;
thus f and one’s are valid names, but not operators.

In Haskell, when referring to an infix operator as a value, it is enclosed in
parentheses, such as when declaring its type, as in:

(+) :: Integer — Integer — Integer
Also, when trying to understand an expression such as /' x + g y, there is

a simple rule to remember: function application always has “higher
precedence” than operator application, so that f x + g v is the same as

f x) + (g .
Despite all of these syntactic differences, however, operators are still just
functions.

Exercise 1.3 Identify the well-typed expressions in the following and, for
each, give its proper type:

[A,B,C]

[D,42]

(—42, Ef)

[("a",3),("b",5)]

simple "a’ "b’ 'c’

(simple 1 2 3, simple)
["I","love", "Euterpea"]

For those expressions that are ill-typed, explain why.

1.7 Abstraction, Abstraction, Abstraction

The title of this section is the answer to the question “What are the three
most important ideas in programming?”’ Webster defines the verb “abstract”
as follows:

1.7 Abstraction, Abstraction, Abstraction 13

abstract, vr (1) remove, separate (2) to consider apart from application to a
particular instance.

In programming this happens when a pattern repeats itself and we wish
to “separate” that pattern from the “particular instances” in which it
appears. In this textbook this process is called the abstraction principle.
The following sections introduce several different kinds of abstraction, using
examples involving both simple numbers and arithmetic (things everyone
should be familiar with) as well as musical examples (that are specific
to Euterpea).

1.7.1 Naming

One of the most basic ideas in programming — for that matter, in everyday life —
is to name things. For example, we may wish to give a name to the value of 7,
since it is inconvenient to retype (or remember) the value of 77 beyond a small
number of digits. In mathematics the Greek letter 7 in fact is the name for this
value, but unfortunately we do not have the luxury of using Greek letters on
standard computer keyboards and/or text editors. So in Haskell we write:

pi :: Double
pi = 3.141592653589793

to associate the name pi with the number 3.141592653589793. The type
signature in the first line declares pi to be a double-precision floating-point
number, which mathematically and in Haskell is distinct from an integer.” Now
the name pi can be used in expressions whenever it is in scope; it is an abstract
representation, if you will, of the number 3.141592653589793. Furthermore,
if there is ever a need to change a named value (which hopefully will not ever
happen for pi, but could certainly happen for other values), we would only
have to change it in one place, instead of in the possibly large number of places
where it is used.

For a simple musical example, note first that in music theory, a pitch consists
of a pitch class and an octave. For example, in Euterpea we simply write (A, 4)
to represent the pitch class A in the fourth octave. This particular note is called
“concert A” (because it is often used as the note to which an orchestra tunes
its instruments) or “A440 (because its frequency is 440 cycles per second).
Because this particular pitch is so common, it may be desirable to give it a
name, which is easily done in Haskell, as was done above for m:

7 We will have more to say about floating-point numbers later.

14 1 Computer Music, Euterpea, and Haskell

concertA, a440 :: (PitchClass, Octave)
concertA = (A,4) --concert A
a440 =(A,4) -- A440

Details: This example demonstrates the use of program comments. Any
text to the right of “- - till the end of the line is considered to be a
programmer comment and is effectively ignored. Haskell also permits
nested comments that have the form {-this is a comment -} and can
appear anywhere in a program, including across multiple lines.

This example demonstrates the (perhaps obvious) fact that several different
names can be given to the same value — just as your brother John might have
the nickname “Moose.” Also note that the name concertA requires more typing
than (A, 4); nevertheless, it has more mnemonic value and, if mistyped, will
more likely result in a syntax error. For example, if you type “concrtA” by
mistake, you will likely get an error saying, “Undefined variable,” whereas if
you type “(A,5).” you will not.

Details: This example also demonstrates that two names having the same
type can be combined into the same type signature, separated by a
comma. Note finally, as a reminder, that these are names of values, and
thus they both begin with a lowercase letter.

Consider now a problem whose solution requires writing some larger
expression more than once. For example:

x 1 Float
x=f (pixrxx2)4+ g (pi*kr2)

Details: (s:) is Haskell’s floating-point exponentiation operator. Thus
pi x rxx 2 is analogous to 77~ in mathematics. (xx) has higher
precedence than () and the other binary arithmetic operators in Haskell.

Note in the definition of x that the expression pi * r %% 2 (presumably
representing the area of a circle whose radius is r) is repeated — it has two
instances — and thus, applying the abstraction principle, it can be separated

1.7 Abstraction, Abstraction, Abstraction 15

from these instances. From the previous examples, doing this is straightfor-
ward — it is called naming — so we might choose to rewrite the single equation
above as two:

area = pi# r#x 2
x =farea+ garea

If, however, the definition of area is not intended for use elsewhere in the
program, then it is advantageous to “hide” it within the definition of x. This will
avoid cluttering up the namespace, and prevents area from clashing with some
other value named area. To achieve this, we could simply use a let expression:

x =let area = pix r*x 2
in f area + g area

A let expression restricts the visibility of the names that it creates to the internal
workings of the let expression itself. For example, if we were to write:

area = 42
x =letarea =pixr*x2
in f area + g area

then there is no conflict of names — the “outer” area is completely different
from the “inner” one enclosed in the let expression. Think of the inner area
as analogous to the first name of someone in your household. If your brother’s
name is John, he will not be confused with John Thompson who lives down
the street when you say, “John spilled the milk.”

So you can see that naming — using either top-level equations or equations
within a let expression — is an example of the abstraction principle in action.

Details: An equation such as ¢ = 42 is called a binding. A simple rule to
remember when programming in Haskell is never to give more than one
binding for the same name in a context where the names can be confused,
whether at the top level of your program or nestled within a let
expression. For example, this is not allowed:

a=42
a=43
nor is this:
a=42
b=43

a=44

18 1 Computer Music, Euterpea, and Haskell

mel :: Music Pitch

mel = hiNote gn pl :+: hNote gn p2 :4: hNote qn p3
Again using the idea of unfolding described earlier in this chapter, it is easy to
prove that this definition is equivalent to the previous one.

As with areaF, this use of iNote is an example of functional abstraction.
In a sense, functional abstraction can be seen as a generalization of naming.
That is, area rl is just a name for pi * rl *x* 2, hNote d p is just a name for
note d p :=: note d (trans (—3) p), and so on. Stated another way, named
quantities such as area, pi, concertA, and a440 defined earlier can be thought
of as functions with no arguments.

Of course, the definition of hNote could also be hidden within mel using a
let expression as was done in the previous example:

mel :: Music Pitch
mel = let hNote d p = note d p :=: note d (trans (=3) p)
in hNote gn pl :+: hiNote gn p2 :+: hNote gn p3

1.7.3 Data Abstraction

The value of mel is the sequential composition of three harmonized notes. But
what if in another situation we must compose together five harmonized notes,
or in other situations even more? In situations where the number of values is
uncertain, it is useful to represent them in a data structure. For the example at
hand, a good choice of data structure is a list, briefly introduced earlier, that
can have any length. The use of a data structure motivated by the abstraction
principle is one form of data abstraction.

Imagine now an entire list of pitches whose length is not known at the
time the program is written. What now? It seems that a function is needed
to convert a list of pitches into a sequential composition of harmonized
notes. Before defining such a function, however, there is a bit more to say
about lists.

Earlier the example [C, D, Ef | was given, a list of pitch classes whose type
is thus [PitchClass]. A list with no elements is — not surprisingly — written [],
and is called the empty list.

To add a single element x to the front of a list xs, we write x : xs in Haskell.
(Note the naming convention used here: xs is the plural of x, and should be
read that way.) For example, C : [D, Ef] is the same as [C, D, Ef]. In fact, this
list is equivalent to C : (D : (Ef : [])), which can also be written C: D : Ef : [],
since the infix operator () is right-associative.

1.7 Abstraction, Abstraction, Abstraction 19

Details: In mathematics we rarely worry about whether the notation
a+ b + ¢ stands for (a + b) + ¢ (in which case + would be
“left-associative™) or a + (b + ¢) (in which case + would be
“right-associative”). This is because, in situations where the parentheses
are left out, it is usually the case that the operator is mathematically
associative, meaning that it does not matter which interpretation is
chosen. If the interpretation does matter, mathematicians will include
parentheses to make it clear. Furthermore, in mathematics there is an
implicit assumption that some operators have higher precedence than
others; for example, 2 x a + b is interpreted as (2 x a) + b, not

2 x (a+b).

In many programming languages, including Haskell, each operator is
defined to have a particular precedence level and to be left-associative or
right-associative, or to have no associativity at all. For arithmetic
operators, mathematical convention is usually followed; for example,
2w a + b is interpreted as (2 x a) + b in Haskell. The predefined
list-forming operator (:) is defined to be right-associative. Just as in
mathematics, this associativity can be overridden by using parentheses:
thus (a: b) : ¢ is a valid Haskell expression (assuming that it is
well-typed; it must be a list of lists), and is very different froma: b : c.
A way to specify the precedence and associativity of user-defined
operators will be discussed in a later chapter.

Returning now to the problem of defining a function (call it hList) to turn
a list of pitches into a sequential composition of harmonized notes, we should
first express what its type should be:

hList :: Dur — [Pitch] — Music Pitch
To define its proper behavior, it is helpful to consider, one by one, all possible
cases that could arise on the input. First off, the list could be empty, in which
case the sequential composition should be a Music Pitch value that has zero
duration. So:

hList d[] = rest 0
The other possibility is that the list is not empty — i.e., it contains at least
one element, say p, followed by the rest of the elements, say ps. In this case the

result should be the harmonization of p followed by the sequential composition
of the harmonization of ps. Thus:

hList d (p : ps) = hNote d p +: hList d ps

20 1 Computer Music, Euterpea, and Haskell

Note that this part of the definition of hList is recursive — it refers to itself!
But the original problem — the harmonization of p : ps — has been reduced to
the harmonization of p (previously captured in the function ANote) and the
harmonization of ps (a slightly smaller problem than the original one).

Combining these two equations with the type signature yields the complete
definition of the function hList:

hList :: Dur — | Pitch]| — Music Pitch

hList d [= rest 0

hList d (p : ps)y = hNote d p -+: hList d ps

Recursion is a powerful technique that will be used many times in this
textbook. It is also an example of a general problem-solving technique where a
large problem is broken down into several smaller but similar problems; solv-
ing these smaller problems one by one leads to a solution to the larger problem.

Details: Although intuitive, this example highlights an important aspect
of Haskell: pattern matching. The left-hand sides of the equations contain
patterns such as [] and x : xs. When a function is applied, these patterns
are matched against the argument values in a fairly intuitive way ([] only
matches the empty list, and p : ps will successfully match any list with at
least one element, while naming the first element p and the rest of the list
ps). If the match succeeds, the right-hand side is evaluated and returned
as the result of the application. If it fails, the next equation is tried, and if
all equations fail, an error results. All of the equations that define a
particular function must appear together, one after the other.

Defining functions by pattern matching is quite common in Haskell, and
you should eventually become familiar with the various kinds of patterns
that are allowed; see Appendix D for a concise summary.

Given this definition of hList the definition of mel can be rewritten as:
mel = hList gn [pl,p2,p3]
We can prove that this definition is equivalent to the old one via calculation:

mel = hList gn |pl,p2,p3]

= hListgn (pl :p2:p3:[])

= hNote gn pl :+: hList gn (p2 :p3:])

= hNote gn pl :: hNote gn p2 .+: hlList gn (p3 :[])

= hNote gn pl :+: hNote gn p2 :+: hNote gn p3 :+: hList gn []
= hiNote gn pl :4: hNote gn p2 +: hNote gn p3 +: rest 0

1.8 Haskell Equality versus Musical Equality 21

The first step above is not really a calculation, but rather a rewriting of the list
syntax. The remaining calculations each represent an unfolding of AList.

Lists are perhaps the most commonly used data structure in Haskell, and
there is a rich library of functions that operate on them. In subsequent chapters,
lists will be used in a variety of interesting computer music applications.

Exercise 1.4 Modify the definitions of hNote and hList so that they each
take an extra argument that specifies the interval of harmonization (rather
than being fixed at -3). Rewrite the definition of mel to take these changes
into account.

1.8 Haskell Equality versus Musical Equality

The astute reader will have objected to the proof just completed, arguing that
the original version of mel:

hNote gn pl :4: hNote gn p2 :4: hNote gn p3
is not the same as the terminus of the above proof:
hNote gn pl +: hNote gn p2 +: hNote gn p3 -+ rest 0

Indeed, that reader would be right! As Haskell values, these expressions are
not equal, and if you printed each of them you would get different results. So
what happened? Did proof by calculation fail?

No, proof by calculation did not fail, since, as just pointed out, as Haskell
values, these two expressions are not the same, and proof by calculation is
based on the equality of Haskell values. The problem is that a “deeper” notion
of equivalence is needed, one based on the notion of musical equality. Adding
arest of zero duration to the beginning or end of any piece of music should not
change what we hear, and therefore it seems that the above two expressions
are musically equivalent. But it is unreasonable to expect Haskell to figure this
out for the programmer!

As an analogy, consider the use of an ordered list to represent a set (which
is unordered). The Haskell values [x/,x2] and [x2,x/] are not equal, yet in a
program that “interprets” them as sets, they are equal.

The way this problem is approached in Euterpea is to formally define a
notion of musical interpretation, from which the notion of musical equivalence
is defined. This leads to a kind of *“algebra of music” that includes, among
others, the following axiom:

m:+:rest 0 =m

22 1 Computer Music, Euterpea, and Haskell

0’ R

Figure 1.1 Polyphonic versus contrapuntal interpretation.

The operator (=) should be read “is musically equivalent to.” With this axiom
it is easy to see that the original two expressions above are in fact musically
equivalent.

For a more extreme example of this idea, and to entice the reader to learn
more about musical equivalence in later chapters, note that mel, given pitches
pl = Ef, p2 = F, p3 = G and duration d = 1/4, generates the harmonized
melody shown in Figure 1.1; we can write this concretely in Euterpea as:

mell = (note (1/4) (Ef,4) :=: note (1/4) (C,4)) +:

(note (1/4) (F, 4) :=:note (1/4) (D,4)) +:
(note (1/4) (G, 4) :=: note (1/4) (E,4))

The definition of mell can then be seen as a polyphonic interpretation of the
musical phrase in Figure 1.1, where each pair of notes is seen as a harmonic
unit. In contrast, a contrapuntal interpretation sees two independent lines, or
voices, in this case the line (Eb,F,G) and the line {C,D,E). In Euterpea we can
write this as:

mel2 = (note (1/4) (Ef,4) :+: note (1/4) (F,4) +:note (1/4) (G,4))

(note (1/4) (C, 4) +: note (1/4) (D,4) :4: note (1/4) (E,4))

mell and mel2 are clearly not equal as Haskell values. Yet if they are played,
they will sound the same — they are, in the sense described earlier, musically
equivalent. But proving these two phrases musically equivalent will require
far more than a simple axiom involving rest 0. In fact, this can be done in an
elegant way using the algebra of music developed in Chapter 12.

1.9 Code Reuse and Modularity

There does not seem to be much repetition in the last definition of hList, so
perhaps the end of the abstraction process has been reached. In fact, it is worth
considering how much progress has been made. The original definition:

1.10 [Advanced] Programming with Numbers 25

happen when the magnitude of b + ¢ differs significantly from the magnitude
of either b or c. For example, the following two calculations are from GHC:

5 # (—0.123456 + 0.123457) i Float = 4.99188%e—6
5% (—0.123456) + 5 * (0.123457) :: Float = 5.00679%¢—6

Although the discrepancy here is small, its very existence is worrisome, and in
certain situations it could be disastrous. The precise behavior of floating-point
numbers will not be discussed further in this textbook. Just remember that they
are approximations to the real numbers. If real-number accuracy is important
to your application, further study of the nature of floating-point numbers is
probably warranted.

On the other hand, the distributive law (and many others) is valid in Haskell
for the exact data types Integer and Ratio Integer (i.e., rationals). Although
the representation of an /nteger in Haskell is not normally something to be
concerned about, it should be clear that the representation must be allowed
to grow to an arbitrary size. For example, Haskell has no problem with the
following number:

veryBigNumber :: Integer
veryBigNumber = 43208345720348593219876512372134059

and such numbers can be added, multiplied, etc., without any loss of accuracy.
However, such numbers cannot fit into a single word of computer memory,
most of which is limited to 32 or 64 bits. Worse, since the computer system
does not know ahead of time exactly how many words will be required, it must
devise a dynamic scheme to allow just the right number of words to be used
in each case. The overhead of implementing this idea unfortunately causes
programs (o run slower.

For this reason, Haskell (and most other languages) provides another integer
data type, called Int, that has maximum and minimum values that depend on
the word size of the particular computer being used. In other words, every value
of type Int fits into one word of memory, and the primitive machine instructions
for binary numbers can be used to manipulate them efficiently.” Unfortunately,
this means that overflow or underflow errors could occur when an Int value
exceeds either the maximum or minimum value. Sadly, most implementations
of Haskell (as well as most other languages) do not tell you when this happens.
For example, in GHC running on a 32-bit processor, the following Int value:

9 The Haskell Report requires that every implementation support /nzs at least in the range —2%
t0 22% — 1, inclusive. The GHC implementation running on a 32-bit processor, for example,

supports the range —23 23l

26 1 Computer Music, Euterpea, and Haskell

i:Int
i = 1234567890

works just fine, but if you multiply it by two, GHC returns the value
—1825831516! This is because twice i exceeds the maximum allowed value,
so the resulting bits become nonsensical,! and are interpreted in this case as a
negative number of the given magnitude.

This is alarming! Indeed, why should anyone ever use Int when Integer is
available? The answer, as implied earlier, is efficiency, but clearly care should
be taken when making this choice. If you are indexing into a list, for example,
and you are confident that you are not performing index calculations that might
result in the above kind of error, then /nr should work just fine, since a list
longer than 23! will not fit into memory anyway! But if you are calculating the
number of microseconds in some large time interval or counting the number
of people living on earth, then Integer would most likely be a better choice.
Choose your number data types wisely!

In this textbook the numeric data types Integer, Int, Float, Double, Rational,
and Complex will be used for a variety of different applications; for a
discussion of the other number types, consult the Haskell Report. As these data
types are used, there will be little discussion about their properties — this is not,
after all, a book on numerical analysis — but a warning will be cast whenever
reasoning about, for example, floating-point numbers in a way that might not
be technically sound.

10 Actually, these bits are perfectly sensible in the following way: the 32-bit binary
representation of / is 01001001100101100000001011010010, and twice that is
10010011001011000000010110100100. But the latter number is seen as negative, because the
32nd bit (the highest-order bit on the CPU on which this was run) is a one, which means it is a
negative number in “twos-complement” representation. The twos-complement of this number
isin turn 01101100110100111111101001011100, whose decimal representation is
1825831516.

2

Simple Music

The previous chapters introduced some of the fundamental ideas of functional
programming in Haskell. Also introduced were several of Euterpea’s functions
and operators, such as note, rest, (:+:), (:=:), and trans. This chapter will
reveal the actual definitions of these functions and operators, thus exposing
Euterpea’s underlying structure and overall design at the note level. In addition,
a number of other musical ideas will be developed and, in the process, more
Haskell features will be introduced as well.

2.1 Preliminaries

Sometimes it is convenient to use a built-in Haskell data type to directly
represent some concept of interest. For example, we may wish to use Int to
represent octaves, where by convention octave 4 corresponds to the octave
containing middle C on the piano. We can express this in Haskell using a type
synonym:

type Octave = Int

A type synonym does not create a new data type, it just gives a new name to
an existing type. Type synonyms can be defined not just for atomic types such
as Int, but also for structured types such as pairs. For example, as discussed in
the last chapter, in music theory a pitch is defined as a pair consisting of a pitch
class and an octave. Assuming the existence of a data type called PitchClass
(which we will return to shortly), we can write the following type synonym:

type Pitch = (PitchClass, Octave)

For example, concert A (i.e., A440) corresponds to the pitch (A, 4) :: Pitch,
and the lowest and highest notes on a piano correspond to (A, 0) :: Pitch and
(C. 8) :: Pitch, respectively.

27

28 2 Simple Music

Another important musical concept is duration. Rather than using either
integers or floating-point numbers, Euterpea uses rational numbers to denote
duration:

type Dur = Rational

Rational is the data type of rational numbers expressed as ratios of Integers
in Haskell. The choice of Rational is somewhat subjective, but is justified by
three observations: (1) many durations are expressed as ratios in music theory
(5:4 rhythm, quarter notes, dotted notes, and so on), (2) Rational numbers are
exact (unlike floating point numbers), which is important in many computer
music applications, and (3) irrational durations are rarely needed.

Rational numbers in Haskell are printed by GHC in the form n % d, where
n is the numerator and d is the denominator. Even a whole number, say
the number 42, will print as 42% 1 if it is a Rational number. To create a
Rational number in a program, however, once it is given the proper type, we
can use the normal division operator, as in the following definition of a quarter
note:

gn :: Dur

gn =1/4 -- quarter note

So far, so good. But what about PitchClass? We might try to use integers to
represent pitch classes as well, but this is not very elegant. Ideally, we would
like to write something that looks more like the conventional pitch class names
C, Ct, Db, D, etc. The solution is to use an algebraic data type in Haskell:

data PirchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E| Ff | Es | F | GIf | Ess | Fs
| Gf | Fss| G |Aff | Gs | Af | Gss | A | Bff | As
| Bf | Ass | B | Bs | Bss

Details: All of the names to the right of the equal sign in a data
declaration are called constructors, and must be capitalized. In this way
they are syntactically distinguished from ordinary values. This distinction
is useful, since only constructors can be used in the pattern matching that
is part of a function definition, as will be described shortly.

The PitchClass data type declaration essentially enumerates 35 pitch class
names (five for each of the note names A through G). Note that both double-
sharps and double-flats are included, resulting in many enharmonics (i.e., two
notes that “sound the same,” such as G and Ab).

2.2 Notes, Music, and Polymorphism 29

(The order of the pitch classes may seem a bit odd, but the idea is that if
a pitch class pel is to the left of a pitch class pc2, then pcl’s pitch is “lower
than” pc2’s. This idea will be formalized and exploited in Chapter 7.1.)

Keep in mind that PitchClass is a completely new, user-defined data type
that is not equal to any other. This is what distinguishes a data declaration
from a type declaration. As another example of the use of a data declaration
to define a simple enumerated type, Haskell’'s Boolean data type, called Bool,
is predefined in Haskell simply as:

data Bool = False | True

2.2 Notes, Music, and Polymorphism

We can, of course, define other data types for other purposes. For example, we
will want to define the notion of a note and a rest. Both of these can be thought
of as “primitive” musical values, and thus as a first attempt we might write:

data Primitive = Note Dur Pitch
| Rest Dur

Analogous to our previous data type declarations, the above declaration says
that a Primitive is either a Note or a Rest. However, it is different in that the
constructors Note and Rest take arguments, like functions do. In the case of
Note, it takes two arguments, whose types are Dur and Pitch, whereas Rest
takes one argument, a value of type Dur. In other words, the types of Note and
Rest are:

Note :: Dur — Pitch — Primitive
Rest :: Dur — Primitive

For example, Note gn a440 is concert A played as a quarter note, and Resr 1 is
a whole-note rest.

This definition is not completely satisfactory, however, because we may
wish to attach other information to a note, such as its loudness, or some
other annotation or articulation. Furthermore, the pitch itself may actually
be a percussive sound, having no true pitch at all. To resolve this, Euterpea
uses an important concept in Haskell, namely polymorphism — the ability to
parameterize, or abstract, over types (poly means many and morphism refers to
the structure, or form, of objects).

Primitive can be redefined as a polymorphic data type as follows. Instead
of fixing the type of the pitch of a note, it is left unspecified through the use of
a type variable:

32 2 Simple Music

(Recall that these last two operators were introduced in the last chapter.
You can see now that they are actually constructors of an algebraic
data type.)

o Modify cntrl m is an “annotated” version of m in which the control
parameter cntrl specifies some way is to be modified.

Details: Note that Music a is defined in terms of Music a, and thus the
data type is said to be recursive (analogous to a recursive function). It is
also often called an inductive data type, since it is, in essence, an
inductive definition of an infinite number of values, each of which can be
arbitrarily complex.

It is convenient to represent these musical ideas as a recursive data type,
because it allows us to not only construct musical values, but also take
them apart, analyze their structure, print them in a structure-preserving way,
transform them, interpret them for performance purposes, and so on. Many
examples of these kinds of processes will be seen in this textbook.

The Control data type is used by the Modify constructor to annotate a Music
value with a rempo change, a transposition, a phrase attribute, an instrument, a
key signature, or a custom label. This data type is unimportant at the moment,
but for completeness here is its full definition:

data Control =

Tempo Rational -- scale the tempo
| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- instrument label

| Phrase [PhraseArtribute] -- phrase attributes
| KeySig PitchClass Mode - key signature and mode
| Custom String -- custom label
data Mode = Major | Minor | lonian | Dorian | Phrygian
| Lydian | Mixolydian | Aeolian | Locrian
| CustomMode String

AbsPitch (*absolute pitch,” to be defined in Section 2.4) is just a type
synonym for /nt. Instrument names are borrowed from the General MIDI
standard [3, 4], and are captured as an algebraic data type in Figure 2.1. The
KeySig constructor attaches a key signature to a Music value and is different
from transposition. A full explanation of phrase attributes and the custom
labels is deferred until Chapter 9.

2.2 Notes, Music, and Polymorphism 33

data InstrumentName =

AcousticGrandPiano | BrightAcousticPiano | ElectricGrandPiano

| HonkyTonkPiano
| Harpsichord

| Glockenspiel

| Marimba

| Dulcimer

| RockOrgan

| Accordion

| RhodesPiano

| Clavinet

| MusicBox

| Xvlophone

| HammondOrgan
| ChurchOrgan

| Harmonica

| ChorusedPiano
| Celesta

| Vibraphone

| TubularBells

| PercussiveOrgan
| ReedOrgan

| TangoAccordion

| AcousticGuitarNylon | AcousticGuitarSteel | ElectricGuitarJazz
| ElectricGuitarClean | ElectricGuitarMuted | OverdrivenGuitar

| DistortionGuitar

| SlapBass1

| SynthBass?2

| Cello

| PizzicatoStrings
| StringEnsemblel
| SynthStrings2

| SynthVoice

| Trombone

| FrenchHorn

| SynthBrass?2

| TenorSax

| Bassoon

| Piccolo

| PanFlute

| Whistle

| Lead2Sawtooth
| Lead5Charang
| Lead8BassLead
| Pad3Polysynth

| Pad6Metallic

| FX1Train

| FX4Atmosphere
| FX7Echoes

| Banjo

| Kalimba

| Shanai

| SteelDrums

| MelodicDrum

| GuitarFretNoise
| BirdTweet

| Applause

| GuitarHarmonics
| ElectricBassFingered | ElectricBassPicked

| SlapBass2

| Violin

| Contrabass

| OrchestralHarp
| StringEnsemble2
| ChoirAahs

| OrchestraHit

| Tuba

| BrassSection

| SopranoSax

| BaritoneSax

| EnglishHorn

| Flute

| BlownBottle

| Ocarina

| Lead3Calliope
| Lead6Voice

| PadlNewAge

| Pad4Choir

| Pad7Halo

| FX2Soundtrack
| FX5Brightness
| FX8SciFi

| Shamisen

| Bagpipe

| TinkleBell

| Woodblock

| SynthDrum

| BreathNoise

| TelephoneRing
| Gunshot

| CustomlInstrument String

| AcousticBass
| FretlessBass
| SynthBass!

| Viola

| TremoloStrings
| Timpani

| SynthStrings]
| VoiceOohs

| Trumpet

| MutedTrumpet
| SynthBrassl

| AltoSax

| Oboe

| Clarinet

| Recorder

| Shakuhachi

| LeadlSquare
| Lead4 Chiff

| Lead7Fifths

| Pad2Warm

| Pad5Bowed

| Pad8Sweep

| FX3Crystal

| FX6Goblins

| Sitar

| Koto

| Fiddle

| Agogo

| TaikoDrum

| ReverseCymbal
| Seashore

| Helicopter

| Percussion

Figure 2.1 General MIDI instrument names.

34 2 Simple Music

2.3 Convenient Auxiliary Functions

For convenience, and in anticipation of their frequent use, a number of
functions are defined in Euterpea to make it easier to write certain kinds of
musical values. For starters:

note :: Dur — a — Music a

note d p = Prim (Note d p)

rest 2 Dur — Music a

rest d = Prim (Rest d)

tempo :: Dur — Music a — Music a

tempo r m = Modify (Tempo r) m

transpose :: AbsPitch — Music a — Music a
transpose i m = Modify (Transpose i) m

instrument i InstrumentName — Music a — Music a

instrument i m = Modify (Instrument i) m

phrase [PhraseAttribute| — Music a — Music a
phrase pam = Modify (Phrase pa) m

keysig :: PitchClass — Mode — Music a — Music a
keysig pc mo m = Modify (KeySig pc mo) m

Note that each of these functions is polymorphic, a trait inherited from the data
types that it uses. Also recall that the first two of these functions were used in
an example in the last chapter.

We can also create simple names for familiar notes, durations, and rests, as
shown in Figures 2.2 and 2.3. Despite the large number of them, these names
are sufficiently “unusual” that name clashes are unlikely.

Details: Figures 2.2 and 2.3 demonstrate that at the top level of a
program, more than one equation can be placed on one line, as long as
they are separated by semicolons. This allows us to save vertical space on
the page, and is useful whenever each line is relatively short. A semicolon
is not needed at the end of a single equation, or at the end of the last
equation on a line. This convenient feature is part of Haskell’s layout
rule, and will be explained in more detail later.

More than one equation can also be placed on one line in a let expression,
as demonstrated in the following:

letx=1;y=2

inx+y

2.3 Convenient Auxiliary Functions 35

cff .ef e, s, ess, dff, df, d, ds, dss, eff , ef , e, es, ess, fif Jf . f
Is. fss. gff, gf g, gs, gss, aff, af ,a, as, ass, bff, bf , b, bs, bss ::
Octave — Dur — Music Pitch

cff od=noted (Cff, 0);cf od=noted (Cf, o)
¢ od=noted(C, o0),cs od=noted (Cs, 0)
css o d = note d (Css, 0);dff o d = note d (Dff, o)
df od=noted (Df, 0);d od=noted (D, o)
ds od = note d (Ds, 0),dss o d = note d (Dss, 0)
eff od = noted (Eff, 0),ef od=noted (Ef, o)
¢ od=noted(E, o0),es od=noted (Es, 0)
ess o d = note d (Ess, o), [f[f o d = note d (Fff, o)
ff od=noted (Ff, 0);f od=noted (F, o0)
Js od=noted (Fs, o0),fss od=noted (Fss, 0)
gif o d = note d (Gff, 0);gf od=note d (Gf, o)
g od=noted (G, 0),g5 od=noted (Gs, o)
gss o d = note d (Gss,0);aff o d = note d (Aff, o)
af od=noted (Af, 0);a od=noted (A, o)
as o d = note d (As, 0);ass o d = note d (Ass, 0)
bff o d = note d (Bff, 0);bf o d = note d (Bf, o)
b od=noted (B, o0);bs od=noted (Bs, o)
bss o d = note d (Bss, 0)

Figure 2.2 Convenient shorthand for creating Note values. The standard adopted
is that “x sharp” is xs, “x double sharp” is xss, “x flat” is xf, and “x double flat”
is xff. This is quite convenient for the vast majority of notes, with one caveat for
those who are more musically inclined: ff means “f flat” and fff means *“f double
flat” — these names refer to Note values, not to the dynamic or loudness values
double forte and triple forte, which are often written using those abbreviations on
musical scores. Fortunately, the use of these notes is rather rare, and typically their
enharmonic equivalents are used instead (e and ef, respectively).

2.3.1 A Simple Example

As a simple example, suppose we wish to generate a ii-V-1 chord progres-
sion in a particular major key. In music theory, such a chord progression
begins with a minor chord on the second degree of the major scale, followed
by a major chord on the fifth degree, and ends in a major chord on the first
degree. We can write this in Euterpea, using triads in the key of C major,
as follows:

1251 :: Music Pitch
1251 = let dMinor =d 4 wn:=:f 4 wn :=:a 4 wn
gMajor = g4 wn:=:b4dwn:=:d5wn
cMajor =c4bn :=:ed bn :=:g4bn
in dMinor :+: gMajor :+: cMajor

36 2 Simple Music

bn, wn, hn, gn, en, sn, tn, sfn, dwn, dhn,
dgn, den, dsn, din, ddhn, ddgn, dden :: Dur
bnr,wnr, hnr, gnr, enr, snr, tnr, sfur, dwnr, dhnr,
dgnr, denr, dsnr, dimr, ddhnr, ddgnr, ddenr :: Music Pitch

bn =2, bnr =vrestbn -- brevis or double whole note rest
wn =1; wnr = rest wn -- whole note rest

hn =1/2; hnr = rest hn -- half note rest

gn =1/4; gnr =restgn -- quarter note rest

en =1/8; enr =resten -- eighth note rest

sn = 1/16;snr = rest sn -- sixteenth note rest

m =1/32:tmr =restin -- thirty-second note rest

sfn = 1/64:sfur = rest sfn -- sixty-fourth note rest

dwn =3/2; dwnr = restdwn -- dotted whole note rest

dhn =3/4; dhnr = restdhn -- dotted half note rest

dgn =3/8; dgnr = restdgn -- dotted quarter note rest

den =3/16;denr = restden -- dotted eighth note rest

dsn =3/32;dsnr = restdsn -- dotted sixteenth note rest

dm =3/64;dtnr =restdtn -- dotted thirty-second note rest

ddhn = 7/8; ddhnr = rest ddhn -- double-dotted half note rest
ddgn = 7/16; ddgnr = rest ddgn -- double-dotted quarter note rest
dden = T/32;ddenr = rest dden -- double-dotted eighth note rest

Figure 2.3 Convenient shorthand for creating Duration and Rest values. Notice
that these adhere closely to the American English standard for naming durations,
with the exception of bn and bnr. This design choice was made because the dotted
whole note already occupies the dwn and dwnr names.

Details: Note that more than one equation is allowed in a let expression,
just like at the top level of a program. The first characters of each
equation, however, must line up vertically, and if an equation takes more
than one line, then the subsequent lines must be to the right of the first
characters. For example, this is legal:

let @ = aLongName
+ anEvenLongerName
b =56
in..

but neither of these is:

let a = aLongName
+ anEvenLongerName
b=56
in..
let a = aLongName
+ anEvenLongerName
b =156
in..

2.4 Absolute Pitches 39

2.4 Absolute Pitches

Treating pitches simply as integers is useful in many settings, so Euterpea uses
a type synonym to define the concept of an “absolute pitch™:

type AbsPitch = Int

The absolute pitch of a (relative) pitch can be defined mathematically as 12
times the octave plus the index of the pitch class. We can express this in Haskell
as follows:

absPitch 22 Pitch — AbsPitch

absPitch (pc, oct) = 12 * (oct 4+ 1) + pclolnt pc

Details: Note the use of pattern matching to match the argument of
absPitch to a pair.

pcTolnt is a function that converts a particular pitch class to an index,
easily but tediously expressed, as shown in Figure 2.4. But there is a subtlety:
according to music theory convention, pitches are assigned integers in the
range 0—11, i.e., modulo 12, starting on pitch class C. In other words, the index
of Cis 0, Cbis 11, and Bf is 0. However, that would mean the absolute pitch of
(C,4), say, would be 60, whereas (Cf,4) would be 71. Somehow the latter does

pcTolnt :: PitchClass — Int

pcTolnt Cff = —2; pcTolnt Dff = 0: pcTolnt Eff =2
pclolnt Cf = —1;pcTolnt Df = l;pcTolnt Ef =3
pclolnt C =0; pclolnt D =2;pcTolnt E =4
pclolnt Cs = 1; pelolnt Ds = 3;pclolnt Es =5
pcTolnt Css = 23 pcTolnt Dss = 4; pcTolnt Ess = 6
pclolnt Fff = 3; pclolnt Gff = 5;pcTolnt Aff =7
pclolnt Ff =4; pclolnt Gf = 6;pclolnt Af =8
pclolnt ' =5; pclolnt G =T;pclolntA =9
pcTolnt Fs = 6; pcTolnt Gs = 8;pcTolnt As = 10
pcTolnt Fss =7, pcTolnt Gss = 9; pcTolnt Ass = 11
pclolnt Bff =9

pclolnt Bf =10

pcTolnt B =11

pclolnt Bs =12
pcTolnt Bss = 13

Figure 2.4 Converting pitch classes to integers.

40 2 Simple Music

not seem right; 59 would be a more logical choice. Therefore, the definition in
Figure 2.4 is written in such a way that the wrap-around does not happen, i.e.,
numbers outside the range 011 are used. With this definition, absPitch (Cf,4)
yields 59, as desired.

Details: The repetition of “pcTolnt” above can be avoided by using a
Haskell case expression, resulting in a more compact definition:

pcToint :: PitchClass — Int

pcTolnt pc = case pc of
Cff - -2,Cf - —1;C—=0; Cs—>1; Css — 2;
Dff -0, Df— 1, D—2; Ds— 3, Dss — 4,
Eff -2, Ef > 3; E—> 4, Es > 5;, Ess — 6;
Fff -3, Ff >4, F—5; Fs > 6;, Fss — 7,
Gff =5 Gf—6; G—17, Gs— 8 Gss—9;
Aff =7, Af =8 A —=9; As — 10;Ass — 11;
Bff -9, Bf - 10; B — 11;Bs — 12;Bss — 13

As you can see, a case expression allows multiple pattern matches on an
expression without using equations. Note that layout applies to the body
of a case expression and can be overriden as before, using a semicolon.
(As in a function type signature, the right-pointing arrow in a case
expression must be typed as “- >"" on your computer keyboard.)

The body of a case expression observes layout just as a let expression,
including that semicolons can be used, as above, to place more than one
pattern match on the same line.

Converting an absolute pitch to a pitch is a bit more tricky because of
enharmonic equivalences. For example, the absolute pitch 15 might correspond
to either (Ds, 1) or (Ef, 1). Euterpea takes the approach of always returning a
sharp in such ambiguous cases:

pitch :: AbsPitch — Pitch
pitch ap =
let (oct,n) = divMod ap 12
in ((C,Cs,D,Ds,E,F,Fs,G,Gs,A,As,B] ' n,oct — 1)

Details: (!!) is Haskell’s zero-based list-indexing function; list !! n returns
the (n + 1)th element in list. divMod x n returns a pair (g, r), where ¢ is
the integer quotient of x divided by n, and r is the value of x modulo 7.

2.4 Absolute Pitches 41

Given pitch and absPitch, it is now easy to define a function frans that
transposes pitches:

trans :: Int — Pitch — Pitch
trans i p = pitch (absPitch p + i)

With this definition, all of the operators and functions introduced in the
previous chapter have been covered.

Exercise 2.3 Show that abspitch (pitch ap) = ap and, up to enharmonic
equivalences, pitch (abspitch p) = p.

Exercise 2.4 Show that frans i (trans j p) = trans (i +j) p.

Exercise 2.5 Transpose is part of the Control data type, which in turn is part
of the Music data type. Its use in transposing a Music value is thus a kind of
“annotation” — it doesn’t really change the Music value, it just annotates it as
something that is transposed.

Define instead a recursive function transM :: AbsPitch — Music Pitch —
Music Pitch that actually changes each note in a Music Pitch value by
transposing it by the interval represented by the first argument.

Hint: To do this properly. you will have to pattern match against the Music
value, something like this:

transM ap (Prim (Note d p)) = ...
transM ap (Prim (Rest d)) = ...
transM ap (ml :4: m2)
transM ap (ml :=: m2) .
transM ap (Modify...) =

3
Polymorphic and Higher-Order Functions

Several examples of polymorphic data types were introduced in the first couple
of chapters. In this chapter the focus is on polymorphic functions, which are
most commonly defined over polymorphic data types.

The already familiar /ist is the protoypical example of a polymorphic data
type, and it will be studied in depth in this chapter. Although lists have no
direct musical connection, they are perhaps the most commonly used data type
in Haskell and have many applications in computer music programming. But
in addition, the Music data type is polymorphic, and several new functions that
operate on it polymorphically will also be defined.

(A more detailed discussion of predefined polymorphic functions that
operate on lists can be found in Appendix A.)

This chapter also introduces higher-order functions, which take one or more
functions as arguments or return a function as a result (functions can also
be placed in data structures). Higher-order functions permit the elegant and
concise expression of many musical concepts. Together with polymorphism,
higher-order functions substantially increase the programmer’s expressive
power and ability to reuse code.

Both of these new ideas naturally follow the foundations that have already
been established.

3.1 Polymorphic Types

In previous chapters, examples of lists containing several different kinds of
elements — integers, characters, pitch classes, and so on — were introduced,
and we can well imagine situations requiring lists of other element types.
Sometimes, however, it is not necessary to be so particular about the type of
the elements. For example, suppose we wish to define a function length that

42

3.1 Polymorphic Types 43

determines the number of elements in a list. It does not really matter whether
the list contains integers, pitch classes, or even other lists — we can imagine
computing the length in exactly the same way in each case. The obvious
definition is:

length [] =0

length (x : xs) = 1 + length xs

This recursive definition is self-explanatory. Indeed, we can read the equations
as saying: “The length of the empty list is 0, and the length of a list whose first
element is x and remainder is xs is 1 plus the length of xs.”

But what should the type of length be? Intuitively, we would like to say that,
for any type a, the type of length is [a] — Integer. In mathematics we might
write this as:

length :: (V a) [a] — Integer
But in Haskell this is written simply as:
length :: [a] — Integer

In other words, the universal quantification of the type variable a is implicit.

Details: Generic names for types, such as a above, are called type
variables, and are uncapitalized to distinguish them from concrete types
such as Integer.

So length can be applied to a list containing elements of any type. For
example:

length [1,2,3] =3
length [C,D,Ef] =3
length [[1].[].[2,3,4]] =3

Note that the type of the argument to length in the last example is
[[Integer]]; that is, a list of lists of integers.

Here are two other examples of polymorphic list functions, which happen
to be predefined in Haskell:

head clal — a
head (x:_) =x
tail 2 lal — [a]

tail (_: xs) = xs

46 3 Polymorphic and Higher-Order Functions

This apparent anomaly can be resolved by noting that map, like length, head,
and tail, does not really care what its list element types are, as long as its
Sfunctional argument can be applied to them. Indeed, map is polvmorphic, and
its most general type is:

map :: (a — b) — [a] — [b]

This can be read as “map is a function that takes a function from any type a to
any type b, and a list of a’s, and returns a list of 5’s.” The correspondence
between the two a’s and between the two b’s is important: a function that
converts Int’s to Char’s, for example, cannot be mapped over a list of Char’s.
It is easy to see that in the case of toAbsPitches, a is instantiated as Pitch and
b as AbsPitch, whereas in toPitches, a and b are instantiated as AbsPitch and
Pitch, respectively.

Note, as we did in Section 2.2, that the above reasoning can be viewed as
the abstraction principle at work at the type level.

Details: In Chapter 1 it was mentioned that every expression in Haskell
has an associated type. But with polymorphism, we might wonder if there
is just one type for every expression. For example, map could have any of
these types:

(a— b) — [a] — |b]

(Integer — b) — [Integer] — [b]

(a — Float) — [a] — [Fleat]

(Char — Char) — [Char] — [Char]

and so on, depending on how it will be used. However, notice that the first
of these types is in some fundamental sense more general than the other
three. In fact, every expression in Haskell has a unique type, known as its
principal type, the least general type that captures all valid uses of the
expression. The first type above is the principal type of map, since it
captures all valid uses of map yet is less general than, for example, the
type a — b — c. As another example, the principal type of head is

[a] — a;the types [b] — a, b — a, and even a are too general, whereas
something like [Integer] — Integer is too specific. (The existence of
unique principal types is the hallmark feature

of the Hindley-Milner type system [5, 6] that forms the basis of the

type systems of Haskell, ML [7], and several other functional

languages [8].)

