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mathematics in their world.



-

Contents

CHAPTER ONE

1.1

1.2

1.3

1.4

CHAPTER TWO
2.1

2.2

2.3

2.4

2.5

BUT FIRST, A WORD FROM OUR SPONSORS

WELCOME!
SURFING THE BOOK

Fun and Games
An Introduction to Rigorous Thought

Silly Stories Each with a Moral
Conundrums that Evoke Techniques of Effective Thinking

Nudges
Leading Questions and Hints for Resolving the Stories

The Punch Lines
Solutions and Further Commentary

From Play to Power
Discovering Strategies of Thought for Life

Number Contemplation

Counting
How the Pigeonhole Principle Leads to Precision
Through Estimation

Numerical Patterns in Nature
Discovering the Beauty of the Fibonacci Numbers

Prime Cuts of Numbers
How the Prime Numbers Are the Building Blocks of All

Natural Numbers

Crazy Clocks and Checking Out Bars
Cyclical Clock Arithmetic and Bar Codes

Public Secret Codes and How to Become a Spy
Encrypting Information Using Modular Arithmetic and Primes

g, X

z

14

18

27

38
40

49

64

82

95



vi

2.6

2.7

CHAPTER THREE

3.1

3.2

3.3

3.4

3.5

CHAPTER FOUR

CONTENTS

4.1

4.2

4.3

4.4

4.5

4.6

4.7

The Irrational Side of Numbers
Are There Numbers Beyond Fractions?

Get Real
The Point of Decimals and Pinpointing Numbers on the Real Line

Infinity

Beyond Numbers
What Does Infinity Mean?

Comparing the Infinite
Pairing Up Collections via a One-to-One Correspondence

The Missing Member
Georg Cantor Answers: Are Some Infinities Larger Than Others?

Travels Toward the Stratosphere of Infinities
The Power Set and the Question of an Infinite Galaxy of Infinities

Straightening Up the Circle
Exploring the Infinite Within Geometrical Objects

Geometric Gems

Pythagoras and His Hypotenuse

How a Puzzle Leads to the Proof of One of the Gems
of Mathematics

A View of an Art Gallery
Using Computational Geometry to Place Security Cameras
in Museums

The Sexiest Rectangle
Finding Aesthetics in Life, Art, and Math Through the
Golden Rectangle

Soothing Symmetry and Spinning Pinwheels
Can a Floor Be Tiled Without Any Repeating Pattern?

The Platonic Solids Turn Amorous
Discovering the Symmetry and Interconnections Among the
Platonic Solids

The Shape of Reality?
How Straight Lines Can Bend in Non-Euclidean Geometries

The Fourth Dimension
Can You See It?

110

121

136
138

145

162

173

190

206
208

218

232

249

269

289

307



CHAPTER FIVE
5.1

5.2

5.3

5.4

5.5

CHAPTER SIX
6.1

6.2

6.3

6.4

6.5

6.6

CHAPTER SEVEN
7.1

7.2

Contortions of Space

Rubber Sheet Geometry
Discovering the Topological Idea of Equivalence by Distortion

The Band That Wouldn’t Stop Playing
Experimenting with the Mobius Band and Klein Bottle

Feeling Edgy?
Exploring Relationships Among Vertices, Edges, and Faces

Knots and Links
Untangling Ropes and Rings

Fixed Points, Hot Loops, and Rainy Days
How the Certainty of Fixed Points Implies Certain
Weather Phenomena

Chaos and Fractals

Images
Viewing a Gallery of Fractals

The Dynamics of Change
Can Change Be Modeled by Repeated Applications of
Simple Processes?

The Infinitely Detailed Beauty of Fractals
How to Create Works of Infinite Intricacy Through
Repeated Processes

The Mysterious Art of Imaginary Fractals
Creating Julia and Mandelbrot Sets by Stepping Out in the
Complex Plane

Predetermined Chaos
How Repeated Simple Processes Result in Utter Chaos

Between Dimensions

Can the Dimensions of Fractals Fall Through the Cracks?

Taming Uncertainty

Chance Surprises

Some Scenarios Involving Chance That Confound Our Intuition

Predicting the Future in an Uncertain World
How to Measure Uncertainty Using the Idea of Probability

CONTENTS

326
328

346

359

374

389

402
404

412

430

458

482

503

514
516

523

vii



73

7.4

2.5

7.6

7.7

CHAPTER EIGHT

CONTENTS

8.1

8.2

83

8.4

8.5

Random Thoughts

Are Coincidences as Truly Amazing as They First Appear?

Down for the Count
Systematically Counting All Possible Outcomes

Collecting Data Rather than Dust
The Power and Pitfalls of Statistics

What the Average American Has
Different Means of Describing Data

Parenting Peas, Twins, and Hypotheses
Making Inferences from Data

Deciding Wisely
Applications of Rigorous Thinking

Great Expectations
Deciding How to Weigh the Unknown Future

Risk

Deciding Personal and Public Policy
Money Matters

Deciding Between Faring Well and Welfare
Peril at the Polls

Deciding Who Actually Wins an Election

Cutting Cake for Greedy People
Deciding How to Slice Up Scarce Resources

FAREWELL

ACKNOWLEDGMENTS: SECOND EDITION
ACKNOWLEDGMENTS: FIRST EDITION
HINTS AND SOLUTIONS

INDEX

CREDITS

541

554

571

585

610

628

630

645

663

682

700

716

719

722

725

747
758



But first,...

...aword from
our Sponsors:
those wonderful
caring folks at
Key College Publishing

W are pleased and proud to bring to you the second edition of The Heart
of Mathematics: An invitation to effective thinking. The first edition of The
Heart of Mathematics was widely acclaimed in reviews and articles as well as
by instructors and students. Its review in the June—July 2001 issue of The Amer-
ican Mathematical Monthly stated, “This is very possibly the best ‘mathemat-
ics for non-mathematician’ book that I have seen—and that includes popular
(non-textbook) books that one would find in a general bookstore.” The
authors created a book that can be read and enjoyed by both faculty and stu-
dents, by mathematicians and general interest readers. In fact, as the authors
themselves have said,

We selected a few of the greatest and most interesting ideas in
mathematics and tried to make them accessible and intriguing to
students. We hope instructors will find some of their favorite topics
among those in The Heart of Mathematics: An invitation to
effective thinking and that instructors will enjoy introducing those
mathematical vistas to their students. Our goal is to offer students
the genuine ideas and modes of thinking that attracted all of us to
mathematics. EDWARD B. BURGER AND MICHAEL STARBIRD

HALLMARK FEATURES that have made The Heart of Mathematics the most
widely adopted textbook in liberal arts and liberal studies mathematics and
teacher preparation in over ten years include:

A focus on the important ideas of mathematics and mathematical
methods of investigation.

A style of writing designed to be read and enjoyed by students and
faculty, general interest readers or professionals.

“Life Lessons,” that is, effective methods of thinking that students will
retain and apply beyond their college years.

Entertaining and stimulating end-of-section Mindscape exercises for the
development of application, problem-solving, and argumentation skills.

BUT FIRST, A WORD FROM OUR SPONSORS X
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» Activities that encourage collaborative learning and group work.

» An integrated use of a variety of visualization techniques and a hands-
on manipulative kit that direct students to model their thinking and to
actively explore the world around them.

NEW TO THIS EDITION

» A new chapter, Chapter 8, Deciding Wisely: Applications of Rigorous
Thinking, which presents everyday and practical applications of the
thought strategies developed throughout the text to situations that stu-
dents may encounter outside the mathematics classroom.

« An improved Chapter 7, Taming Uncertainty. Statisticians advised the
authors as they crafted three sections that cover the topics generally
found in an introductory statistics course. Students who read these
sections will be able to identify statistical displays, understand statistical
terms, and recognize statistical fallacies.

* The inclusion of five “Developing Ideas” questions at the opening of
each Mindscapes section. These exercises are designed to ease students
into the Mindscapes by checking reading comprehension, concept
clarity, and in some cases, algebraic agility.

¢ An enhanced teaching package including detailed lesson plans for each
section, suggested class activities, and additional mathematical back-

ground material. An instructor CD, instructor videos, and a test bank
are also available to qualified adopters.

o The Student Interactive Explorations CD and 3D glasses are now
packaged with the text.

Since its publication in 1999, The Heart of Mathematics: An invitation to effec-
tive thinking has won the praise and approval of instructors and students alike,
quickly becoming a new standard and perennial favorite for liberal arts math-
ematics courses.

The communities of users have enthusiastically shared their experiences
with us, and the authors have listened and responded to this feedback to pro-
vide you with this greatly enriched second edition of The Heart of Mathematics.
You are invited to join the large number of students and instructors who have
viewed important ideas of mathematics through this challenging and innova-
tive text. We are proud to be a part of this exciting project. Please feel free to
contact us with your comments and feedback at heartofmath@keycollege.
com. We hope you enjoy this second edition.

Key College Publishing

Now onto the excitement of mathematics!

BUT FIRST, A WORD FROM OUR SPONSORS



Welcome!

The False Mirror (1928)
by René Magritte.
Discover a new

world view.

... mathematicians are really
seeking to behold the things
themselves, which can be seen only
with the eye of the mind. pLaTo

Of course, no one actually

W wrote this book to be read. We reads their math textbooks.
designed many attractions—a kit for N RO MATER STUDENT
grasping concepts hands-on, jokes (some

aren’t too lame), 3D pictures and glasses, and a style of presentation that we
hope invites you to discover new ideas. Most of all, this book contains intrigu-
ing lessons for thinking that can change your life.

A World of Ideas

Most people do not have an accurate picture of mathematics. For many, math-
ematics is the torture of tests, homework, and problems, problems, problems.
The very word problems suggests unpleas-
antness and anxiety. But mathematics is not
“problems.”

Some people view mathematics as a set
of formulas to be applied to a list of prob-
lems at the ends of textbook chapters. Toss
that idea into the trash. Formulas in alge-
bra, trigonometry, and calculus are incredi-
bly useful. But, in this book, you will see
that mathematics is a network of intriguing
ideas—not a dry, formal list of techniques.

We want you to discover what mathe-
matics really is and to become a fan. How-
ever, if you are not intrigued by the romance
of the subject, that’s fine too, because at least you will have a firmer under-
standing of what it is you are judging. Mathematics is a living, breathing,
changing organism with many facets to its personality. It is creative, powerful,
and even artistic.

Mathematics uses penetrating techniques of thought that we can all use to
solve problems, analyze situations, and sharpen the way we look at our world.
This book emphasizes basic strategies of thought and analysis.
These strategies have their greatest value to us in dealing with
real-life decisions and situations that are completely outside
mathematics. These “life lessons,” inspired by mathematical
thinking, empower us to better grapple with and conquer the
problems and issues that we all face in our lives—from love to

WELCOME!  Xi



This, therefore, is mathematics: she reminds
you of the invisible form of the soul; she gives
life to her own discoveries; she awakens the
mind and purifies the intellect; she brings to

light our intrinsic ideas; she abolishes

oblivion and ignorance which are ours by

birth. procLUS

business, from art to politics. If you can conquer infin-
ity and the fourth dimension, then what can’t you do?

As you read this book, we hope you discover the
beauty and fascination of mathematics, admire its
strength, and see its value to your life. We do not
have modest goals for this book. We want you to
look at your life, your habits of thought, and your
perception of the world in a new way. And we hope
you enjoy the view.

Part of the power of mathematics lies in its inexorable quest for elegance,
symmetry, order, and grace. Seeking pattern, order, and understanding is a
transforming process that mathematics can help us develop.

THE FAR SIDE By GARY LARSON

Mathematics seems to endow
one with something like a
new sense. CHARLES DARWIN

In mathematics I can report
no deficiency, except it be

that men do not sufficiently
understand the excellent use

of Pure Mathematics.
ROGER BACON
A
Hell's library
A Mathematical Journey
The realm of mathematics c ins some of the g ideas of h kind—

ideas comparable to the works of Shakespeare, Plato, and Michelangelo. These
mathematical ideas helped shape history, and they can add texture, beauty,
and wonder to our lives.

The advancement and perfection
of mathematics are intimately
connected with the prosperity of
the State. NAPOLEON I

Xii  WELCOME!

To make our mathematical excursion as pleasant as possible,
we have tried to make it all fun—fun to read, fun to do, and fun
to think about. We hope you explore some, learn some, think
some, enjoy some, and add a new aspect to your view of every-
thing. We hope you laugh at our bad jokes and silly remarks, for-
give our sometimes unbridled enthusiasm, but also embrace the
profound issues at hand.



If we do not expect the

The road through this book is not free
from perils, bumps, and jolts. Sometimes
you will confront issues that start beyond
your comprehension, but they won’t stay
beyond your comprehension. The jour-
ney to true understanding can be diffi-
cult and frustrating, but stay the course
and be patient. There is light at the end

of the tunnel—and throughout
the journey, too.
What's the point of it all? Well, the bottom line is that mathematics

It may well be doubted
whether, in all the range of
science, there is any field so
fascinating to the explorer—
so rich with hidden
treasures—so fruitful in
delightful surprises—as Pure
Mathematics. LEWIS CARROLL

unexpected, we will never involves profound ideas. Making these ideas our own empowers us

find it. HERACLITUS

with the strength, the techniques, and the confidence to accomplish
wonders.

Travel Tips—Read the Book

We have some suggestions about how to use this book:

Answer our questions » We often pose questions in the middle of a
section and invite you to give an answer or a guess before continuing.
Please attempt to answer these questions. If you don’t know an answer for
sure, guess. Don’t be afraid to make lots of mistakes—that is the only way
to learn. It is much better to guess wrong than not to think about the
question at all.

Think» This is our main goal. We want you to contemplate some of the
greatest and most intriguing creations of human thought. Constantly stop
and think.

Be active, not passive » Our wish is for you to be an active participant.
Take the concepts and make them your own. Look beyond the mathemat-
ical ideas, and don’t be satisfied with mere knowledge. Challenge yourself
to attain the power to figure things out on your own.

Have fun » We truly believe that the ideas presented in this book are
some of the most fascinating and beautiful ones around. We sincerely
hope that some, if not all, of the themes will appeal to your intellect.
More importantly, this journey of the imagination and of the mind
should be fun. Enjoy yourself!

Finally, reading mathematics is much different from reading about many
other subjects. Here’s how we read mathematics. We read a sentence or two,
stop reading, think about what we’ve read, and then realize we’re completely
and utterly confused. Usually we discover that we didn’t really understand the
previous paragraph. But, we don’t get frustrated . .. it’s the nature of the beast.
Instead, we either reread some previous sections or just reread the previous
sentence. The fuzziness slowly begins to fade ever so slightly, and the concept
begins to come into focus. Then we attempt to think about the issue and work

WELCOME!  Xiii
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with it on our own or with friends. It is at this point that we begin to appre-
ciate and understand the ideas presented. One of the great features of mathe-
matics is that once we do understand an idea our grasp of it is completely
solid. There is no vagueness or uncertainty. So, adopt high standards for what
you view as “understanding.” Be actively engaged as you read. Draw pictures,
explain ideas to friends. Put yourself in the position of the discoverer of each
idea. Ask questions, search for answers, and let those answers guide you to still
more questions.

Shall any gazer see with mortal eyes
Or any searcher know by mortal mind—
Veil after veil will lift—but there must be
Veil upon veil behind. sik EDWIN ARNOLD

With all good wishes,

Edward B. Burger ~ Michael Starbird



Surfing the book

book and get a quick overview of what’s ahead. The whole book

I t’s too early to get caught up in details. Instead, let’s just surf the
revolves around just two basic themes:

e Effective thinking
¢ Some truly great ideas

What mathematical sites lie ahead? Instead of just starting in with
a hot and spicy math topic, we thought it would be more fun to surf
the entire book and get a quick, big-picture overview of what is on
the horizon. We hope these “home pages” will pique your curiosity
and tantalize your intellect. Keep an open mind; forego any previous
biases and prejudices toward mathematics; and do not censor any
inventive thoughts or sparks of interest you may develop toward the
subject. Let’s surf.

The Masterpiece or The Mysteries of the
Horizon (1955) by René Magritte

xv



Welcome! Games Number Infinity  Gems Space Chaos

Chance Deciding Farewell

:I [ http://www.heartofmath.com/FunandGames

Fun and Games
An Introduction to
Rigorous Thought

Can this book help you think more effectively, more
inventively, solve life problems more creatively, and
analyze issues more logically?

The short answer is “Yes.”
Is there a better way to meet the powerful world of
logical thought than through Fun and Games?

The short answer is “No.”

Is this book strange and sometimes over the edge?
The short answer is “Absolutely.”

Just hang with us and see how far we'll go.

This site is an invitation to think and have fun
with genies, damsels, and Dodge Ball and, in
the process, develop a system of logical inquiry
that we will use throughout the book and
throughout our lives.

Who can better develop your thinking skills than
you? As you resolve the many dilemmas in these crazy
stories, you will automatically discover your own path to
logical and strategic thought. Don’t feel like going at it

alone? Get a friend or a roommate to try some with you...

it's all fun and games.

rm we having fun yet? v

PON

GO TO PAGE 3

GO TO PAGE 28

PON

GO TO PAGE 8 ‘P
} ®

S

...the primary question
‘was not what do we know, [
but how do we know it.
ARISTOTLE

SURFING THE BOOK
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Number e
Contemplation o

Worried about balding? How about this one: Are there
two hairy people on Earth with exactly the same
number of hairs on their bodies? Does Rogaine change
the answer?

What do the reproductive habits of 13th-century rabbits
have in common with the Parthenon?

More than you think.

Are art and music branches of mathematics?
You betcha Bach!

Don‘t give up! Think working on really challenging
questions that others have tried to solve is fruitless?

Ask Andrew Wiles. In 1994 he answered a 350-year-old
question—it only took him seven years. Hey, intellectual
triumphs happen—it just takes tenacity!

Can you tell time? If so, then you might have a promising
career at decoding the numbers at the bottom of
Universal Product Codes. Want to know how?

XQE TPS LPBE AXTZ?

So numbers are no biggie? In ancient Greece you were
thrown from a ship and drowned if you told people about
certain numbers. Sound irrational?

How close is 1 to 0.99999...? Closer than you might think.

Ancient questions about numbers still remain unanswered.
Act now...mathematicians are standing by.

1f 2 can be 1, who is the 1 to become?? v

< GO TO PAGE 41

GO TO PAGE 58

GO TO PAGE 238 W
GO TO PAGE 75
4

GO TO PAGE 86

GO TO PAGE 114

GO TO PAGE 129

GO TO PAGE 76

]

SURFING THE BOOK ~ XVii



Infinity
w || http://www.heartofmath.com/Infinity |

Infinity

GO TO PAGE 138

Want to know about it?

Oh moment,
one and infinite.

ROBERT BROWNING

N>z

bading...loading. . still loading v

Xviii  SURFING THE BOOK
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L“ http://www.heartofmath.com/GeometricGems

Geometric Gems Mighty is geometry; joined

with art, resistless.
EURIPIDES
ji 2
Good at jigsaw puzzles? Check out the Pythagorean
Theorem.

Want to see a picture of the sexiest rectangle?
If you're 18 or over,

What kind of attractive patterns can cover our floors and GO TO PAGE 257
walls? Can special, jumbled-looking patterns have some
symmetry that regular checkerboard patterns have?
Probably not. . .but hey, you never know.

Are straight lines really straight? Does space bend? For a GO TO PAGE 292
free tour of the universe, (not valid in all states)

GO TO PAGE 316

Is there a fourth dimension? Can you see it?
(Warning. . .if you click on this site, you may not be able to
return to this page.)

Want to get in SHAPE? W

SURFING THE BOOK ~ XiX

Copyrighted material



s \ / O™ 77’1/\\\‘ N\ (/"_‘\‘
( ) - ( ——. \
Y UNOESOEOa 5 2O, 8 ~UL
Welcome! Games Number Infinity Gems Space Chaos Chance D g Farewell
_!” http://www.heartofmath.com/ContortionsofSpace m
p
The true spirit of delight...

Contortions e hocadin

mathematics as surel
of Space e

J)'\\ BERTRAND RUSSELL

2 <> Y
Q@% v N Qp}f/}/(;)

Ve \\»

g

Bend and stretch—so ice for both aerobics and GO TO PAGE 328
topology.
If you want to take off some, but not all, of your clothes...

Does every issue have two sides? GO TO PAGE 351

Answer: “No.”

Elastic thoughts lead to solid ideas. . .the power of rubber.
Wondering about the mysteries of life? Want to untangle GO TO PAGE 375
DNA?

You've first got to untangle knots. . .good luck skipper!

The weather and rubber—are there two places on Earth
that are exactly opposite each other and yet have identical

temperatures and pressures?
Either ask your local weather forecaster or... @
| Ever thought about a world of rubber? - @ L_@:E

XX  SURFING THE BOOK
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Can pictures or i inﬂnjxely_mmm:'! S,
Can we predict the the weather, or even tﬁg
positions of the planets in }h&tuture?
Answer: “No.”

&V v 5

)

Fractals—is there anything thatos,nqt one)d
Probably not. . .but what is one?

A butterfly flaps its wings in Brazil. Two weeks later
there is a tornado in Kansas—kiss Dorothy good-bye.
Are these events related?

Nature is sheer and utter chaos. Why bother cleaning
your room?

Can objects straddle between two dimensions?

...details...details...details...

SURFING THE BOOK ~ XXI

Copyrighted material
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Chance

Farewell

http://www.heartofmath.com/Farewell

hen is the end a beginning?

How many more ideas are there for you to explore
and enjoy? How long is your life?

-
—

...what the imagination
seizes as beauty must
be truth—whether it

existed before or not

JOHN KEATS
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Can pictures or i be infinitely intricate?
Can we predict the population, the weather, or even tl&ﬁ
positions of the pIanet; in the future? o
Answer: “No.” :

Fractals—is there anything that‘ is not one7~
Probably not. . .but what is one?

A butterfly flaps its wings in Brazil. Two weeks later
there is a tornado in Kansas—kiss Dorothy good-bye.
Are these events related?

Nature is sheer and utter chaos. Why bother cleaning
your room?

Can objects straddle between two dimensions?

...details...details...details....
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®)(1) (2) (3) (4 5y (s

Taming Uncertainty

John and Jim are identical twins who were separated at
birth. Both have married women named Jennifer who watch
Seinfeld reruns and love ice cream. What are the odds?

Answer: “Higher than you might think.”

Will 2 people in a room of 30 have the same birth date?
How would you bet?

Why are amazing coincidences nearly certain to happen?
Here’s one: Take “amazing coincidences” and look at the
letters or spaces in the prime positions: 2, 3, (skip 5
because that’s the number of fingers on a hand), 7, 11,
and 13. What does it spell? m a g i c!!! What an amazing
coincidence?

Surprised?
Consider all the graduates of Lakeside School over its (

whole history. The average net worth of each graduate
increased by millions of dollars in 1996.

Amazing. . .or not?
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GO TO PAGE 541

GO TO PAGE 586
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Chance, too, which seems
to rush along with
slack reins, is bridled and
governed by law.
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|| hutp://www.heartofmath.com/DecidingWisely

Deciding Wisely
Applications of
Rigorous Thinking

Should you buy lottery tickets or this book?

Can improved airline safety lead to more accidental
deaths?

Answer: “Yes."”

Investing $1000, compounded at 5% annually, how long
will it take to become a millionaire?

Which candidate will win when three candidates are vying
for one seat?

The most popular candidate may not fair so well.

Are three people able to share a cake so that each person

is equally satisfied with his or
her portion?

| -
It’s your move...think it through.

Chance favors only the
prepared mind.

LOUIS PASTEUR

GO TO PAGE 634

GO TO PAGE 649

GO TO PAGE 663

GO TO PAGE 683

GO TO PAGE 700
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hen is the end a beginning?

How many more ideas are there for you to explore
and enjoy? How long is your life?
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...what the imagination
seizes as beauty must
be truth—whether it

existed before or not

JOHN KEATS
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understanding of a complete solution or even see how a solution will eventu-
ally fall into place. This situation is like being asked to walk through a forest
in the dark. Without knowing the terrain, the natural tendency is to freeze like
a deer in headlights. However, we must learn not to let this understandable
fear paralyze us intellectually; we must take a step. It is only by stumbling
through many small intellectual steps that we are eventually able to make any
progress at all.

For example, imagine we'’re soccer players with the ball at midfield. In this
position we can’t possibly know how a goal will be achieved, and we can’t stop
to envision the entire progression of the future before kicking the ball. Instead,
we move with the understanding that the specific goal strategy will become
clear as opportunities arise.

Just try out ideas with these stories—loosen up, try to kick the ball, and
don’t worry if you miss. Remember:

Truth comes out of error more easily than out of confusion.
FRANCIS BACON

After you have given considerable thought to a story, move to the corres-
ponding part in Section 1.2, “Nudges,” where leading questions and sugges-
tions provide a gentle push in the right direction, in case you need a hint.
There we also identify some strategies for tackling both mathematical ques-
tions and, more importantly, questions that will arise in your life.

Section 1.3, “The Punch Lines,” provides solutions and commentary about
how the questions and their resolutions fit into the mathematical landscape.
As you think about these stories, you will discover some profound ideas that
capture the essence of some deep and beautiful mathematical concepts.

As you proceed, remember the rules on page 4, especially rule 6.

Story 1. That’s a Meanie Genie

On an archeological dig near the highlands of Tibet, Alley discovered an
ancient oil lamp. Just for laughs she rubbed the lamp. She quickly stopped
laughing when a huge puff of magenta smoke spouted from the lamp, and an
ornery genie named Murray appeared. Murray, looking at the stunned Alley,
exclaimed, “Well, what are you staring at? Okay, okay, you've found me; you
get your three wishes. So, what will they be?” Alley, although in shock, realized
she had an incredible opportunity. Thinking quickly, she said, “I'd like to find
the Rama Nujan, the jewel that was first discovered by Hardy the High Lama.”
“You got it,” replied Murray, and instantly nine identical-looking stones
appeared. Alley looked at the stones and was unable to differentiate any one
from the others.

Finally she said to Murray, “So where is the Rama Nujan?” Murray ex-
plained, “It is embedded in one of these stones. You said you wished to find it.
So now you get to find it. Oh, by the way, you may take only one of the stones
with you, so choose wisely!” “But they look identical to me. How will I know

1.1/ SILLY STORIES EACH WITH A MORAL 5
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which one has the Rama Nujan in it?” Alley questioned. “Well, eight of the
stones weigh the same, but the stone containing the jewel weighs slightly more
than the others,” Murray responded with a devilish grin.

Alley, becoming annoyed, whispered under her breath, “Gee, I wish I had a
balance scale.” Suddenly a balance scale appeared. “That was wish two!”
declared Murray. “Hey, that’s not fair!” Alley cried. “You want to talk fair? You
think it’s fair to be locked in a lamp for 1729 years? You know you can’t get
cable TV in there, and there’s no room for a satellite dish! So don’t talk to me
about fair,” Murray exclaimed. Realizing he had gone a bit overboard, Murray
proclaimed, “Hey, I want to help you out, so let
me give you a tip: That balance scale may be -
used only once.” “What? Only once?” she said,
thinking out loud. “I wish I had another bal- o
ance scale.” ZAP! Another scale appeared.

“Okay, kiddo, that was wish three.” Murray

snickered. “Hey, just one minute,” Alley . .
said, now regretting not having asked for s

one million dollars or something more
standard. “Well at least this new scale works
correctly, right?” “Sure, just like the other
one. You may use it only once.” “Why?” Alley inquired. “Because it is a ‘wished’
balance scale,” he said, “so the rule is ‘one scale, one balancing’; it’s just like
the rule against using one wish to wish for a hundred more wishes.” “You are
a very obnoxious genie.” “Hey, I don’t make up the rules, lady, I just follow
them,” he said.

So, Alley may use each of the two balance scales exactly once. Is it possible
for Alley to select the slightly heavier stone containing the Rama Nujan from
among the nine identical-looking stones? Explain why or why not.

Story 2. Damsel in Distress

Long ago, knights in shining armor battled dragons and rescued damsels in
distress on a daily basis. Although it is not often stressed in many stories of
chivalry, the rescue often involved logical thinking and creative
problem solving by the damsel. Here then is a typical knightly
encounter.

Once upon a time, a notorious knight captured a damsel and
imprisoned her in a castle surrounded by a square moat that was
infested with extraordinarily hungry alligators. The moat was
20 feet across, and no drawbridge existed because after depositing
the damsel in the castle, the evil knight had taken it with him
(giving his horse one major hernia).

After a time, a good knight rode up and said, “Hail sweet
damsel, for I am here, and thou art there. Now what are we going
to do?”



The knight, though good, was not too bright and consequently paced back
and forth along the moat looking anxiously at the alligators and trying feebly
to think of a plan. While doing so, he stumbled upon two sturdy beams of
wood suitable for walking across but lacking sufficient length. Alas, the moat
was 20 feet across, but the beams were each only 19 feet long and 8 inches
wide. He tried to stretch them and then tried to think. Neither effort proved
successful. He had no nails, screws, saws, Superglue, or any other method of
joining the two beams to extend their length.

What to do? What to do? Fortunately, the damsel, after a suitable time to
allow the good knight to attempt to solve the puzzle on his own, called to the
knight and gave him a few hints that enabled him to rescue her. What was the
maiden’s suggestion?

This story from medieval times foreshadows our journey into the geometric
and the visual.

Story 3. The Fountain of Knowledge

During an incredibly elaborate hazing stunt during pledge week, Trey Sheik
suddenly found himself alone in the Sahara Desert. His desire to become a fra-
ternity brother was now overshadowed by his desire to find something to
drink (these desires, of course, are not unrelated). As he wandered aimlessly
through the desert sands, he began to regret his involvement in the whole frat
scene. Both hours and miles had passed and Trey was near dehydration. Only
now did Trey appreciate the advantages of sobriety. Suddenly, he came upon
an oasis.

There, sitting in a shaded kiosk beside a small pool of mango nectar, was
an old man named Al Donte. Big Al not only ran the mango bar but was also
a travel agent and could book Trey on a two-humped camel back to Michigan.
At the moment, however, Trey desired nothing but a large drink of that beau-
tifully translucent and refreshing mangoade. Al informed Trey that he sold the
juice only in 8-ounce servings and the cost for one serving was $3.50. Trey
frantically searched his pockets, and though he found much sand, he also
discovered that he had exactly $3.50.

Trey’s jubilation at the thought of liquid coating his parched throat was
quickly shattered when Al casually announced that he did not have an 8-ounce
glass; all he had was a 6-ounce glass and a 10-ounce glass—neither of which
had any markings on it. Al, being a man of his word, would not hear of sell-
ing any more or any less than an 8-ounce serving of his libation. Trey, in des-

peration, wondered whether it was possible
to use only the unmarked 6- and 10-ounce
glasses to produce exactly 8 ounces in the
10-ounce glass. Do you think it’s possible?
If so, explain how, and if not, explain why.
This pledge-week prank does whet our

appetites for a world of numbers.
6-0z glass 10-oz glass

1.1/ SILLY STORIES EACH WITH A MORAL 7



Story 4. Dropping Trou

Before reading on, remember that truth is sometimes stranger than fiction.
The highlight of Professor Burger’s April 1993 talk to more than 300 Williams
College students and their parents occurred when after removing his shoes, he
tied his feet together with a stout rope, leaped onto the table, dramatically
removed his belt, unzipped his zipper, and dropped his pants. The purple
cows (Williams mascots) mooing about on his baggy boxer shorts completed
an image not soon forgotten in the annals of mathematical talks. The more
conservative parents in the audience were contemplating transferring their
sons and daughters to a less “progressive” school.

But then, at the moment of maximum shock and bewilderment, Professor
Burger performed the seemingly impossible feat of rehabilitating his fast-
sinking reputation. Without removing the rope attached to his feet, he turned
his pants inside out and pulled his trousers back to their accustomed position
(though now inside out). Thus he simultaneously restored his modesty and
his credibility by demonstrating the mathematical triumph of reversing his
pants without removing the rope that was tying his feet together.

Please attempt to duplicate Professor Burger’s amazing feat—in the privacy

> of your room, of course. You will need a rope or cord about 5 feet long. One
Edward Burger: Exposed  end of the rope should be tied snugly around one ankle and the other end tied
on Apell 241933 equally snugly about the other ankle. Now, without removing the rope, try to
take your pants off, turn them inside out, and put them back on so that you,
the rope, and your pants are all exactly as they were at the start, with the
exception of your pants being inside out. While some may find this experi-
ment intriguing, others may find it in poor taste. Everyone will agree, however,
that surprising outcomes arise when we bend and contort objects and space.

Story 5. Dodge Ball

Dodge Ball is a game for two players—Player One and Player Two (although
any two people can play it, even if they are not named “Player One” and
“Player Two”). Each player has a special game board (shown on the next page)
and is given six turns.

Player One begins by filling in the first horizontal row of his game board
with a run of X’s and O’s. That is, on the first line of his board, he will write
either an X or an O in each box. Then Player Two places either an X or an O
in the first box of her board. So at this point, Player One has filled in the first
row of his board with six letters, and Player Two has filled in the first box of
her board with one letter.

The game continues with Player One writing down either an X or an O in
each box of the second horizontal row of his board. Then Player Two writes
one letter (an X or an O) in the second box of her board. The game proceeds
in this fashion until all of Player One’s boxes are filled with X’s and O’s; thus,
Player One has produced six rows of six marks each, and Player Two has pro-
duced one row of six marks. All marks are visible to both players at all times.

8  FUN AND GAMES



Player One’s game board

1

Player Two's game board

1 2 3 4 5 6

Player One wins if any of his rows exactly matches Player Two’s row (Player
One matches Player Two). Player Two wins if her row does not match any of
Player One’s rows (Player Two dodges Player One).

Would you rather be Player One or Player Two? Who has the advantage?
Can you devise a strategy for either side that will always result in victory? This
little game holds within it the key to understanding the sizes of infinity.

Story 6. A Tight Weave

Sir Pinsky, a famous name in carpets, has a worldwide reputation for pushing
the limits of the art of floor covering. The fashion world stands agog at the

clean lines and uncanny coherence of his purple and gold creations. Some call
him square because his designs so richly employ that quaint quadrilateral. But

squares in the hands of a master can create textures beyond the weavers’
world, although not beyond human imagination.

One day Sir Pinsky began a creation with, as always, a perfect, purple
square. However, one square seemed too plain, so in the exact center of it he
added a gold square. He saw that the central square implicitly defined eight
purple squares surrounding it. As he pondered, he realized that those eight
purple squares were identical to his original large square except for two things:
(1) Each was one-third the size of the whole square; and (2) none of them had

gold squares in their centers.

1.1/ SILLY STORIES EACH WITH A MORAL 9
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One die has two 6’s and four 2’s. Another has three 5’s and three 1’s. The
third has four 4’s and two blank faces. The last die has 3’s on each face. The
dice are not weighted—that is, any face is just as likely to land face-up as any
other.

Deep Pockets Drew strides up to the bowl to choose the winning die.
Which die should Drew draw? Drew considers the die that has all 3’s. Which
die could Mr. Bones select that will beat the all-3’s die two-thirds of the time?
After finding that die, we know that the all-3’s die would not be a particularly
wise choice.

Next Deep Pockets Drew considers the die with four 4’s and two blank
faces. Why will the die with three 5’s and three 1’s beat it two-thirds of the
time? After verifying this dicey dominance, we know that selecting the die
with four 4’s and two 0’s would not be a smart move.

Drew next considers the die with three 5’s and three 1’s. Why will the die
with two 6’s and four 2’s beat it two-thirds of the time? After confirming this
superiority, we know that the die with three 5’s and three 1’s would not be the
best die.

Only one possibility remains: The die with two 6’s and four 2’s. Is there a
die that will beat it two-thirds of the time? Your surprising discovery will show
that none of the four dice is the “best” one to select, because each one can be
beaten by one of the other three dice two-thirds of the time. Amazing.

So now Drew can put the dice in a circular order where each one beats its
clockwise neighbor two-thirds of the time. What is that order? After doing the
math, Deep Pockets Drew chooses not to play, and as a result his pockets
become deeper.

This intriguing dice game surprisingly leads to the seemingly unrelated
insight that the idea of a fair and democratic voting system is impossible—so
much for “a government of the people, by the people, and for the people.”

Story 9. Dot of Fortune

One day three college students were selected at random from the studio audi-
ence to play the ever-popular TV game show, “Dot of Fortune.” One of the
students had already discovered the power and beauty of mathematical think-
ing, while the other two were not nearly so fortunate. The stage contained no
mirrors, reflective surfaces, or television monitors. The three students were
seated around a small round table and blindfolded. As Pat, the host, explained
the rules of the game, Vanna affixed a conspicuous but small colored dot to
each student’s forehead.

“So, contestants,” Pat explained, “at the sound of the bell you will remove
your blindfolds. You will see your two companions sitting quietly at the
table, each with a dot on his or her forehead. Each dot is either red or white.,
You cannot, of course, see the dot on your own forehead. After you have
observed the dots on your companions’ foreheads, you will raise your hand if
you see at least one red dot. If you do not see a red dot, you will keep your



hands on the table. The object of the game is to deduce the color of your own
dot. As soon as you know the color of your dot, hit the buzzer in front of you.
Do you understand the rules of the game?” All the students understood the
rules, although the math fan understood them better.

“Are you ready?” asked Vanna after affixing a red dot to each student’s fore-
head. After the contestants nodded, Vanna rang the bell and they removed
their blindfolds. The studio audience quivered with anticipation. The students
looked at one another’s dots, and all raised their hands. After some time, the
math fan hit her buzzer, knowing what color dot she had. Explain how she
knew this. Why did the other students not know? This game requires creative
logical reasoning—a powerful means to make discoveries whether they are in
math, in life, or even (although rarely) on prime-time TV.

CAUTION!

Proceed to the next section
@ only after you have given

considerable thought to

each of the stories.
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Leading Questions and Hints
for Resolving the Stories

When we cannot use the compass of
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A White Vertical Water Story 1. That’s a Meanie Genie
(1972) by Louise Nevelson

Often we discover a
solution only after

Initially, we might think that finding the jewel is impossible because Alley is
allowed to make only two comparisons. Instead of comparing stones individ-
ually, perhaps she should compare one collection of stones with another col-
lection of stones. Now suppose Alley compares one group with another using

We'movebeyona the first scale. What can she conclude? What should she do next?

what appears to

be the obvious or

14

straightforward Story 2. Damsel in Distress

h.
approac Thinking about variations on a situation can shed light on which features are

w essential and which are not. In this case we might consider a variation in



Do not overlook

small details;
they often lead
to tremendous
discoveries.

CP==

Don't be afraid
to experiment,
especially when
outcomes are
uncertain.

[CB==g

which the damsel in distress is on the other side of a 20-foot river rather than
surrounded by a square moat. Unfortunately for the maiden, if she were sep-
arated from bliss by a river, she would go blissless, because the two 19-foot
beams, in the absence of tools, would still not enable the knight to rescue her.
Could the square shape of the moat come into play in the solution?

\19ft beams

Looking at extremes is a potent technique of analysis in many situations
and may be helpful here. The extremes, either geometrical ones as in this
situation or conceptual ones in other situations, frequently reveal features we
might have otherwise overlooked.

Look at the
f corner!

Story 3. The Fountain of Knowledge

To solve this puzzle, combine trial and error with careful observation. As we
observe the outcomes of various attempts, we can teach ourselves what may
be possible. Try filling up the 10-ounce glass, and then use it to fill the 6-ounce
glass. What do you have now—anything new?

1.2/NUDGES 15



Visualization and
experimentation
often lead to
surprising and even
counterintuitive
results.
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Minor differences
early on may lead to
dramatically
different outcomes.

(OB

Don't quit.
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Consider various
scenarios.

(OB
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Story 4. Dropping Trou

We hope that you physically attempt this exercise. By actually trying a task on
your own, it’s often possible to discover insights that otherwise may have been
hidden from view (particularly in this case).

You will notice that the rope does restrict the amount of movement of your
pants. Your mission is to discover means to work around such constraints. For
example, try moving parts of the pants through other parts. You may first
want to try this task wearing shorts rather than long pants.

Story 5. Dodge Ball

Play this game a few times with a friend. Switch roles so that each of you has
the opportunity to be Player One and Player Two. Remember, if you are Player
One, your goal is to match one of your rows with your opponent’s row. If you
are Player Two, you want to dodge all six of your opponent’s rows; that is, you
want your row to differ in at least one spot from each of the six rows of your
opponent. Who would you rather be: Player One or Player Two?

Story 6. A Tight Weave

Consider a purple square that has a smaller gold square in its center. How do
each of the eight surrounding squares differ from the whole picture? They are
much the same except that the whole picture has a gold square in the middle,
and each of the eight surrounding squares is solid purple. How could you
modify those eight one-third-size surrounding squares to make them look like
smaller copies of the entire picture you
see here?

Now let’s ask the question again: “In
the picture you now have, is each of the
eight one-third-size squares identical to
smaller copies of the whole picture?” No.
How would you modify each one-third-
size square-with-a-gold-center to make
it identical to the whole new figure? Are
you done?

Draw several steps of this repetitive
process. At each stage, add up the areas
of all the gold squares. When should you
stop this process?

We want each square to
look like a smaller copy
of the entire rug.

Story 7. Let’s Make a Deal

Suppose the raisin’s initial guess was wrong. What would be the result if he
were to change his answer?



Break a hard
problem into
easier ones.

(OB

20 ft

‘_D
282842 ft

20t

She then takes two of these three stones and places one on each side of the
second scale. If one weighs more than the other, then she knows that this stone
is the one containing the jewel. If they both weigh the same, then she knows
that the third stone must contain the jewel. Thus, by weighing the stones only

twice, Alley is able to find the jewel.

Take partial steps whenever possible. Notice that, instead of trying to iden-
tify the jewel immediately, Alley first reduces the pool of choices from nine to
three. Thus she first makes the problem easier. “Divide and conquer” is an
important and useful technique in both mathematics and life.

Story 2. Damsel in Distress

Focusing attention on the corner of the
moat suggests using one of the beams to
span the corner. Of course, we need to check
that the two 19-foot beams are long enough
to make the configuration in the picture.
There are at least two ways to verify that
this picture is correct. One way is to con-
struct a physical model. The picture shown

at left is a physical model scaled
down so that 1 foot in the story corresponds to 1 millimeter in the
picture. You can now measure and ensure that this configuration is

possible.

This is also 9.5 ft.

An alternative method would be to observe that the picture has
some right triangles. This observation foreshadows our look at the
Pythagorean Theorem. After we examine good old Pythagoras’s
theorem (Chapter 4), the following paragraphs will seem soothing
and comforting. If for now you find them less so,
feel free to glance through them and just move on.

Notice that the corner of the moat forms a
20-foot-by-20-foot square. By the Pythagorean
Theorem, the distance from the outer corner of the
shore to the inner corner of the castle island is equal

to the square root of 20% + 202
Using a calculator, we see that the
distance is 28.2842 . . . feet.

Placing the 19-foot beam diago-
nally across the corner of the moat as
far out as it can go creates a triangle
that cuts off the corner. If we draw a
line from the center of the beam
to the outer corner of the moat, we
create two identical 45-degree right
triangles, as shown. Since the length

1.3/ THEPUNCH LINES 19
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of half the beam is 9.5 feet, we learn that the center of the beam is also 9.5 feet
from the outer corner of the moat.

Since the total diagonal distance from the outer corner of the moat to the
corner of the castle island is 28.2842 . . . feet, the distance to the center of the
beam is (28.2842 ... feet — 9.5 feet) = 18.7842 . .. feet. Since that distance is
just less than 19 feet, the other beam will just barely span the distance between
the beam and the island. In gratitude for her rescue, the damsel provided the
good knight with a romantic lesson in geometry.

Story 3. The Fountain of Knowledge

Suppose we fill up the 10-ounce glass with mango juice and slowly pour it into
the 6-ounce glass, stopping at the moment the 6-ounce glass is full. Notice
that what’s left in the 10-ounce glass is precisely 4 ounces of mango juice. We
now empty the 6-ounce glass back into the pool and refill it with the 4 ounces
from the other glass. If we now refill the 10-ounce glass from the pool, we can
again slowly pour its contents into the 6-ounce glass until the 6-ounce glass is
full. Filling it takes exactly 2 more ounces, and now the larger glass contains
exactly 8 ounces. Happily, those 8 ounces of mango juice can now be served

to Trey (on a tray). If Trey had found a

k solution, he would have made his first
e ’ > discovery in an area of mathematics
=y 4 known as number theory.
Pour 4 oz. into 6-0z. glass - ’&
- ~ 7Y
y
— | -
Refill 10-0z. glass Pour to fill (2 oz. of mango juice)
; ; -
There is more than one solution o=

to this puzzle. For example, we could
have begun by filling the 6-ounce
glass and pouring its entire contents into the
10-ounce glass. See if you can use this starting
point to find an alternative solution.

8-0z. of mango
juice here!

Story 4. Dropping Trou

The sequence of diagrams on the next page illustrates a solution to this knotty
puzzle. Notice that by bending, contorting, and twisting your pants around,
you can produce different configurations. Questions involving bending, con-
torting, and twisting lead to interesting and surprising discoveries. The notion
of bending space is the fundamental notion in an area of mathematics called
topology.



Method: With pants on
rope, bring one of the
ends (cuff) of the right
leg through the inside
of the left leg; pull all
the way through. When
done, pants will be
right side out (still) but
the rope will now go
through the pants. Now
reach each hand into
the inside of each pants
leg and grab the cuffs.
Simultaneously, pull the
cuffs up through the
pants. The pants will be
inside out and the rope
will no longer be around
the pants.

By doing we often
discover valuable
insights.

Often simple
observations can
have deep
consequences.

(OB

Often, thinking only in the abstract does not reveal new insights. Make the
issue concrete and physical whenever possible.

Many people believe mathematical issues exist outside the realm of our life
experience. In truth, many surprising and even counterintuitive mathematical
discoveries can be made by freeing ourselves from old, unsubstantiated biases
and experimenting with new ways of thinking and seeing.

Story 5. Dodge Ball

We want to be Player Two. Here is a strategy that will guarantee victory. Player
One fills in the first row of six boxes in his table. As Player Two, we look at the
first letter and ignore the last five. If his first letter is an X, we write an O; if it’s
an O, we write an X. Notice that, no matter what happens later, after this
point, we are certain that the row we will create will definitely not be the same
as Player One’s first row. The two rows will differ in at least the first box. Player
One now writes down his second row of six letters. We examine only the sec-
ond letter in this new row. If that letter is an X, we write an O; if that letter is
an O, we write an X. Now we are sure that no matter what follows, our row
will not be the same as Player One’s second row because the rows definitely
differ in the second letter. If we repeat this process, we will have created a row
of X’s and Os that is different from the six rows created by Player One.

Creating a row that does not match any of our opponent’s rows has a pow-
erful application in the study of infinity. Although this modest little game has
only six steps, the concept behind it has tremendous ramifications, as we shall
see in Chapter 3: “Infinity.”
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As a final note, we pose the following question: Suppose that we are Player
One, and our opponent—who is trying to follow the strategy described above
to win—makes a mistake by placing the wrong letter in the first box. Can you
now describe a strategy for us, as Player One, to ensure a win? Give this new
challenge a try.

Story 6. A Tight Weave

The solution is to repeat the process infinitely often. We start with a purple
square. At the first stage, a single gold square of size 1/3 X 1/3 is placed in the
center. At the next stage eight more gold squares of size 1/9 X 1/9 are placed
in the centers of each of the eight surrounding squares. At the next stage,
8 X 8, or 64, more gold squares of size 1/27 X 1/27 are placed in the centers
of each of the eight squares that surround each of the eight squares that sur-
round the original square. At each stage, we add increasingly many gold
squares, each of a smaller size. So the final picture actually has infinitely many
gold squares, but each of the eight squares surrounding the central square is
an exact replica, though smaller, of the whole picture. This intricate purple and
gold carpet is an example of a self-similar object known as a fractal. In Chap-
ter 6: “Chaos and Fractals,” we will examine many such infinitely intricate
objects.

What is the area of all the (infinitely many) gold squares? Since all those
gold squares lie within the rug that is 1 yard square, we know the area cannot
be more than 1. At the first stage, we have one gold square of size 1/3 X 1/3,
50 its area is 1/9. At the next stage, we add eight more gold squares, each of size
1/9 X 1/9, s0 their areas total 8 X (1/9)?, making the total area of gold squares
at stage two equal to 1/9 + 8 X (1/9)> = 0.2098 ... . At the third stage, we add
8% more squares, each of area (1/9)°. Thus, the total area of gold squares at stage
three equals 1/9 + 8 X (1/9)* + 8 X (1/9)° = 0.2976 .. . . Repeating, we begin
to see a pattern. The fourth stage, for example, would have a gold area equal to
1/9 + 8 X (1/9)* + 8> X (1/9)° + 8 X (1/9)* = 0.3757 . . . . Thus, the total
area of gold squares in the final pattern would be the infinite sum:

1 e [TV a1V anie, [TV i (1Y o5, T1Y6
9+8X(9)+8 X(9)+8X 9 + 8" X 9 + 8 X 9 e sy



Data can help
uncover surprising
observations and
help build intuition
and understanding.

[CP==

What does it equal? Even though there are infinitely many terms, we know
that the whole area must be a number not greater than 1. What number is it?

The gold area at the 5th stage is 0.4450....;
at the 10th stage itis  0.6920..
at the 15th stage itis  0.8291..
at the 25th stage itis  0.9474...;
at the 50th stage itis  0.9972...;
at the 100th stage itis  0.999992....

From this pattern of numbers, it becomes clear that the gold area becomes
increasingly close to 1—and that is a great guess for the area.

A clever way to calculate the total area is to add up all the infinitely many
terms. We start by giving a name to the total; let’s call that number SUM.
Below you see the infinite sum that SUM represents. Directly under that, you
see what (8/9)SUM equals. Notice that multiplying each term of SUM by 8/9
just shifts that term to the right. For example, (8/9)(1/9) = 8 X (1/9).

suM=3+8x (1) 4o x (1) 4o x (L) + ot x (L) + 85 x (L)
=3 ! WWigx(L) +eox(L) +-...

9 9 9 9 9

$)sum = 8Xl2+82>< l3+83>< 14+t<;‘>< ls+85>< 21
9 9 9 9 9 9 .

Since all the terms of (8/9)SUM are directly under an identical term of SUM,
it is easy to subtract (8/9)SUM from SUM, because all the terms drop out
except the first term:

SUM — (%)SUM =1 andso:
1 -
-

Since (1/9)SUM = 1/9, what is SUM? It must equal 1! In other words, the
area of the gold squares is equal to the area of the entire rug. Thus, even
though there are many purple threads remaining in the final pattern, as we
begin to see in the illustration on page 22, the purple contributes no area to
the rug. Surprise! We will see many more counterintuitive mysteries of infin-
ity in our studies of numbers, fractals, and, of course, infinity itself.

Story 7. Let’s Make a Deal

Fortunately, Warren Piece enjoys mathematics as a hobby, so he believes he
can solve this conundrum. He thinks carefully, assesses the chances each way,
and confidently proclaims (while still jumping up and down, of course),
“I switch my guess to Door Number 1, Monty.”

Monty Hall turns and says, “Okay. Let’s see what deal you’ve made. What is
behind Door Number 12” The door swings slowly open, and the crowd gasps
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Story 9. Dot of Fortune

The math fan sees a red dot on the forehead of each of the other two players.
She knows she has either a white dot or a red dot on her own forehead. Let’s
see what happens if we suppose her dot is white.

What would her two companions at the table see? Each would see one red
dot and one white dot, and each would see two arms raised. Each would be
thinking, “Do I have a red dot or a white dot on my forehead? If I have a white
dot, then the red-dotted person would not have her hand up. Therefore, I
must have a red dot.” After making this easy deduction, this person would hit
the buzzer.

But what did these two people actually do? Or, more to the point, what did
they not do? They did not hit their buzzers! If either of them had seen a white
dot and a red dot and two raised hands, he or she would have been able to
deduce that his or her own dot was red. Since neither person buzzed right
away, neither must have seen a white dot on the math fan’s forehead. There-
fore, the math fan waited just long enough to know that the other two players
could not deduce their own dot colors, and then she buzzed, confident that
her dot was red.

A final question of the story is, Why did the other students not know? The
answer to that question is, of course, because they had not read The Heart of
Mathematics.




1.4 From Play to Power
Discovering Strategies of Thought for Life

Imagination is more important

than knowledge.

ALBERT EINSTEIN
A Grandmaster Maurice Our stories illustrate strategies of thinking. Even in such a light-hearted
Ashley, teaching chess setting, certain techniques of thought emerge as powerful means to illuminate

strategies to inner-city

o iren in Harlern. the unknown—techniques applicable to any situation we may face in life.

We'll encounter more “life lessons” elsewhere in The Heart of Mathematics; on
the next page we've summarized a few. Although some may seem obvious or
trivial, don’t take them lightly—they can be surprisingly useful for analyzing
and enjoying life’s adventure.
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LESSONS FOR LIFE
1. Just do it.

2. Make mistakes and fail, but never give up.

3. Keep an open mind.

4. Explore the consequences of new ideas.

S. Seek the essential.

6. Understand the issue.

7. Understand simple things deeply.

8. Break a difficult problem into easier ones.

9. Examine issues from several points of view.

10. Look for patterns and similarities.

CP==

Mindscapes & inVITATIONS TO FURTHER THOUGHTW

We now provide some additional stories for further amusement and enlight-
enment. We call them “Mindscapes” because they are vistas for the mind
that encourage you to expand your way of thinking.

For each of the following situations, contemplate, analyze, and resolve the
puzzle. Also, guess which branch of mathematics each situation represents:
Logic, Number Theory, Infinity, Geometry, Topology, Chaos, or Probability.
Of course, we haven’t discussed any of these areas in depth yet, but just take
a guess—being wrong is fine.

Finally, we invite you to provide an aesthetic critique of each question
and your solutions. In other words, did you find either the question or your
solution interesting? Which questions were the most challenging? Do you
like one of your solutions better than the others? At the end of this section
we provide some hints for some of the questions. Use them sparingly.

“Contrariwise,” continued Tweedledee, “if it was so, it might be;
and if it were so, it would be; but as it isn’t, it ain’t. That's logic.”
LEWIS CARROLL

1. Late-night cash. Suppose that David Letterman and Paul Shaffer have the
same amount of money in their pockets. How much must Dave give to Paul
so that Paul would have $10 more than Dave?

2. Politicians on parade. There were 100 politicians at a certain convention.
Each politician was either crooked or honest. We are given the following
two facts:
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a. At least one of the politicians was honest.
b. Given any two of the politicians, at least one of the two was crooked.

Can it be determined from these facts how many of the politicians were
honest and how many were crooked? If so, how many? If not, why not?

. The profit. A dealer bought an item for $7, sold it for $8, bought it back for
$9, and sold it for $10. How much profit did she make?

. The truth about ... Fifty-six biscuits are to be fed to 10 pets; each pet is
either a cat or a dog. Each dog is to get six biscuits, and each cat is to get
five. How many dogs are there? (Try to find a solution without performing
any algebra.)

. It’s in the box. There are two boxes: one marked A and one marked B. Each

box contains either $1 million or a deadly snake that will kill you instantly.
You must open one box. On box A there is a sign that reads: “At least one of
these boxes contains $1 million.” On box B there is a sign that reads: “A
deadly snake that will kill you instantly is in box A.” You are told that either
both signs are true or both are false. Which box do you open? Be careful, the
wrong answer is fatal!

. Lights out. Two rooms are connected by a hallway that has a bend in it so
that it is impossible to see one room while standing in the other. One of the
rooms has three light switches. You are told that exactly one of the switches
turns on a light in the other room, and the other two are not connected to
any lights. What is the fewest number of times you would have to walk to the
other room to figure out which switch turns on the light? And the follow-up
question is: Why is the answer to the preceding question “one”? (Look out,
this question uses properties of real lights as well as logic.)

. Out of sight but not out of mind. The infamous band Slippery Even When
Dry ended their concert and checked into the Fuzzy Fig Motel. The guys in
the band (Spike, Slip, and Milly) decided to share a room. They were told
by Chip, the night clerk who was taking a home study course on animal
husbandry, that the room cost $25 for the night.

Milly, who took care of the finances, collected $10 from each band mem-
ber and gave Chip $30. Chip handed Milly the change, $5 in singles. Milly,
knowing how bad Slip and Spike were at arithmetic, pocketed two of the

dollars, turned to the others, and said, “Well guys, we got $3 change, so we
each get a buck back.” He then gave each of the other two members a dollar

and pocketed the last one for himself.

Once the band members left the office, Chip, who witnessed this little
piece of deception, suddenly realized that something strange had just hap-
pened. Each of the three band members first put in $10 so there was a total
of $30 at the start. Then Milly gave each guy and himself $1 back. That
means that each person put in only $9, which is a total of $27 ($9 from each
of the three). But Milly had skimmed off $2, so that gives a total of $29. But
there was $30 to start with. Chip wondered what happened to that extra

dollar and who had it. Can you please resolve and explain the issue to Chip?
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8.

10.

The cannibals and the missionaries. In 1853 in the wilds of central Iowa,
three missionaries and three cannibals were walking in a group. The mis-
sionaries were trying to convert the cannibals to their religion, while the
cannibals were looking for a chance to practice their culture on the mission-
aries. After a time, they all came to a river that they wished to cross. None of
the six could swim, but all could row. Fortunately, on the river bank was a
small rowboat available for use.

Since the boat was small and the cannibals and the missionaries were all
on the large side, it was clear that only two persons could cross at one time.
[t was late in the day and neither cannibals nor missionaries had eaten much
recently, and the missionaries began to notice that the cannibals were indi-
cating greater and greater appreciation for the missionaries’ ample girths.
The missionaries decided that being prudent was better than being a main
course, so they agreed that at no time would they allow any group of mis-
sionaries to be outnumbered by cannibals during the crossing. For their
part, the cannibals did not fear being outnumbered by the missionaries
because they realized that an excess of missionaries would result only in
more discussion among the missionaries, thus relieving the cannibals of the
burden of polite conversation.

How do the cannibals and the missionaries all cross the river using only
the one boat yet at no time letting the cannibals outnumber the missionaries
on either side of the river?

Whom do you trust? Congresswoman Smith opened the Post and saw that
a bean-counting scandal had been leaked to the press. Outraged, Smith
immediately called an emergency meeting with the five other members of
the Special Congressional Scandal Committee, the busiest committee on
Capitol Hill

Once they were all assembled in Smith’s office, Smith declared, “As
incredible as it sounds, I know that three of you always tell the truth. So now
I’'m asking all of you, Who spilled the beans to the press?”

Congressman Schlock spoke up, “It was either Wind or Pocket.”

Congressman Wind, outraged, shouted, “Neither Slie nor I leaked the
scandal.”

Congressman Pocket then chimed in, “Well both of you are lying!”

This provoked Congressman Greede to say, “Actually, [ know that one of
them is lying and the other is telling the truth.”

Finally, Congressman Slie, with steadfast eyes, stated, “No, Greede, that is
not true.”

Assuming that Congresswoman Smith’s first declaration is true, can you
determine who spilled the beans?

A commuter fly. A passenger train left Austin, Texas, at 12:00 p.m. bound for
Dallas, exactly 210 miles aways; it traveled at a steady 50 miles per hour. At
the same instant, a freight train left Dallas headed for Austin on the same
track, traveling at 20 miles per hour. At this same high noon, a fly leaped
from the nose of the passenger train and flew along the track at 100 miles



. The profit. Different people will get different answers, and each person will

argue that his or hers is correct. Act out the transactions and see what happens.
After you try this, go back and figure out why other answers are incorrect.

Experimentation is an effective means of
resolving difficult issues.

OBy

. The truth about ... What if all the animals were cats? How many extra

biscuits would you have? Consider turning some of those cats into dogs.
This transformation leads to an algebra-free solution.

Often a clever idea can be more potent than
conventional wisdom.

(OB

It’s in the box. Consider the two possibilities carefully. You don’t want to slip
up on this one.

Carefully consider the outcomes of various scenarios.

(OB

. Lights out. Suppose you turn on a switch, wait a half hour, and then turn

the switch off. If you were then to walk into the other room, could you tell if
the light had been on for half an hour? Ponder this question, and use it to
resolve the original puzzle.

Don'’t overlook or dismiss facts that seem insignificant or irrelevant.

[CB==

. Out of sight but not out of mind. Don’t be fooled by all the numbers. Force

yourself to figure out what was paid out and what was given back.

Don't believe unsubstantiated claims, even if they sound
scientific. Until you understand the issue for yourself, be skeptical!

(S

If that doesn’t help, get 30 $1 bills and act out the entire episode.
Once you discover the truth, go back and find out where the problem is
in the story.

Experimentation is a powerful means for discovering patterns
and developing insights.

(OB
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See how many different ways you can devise to understand and explain
what actually happened.

Once you find an argument that resolves an issue, it is a
great challenge to find a different argument. However, in attempting
to find other arguments, we often gain further insight into and
understanding of the situation. Also, the first argument we
come up with may not be the best one.

(CP==

8. The cannibals and the missi ies. Professor Starbird shares his grand-

mother’s solution.

When my grandmother was 92, I gave this problem to her along with
three nickels to represent the cannibals and three Life Savers candies to
represent the missionaries. We set up a line on her table to represent the
river so that she could slide the cannibals and the missionaries (the
nickels and the Life Savers) back and forth singly or in pairs, thereby
solving the problem. When I arrived the next day for my visit, she was
delighted to tell me that she had solved the problem.

“How did you do it?” I asked.

She replied triumphantly, “I ate the missionaries.”

We give her half credit. A useful aspect of her method was to model the
problem using a concrete representation. Making a written table with two
columns would also be a good way to represent the setting. One column
would be one bank of the river, and the other column would be the other
bank. Each row would represent the situation after a crossing. So the first
row would have three C’s, three M’s, and a B for the boat in the left-hand
box and nothing in the right. The next row might have two C’s and two M’s
in the left box and one C, one M, and the B in the right box. Going from
row to row must be obtainable by moving one or two C’s or M’s along with
the B to the other column.

Once you have an effective representation of this question, a little experi-
mentation will lead to an answer.

Devising a good representation of a problem is frequently
the biggest step toward finding a solution.

er

. Whom do you trust? To find the person who leaked the story, you must

determine who is telling the truth. Ask yourself whether you can determine
the truthfulness or deceit of any one person.

If Pocket is telling the truth, then Schlock and Wind are liars, and the
remaining three—Pocket, Greede, and Slie—are telling the truth. Could
those three all be telling the truth? If not, then you know for certain that
Pocket is lying.



10.

11.

Since Slie contradicts Greede, you know that one of them is lying. Which
one?

A rock of certainty can be the foundation of
a tower of truth.

(OB

A commuter fly. On close inspection, notice that the fly changes directions
an infinite number of times during her travels. It is possible to compute how
far the fly has flown before she encounters the freight train for the first time.
Once you know this, it’s possible to compute the distance she travels before
encountering the passenger train on the return trip. You could compute
those distances and find a pattern and then solve the problem by adding up
the infinite list of distances. However, there is a much easier way to solve this
puzzle.

How much time will pass before the trains collide? How far will the fly fly
in that length of time? Case closed.

This story is not complete without our telling an anecdote about the
famous mathematician John von Neumann. Von Neumann was notorious
for being extremely fast and accurate at calculating numbers in his head—
oddly enough, not a skill that all mathematicians possess. One day he was
walking with a friend who asked him the question of the fly between the
trains. Instantly, von Neumann stated the answer. The questioner said,
“Oh, you saw the trick.” To which von Neumann replied, “Yes, it was an easy
infinite series.”

If you are not von Neumann, the fly-between-the-trains story provides a
good life lesson.

Look at problems from different perspectives.

Go out of your way to think about different ways to view a problem. In
this case, if you know how long the fly flies, you can compute the distance the
fly travels. You have now reduced the original problem to a different, though
related, problem. In this case, the different problem is much simpler to solve
than the original one.

Look at related situations.

A fair fare. This question does not have one definitive answer. However, a look
at a related problem may persuade you that one possibility is best. What if,
instead of staying in one taxi the whole time, the three travelers traveled the
first 10 miles together and then all got out and paid the first cabby. The first
traveler then left, and the remaining two got another cab, rode 10 miles, and
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12.

13.

14.

15.

again got out and paid the second cabby. Then the last traveler took a cab
alone for the remaining 10 miles. This rephrasing of the original problem
makes the division of payment seem more obvious.

Getting a pole on a bus. It seems impossible to get the 5-foot pole on the
bus, given that the largest length of an item allowed on the bus is 4 feet.
Sarah gave Adam a large box to put the pole in. Now give the dimensions of
the box and explain why it does the trick.

Often an inventive solution arises from looking at
a situation in an unusual way.

(SR

Tea time. This question contains much unnecessary and distracting infor-
mation. A close look at the story reveals that the description of the dinner-
ware and the names of the people are extraneous details. But what may not
be quite so obvious is that the number of ounces in the teacup and the
creamer and the amounts poured and spooned are also irrelevant.

Don’t be distracted by this extraneous information. Suppose the problem
did not contain those facts at all and instead was stated as follows:

A creamer and a teacup each have exactly the same amount of cream and
tea, respectively. An undisclosed amount of mixing of the cream and tea
goes on, but after the mixing, each of the two containers still contains the
same amount of liquid as the other. Is the tea more diluted than the
cream, or is the cream more diluted than the tea?

Having less information might force you to look at the situation differ-
ently and consequently, to understand and solve it.

Look at problems from different perspectives.

A shaky story. Exactly one person at the party said to Sam that he or she
shook eight hands. Note the obvious fact that each person with whom that
person shook hands must have shaken hands with at least one person. Now
determine how many hands that person’s spouse shook. See if this approach
leads to any insights. If it still does not, consider an easier problem: Suppose
that there were just three couples, or even two couples. Search for a pattern.

If you have a hard problem, first work on a simpler,
related problem to develop insight.

[CP==g

Murray’s brother. This genie has posed a difficult challenge. It can be fun to
work on, but do not work on it too long if you get frustrated. In this puzzle,



we must squeeze every ounce (or even gram) of information from every
weighing.

Don't ignore information.

G

Each weighing must be designed to give us maximum information. After
a weighing, we learn many things. Let’s begin by putting four stones on each
side of a scale and recording what we observe. If the scale balances, we know

that all eight stones weigh the same, and the diamond is not among those

eight. So the mystery stone is among the remaining four, but we still do not
know whether it is heavier or lighter than the others. Can you now find the
Dormant Diamond and determine whether it is heavy or light?

Suppose that the four-against-four weighing does not balance. This
imbalance gives us much information. We know that the unweighed four
stones all weigh the same. We know that each of the four stones on the light
side of the scale are potentially light, but none of them is potentially heavier
than the 11 other stones. We know similar things about the four stones on
the other side of the scale. We will have to keep track of the stones and con-
sider putting potentially light stones with potentially heavy ones to help sort
things out. For example, suppose we weigh a potentially light stone with a
potentially heavy stone on one side of the scale and two stones that are
known to be normal on the other side. Then, depending on which way the
scale tips, we can conclude which of the two stones is the Dormant Diamond.

You might think about the last step to help you find an intermediate solu-
tion. That is, you might specify what collections of stones and knowledge
would allow you to find the diamond in one more weighing. For example,
suppose you figure out that the diamond is among three stones that are
potentially heavier than the others. Could you find the diamond in one
more weighing? Or suppose you had narrowed the field to three stones, one
potentially heavier than normal and two potentially lighter than normal.
Could you find the diamond in one more weighing? This technique of
working backward is often useful.

This balance-scale conundrum is tricky and difficult. Everyone, including
experienced mathematicians, would have to think hard to solve it. It can be
fun to work on if you enjoy this type of puzzle. Play with it; think carefully
about what you know; carefully keep track of all the information you gather.
But if you're not enjoying yourself, then just move on.
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2.1 Counting

How the Pigeonhole Principle Leads
to Precision Through Estimation

/

The simple modes of number are of
all other the most distinct; even the
least variation, which is a unit, making
each combination as clearly different
from that which approacheth nearest
to it, as the most remote; two being
as distinct from one, as two hundred;
and the idea of two as distinct from
the idea of three, as the magnitude of

the whole earth is from that of a mite.J

JOHN LOCKE

A Numbers in Color W begin with the numbers we first learned as children: 1, 2, 3, 4, . . . (the
(1:::-1959) by Jasper “ . indicate that there are more, but we don’t have enough room to list
O}

them). These numbers are so natural to us they are actually called natural
numbers. These numbers are familiar, but often familiar ideas lead to surpris-
ing outcomes, as we will soon see.

The most basic use of numbers is counting, and we will begin by just
counting approximately. That is, we’ll consider the power and the limitations
of making rough estimates. In a way, this is the weakest possible use we can
make of numbers, and yet we will still find some interesting outcomes. So let’s
just have some fun with plain old counting.



Make it quantitative.

(OB

A 1" square

Quantitative Estimation

One powerful technique for increasing our understanding of the world is to
move from qualitative thinking to quantitative thinking whenever possible.
Some people still count: “1, 2, 3, many.” Counting in that fashion is effective
for a simple existence but does not cut it in a world of trillion-dollar debts and
gigabytes of hard-drive storage. In our modern world there are practical dif-
ferences between thousands, millions, billions, and trillions. Some collections
are easy to count exactly because there are so few things in them: the schools
in the Big Ten Conference, the collection of letters you've written home in the
past month, and the clean underwear in your dorm room. Other collections
are more difficult to count exactly—such as the grains of sand in the Sahara
Desert, the stars in the sky, and the hairs on your roommate’s body. Let’s look
more closely at this last example.

It would be difficult, awkward, and frankly just plain weird to count the
number of hairs on your roommate’s body. Without undertaking that per-
verse task, we nevertheless pose the following.

Question » Do there exist two nonbald people on the planet who have exactly
the same number of hairs on their bodies?

It appears that we cannot answer this question since we don’t know (and don’t
intend to find out) the body-hair counts for anyone. But can we estimate
body-hair counts well enough to get some idea of what that number might be?
In particular, can we at least figure out a number that we could state with con-
fidence is larger than the number of hairs on the body of any person on Earth?

HOW HAIRY ARE WE?

Let’s take the direct approach to this body-hair business.
One of the authors counted the number of hairs on a 1/4-
inch X 1/4-inch square area on his scalp and counted about
100 hairs—that’s roughly 1600 hairs per square inch. From
this modest follicle count, we can confidently say that no
person on Earth has as many as 16,000 hairs in any square
inch anywhere on his or her body. The author is about 72
inches tall and 32 inches around. If the author were a perfect
cylinder, he would have 72-inch X 32-inch or about
2300 square inches of skin on the sides and about
another 200 square inches for the top of his head and
soles of his feet, for a total of 2500 square inches of skin.
Since the author is not actually a perfect cylinder (he
has, for example, a neck), 2500 square inches is an overestimate of his skin
area. There are people who are taller and bigger than this author, but cer-

containing 2000 tainly there is no one on this planet who has 10 times as much skin as this
hairs—not too author. Therefore, no body on Earth will have more than 25,000 square
physically likely. inches of skin. We already agreed that each square inch can have no more
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than 16,000 hairs on it. Thus we deduce that no person on this planet can have
more than 400 million (400,000,000) hairs on his or her body.

HOW MANY ARE WE?

An almanac or a Web site would tell us that there are about 6.2 billion
(6,200,000,000) people on this planet. Given this information, can we answer
our question: Do there exist two nonbald people on the planet who have
exactly the same number of hairs on their bodies? We urge you to think about
this question and try to answer it before reading on.

WHY MANY PEOPLE ARE EQUALLY HAIRY

There are more than 6 billion people on Earth, but each person has many
fewer than 400 million hairs on his or her body. Could it be that no two peo-
ple have the same number of body hairs? What would that mean? It would
mean that each of the 6 billion people would have a different number of body
hairs. But we know that the number of body hairs on each person is less than
400 million. So, there are less than 400 million different possible body-hair
numbers. Therefore, not all 6 billion people can have different body-hair

counts.

Looking at an issue Suppose we have 400 million rooms—each numbered in order. Suppose
from a new point of  each person did know his or her body-hair count, and we asked each person
view often enables us in the world to go into the room whose number is equal to his or her body-

to understand it hair number. Could everyone go into a different room? Of course not! We
more clearly. have 6 billion people and only 400 million room choices—some room or
rooms must have more than one person. In other words, there definitely exist

@P two people, in fact many people, who have the same number of body hairs.

By using some simple estimates, we have been able to answer a question
that first appeared unanswerable. The surprising twist is that in this case a
rough estimate led to a conclusion about an exact equality. However, there are
limitations to our analysis. For example, we are unable to name two specific
people who have the same body-hair counts even though we know they are
out there.

THE POWER OF REASONING

In spite of the silliness of our hair-raising question we see the power of rea-
soned analysis. We were faced with a question that on first inspection
appeared unanswerable, but through creative thought we were able to crack it.
When we are first faced with a new question or problem, the ultimate path of
logical reasoning is often hidden from sight. When we try, think, fail, think
some more, and try some more, we finally discover a path.

We solved the hairy-body question, but that question in itself is not of great
value. However, once we have succeeded in resolving an issue, it is worthwhile
to isolate the approach we used, because the method of thought may turn out
to be far more important than the problem it solved. In this case, the key to
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Often after we learn
a principle of logical
reasaning, we see
many instances
where it applies.

Srinivasa Ramanujan

G.H. Hardy

answering our question was the realization that there are
more people on the planet than there are body hairs on
any individual’s body. This type of reasoning is known as
the Pigeonhole principle. If we have an antique desk with
slots for envelopes (known as pigeonholes) like the one
shown, and we have more envelopes than slots, then cer-
tainly some slot must contain at least two envelopes. This
Pigeonhole principle is a simple idea, but it is a useful tool
for drawing conclusions when the size of a collection
exceeds the number of possible variations of some distin-
guishing trait.

Once we understand the Pigeonhole principle, we
become conscious of something that has always been
around us—we see it everywhere. For example, in a large
swim meet, some pairs of swimmers will get exactly the same times to the
tenths of a second. Some days more than 100 people will die in car wrecks.
With each breath, we breathe an atom that Einstein breathed before us. Each
person will arrive at work during the exact same minute many times during
his or her life. Many trees have the same number of leaves. Many people get
the same SAT score.

Number Personalities

The natural numbers 1, 2, 3, . . ., besides being useful in counting, have cap-
tured the imagination of people around the world from different cultures and
different eras. The study of natural numbers began several thousand years ago
and continues to this day. Mathematicians who are intrigued by numbers
come to know them individually. In the eye of the mathematician, individual
numbers have their own personalities—unique characteristics and distinc-
tions from other numbers. In subsequent sections of this chapter, we will dis-
cover some intriguing properties of numbers and uncover their nuances. For
now, however, we wish to share a story that captures the human side of math-
ematicians. Of course, mathematicians, like people in other professions, dis-
play a large range of personalities, but this true story of Ramanujan and Hardy
depicts almost a caricature of the “pure” mathematician. It illustrates part of
the mythology of mathematics and provides insight into the personality of an
extraordinary mathematician.

This interaction of two mathematicians on such an abstract plane even
during serious illness is poignant. They clearly thought each number was wor-
thy of special consideration. To affirm their special regard for each number, we
now demonstrate conclusively that every natural number is interesting by
means of a whimsical, though ironclad, proof.

The Intrigue of Numbers.
Every natural number is interesting.
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Ramanujan and Hardy

ne of the most romantic tales in the history
Oof the human exploration of numbers
involves the life and work of the Indian mathe-
matician Srinivasa Ramanujan. Practically isolated
from the world of academics, libraries, and math-
ematicians, Ramanujan made amazing discoveries
about natural numbers.

In 1913, Ramanujan wrote to the great English
mathematician G.H. Hardy at Cambridge Uni-
versity, describing his work. Hardy immediately
recognized that Ramanujan was a unique jewel in
the world of mathematics, because Ramanujan
had not been taught the standard ways to think
about numbers and thus was not biased by the
rigid structure of a traditional education; yet he
was clearly a mathematical genius. Since the pure
nature of mathematics transcends languages,
customs, and even formal training, Ramanujan’s

imaginative explorations have since given mathe-
maticians everywhere an exciting and truly
unique perspective on numbers.

Ramanujan loved numbers as his friends, and
found each to be a distinct wonder. A famous
illustration of Ramanujan’s deep connection
with numbers is the story of Hardy's visit to
Ramanujan in a hospital. Hardy later recounted
the incident: “I remember once going to see him
when he was lying ill at Putney. | had ridden in
taxi cab number 1729 and remarked that the
number seemed to me rather a dull one and that
| hoped it was not an unfavorable omen. ‘No, he
replied, ‘it is a very interesting number; it is the
smallest number expressible as the sum of two
cubes in two different ways.” Notice that, indeed,
1729 = 12* + 1% and also 1729 = 10* + 9.

PROOF THAT NATURAL NUMBERS ARE INTERESTING

Let’s first consider the number 1. Certainly 1 is interesting, because it is the
first natural number and it is the only number with this property: If we pick
any number and then multiply it by 1, the answer is the original number we
picked. So, we agree that the first natural number is interesting.

Let us now consider the number 2. Well, 2 is the first even number, and that
is certainly interesting—and, if that weren’t enough, remember that 2 is the
smallest number of people required to make a baby. Thus, we know that 2 is
genuinely interesting.

We now consider the number 3. Is 3 interesting? Well, there are only two
possibilities: Either 3 is interesting, or 3 is not interesting. Let us suppose that
3 is not interesting. Then notice that 3 has a spectacular property: It is the
smallest natural number that is not interesting—which is certainly an inter-
esting property! Thus we see that 3 is, after all, quite interesting.

Knowing now that 1, 2, and 3 are all interesting, we can make an analogous
argument for 4 or any other number. In fact, suppose now that k is a certain
natural number with the property that the first k natural numbers are all
interesting. That is, 1, 2, 3, .. ., k are all interesting. We know this fact is true
if kis 1, and, in fact, it is true for larger values of k as well (2, 3, and 4, for
example).

We now consider the very next natural number: k + 1.1s k + 1 interesting?
Suppose it were not interesting. Then it would be the smallest natural number
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. Many fold (S). Suppose you were able to take a large piece of paper of ordi-

nary thickness and fold it in half 50 times. What would the height of the
folded paper be? Would it be less than a foot? About one yard? As long as a
street block? As tall as the Empire State Building? Taller than Mount Everest?

. Only one cake. Suppose we had a room filled with 370 people. Will there be

at least two people who celebrate their birthdays on the same day?

. For the birds. Years ago, before overnight delivery services and e-mail, peo-

ple would send messages by carrier pigeon and would keep an ample supply
of pigeons in pigeonholes on their rooftops. Suppose you have a certain
number of pigeons, let’s say P of them, but you have only P — 1 pigeon-
holes. If every pigeon must be kept in a hole, what can you conclude? How
does the principle we discussed in this section relate to this question?

. Sock hop. You have 10 pairs of socks, five black and five blue, but they are

not paired up. Instead, they are all mixed up in a drawer. It’s early in the
morning, and you don’t want to turn on the lights in your dark room. How
many socks must you pull out to guarantee that you have a pair of one
color? How many must you pull out to have two good pairs (each pair is the
same color)? How many must you pull out to be certain you have a pair of
black socks?

. The last one. Here is a game to be played with natural numbers. You start

with any number. If the number is even, you divide it by 2. If the number
is odd, you triple it (multiply it by 3), and then add 1. Now you repeat the

process with this new number. Keep going. You win (and stop) if you get
to 1. For example, if we start with 17, we would have:

17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 — we see a 1, so we win!

Play four rounds of this game starting with the numbers 19, 11, 22, and 30.
Do you think you will always win no matter what number you start with?
No one knows the answer!

lll. Creating New Ideas

16.

17.

18.
19.

See the three. What proportion of the first 1000 natural numbers have a 3
somewhere in them? For example, 135, 403, and 339 all contain a 3, whereas
402, 677, and 8 do not.

See the three IT (H). What proportion of the first 10,000 natural numbers
contain a 3?

See the three III. Explain why almost all million-digit numbers contain a 3.

Commuting. One hundred people in your neighborhood always drive to
work between 7:30 and 8:00 a.m. and arrive 30 minutes later. Why must two
people always arrive at work at the same time, within a minute?
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20. RIP (S). The Earth has 6.2 billion people and almost no one lives 100 years.
Suppose this longevity fact remains true. How do you know that some year
soon, more than 50 million people will die?

IV. Further Challenges

21. Say the sequence. The following are the first few terms in a sequence. Can
you figure out the next few terms and describe how to find all the terms in
the sequence?

1

11

21
1211
111221
312211

22. Lemonade. You want to buy a new car, and you know the model you want.
The model has three options, each one of which you can either take or not
take, and you have a choice of four colors. So far 100,000 cars of this model
have been sold. What is the largest number of cars that you can guarantee to
have the same color and the same options as each other?

V. In Your Own Words

23. With a group of folks. In a small group, discuss and work through the
reasoning for why there are two people on Earth having the same number of
hairs on their bodies. After your discussion, write a brief narrative describing
your analysis and conclusion in your own words.
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2.2 Numerical Patterns
in Nature
Discovering the Beauty of the Fibonacci Numbers

4 There is no inquiry which is not
finally reducible to a question of
Numbers; for there is none which

may not be conceived of as
consisting in the determination of
quantities by each other, according

to certain relations.

AUGUSTE COMTE
A
A We can discover Oftcn when we see beauty in nature, we are subconsciously sensing hidden
patterns by looking order—order that itself has an independent richness. Thus we stop and smell

closely at our world. the roses—or, more accurately, count the daisies. In the previous section, we

contented ourselves with estimation, whereas here we move to exact counting.
The example of counting daisies is an illustration of discovering numerical
patterns in nature through direct observation. The pattern we find in the daisy
appears elsewhere in nature and also gives rise to issues of aesthetics that
touch such diverse fields as architecture and painting. We begin our investiga-
tion, however, firmly rooted in nature.

Have you ever examined a daisy? Sure, you've picked off the white petals
one at a time while thinking: “Loves me . . . loves me not,” but have you ever
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Look for patterns. taken a good hard look at what’s left once you've finished plucking? A close
@ inspection of the yellow in the middle of the daisy reveals unexpected struc-
ture and intrigue. Specifically, the yellow area contains clusters of spirals coil-
ing out from the center. If we examine the flower closely, we see that there are,
in fact, two sets of spirals—a clockwise set and a counterclockwise set. These
two sets of spirals interlock to produce a hypnotic interplay of helical form.
Interlocking spirals abound in nature. The cone flower and the sunflower
both display nature’s signature of dual, locking spi-
rals. Flowers are not the only place in nature where
spirals occur. A pinecone’s exterior is composed of
two sets of interlocking spirals. The rough and
prickly facade of a pineapple also contains two col-
lections of spirals.

Be Specific: Count

In our observations we should not be content with general impressions.
Instead, we move toward the specific. In this case we ponder the quantitative
quandary: How many spirals are there? An approximate count is: lots. Is the
number of clockwise spirals the same as the number of counterclockwise spi-
rals? You can physically verify that the pinecone has 5 spirals in one direction
and 8 in the other. The pineapple has 8 and 13. The daisy and cone flower both
have 21 and 34. The sunflower has a staggering 55 and 89. In each case, we
observe that the number of spirals in one direction is nearly twice as great as
the number of spirals in the opposite direction. Listing all those numbers in
order we see

5, 8, 13, 21, 34, 55, 89.

Is there any pattern or structure to these numbers?

Suppose we were given just the first two numbers, 5 and 8, on that list of
spiral counts. How could we use these two numbers to build the next num-
ber? How can we always generate the next number on our list?
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Leonardo of Pisa,
or Fibonacci

Unexpected patterns
are often a sign of
hidden, underlying

structure.

=P

We note that 13 is simply 5 plus 8, whereas 21, in turn, is 8 plus 13. Notice
that this pattern continues. What number would come after 89? Given this
pattern, what number should come before 5¢? How about before that? How
about before that? And before that?

Leonardo’s Legacy: The Fibonacci Sequence

The rule for generating successive numbers in the sequence is to add up the
previous two terms. So the next number on the list would be 55 + 89 = 144.

Through spiral counts, nature appears to be generating a sequence of num-
bers with a definite pattern that begins

1 12 35 8 13 21 34 55 89 144....

This sequence is called the Fibonacci sequence, named after the mathematician
Leonardo of Pisa (better known as Fibonacci—a shortened form of Filius
Bonacci, son of Bonacci), who studied it in the 13th century. After seeing this
surprising pattern, we hope you feel compelled to count for yourself the spi-
rals in the previous pictures of flowers. In fact, you may now be compelled to
count the spirals on a pineapple every time you go to the grocery store.

Why do the numbers of spirals always seem to be consecutive terms in this
list of numbers? The answer involves issues of growth and packing. The yel-
low florets in the daisy begin as small buds in the center of the plant. As the
plant grows, the young buds move away from the center toward a location
where they have the most room to grow—that is, in the direction that is least
populated by older buds. If one simulates this tendency of the buds to find the
largest open area as a model of growth on a computer, then the spiral counts
in the geometrical pattern so constructed will appear in our list of numbers.
The Fibonacci numbers are an illustration of surprising and beautiful patterns
in nature. The fact that nature and number patterns reflect each other is
indeed a fascinating concept.

A powerful method for finding new patterns is to take the abstract patterns
that we directly observe and look at them by themselves. In this case, let’s
move beyond the vegetable origins of the Fibonacci numbers and just think
about the Fibonacci sequence as an interesting entity in its own right. We con-
duct this investigation with the expectation that interesting relationships that
we find among Fibonacci numbers may also be represented in our lives.

FIBONACCI NEIGHBORS

We observed that flowers, pinecones, and pineapples all display consecutive
pairs of Fibonacci numbers. These observations point to some natural bond
between adjacent Fibonacci numbers. In each case, the number of spirals in
one direction was not quite twice as great as the number of spirals in the other
direction. Perhaps we can find richer structure and develop a deeper under-
standing of the Fibonacci numbers by moving from an estimate (“not quite
twice”) to a precise value. So, let’s measure the relative size of each Fibonacci
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The answer is: The number in the frame is ¢ again. Why? Well, suppose we
were just shown the number inside the frame without any of that other stuff
around it. We'd look at that new number and realize that the 1’s go on forever,
and thus that number is just . Stay with this picture until you see the idea
behind it. Therefore, we just discovered that

=1+ %
SOLVING FOR ¢

Now we have an equation involving just ¢, and this will allow us to solve for
the exact value of ¢. First, we can subtract 1 from both sides to get

¢—1= %

Multiplying through by ¢ we get
¢ -e=1

or just
—e—1=0.

This “quadratic equation” can be solved using the quadratic formula, which
states that

1*V5
-

But since ¢ is bigger than 1, we must have

1+N56
‘P=T\/_‘

Using a calculator, express (1 + \/5)/2 as a decimal and compare it with
the data from our previous calculator experimentation on the quotients of
consecutive Fibonacci numbers. Well, there we have it—our goal was to find
the exact value of ¢, and through a process of observation and thought we
succeeded.

The Golden Ratio

At the moment, we have no reason to consider the number ¢ to be especially
interesting; however, it is somewhat curious that the quotients of consecutive
Fibonacci numbers do seem to approach this fixed value. We started with
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simple observations of flowers and pinecones. We saw a numerical pattern
among our observations. The pattern led us to the number (1 + \V5)/2.

The number ¢ = (1 + \/5)/2 is called the Golden Ratio and, besides its
connection with nature’s spirals, it captures the proportions of some espe-
cially pleasing shapes in art, architecture, and geometry. Just to foreshadow
what is to come when we revisit the Golden Ratio in the geometry chapter,
here is a question: What are the proportions of the most attractive rectangle?
In other words, when someone says “rectangle” to you, and you think of a
shape, what is it? Light some scented candles, put on a Yanni CD, close your
eyes, and dream about the most attractive and pleasing rectangle you can
imagine. Once that image is etched in your mind, open your eyes, put out the
candles, and pick from the four choices below the rectangle that you think is
most representative of that magical rectangle dancing in your mind.

Many people think that the second rectangle from the left is the most
aesthetically pleasing—the one that captures the notion of “rectangleness.”
That rectangle is called the Golden Rectangle, and we will examine it in detail
in Chapter 4. The ratio of the dimensions of the sides of the Golden Rectan-
gle is a number rich with intrigue. If we divide the length of the longer side by
the length of the shorter side, we get ¢: the Golden Ratio. A 3-inch X 5-inch
index card is close to being a Golden Rectangle. Notice that its dimensions,
3 and 5, are consecutive Fibonacci numbers. In the geometry chapter we will
consider the aesthetic issues involving ¢ and make some interesting connec-
tions between the Fibonacci numbers and the Golden Rectangle in art.

To Be or Not to Be Fibonacci

After finding Fibonacci numbers hidden in the spirals of nature, it saddens us
to realize that not all numbers are Fibonacci. However, we are delighted to
announce that in fact every natural number is a neat sum of Fibonacci num-
bers. In particular, every natural number is either a Fibonacci number or it
is expressible uniquely as a sum of Fibonacci numbers whereby no two are
adjacent Fibonacci numbers. Here is one way to find the sum:

1. Write down a natural number.

2. Find the largest Fibonacci number that does not exceed your number.
That Fibonacci number is the first term in your sum.

3. Subtract that Fibonacci number from your number and look at this
new number.
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4. Find the largest Fibonacci number that does not exceed this new
number. That Fibonacci number is the second number in your sum.

5. Continue this process.

For example, consider the number 38. The largest Fibonacci number not
exceeding 38 is 34. So consider 38 — 34 = 4. The largest Fibonacci number
not exceeding 4 is 3, and 4 —3 = 1, which is a Fibonacci number. Therefore,
38 = 34 + 3 + 1. Similarly, we can build any natural number just by adding
Fibonacci numbers in this manner. In one sense, Fibonacci numbers are
building blocks for the natural numbers through addition.

Fun and Games with Fibonacci

Fibonacci numbers not only appear in nature; they can also be used to accu-
mulate wealth. (Moral: Math pays.) We can see this moral for ourselves in a
game called Fibonacci nim, which is played with two people. All we need is a
pile of sticks (toothpicks, straws, or even pennies will do). Person One moves
first by taking any number of sticks (at least one but not all) away from the
pile. After Person One moves, it is Person Two’s move, and the moves continue
to alternate between them. Each person (after the first move) may take away
as many sticks as he or she wishes; the only restriction is that he or she must
take at least one stick but no more than two times the number of sticks the
previous person took. The player who takes the last stick wins the game.

Suppose we start with ten sticks, and Person One removes three sticks, leav-
ing seven. Now Person Two may take any number of the remaining sticks from
one to six (six is two times the number Person One took). Suppose Person
Two removes five, leaving two in the pile. Now Person One is permitted to take
any number of sticks from one to ten (10 = 2 X 5), but because there are only
two sticks left, Person One takes the two sticks and wins. Play Fibonacci nim
with various friends and with different numbers of starting sticks. Get a feel
for the game and its rules—but don’t wager quite yet.

[f we are careful and use the Fibonacci numbers, we can always win. Here
is how. First, we make sure that the initial number of sticks we start with is not
a Fibonacci number. Now we must be Person One, and we find some poor
soul to be Person Two. If we play it just right, we will always win. The secret is
to write the number of sticks in the pile as a sum of nonconsecutive Fibonacci
numbers. Figure out the smallest Fibonacci number occurring in the sum, and
remove that many sticks from the pile on the first move. Now it is your
luckless opponent’s turn. No matter what he or she does, we will repeat the
preceding procedure. That is, once he or she is done, we count the number of
sticks in the pile, express the number as a sum of nonconsecutive Fibonacci
numbers, and then remove the number of sticks that equals the smallest
Fibonacci number in the sum. It is a fact that, no matter what our poor oppo-
nent does, we will always be able to remove that number of sticks without
breaking the rules. Experiment with this game and try it. Wager at will—or not.
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Mindscapes

'WE DEFINE THE FIBONACCI NUMBERS successively by starting with 1, 1, and
then adding the previous two terms to get the next term. These numbers are
rich with structure and appear in nature. The numbers of clockwise and
counterclockwise spirals in flowers and other plants are consecutive Fibonacci
numbers. The ratio of consecutive Fibonacci numbers approaches the Golden
Ratio, a number with especially pleasing proportions. While not all numbers
are Fibonacci, every natural number can be expressed as the sum of distinct,
nonconsecutive Fibonacci numbers.

The story of Fibonacci numbers is a story of pattern. As we look at the
world, we can often see order, structure, and pattern. The order we see pro-
vides a mental concept that we can then explore on its own. As we discover
relationships in the pattern, we frequently find that those same relationships
refer back to the world in some intriguing way.

Understand simple things deeply.

=P

TATIONS TO FURTHER THOUGHT}

In this section, Mindscapes marked (H) have hints for solutions at the back of the book.
Mindscapes marked (S) have solutions.

I. Developing Ideas

1.
2.

1. Solidifying Ideas
6.

. Twos and threes. Simplify the quantities 2 +

Fifteen Fibonaccis. List the first 15 Fibonacci numbers.

Born ¢. What is the precise number that the symbol ¢ represents? What
sequence of numbers approaches ¢?

. Tons of ones. Verify that 1 + #I equals 3/2.

kT

2 3
land3+ 3
2+2 3+3

. The family of ¢. Solve the following equations for x: x = 2 + i, x=3+ %

Baby bunnies. This question gave the Fibonacci sequence its name. It was

posed and answered by Leonardo of Pisa, better known as Fibonacci.
Suppose we have a pair of baby rabbits: one male and one female. Let us

assume that rabbits cannot reproduce until they are one month old and that
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they have a one-month gestation period. Once they start reproducing, they
produce a pair of bunnies each month (one of each sex). Assuming that no
pair ever dies, how many pairs of rabbits will exist in a particular month?
During the first month, the bunnies grow into rabbits. After two months,
they are the proud parents of a pair of bunnies. There will now be two pairs
of rabbits: the original, mature pair and a new pair of bunnies. The next
month, the original pair produces another pair of bunnies, but the new pair
of bunnies is unable to reproduce until the following month. Thus we have:

Time in Months Start 1 2 3 4 5 6 7
Number of Pairs 1 1 2

Continue to fill in this chart and search for a pattern. Here is a suggestion:
Draw a family tree to keep track of the offspring.

Start @ Q

> o«

e e Ba

‘We’ll use the symbol F, to stand for the first Fibonacci number, F, for
the second Fibonacci number, F; for the third Fibonacci number, and so
forth. So F; = 1,and F, = 1, and, therefore, F; = F, + F; = 2,and F; =
F; + F, = 3, and so on. In other words, we write F,, for the nth Fibonacci
number where n represents any natural number. So, the rule for generating
the next Fibonacci number by adding up the previous two can now be stated
symbolically as:

F,=F,_, + F,_s.

k

7. Di ing Fib i relationships (S). By experimenting with numerous
examples in search of a pattern, determine a simple formula for
(Fn41)? + (F,)*—that is, a formula for the sum of the squares of two con-

secutive Fibonacci numbers.

8. Di ing more Fib i relationships. By experimenting with
numerous examples in search of a pattern, determine a simple formula for
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carefully and beat your friend. Play again with another (non-Fibonacci)
number of sticks to start. Record the number of sticks removed at each stage
of each game. Finally, reveal the secret strategy and record your friend’s
reaction.

I1l. Creating New Ideas

26. Discovering still more Fibonacci relationships. By experimenting with

27.

28.

29.

numerous examples in search of a pattern, determine a formula for

Fp41 X Fpey — (F,,)Z—that is, a formula for the product of a Fibonacci
number and the Fibonacci number that comes after the next one, minus the
square of the Fibonacci number in between them. (Hint: The answer will be
different depending on whether # is even or odd. Consider examples of
different cases separately.)

Finding factors (S). By experimenting with numerous examples, find a way
to factor F,, into the product of two natural numbers that are from famous
sequences. That is, consider every other Fibonacci number starting with the
second 1 in the sequence, and factor each in an interesting way. Discover a
pattern. (Hint: Mindscape I1.10 may be relevant.)

The rabbits rest. Suppose we have a pair of baby rabbits—one male and one
female. As before, the rabbits cannot reproduce until they are one month
old. Once they start reproducing, they produce a pair of bunnies (one of
each sex) each month. Now, however, let us assume that each pair dies after
three months, immediately after giving birth. Create a chart showing how
many pairs we have after each month from the start through month nine.

Digging up Fibonacci roots. Using the square root key on a calculator,
evaluate each number in the top row and record the answer in the bottom

Number

(%) ®) | V%)

Computed Value

30.

31.

Looking at the chart, make a guess as to what special number VF,,;,/F,
approaches as n gets larger and larger.

Tribonacci. Let’s start with the numbers 0, 0, 1, and generate future num-
bers in our sequence by adding up the previous three numbers. Write out
the first 15 terms in this sequence, starting with the first 1. Use a calculator
to evaluate the value of the quotients of consecutive terms (dividing the
smaller term into the larger one). Do the quotients seem to be approaching
a fixed number?

Fibonacci follies. Suppose you are playing a round of Fibonacci nim with a
friend. You start with 15 sticks. You start by removing two sticks; your friend
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32.

33.

34.

35.

then takes one; you take two; your friend takes one. What should your next
move be? Can you make it without breaking the rules of the game? Did you

make a mistake at some point? If so, where?

Fibonacci follies II. Suppose you are playing a round of Fibonacci nim with
a friend. You start with 35 sticks. You start by removing one stick; your
friend then takes two; you take three; your friend takes six; you take three,
your friend takes two. What should your next move be? Can you make it
without breaking the rules of the game? Did you make a mistake at some
point? If so, where?

Fibonacci follies II1. Suppose you are playing a round of Fibonacci nim
with a friend. You start with 21 sticks. You start by removing one stick; your
friend then takes two. What should your next move be? Can you make it

without breaking the rules of the game? What went wrong?

A big fib. Suppose we have a natural number that is not a Fibonacci
number—Ilet’s call it N. Suppose that F is the largest Fibonacci number that
does not exceed N. Show that the number N — F must be smaller than the
Fibonacci number that comes right before F.

Decomposing naturals (H). Use the result of Mindscape 111.34, together
with the notion of systematically reducing a problem to a smaller problem,
to show that every natural number can be expressed as a sum of distinct,
nonconsecutive Fibonacci numbers.

IV. Further Challenges

36.

37.

38.

39.

How big is it? Is it possible for a Fibonacci number greater than 2 to be
exactly twice as big as the Fibonacci number immediately preceding it?
Explain why or why not. What would your answer be if we removed the
phrase “greater than 2”7

Too small. Suppose we have a natural number that is not a Fibonacci
number—Iet’s call it N. Let’s write F for the largest Fibonacci number that
does not exceed N. Show that it is impossible to have a sum of two distinct
Fibonacci numbers each less than F add up to N.

Beyond Fibonacci. Suppose we create a new sequence of natural numbers
starting with 0 and 1. Only this time, instead of adding the two previous
terms to get the next one, let’s generate the next term by adding 2 times the
previous term to the term before it. In other words: F,,,., = 2F,, + F,_,.

Such a sequence is called a generalized Fibonacci sequence. Write out the first
15 terms in this generalized Fibonacci sequence. Adapt the methods that

were used in this section to figure out that the quotient of consecutive
Fibonacci numbers approaches (1 + V/5)/2 to discover the exact number
that F,,; ,/F,, approaches as n gets large.

Generalized sums. Let F,, be the generalized Fibonacci sequence defined in
Mindscape IV.38. Can every natural number be expressed as the sum of
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distinct, nonconsecutive generalized Fibonacci numbers? Show why, or give
several counterexamples. What if you were allowed to use consecutive
generalized Fibonacci numbers? Do you think you could do it then?
[Mustrate your hunch with four or five specific examples.

It’s hip to be square (H). Adapt the methods of this section to prove that the

numbers \/F, . »/F, approach ¢ as n gets larger and larger. (Here, F,, stands
for the usual Fibonacci number. See Mindscape IV. 39.)

V. In Your Own Words

41.

42,

43,

Personal perspectives. Write a short essay describing the most interesting
or surprising discovery you made in exploring the material in this section.
[f any material seemed puzzling or even unbelievable, address that as well.
Explain why you chose the topics you did. Finally, comment on the aesthet-
ics of the mathematics and ideas in this section.

With a group of folks. In a small group, discuss and work through the
reasoning for how the quotients of consecutive Fibonacci numbers approach
the Golden Ratio. After your discussion, write a brief narrative describing
the rationale in your own words.

Creative writing. Write an imaginative story (it can be humorous, dramatic,
whatever you like) that involves or evokes the ideas of this section.

Power beyond the mathematics. Provide several real-life issues—ideally,
from your own experience—for which some of the strategies of thought
presented in this section would provide effective methods for approaching
and resolving them.
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2.3 Prime Cuts of Numbers

How the Prime Numbers Are the Building Blocks
of All Natural Numbers

A I Saw the Figure 5 in
Gold (1928) by Charles
Demuth

... number is merely the

product of our mind.

KARL FRIEDRICH GAUSS

The natural numbers, 1, 2, 3, . . ., help us describe and understand our
world. They in turn form their own invisible world filled with abstract rela-
tionships, some of which can be revealed through simple addition and multi-
plication. These basic operations lead to subtle insights about our familiar
numbers.

Our strategy for uncovering the structure of the natural numbers is to
break down complex objects and ideas into their fundamental components.
This simple yet powerful technique recurs frequently throughout this book,
and throughout our lives. As we become accustomed to using this strategy, we
will see that complicated situations are often best analyzed first by investigating



the building blocks of an idea or an object and then by understanding how
these building blocks combine to create a complex whole. The natural num-
bers are a good arena for observing this principle in action.

Building Blocks

What are the fundamental components of the natural numbers? How can we
follow the suggestion of breaking down numbers into smaller components?

There are many ways to express large natural numbers in terms of smaller
ones. For example, we might first think of addition: Every natural number can
be constructed by just adding 1 + 1 4+ 1 + 1 + -+ - + 1 enough times. This
method demonstrates perhaps the most fundamental feature of natural num-
bers: They are simply a sequence of counting numbers, each successive one
bigger than its predecessor. However, this feature provides only a narrow way
of distinguishing one natural number from another.

Divide and Conquer

How can one natural number be expressed as the product of smaller natural
numbers? This innocent-sounding question leads to a vast field of intercon-
nections among the natural numbers that mathematicians have been explor-
ing for thousands of years. Our adventure begins by recalling the arithmetic
from our youth and looking at it afresh.

One method of writing a natural number as a product of smaller ones is
first to divide and then to see if there is a remainder. We were introduced to
division a long time ago in third or fourth grade—we weren’t impressed.
Somehow it paled in comparison to, say, recess. The basic reality of long divi-
sion is that either it comes out even or there is a remainder. If the division
comes out even, we then know that the smaller number divides evenly into the
larger number and that our number can be factored.
For example, 12 divided by 3 is 4,50 3 X 4 = 12 and
3 and 4 are factors of 12. More generally, suppose that
nand m are any two natural numbers. We say that n
divides evenly into m if there is an integer q such that

nq=m.

The integers n and q are called factors of m.

If the division does not come out even, the remain- . . .
der is less than the number we tried to divide. For . . .
example, 16 divided by 5 is 3 with a remainder of 1.

This whole collection of elementary school flash-
backs can be summarized in a statement that sounds
far more impressive than “long division,” namely, the
Division Algorithm.

2.3/ PRIME CUTS OF NUMBERS 65



there? Are there more than a million primes? Are there more than a billion
primes? Are there infinitely many primes?

Since there are infinitely many natural numbers, it seems reasonable to
think that we would need bigger and bigger primes in order to build up the
bigger and bigger natural numbers. Therefore, we might conclude that there
are infinitely many primes. This argument, however, isn’t valid. Do you see
why? It’s not valid because we can build natural numbers as large as we wish
just by multiplying a couple of small prime numbers. For example, using just
2 and 3, we are able to make huge numbers:

45,349,632 = 28 3",

The point is that, since we are allowed to use tons of 2’s and 3’s in our prod-
uct, we can construct numbers as large as we wish. Therefore, at this moment
it seems plausible that there may be only finitely many prime numbers, even
though every large (and small) natural number is a product of primes.

INFINITELY MANY PRIMES

Although the previous argument was invalid, it turns out that there are infi-
nitely many prime numbers, and thus there is no largest prime number. Euclid
discovered the following famous valid proof more than 2000 years ago. It is
beautiful in that the idea is clever and uncomplicated. In fact, on first inspec-
tion we may think there is some sleight of hand going on, as if some fast-talk-
ing salesman in a polyester plaid sports jacket is trying to sell us a used
car—before we know it, we’re the not-so-proud owner of a 1973 Gremlin.
But this is not the case. Think along with us as we develop this argument.
The ideas fit together beautifully, and, if you stay with it, the argument will
suddenly “click.” Let’s now examine one of the great triumphs of human
reasoning.

: ! ||| The Infinitude of Primes.
Euclid & s ey 3 -
“" There are many prime

THE STRATEGY BEHIND THE PROOF

The strategy for proving that there are infinitely many prime numbers is to
show that, for each and every given natural number, we can always find a
prime number that is larger than that natural number. Since we can consider
larger and larger numbers as our natural number, this claim would imply that
there are larger and larger prime numbers. Thus we would show that there
must be infinitely many primes, because we could find primes as large as we
want without bound.

Before moving forward with the general idea of the proof, let’s illustrate the
key ingredient with a specific example. Suppose we wanted to find a prime
number that is greater than 4. How could we proceed? Well, we could just say
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“5” and be done with it, but that is not in the spirit of what we are trying to
do. Our goal is to discover a method that can be generalized and used to find
a prime number that exceeds an arbitrary natural number, not just the pathet-
ically small number 4. So we seek a systematic means of finding a prime that
exceeds, in this case, 4. What should we do? Our challenge is to:

1. find a number bigger than 4 that is not evenly divisible by 2;

2. find a number bigger than 4 that is not evenly divisible by 3; and

3. find a number bigger than 4 that is not evenly divisible by 4.

Each of these tasks individually is easy. To satisfy (1), we just pick an odd
number. To satisfy (2), we just pick a number that has a remainder when we
divide by 3. To satisfy (3), we just pick a number that has a remainder when
we divide by 4. We now build a number that meets all those conditions simul-
taneously. Let’s call this new number N for new. Here is an N that meets all
three conditions simultaneously:

N=(1X2X3X4)+1.

So, N is really just the number 25, but, since we are trying to discover a gen-
eral strategy, let’s not think of N as merely 25 but instead think of N as the
more impressive (1 X 2 X 3 X 4) + 1,

We notice that N is definitely larger than 4. By the Prime Factorization of
Natural Numbers, we know that N is either a prime number or a product of
prime numbers. In the first possibility, if N is a prime number, then we have
just found a prime number that is larger than 4—which was our goal. We now
must consider the only other possibility: that Nis not prime. If Nis not prime,
then N is a product of prime numbers. Let’s call one of those prime factors of
N “OUR-PRIME.” So OUR-PRIME is a prime that divides evenly into N.

Now what can we say about OUR-PRIME? Is OUR-PRIME equal to 2?2 Well,
if we divide 2 into N we see that, since

N=2X(1X3X4)+1,

we have a remainder of 1 when 2 is divided into N. Therefore, 2 does not
divide evenly into N, and so OUR-PRIME is not 2. Is OUR-PRIME equal to 3?
No, for the same reason:

N=3X(1X2X4)+1,

so we get a remainder of 1 when 3 is divided into N; therefore, 3 does not
divide evenly into N and hence is not a factor of N. Likewise, we will get a
remainder of 1 when 4 is divided into N, and, therefore, 4 is not a factor of N.
So 2, 3, and 4 are not factors of N. Hence we conclude that all the factors of N
must be larger than 4 (there are no factors of N that are 4 or smaller). But that

means that, since OUR-PRIME is a prime that is a factor of N, OUR-PRIME
must be a prime number greater than 4. Therefore, we have just found a prime
number greater than 4. Mission accomplished!
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Following this same strategy, show that there must be a prime greater than
5. Can you use the preceding method to show there must be a prime greater
than 10,000,000? Try it now.

FINALLY, THE PROOF

Now let’s use the method we developed in the specific example to prove our
theorem in general. Remember that we wish to demonstrate that, for any par-
ticular natural number, there is a prime number that exceeds that particular
number. Let m represent an arbitrary natural number. Our goal now is to
show that there is a prime number that exceeds m. To accomplish this lofty
quest, we will, just as before, construct a new number using all the numbers
from 1 to m. We'll call this new number N (for new number) and define it to
be 1 plus the product of all the natural numbers from 1 to m—in other words,
(or more accurately in other symbols):

N=(1X2X3X4X-Xm)+ 1.

[t is fairly easy to see that N is larger than m. By the Prime Factorization of
Natural Numbers we know that there are only two possibilities for N: Either
N is prime or N is a product of primes. If the first possibility is true, then we
have found what we wanted since N is larger than m. But if it is not true, then
we must consider the more challenging possibility: that N is a product of
prime numbers.

If Nis a product of primes, then we can choose one of those prime factors
and call it BIG-PRIME. So, BIG-PRIME is a prime factor of N. Let’s now try
to pin down the value of BIG-PRIME. We'll start off small.

Does BIG-PRIME equal 2? Well, if we divide 2 into N we see that, since

N=2X(1X3X4X-Xm+1,

we have a remainder of 1 when 2 is divided into N. Therefore, 2 does not divide
evenly into N, and so BIG-PRIME cannot equal 2.
Does BIG-PRIME equal 3? No, for the same reason:

N=3X(1X2X4X+Xm)+1,

so we get a remainder of 1 when 3 is divided into N. In fact, what is the
remainder when any number from 2 to m is divided into N? The remainder is
always 1 by the same reasoning that we used for 2 and 3.

Okay, so we see that none of the numbers from 2 through m divides evenly
into N. That fact means that none of the numbers from 2 through m is a fac-
tor of N. Therefore, what can be said about the size of the factor BIG-PRIME?
Answer: It must be BIG since we know that N has no factors between 2 and m.
Hence any factor of N must be larger than m. Therefore, BIG-PRIME is a
prime number that is larger than m.

Well, we did it! We just showed that there is a prime that exceeds m. Since
this procedure works for any value of m, this argument shows that there are
arbitrarily large prime numbers. Therefore, we must have infinitely many
prime numbers, and we have completed the proof.
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THE CLEVER PART OF THE PROOF

In the proof, each step by itself isn’t too hard, but the entire argument, taken
as a whole, is subtle. What is the most clever part of the proof? In other words,
where is the most imagination required? Which step in the argument would
have been hardest to think up on your own?

We believe that the most ingenious part of the proof is the idea of con-
structing the auxiliary number N (one more than the product of all the num-
bers from 1 to m). Once we have the idea of considering that N, we can finish
the proof. But it took creativity and contemplation to arrive at that choice of
N. We might well say to ourselves, “Gee, I wouldn't have thought of making
up that N’ Generally, slick proofs such as this are arrived at only after many
attempts and false starts—just as Euclid no doubt experienced before he
thought of this proof. Very few people can understand arguments of this type
on first inspection, but once we can hold the whole proof in our minds, we
will regard it as straightforward and persuasive and appreciate its aesthetic
beauty. Ingenuity is at the heart of creative mathematical reasoning, and
therein lies the power of mathematical thought.

Prime Demographics

Now that we know for sure that there are infinitely many prime numbers, we
wonder how the primes are distributed among the natural numbers. Is there
some pattern to their distribution? There are infinitely many primes, but how
rare are they among the numbers? What proportion of the natural numbers
are prime numbers? Half? A third? To explore these questions, let’s start by
looking at the natural numbers and the primes among them. Here are the first
few with the primes printed in bold:

1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,29, ...

Out of the first 24 natural numbers, nine are primes. We see that 9/24 = 0.375
of the first 24 natural numbers are primes—that’s just a little over one-third.
Extrapolating from this observation would we guess that just over one-third
of all natural numbers are prime numbers? We could try an experiment;
namely, we could continue to list the natural numbers and find the propor-
tions of primes and see whether that proportion remains about one-third of
the total number. If we do this experiment, we will learn an important lesson
in life: Don’t be too hasty to generalize based on a small amount of evidence.

Before high-speed computers were available, calculating (or just estimat-
ing) the proportion of prime numbers in the natural numbers was a difficult
task. In fact, years ago “computers” were people who did computations. Such
people were amazingly accurate, but they required a great deal of time and
dedication to accomplish what today’s electronic computers can do in seconds.
An 18th-century Austrian arithmetician, J.P. Kulik, spent 20 years of his life
creating, by hand, a table of the first 100 million primes. His table was never
published, and sadly the volume containing the primes between 12,642,600
and 22,852,800 has disappeared.
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Today, software computes the number of primes less than # for increasingly
large values of n, and the computer prints out the proportion: (number of
primes less than n)/n. Computers have no difficulty producing such a table for
values of n up to the billions, trillions, and beyond. If we examine the results,
we notice that the proportion of primes slowly goes downward. That is, the
percentage of numbers less than a million that are prime is smaller than the
percentage of numbers less than a thousand that are prime. The primes, in
some sense, get sparser and sparser as the numbers get bigger and bigger.

A CONJECTURE ABOUT PATTERNS

In the early 1800s, Karl Friedrich Gauss (left), one of the greatest mathemati-
cians ever—known by many as the Prince of Mathematics—and A.M.
Legendre (right), another world-class mathematician, made an insightful
observation about primes. They noticed that, even though primes do not
appear to occur in any predictable pattern, the proportion of primes is related
to the so-called natural logarithm—a function
relating to exponents that we may or may not
remember from our school daze.

Years ago, one needed to interpolate huge
tables to find the logarithm. Today, we have
scientific calculators that compute logarithms
instantly and painlessly. Get out a scientific
calculator and look for the LN key. Type “3” and
then hit LN. You should see 1.09861. . . . We
encourage you to try some natural-logarithm
experiments on your calculator. How does the
size of the natural logarithm of a number com-
pare with the size of the number itself?

Gauss and Legendre conjectured that the proportion of the number of
primes among the first n natural numbers is approximately 1/Ln(n). The fol-
lowing chart, constructed with the aid of a computer (over which Gauss and
Legendre would drool), shows the number of primes up to n, the proportions
of primes, and a comparison with 1/Ln(n).

Karl Friedrich Gauss A.M. Legendre

Proportion of Primes
Number of up to n (Number of
n Primes up to n Primes < n)/n 1/Ln(n) Proportion — 1/Ln(n)
10 4 0.4 0.43429. .. 0.03429...
100 25 0.25 0.21714.... 0.03285.

1000 168 0.168 0.14476. .. 0.02323...
10,000 1229 0.1229 0.10857..... 0.01432. ..
100,000 9592 0.09592 0.08685. .. 0.00906. . .
1,000,000 78,498 0.078498 0.07238.... 0.00611. ..
10,000,000 664,579 0.0664579 0.06204. .. 0.00441. ..
100,000,000 5,761,455 0.05761455 0.05428. .. 0.00332...
1,000,000,000 50,847,534 0.050847534 0.04825. .. 0.00259. ..
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Andrew Wiles

Every answer allows
us to recognize and
formulate new
questions.

(OB

We will never know whether Fermat had discovered a correct proof of his
Last Theorem, but we do know one thing. He did not discover the proof that
Andrew Wiles (left) of Princeton University produced in 1994, 357 years after
Fermat wrote his tantalizing marginal note. If Fermat had somehow conceived
of Wiles’s deep and complicated proof, he would not have written, “The mar-
gin of this book is not large enough to contain it.” He would have written,
“The proof would require a moving van to carry it.” Wiles’s proof drew on
entirely new branches of mathematics and incorporated ideas undreamed of
in the 17th century.

Some of the greatest minds in mathematics have worked on Fermat’s Last
Theorem. The statement of Fermat’s Last Theorem does not strike us as
intrinsically important or interesting—it just states that a certain type of
equation never can be solved with natural numbers. What is interesting and
important are all the deep mathematical ideas that arose during attempts to
prove Fermat’s Last Theorem, many of which led to new branches of mathe-
matics. Although Fermat’s Last Theorem has not yet been used for practical
purposes, the new theories developed to attack it turned out to be valuable in
many practical technological advances. From an aesthetic perspective, it is
difficult to determine which questions are more important than others.
When problems resist attempts by the best mathematical minds over many
years, the problems gain prestige. Fermat’s Last Theorem resisted all attacks
for 357 years, but it finally succumbed.

Andrew Wiles’s complete proof of Fermat’s Last Theorem is over 130 pages
long, and it relies on many important and difficult theorems, including some
new theorems from geometry (although it appears surprising that geometry
should play a role in solving this problem involving natural numbers). When
mathematicians expose connections between seemingly disparate areas of
mathematics, they feel an electric excitement and pleasure. In mathematics, as
in nature, elements fit together and interrelate. As we will begin to discover,
deep and rich connections weave their way through the various mathematical
topics, forming the very fabric of truth.

The Vast Unknown

Many people think mathematics is a static, ancient body of facts, formulas,
and techniques. In reality, much of it is a wondrous mystery with many ques-
tions unanswered and more still yet to be asked. Many people think we will
soon know all there is to know. But this impression is not the case, even
though such thinking has persisted throughout history.

Everything that can be invented has been invented.
CHARLES H. DUELL, COMMISSIONER U.S. PATENT OFFICE, 1899

We don’t know a millionth of one percent about anything.
THOMAS EDISON
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Human thought is an ever-expanding universe—especially in mathemat-
ics. We know a small amount, and our knowledge allows us to glimpse a small
part of what we do not know. Vastly larger is our ignorance of what we do not
know. An important shift in perspective on mathematics and other areas of
human knowledge occurs when we move from the sense that we know most
of the answers to the more accurate and comforting realization that we will
not run out of mysteries.

So, after celebrating, as we have, some of the great mathematical achieve-
ments that were solved only after many decades of human creativity and
thought, we close this section by gazing forward to questions that remain
unsolved—open questions. From among the thousands of questions on which
mathematicians are currently working, here are two famous ones about prime
numbers that were posed hundreds of years ago and are still unsolved. Fer-
mat’s Last Theorem has been conquered; but somehow the mathematical
force is not ready to let go its hold and let these two fall.

The Twin Prime Question.

Are there infinitely many pairs of prime numbers that differ from
one another by two? (11 and 13, 29 and 31, and 41 and 43 are
examples of some such pairs.)

The Goldbach Question.

Can every positive, even number greater than 2 be written as the
sum of two primes? (Pick some even numbers at random, and see
whether you can write them each as a sum of two primes.)

Computer analysis allows us to investigate a tremendous number of cases,
but the results of such analyses do not provide ironclad proof for all cases.

We have seen how to decompose natural numbers into their fundamental
building blocks, and we have discovered further mysteries and structures in
this realm. Can we use these antique, abstract results about numbers in our
modern lives? The amazing and perhaps surprising answer is a resounding yes!

THE PRIME NUMBERS are the basic multiplicative building blocks for natural
numbers, since every natural number greater than 1 can be factored into
primes. We can prove that there are infinitely many primes by showing that we
can always find a prime number larger than any specified number. The strat-
egy is to take the product of all numbers up to the specified number and then
add 1. This new large integer must have a prime factor greater than the origi-
nal specified number.

The study of primes goes back to ancient times. Some questions remained
unanswered for a long time before being resolved. And others remain unan-
swered.
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Mindscapes

We discovered proofs of the Prime Factorization of Natural Numbers and
the Infinitude of Primes by carefully exploring specific examples and search-
ing for patterns. Considering specific examples while thinking about the gen-
eral case guided us to new discoveries.

Understanding a specific case well is
a major step toward discovering
a general principle.

(CP==

TO FURTHER THOUGHTW

In this section, Mindscapes marked (H) have hints for solutions at the back of the book.
Mindscapes marked (S) have solutions.

I. Developing Ideas

1. Primal instincts. List the first 15 prime numbers.

1. Solidifying Ideas

. Fear factor. Express each of the following numbers as a product of primes:

6,24, 27, 35, 120.

. Odd couple. If n is an odd number greater than or equal to 3, can n + 1

ever be prime? What if n equals 17

. Tower of power. The first four powers of 3 are 3'=3,3=9,3*=27,and

3* = 81. Find the first 10 powers of 2. Find the first five powers of 5.

. Compose a list. Give an infinite list of natural numbers that are not prime.

. A silly start. What is the smallest number that looks prime but really isn’t?
. Waiting for a nonprime. What is the smallest natural number n, greater

than 1, for which (1 X 2 X 3 X -+ X n) + 1 is not prime?

. Always, sometimes, never. Does a prime multiplied by a prime ever result in

a prime? Does a nonprime multiplied by a nonprime ever result in a prime?
Always? Sometimes? Never? Explain your answers.

. The dividing line. Does a nonprime divided by a nonprime ever result in a

prime? Does it ever result in a nonprime? Always? Sometimes? Never?
Explain your answers.

. Prime power. Is it possible for an extremely large prime to be expressed as a

large integer raised to a very large power? Explain.
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11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

Nonprimes. Are there infinitely many natural numbers that are not prime?
[f so, prove it.

Prime test. Suppose you are given a number n and are told that 1 and the
number n divide into n. Does that mean n is prime? Explain.

Twin primes. Find the first 15 pairs of twin primes.

Goldbach. Express the first 15 even numbers greater than 2 as the sum of
two prime numbers.

Odd Goldbach (H). Can every odd number greater than 3 be written as the
sum of two prime numbers? If so, prove it; if not, find the smallest coun-
terexample and show that the number given is definitely not the sum of two
primes.

Still the 1 (S). Consider the following sequence of natural numbers: 1111,
I1111, 111111, 1111111, 11111111,.... Are all these numbers prime? If not,

can you describe infinitely many of these numbers that are definitely not
prime?

Zeros and ones. Consider the following sequence of natural numbers made
up of 0’s and 1’s: 11, 101, 1001, 10001, 100001, 1000001, 10000001, . ... Are
all these numbers prime? If not, find the first such number that is not prime
and express it as a product of prime numbers.

Zeros, ones, and threes. Consider the following sequence of natural num-
bers made up of 0’s, 1’s, and 3’s: 13, 103, 1003, 10003, 100003, 1000003,
10000003, . ... Are all these numbers prime? If not, find the first such num-
ber that is not prime and express it as a product of prime numbers.

A rough count. Using results discussed in this section, estimate the number
of prime numbers that are less than 10'°.

Generating primes (H). Consider the list of numbers: n° + n+ 17, where n
first equals 1, then 2, 3, 4, 5, 6, . ... What is the smallest value of n for which
n* + n + 17 is not a prime number? (Bonus: Try this for n° — n + 41. You'll
see an amazingly long string of primes!)

Generating primes II. Consider the list of numbers: 2" — 1, where n first
equals 2, then 3, 4, 5, 6, .... What is the smallest value of n for which 2" - 1
is not a prime number?

Floating in factors. What is the smallest natural number that has three
distinct prime factors in its factorization?

Lucky 13 factor. Suppose a certain number when divided by 13 yields a
remainder of 7. What is the smallest number we would have to subtract
from our original number to have a number with a factor of 13?

Remainder reminder (S). Suppose a certain number when divided by 13
yields a remainder of 7. If we add 22 to our original number, what is the
remainder when this new number is divided by 137
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25.

Remainder roundup. Suppose a certain number when divided by 91 yields a
remainder of 52. If we add 103 to our original number, what is the remain-
der when this new number is divided by 7?

Hi. Creating New ldeas

26. Related remainders (H). Suppose we have two numbers that both have the

27.

28.

29.

30.

same remainder when divided by 57. If we subtract the two numbers, are
there any numbers that we know will definitely divide evenly into this differ-
ence? What is the largest number that we are certain will divide into the dif-
ference? Use this observation to state a general principle about two numbers
that have the same remainder when divided by another number.

Prime differences. Write out the first 15 primes all on one line. On the next
line, underneath each pair, write the difference between the larger number
and the smaller number in the pair. Under this line, below each pair of the
previous line, write the difference between the larger number and the
smaller number. Continue in this manner. Your “triangular” table should
begin with:

\VAVAVAVAVAVA
\AAN

andsoon...

Once your chart is made, imagine that all the primes were listed on that first
line. What would you guess is the pattern for the sequence of numbers
appearing in the first entry of each line? The actual answer is not known. It
remains an open question! What do you think?

Minus two. Suppose we take a prime number greater than 3 and then sub-
tract 2. Will this new number always be a prime? Explain. Are there infinitely
many primes for which the answer to the question is yes? How does this last
question relate to a famous open question?

Prime neighbors. Does there exist a number 7 such that both nand n + 1
are prime numbers? If so, find such an #»; if not, show why not.

Perfect squares. A perfect square is a number that can be written as a nat-
ural number squared. The first few perfect squares are 1, 4, 9, 16, 25, 36.
How many perfect squares are less than or equal to 362 How many are less
than or equal to 144? In general, how many perfect squares are less than or
equal to n? Using all these answers, estimate the number of perfect squares
less than or equal to N. (Hint: Your estimate may involve square roots and
should be the exact answer whenever N is itself a perfect square.)
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2.4 Crazy Clocks and
Checking Out Bars
Cyclical Clock Arithmetic and Bar Codes

A Use the 3D glasses from
the back of your book to
view this picture.

82

A rule to trick
th’ arithmetic.

RUDYARD KIPLING

Cycla are familiar parts of life. The seasons, phases of the moon, day and
night, birth and death—all are among the most powerful natural forces that
define our lives, and all are cycles. Whole cultural traditions revolve around this
cyclic reality of life; consider, for example, the notion of reincarnation, unless
you already considered it in a previous life. We can use these cycles as models to
develop analogous constructs in the realm of numbers. Such explorations create
yet another kind of cycle, because the abstract mathematical insights refer back
to the world, and we find applications of these abstractions in our daily lives.
Our strategy for examining cycles in the world of numbers is to find a phe-
nomenon in nature (in this case cyclicity) and to develop a mathematical
model that captures some features of the natural processes. This method of
reasoning by analogy is a powerful way to develop new ideas, because we use
existing ideas, events, and phenomena to guide us in creating new insights.



Most people would not believe that there is deep and powerful number
theory going on when they glance at their watch or check out at the grocery
store: “Sure, numbers are involved. The time of day is expressed in numbers,
as is the price of an item—but these numbers are neither deep nor powerful
anything!” Most people, however, are sadly mistaken. The fabulous world of
exotic number theory lies hidden in everyday objects.

Time

What time is it? Suppose your watch says it is 9:00 (9 o’clock), and you are to
meet the love of your life in 37 hours. What time will your watch read when
you fall into the arms of your soul mate? Careful—the answer is not 46
o’clock. The answer is 10:00. So some type of strange arithmetic must be
required, since 9 plus 37 equals 10—wacky! How does one perform arithmetic
in the context of telling time by a clock? Unlike the natural numbers, which
get larger and larger when we add them together, a clock cycles around, and in
12 hours the clock returns to its original position (assuming we’re using a 12-
hour clock). Counting with a clock in some sense is easier than standard
counting, because the numbers never get too large. For example, to add 37 to
9 we could count as follows:

9, 10,11, 12,
1,2,3,4,56,7,8,9,10, 11, 12,
1,2,3,4,5,6,7,8,9,10, 11, 12,
1,2,3,4,5,6,7,8,9, 10.

Notice how, once we get to 12, we start all over again and cycle back to 1. This
procedure involves a kind of arithmetic different from standard arithmetic.

CLOCK ARITHMETIC

For the moment, let’s refer to this arithmetic—where we return to 1 after 12—
as clock arithmetic. Let’s look at a few examples of clock arithmetic. We have
already seen that 9 + 37 = 10. What is 6 + 12? The answer is 6, since adding
12 just spins us back around to where we started. So 12 is just like 0 in this
clock arithmetic. This observation allows us to perform this new arithmetic in
a different way. For example, with 9 + 37, we could notice that 37 is equal to
12 + 12 + 12 + 1. But remember that adding 12 is just like adding 0, so really
37 is equivalent to 1. Therefore,9 + 37 =9 + 1 = 10.

Let’s consider a different kind of question: What
does (4 X 7) + 20 equal in clock arithmetic?
Well, 4 X 7 = 28, but 28 is equivalent to 4, since
28 =12 + 12 + 4. Now 20 is equivalent to 8,
since 20 = 12 + 8. Therefore, (4 X 7) + 20 =
4 + 8 = 12. So the answer is 12.

What would happen to our arithmetic if we had
a crazy clock that looked like this:
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Notice now that adding 7 spins us back to where we started, and thus adding 7
is the same as adding 0. So now 6 + 4 = 10 is equivalent to 3,since 10 = 7 + 3.
In other words, with this crazy clock, 4 hours after 6 o’crazy clock is actually
3 o'crazy clock. Why would anyone ever bother with such a crazy clock? Well,
actually we use this crazy clock, not for telling time, but for telling days in a
week. Once again we see that the notion of cycles is natural and important. In
fact, as we will now discover, this kind of crazy-clock arithmetic helps us find
errors in grocery prices, our checking accounts, UPS package deliveries, airline
tickets, and driver’s license numbers; it even helps us check out Shakespeare—
read on MacDuff.

EQUIVALENCE

As we look at cycles, we are developing an idea of equivalence. The notion of
equivalence occurs in clock arithmetic, for example, when we note that 37 is
equivalent to 1. As we develop the idea of cyclical arithmetic, this concept of
equivalence will become a central theme.
Identifying Let’s carefully define a type of arithmetic that will capture the spirit of our
previous observations and generalize the notion of clock arithmetic. First
we’ll explore the notion of a new hip or “mod” clock. Suppose
we are given a number—for example, 9, and we have an
B unusual clock that has 9 hours marked on it: 0, 1, 2, 3,
“n::er;::';g;’f % 4,5, 6,7, 8. Suppose the hour hand is on the 5. Then
9 hours later the hand returns to the 5, and thus
W according to this clock, adding 9 doesn’t change what
the clock reads. So, we can now perform arithmetic
using this clock by remembering that 9 is equivalent to
0. We'll write the fact that 9 is equivalent to 0 as 9 = 0,
where the symbol “=" means “equivalent.” Of course, 9 is
not equal to 0, but using this clock we see that 9 is equivalent to 0. Let’s call this
arithmetic mod 9 clock arithmetic. The key is that we can perform arithmetic
as usual with the understanding that a 9 may be replaced by a 0. For example:

13+25=(9+4)+(9+9+7)=(0+4)+(0+0+7) =
44+7=11=9+2=0+2=2mod9,

similarities among
different objects is
often the key to

50 13 + 25 = 2 mod 9. We write the phrase “mod 9” at the end to remind us
and indicate to others what kind of mod clock we are using to perform the
arithmetic. In terms of the clock itself, we could have computed the preceding
sum by placing the hour hand on the 0 and then moving the hand around 13
hours (which brings us to 4) and then moving from that 4 another 25 hours,
which brings us to 2.

Once we see how mod 9 clock arithmetic works, we can abstract the idea
by dispensing with the visual aid of the clock and calling it mod 9 arithmetic.
This notation is convenient, since in mathematical jargon “mod” actually
stands for “modulo” or “modular,” which means just doing arithmetic using

84 NUMBER CONTEMPLATION



the equivalence of 9 = 0 mod 9 (translation: “9 is equivalent to 0 modulo 9”
or “9 is equivalent to 0 in mod 9 arithmetic”).

Explore ideas In this next example, notice how we are able to replace large numbers with
systematically. smaller equivalent numbers by just writing them in terms of 9’s (also notice
= how remainders are making an appearance in our work):

(3X5)+(7X100)=(9+6)+(7X((9X11)+1))=
O+6)+(7X(OX11)+1)=6+7=13=9+4=
0+4=4mod9,

50, (3 X 5) + (7 X 100) = 4 mod 9. Once we get the hang of it, this arithmetic
is pretty easy. We just pull out multiples of 9 and replace them by 0’s. Of
course, we can now think about other mod clocks. We can do this modular
arithmetic with any clock, as long as we know how many hours it has on it.
For any particular natural number n, we write “mod #” to mean that we
are thinking about arithmetic on a mod clock that has n hours on
it (marked 0, 1,2,..., n — 1), and so adding n to any number just
brings us back to where we started—thus # is equivalent to 0.

PRACTICE MAKES PERFECT

Let’s really make this new arithmetic our own. Below we ask a few questions.
Some present true equivalences, and others do not. Check each one, and
determine which are correct and which are wrong. For the ones that are incor-
rect, figure out a correct answer. Notice that in each case we are using a dif-
ferent mod number, so first have a look at the “mod n” part to see what kind
of arithmetic to use.

THE HOT QUESTIONS
As a warm up, we’ll answer the first question.
1. Is 26 + 31° = 0 mod 297

This statement is true since we are considering a mod 29 clock, so 29 is equiv-
alent to 0. Therefore, 26 + 31° =26 + (29 +2)° = 26 + 2° = 26 + 32 =
26 + (29 4+ 3) =26 + 3 = 29 = 0 mod 29. (Notice how we did not need to
figure out that 31° = 28,629,151.) Now it’s your turn.

2. Is 72 + (5 X 57) = 40 mod 48?
3. Is2* + 5% + (6 X 31) = 3 mod 5?
4. 15 9°°°° = 1 mod 80? (Hint: Write 2000 as 2 X 1000.)

THE COOL ANSWERS
2. isincorrect: 72 + (5 X 57) =49 + (5 X 9) = 1 + 45 = 46 mod 48.

3, is also incorrect: 2* + 5°°' + (6 X 31) =16 + 0°°' + (1 X 1)
=1+1=2modS5.
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92000 _ §2X1000 _ (92)1000 e (81)1000 = 1000

= 1 mod 80.

4. is correct:

Notice how we can work with enormous powers of numbers without even
breaking a sweat by just carefully reducing the numbers in clever ways to
smaller equivalent numbers in the modular arithmetic. Now let’s see how we
use modular arithmetic in our daily lives without our even realizing it.

The Mod World of Modular Arithmetic
THE CLAIRVOYANT KLEENEX CONSULTANT

You have the flu and feel awful. You moan, you groan, you sneeze, you
wheeze—let’s face it, you're sick. As you sit up in bed, you feel lightheaded—
not because you have a fever, but because you have been watching too many
hours of mind-numbing daytime TV. You notice in your boredom that on
the bottom of your Kleenex box there is a toll-free number for consumer
service—1-800-KLEENEX, which amuses you (because of your lightheaded-
ness). Although you are extremely satisfied with the tissues, you decide to dial
the number and talk to somebody because you are feeling lonely. The perky
Kleenex representative on the other end of the telephone line asks you to read
the 12-digit bar code appearing on the bottom of the box. You look and see
those thin, fat, and medium lines that make up the Universal Product Code
(UPC), which is now tattooed on nearly every product. As all those lines dance
in your head you read:

036 00023815709

The chipper voice immediately responds by
saying, “I think you made a mistake, could you
please read them again?” You glance back at
the bar code, still bleary-eyed, and realize that
you indeed made a mistake. In fact, the num-
bers appearing under the bar code are 03 6 0 9llg360001285109!>
002851 09;you reversed the 5 and the 1. But
how did your telephone partner immediately know you made a mistake? Per-
haps Kleenex reps are clairvoyant, but they definitely use modular arithmetic.

NV3

CHECK DIGITS

A bar code and its associated numbers (usually 12 or 13 digits) make up the
UPC. The first six digits encode information about the manufacturer, and the
next five digits encode information about the product. That leaves us with
the last digit, which is called the check digit. The check digit provides a means
of detecting if a UPC number is incorrect. Here is how the check digit works
with 12 digits: We line up the first 11 digits of the UPC—let’s call them: d,, d,,
ds, dy, ds, d, d;, dg, d, d,o, d;,. We now combine them in an unusual way. We
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Our world contains many examples of cycles. One way to develop mathe-
matical ideas is to look at natural phenomena, model them using mathemat-
ics, and then explore the abstract ideas contained in the model. We can take
general notions and refine them to develop ideas. We can then explore our
new world of the mind without referring back to nature. In the process, how-
ever, we often find that our thought experiments are useful in the real world.

Create abstract ideas by
modeling nature.
Explore ideas systematically, investigate consequences,
and formulate general principles.

Oy

Mindscapes ATIONS TO FURTHER THOUGHTN

In this section, Mindscapes marked (H) have hints for solutions at the back of the book.
Mindscapes marked (S) have solutions.

I. Developing Ideas

1. A flashy timepiece. You own a very expensive watch that is currently flash-
ing “3:00.” What time will it read in 12 hours? In 14 hours? In 25 hours? In
240 hours? What time is it when an elephant sits on it?

2. Living in the past. Your watch currently reads “8:00.” What time did it read
24 hours earlier? Ten hours earlier? Twenty-five hours earlier? What time did
it read 2400 hours earlier?

3. Mod prods. Which number from 0 to 6 is equivalent to 16 mod 7? Which
number from 0 to 6 is equivalent to 24 mod 7? Which number from 0 to 6 is
equivalent to 16 X 24 mod 7?2 What number is equivalent to (16 mod 7) X
(24 mod 7) mod 72 What do you notice about the last two quantities you
computed?

4. Mod power. Reduce 7 mod 3. Reduce 7> mod 3. Reduce [7 mod 3]? mod 3.
Would you rather find 7 mod 3 first and then square it, or square 7 and then
find 7> mod 3? What if you had to reduce 7' mod 3? Okay, you guessed it,
now go ahead and reduce 7'°* and mod 3.

5. A tower of mod power. Reduce 13 mod 11. Reduce 13> mod 11. Compare
(13 mod 11)? with 13* mod 11. Now reduce 13> mod 11 and 13* mod 11
without raising 13 to the power 3 or 4.
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1. Solidifying Ideas

6.

10.

11.

12.

13.

14.

Hours and hours. The clock now reads 10:45. What time will the clock read
in 96 hours? What time will the clock read in 1063 hours? Suppose the clock
reads 7:10. What did the clock read 23 hours earlier? What did the clock read

108 hours earlier?

Days and days. Today is Saturday. What day of the week will it be in 3724
days? What day of the week will it be in 365 days?

. Months and months (H). It is now July. What month will it be in 219

months? What month will it be in 120,963 months? What month was it
89 months ago?

. Celestial seasonings (S). Which of the following is the correct UPC for

Celestial Seasonings Ginseng Plus Herb Tea? Show why the other numbers
are not valid UPCs.

0 /71734 00021 8

0 70734 00021 8

0 70743 00021 8
SpaghettiOs. Which of the following is the correct UPC for Franco-American
SpaghettiOs? Show why the other numbers are not valid UPCs.

0 51000 02562 4

0 51000 02526 4
0 51000 02526 5

Progresso. Which of the following is the correct UPC for Progresso mine-
strone soup? Show why the other numbers are not valid UPCs.

0 41196 01012 1
0 52010 00121 2
0 05055 00505 3

Tonic water. Which of the following is the correct UPC for Canada Dry
tonic water? Show why the other numbers are not valid UPCs.

0 16900 00303 4
0 24001 10691 3
0 10010 20110 5

Real mayo (H). The following is the UPC for Hellmann’s 8-0z. Real
Mayonnaise. Find the missing digit.

0 48001 268 04 2
Applesauce. The following is the UPC for Lucky Leaf Applesauce. Find the
missing digit.

0 28500 11070
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

Grand Cru. The following is the UPC for Celis Ale Grand Cru. Find the
missing digit.
B 35888 41201 9

Mixed nuts. The following is the UPC for Planter’s 6.5-o0z. Mixed Nuts. Find
the missing digit.

0 29800 07367 8
Blue chips. The following is the UPC for Garden of Eatin’ 10-0z. Blue Corn
Chips. Find the missing digit.

0 15839 20001 5

Lemon. The following is the UPC for RealLemon Lemon Juice. Find the
missing digit.
0 53000 15108 et

Decoding (S). A friend with lousy handwriting writes down a UPC.
Unfortunately, you can’t tell his 4’s from his 9’s or his 1’s from his 7’s. If the
code looks like 90306 882351 7, is there any way to deal with the ambi-
guity? If so, what is the actual UPC? If it is not possible to determine the
correct UPC, explain why.

Check your check. Find the bank code on your check. Verify that it is a valid
bank code.

Bank checks. Determine the check digits for the following bank codes:
3 1 0 6 1 4 8 3 & 0 25 7 1 1 0 8 &
More bank checks. Determine the check digits for the following bank codes:
6 2 91 0 0 2 7 @ 5 5 0 3 1 0 1 1 &=

UPC your friends. Have a friend find a product that has a 12-digit UPC.
Ask your friend to carefully read aloud the digits but to skip one digit and
say “blank” in its place. Figure out the missing digit. Do this with several

different products if you wish. Explain to your friend how you did it. Record
the UPCs, the missing digit, and your friend’s reactions.

Whoops. A UPC for a product is
0 51000 02526 S5

Explain why the errors in the following misread versions of this UPC would
not be detected as errors:

0 51000 02625 5
0 50000 05526 &

Whoops again. A bank code is
O 1 1 7 0 1 3 9 8
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Explain why the errors in the following misread versions of this bank code
would not be detected:

/1 1 0 0 1 3

9 8
O 1 1 7 0 8 3 9 1

lll. Creating New Ideas

26. Mod remainders (S). Where would 129 be on a mod 13 clock (clock goes
from 0 to 12)? What is the remainder when 129 is divided by 13?

27. More mod remainders. Where would 2015 be on a mod 7 clock? What is
the remainder when 2015 is divided by 7? Generalize your observations and
state a connection between mod clocks and remainders.

28. Money orders. U.S. Postal Money Orders have a 10-digit serial number and
a check digit. The check digit is the number between 0 and 6 that represents
what the 10-digit serial number is equivalent to using a mod 7 clock. This
check digit is the same as the remainder when the serial number is divided
by 7. What is the check digit for a money order with serial number
68309102757

29. Airline tickets. An airline ticket identification number is a 14-digit number.
The check digit is the number between 0 and 6 that represents what the

identification number is equivalent to using a mod 7 clock. Thus, the check
digit is just the remainder when the identification number is divided by 7.

What is the check digit for the airline ticket identification number 1 006
15591298847

30. UPS. United Parcel Service uses the same check digit method used on U.S.

Postal Money Orders and airline tickets for its package-tracking numbers.
What would be the check digit for UPS tracking number 84200912?

31. Check a code. U.S. Postal Money Order serial numbers, airline ticket identi-
fication numbers, UPS tracking numbers, and Avis and National rental car
identification numbers all use the mod 7 check digit procedure. Find an ex-

ample and check the check digit. For instance, get a copy of an airline ticket
and check the identification number.

32. ISBN. The 10-digit book identification number, called the International
Standard Book Number (ISBN), has its last digit as the check digit. The
check digit works on a mod 11 clock. If the ISBN has digits d, d, d; d, ds d,
d; dg dy d,, then to check if this number is valid, we compute the following
number:

1d, + 2d, + 3d; + 4d, + 5ds + 6dg + 7d, + 8ds + 9dy + 10d,,

If the ISBN is correct, this new calculated number should be equivalent to

0 mod 11. We use the digit X to stand for 10 on the mod 11 clock. For
example, consider the ISBN 0-387-97993-X. To check this ISBN, we compute
(mod 11) (remember that X = 10):
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33.

34.

35.

(I1X0)+(2X3)+(3X8)+(4X7)+(5X9)+
(6X7)+(7X99+(8X9)+(9X3)+ (10X 10) =
6+24+28+45+42+63+72+27+100=
6+2+6+1+9+8+6+5+1=

44 = 0 mod 11.

Therefore, this number is a valid ISBN. Verify this check method for the
ISBN on the copyright page of this book.

ISBN check (H). Find the check digits for the following ISBNs:
0-219-60512- &; 1-101-38216- 0.

ISBN error. The ISBN 3-540-06395-6 is incorrect. Two adjacent digits have

been transposed. The check digit is not part of the pair of reversed digits.
What is the correct ISBN?

Brush up your Shakespeare. Find a book containing a play by Shakespeare
and check its ISBN.

IV. Further Challenges

36.

37.

38.

39.

40.

Mods and remainders. Use the Division Algorithm (see Section 2.3) to show
that the remainder when a number 7 is divided by m is equal to the position
n would be on a mod m clock (a mod m clock goes from 0 to m — 1).

Catching errors (H). Give some examples in which the UPC check digit
does not detect an error of two switched adjacent digits. Try to determine a
general condition whereby a switching error in those digits would not be
detected. (Hint: Consider the difference of the digits.)

Why three? In the UPC, why is 3 the number every other digit is multiplied
by rather than 6? (Hint: Multiply every digit from 0 to 9 by 3 and look at the
answers mod 10. Do the same with 6 and compare your results.) Are there
other numbers besides 3 that would function effectively? What number
might you try?

A mod surprise. For each number »n from 1 to 4, compute n° mod 5. Then
for each n, compute #n° mod 5 and finally #n* mod 5. Do you notice anything
surprising?

A prime magic trick. Pick a prime number and call it p. Now pick any
natural number smaller than p and call it a. Compute a’~' mod p. What do
you notice? You can use this observation as the basis for a magic trick. Have
a friend think of a natural number less than p (but keep it to him- or herself).
Tell that person that you will predict and write what the remainder will be
when a”~! is divided by p. Write your answer and seal it in an envelope, and
then ask what the person’s number was. Now, to your friend’s amazement,
compute the remainder when a~ ' is divided by p and reveal the hidden
prediction. Record your friend’s reaction. The next section uses this observa-
tion in a powerful way. Check it out.
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is possibly the most powerful example of the unforeseen applicability of
abstract mathematical ideas—in this case to the digital world. Who would
have thought that cryptography—the study of secret codes—would become an
important part of daily life and that the exploration of numbers would be
central to coding?

This section is difficult. To master every part of the mathematics involved
requires a significant effort. Luckily for us, the idea of public key cryptogra-
phy is interesting even without fully delving into the mathematical details that
make it work. This challenging section is evidence that as the world changes,
ideas that seem marginal today may become central tomorrow. Good luck.

Coding and Decoding

How can we code and decode messages? One possibility is to replace one
letter by another letter. For example, suppose we created the following coding
scheme:

Message |A|B|C|D|E|F|G(H|I|]J|K|L[M|N|O|P[Q|R|S|T|U|VIW|X|Y|Z
Coded As |T(H|E|Q|U|I|C|[K|B|R[O[W|N|F|X|]J[M|P|D|VIL|A|Z|Y|G|S

If you wanted to send the message:
YOUR JOKES ARE LAME,

then you could send the coded message:
GXLP RXOUD TPU WTNU.

The major problem with this code is that breaking it is easy even without
knowing the key. That is, any enemy who captured a sufficiently long
encrypted message could figure out the original message. More elaborate cod-
ing methods are harder to break but still can be deciphered if the codes are
shared. That is, suppose you are receiving messages from both Bill and Hillary,
and each encodes his or her message using the same scheme. If Hillary cap-
tures Bill’s encrypted message, couldn’t she decode it by simply reversing the
encoding procedure? It seems that we must trust our friends—a grave draw-
back to any shared coding scheme. Ideally, we would prefer a code by which
people are able to encode messages to us but are at the same time unable to
decode other messages that have been encoded by the same process. Is such a
coding scheme possible? If someone could encode a message, then all he or

Attractive ideas in she would have to do to decode messages in the same type of coding scheme
one realm often have s reverse the coding procedure. However, this plausible statement turns out to
unexpected uses be false, and therein lies the core of modern coding methods.
elsewhere. In this section we will look at a coding technique invented during the last
few decades that uses a 350-year-old theorem about modular arithmetic to
@ encrypt and decode secret messages.
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PUBLIC KEY CODES

The method uses an encrypting and decoding scheme that is fundamentally
new in the coding business. The new wrinkle is the invention of the public key
code. Public key codes are codes that allow us to encode any message but pre-
vent us from decoding other messages encrypted by the same technique. Such
codes are called public key codes because we can tell the entire world how to
encode messages to us. We can even tell our enemies. We can take out an ad in
the newspaper telling everyone how to encode messages to us; it’s no secret;
it’s public. The key is that we and only we can decode an encrypted message.
Isn’t this notion counterintuitive? How can such a coding scheme work? We'll
take a look at one such scheme known as the RSA public key code.

Before jumping into the technical details of this coding scheme, let’s try to
make the basic idea of the encoding and decoding aspects of the RSA code
plausible. For this purpose, we journey to Carson City.

THE CARSON CITY KID AND THE PERFECT SHUFFLE CODE

The Carson City Kid was the master of cards (actually he was no kid, but it
sounds better than “the Carson City Yuppie”). His hands were quicker than
the eye, and his morals were just as fast. One thing the Kid could do without
fail was what is known in the trade as a perfect shuffle. That is, he would cut
the deck of 52 cards precisely in half and then shuffle them perfectly—one
card from the top half, then one from the bottom half, and so on, intermixing
the cards exactly—one from one side, one from the other. For the larcenous
among our readers, the advantage of a perfect shuffle is that, contrary to typ-
ical random shuffles, perfect shuffles only appear to bring disorder to the
deck. The original ordering is restored after exactly 52 perfect shuffles.

The Kid was an enterprising soul who did not want to spend his life in casi-
nos, rolling in money and surrounded by glamorous and attractive people.

The Basic Theme of the “Public” Aspect of the

RSA Coding Scheme in Ten Sentences

et’s select two enormous prime numbers—and

we mean enormous—say each having about
300 digits—and multiply those numbers together.
How can we multiply them together? Computers
are whizzes at multiplying natural numbers—even
obscenely long ones. Factoring large numbers,
however, is hard—even for computers. Computers
are smart but not infinitely smart—there are lim-
its to the size of natural numbers that they can
factor. In fact, our product is much too large for
even the best computers to factor. So if we
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announce that huge product to the world, even
though it can be factored in theory, in practice it
cannot. Thus we are able to announce the gigan-
tic number to everyone, and yet no one but we
would know its two factors. This huge product is
the public part of the RSA public key code. Some-
how, the fact that only we know how to factor
that number allows us to decode messages while
others cannot. It’s not obvious why this factoring
fact is helpful in making secret codes, but we'll see
that it’s really at the heart of the matter.



Rivest (top) and Adl

Instead, he decided to go into the secret message biz and be surrounded by
glabrous and atrocious people. His method was simple. He knew that most
people could not execute perfect shuffles. They could do only five or six shuf-
fles before messing up. The Kid’s method was straight-forward: The code
sender would take a deck of 52 blank playing cards and write the message
using one letter per card. Then the sender spy would carefully do five perfect
shuffles—leaving the deck of cards in an apparently random order. The spy
receiving the shuffled deck would then hand the coded message (the shuffled
deck) to the Kid.

The Kid knew exactly what to do. He quickly shuffled the deck with 47
more perfect shuffles and voila! The cards had rearranged themselves exactly
into their original order, and so the message could be read.

Of course, the Kid’s technique is too simple to use in practice. With deter-
mination, a person who captured the five-shuffled deck could do the reverse
of those perfect shuffles. However, the Kid’s technique demonstrates a math-
ematical fact that revolutionized the coding business.

The RSA Coding Scheme

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman discovered a pub-
lic key coding scheme that uses modular arithmetic. This public key coding
method is referred to as the RSA Coding Scheme and is now used millions of
times each day. Kid Carson’s 47 perfect shuffles that return the deck to its orig-
inal order captures the spirit of this RSA public key coding scheme. A shuf-
fling procedure encodes a message, and only the receiver knows how to
continue to shuffle the message further in a way that unshuffles the message—
no one besides the receiver can perform that additional shuffling. So, now
there are two basic questions we hope you are wondering: (1) What are we
shuffling? and (2) How do we keep shuffling to get back to where we started?

HOW THE SCHEME WORKS: SHUFFLING NUMBERS

We will shuffle numbers. That is, we will first convert our message to numbers
and then shuffle those numbers. How do we shuffle the numbers? Let’s take a
prime number, say 5. Pick any number that does not have 5 as a factor, for
example, 8. To shuffle 8, let’s just raise 8 to higher powers and look at the
remainders of those powers of 8 when we divide by 5. In other words, raise 8
to higher powers and look at those numbers mod 5.

(below), wondering where
Shamir is.

Powers of 8 | Powers of 8 mod 5
8= 8 3
£= 64 4
g= 512 2
8' = 409 1
8° = 32,768 3
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Look for patterns.

(OB

The second column represents a type of shuffling of a four-card deck where
the “shuffling” is accomplished by multiplying by 8. Notice that after five shuf-
fles of multiplication by 8 mod 5 we get back to 3.

Let’s try this again with a different-size deck. Suppose we pick the prime 7
and choose a number that does not have 7 as a factor—say 10. Let’s shuffle 10
by raising it to higher powers and considering those powers mod 7.

Powers of 10 Powers of 10 mod 7
10! = 10 3
10* = 100 2
10°= 1000 6
10*= 10,000 4
10° = 100,000 5
10° = 1,000,000 1
107 = 10,000,000 3

Here we notice that after seven shuffles of powers mod 7 we get back to 3. Now
it’s your turn. Try this shuffling yourself. Let’s set the prime number to be 5.
Now pick some numbers that have no factor of 5 and shuffle them by raising
them to powers mod 5. Try this shuffling with at least two different numbers.
What do you notice? How many shuffles get us back to where we started
mod 5? Let’s look for patterns.

By experimenting, we discover that, if we shuffle 5 times mod 5, we get back
to where we started. We also notice that, after we shuffle 4 times mod 5, we
always get 1 as the answer. This observation turns out to be a mathematical
fact—known as Fermat’s Little Theorem.

Fermat’s Little Theorem.

Ifp is a prime number and n is any integer that does not have p as
a factor, then n”~" is equal to 1 mod p. In other words, n”~" will
always have a remainder of 1 when divided by p.

It is Fermat’s Little Theorem, proved more than 350 years ago, that is the basis
of our shuffling procedure. Now let’s tackle the RSA public key code scheme.

AN ILLUSTRATIVE, CRYPTIC EXAMPLE

We introduce the RSA public key code method by considering a specific
example. Using a diabolically clever idea that will be explained later, we con-
struct and publicize a pair of numbers to the world—in this example the
numbers 7 and 143. In real life the numbers would be much larger, perhaps
having several hundred digits each. At the same time we construct the public
numbers, we also construct and keep secret a decoding number, in this case
103. The public part of the public key code does not contain the key to unlock
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the code; instead, the key is the secret decoding number that is kept only by

Ground your the receiver of encrypted messages. It never needs to be transmitted to anyone
understanding in else. We'll explain later how all these numbers were created.
the specific. We not only publicize the numbers 7 and 143 but also explain exactly how
to use them to encrypt a message. Here are the instructions, which could be
@ published in the newspaper.

Encoding Messages

Suppose that Wis a secret Swiss bank account number (less than 143) that the
sender wants to encrypt and send to someone. The sender computes W’
(remember that 7 is the first public number) and then computes the remain-
der when W7 is divided by 143, the second public number. That is,

W =143q+ C,

where the remainder Cis an integer between 0 and 142. Or, expressed in mod-
ular arithmetic,

W7 = Cmod 143.

The number C is now the coded version of W.

Decoding Messages

The receiver receives the coded message C and now must decode it. This
decoding process requires the receiver to compute C'%* (recall that 103 is the
secret number that no one but the receiver knows) and then to compute the
remainder when C'* is divided by 143. That is,

C'% =143q + D,

where the remainder D is an integer between 0 and 142. Or, expressed in mod-
ular arithmetic,

C' = Dmod 143.

The amazing fact is that D (the decoded message) will always be identical to
W (the original, uncoded message). Thus the receiver decoded the coded mes-
sage C to produce the original message W.

Suppose someone sets up the public key code described above, announces
the public numbers (7 and 143) and the coding method, and keeps the num-
ber 103 secret. Now let’s further suppose that a friend wishes to secretly send
her Swiss bank account number, 71. The table shows the sequence of events to
code the message 71.

To encode the number 71, the sender computes 717, which equals
9,095,120,158,391, and then computes the remainder when this number is
divided by 143. The remainder turns out to be 124. So 124 is the encoded ver-
sion of 71, and that is what the sender sends to the receiver. Now the receiver
has to decode 124.
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Receiver

Selects two different prime Multiplies them together: 11 X 13 = 143. This
numbers, in this case 11 and |
13, but tells no one what know the product but will not be able to factor it

they are.

becomes one of the public numbers. The public will

since the number, in practice, would be too large.

Subtracts 1 from each of the two primes, 11 — 1 = 10
and 13 — 1 = 12, and then multiplies these answers
together to get 120. The receiver then selects a number
at random that has no common factor with 120. In this
case the receiver selects 7, which becomes the other
number publicly announced.

Using the numbers 120 and 7, the receiver finds integers

d and y so that they satisfy the equation: 7d — 120y = 1.
One such solution is (7 X 103) — (120 x 6) = 1. The value of
d—in this case 103—is the secret decoding number that
only the receiver knows or can figure out, since figuring
out a solution to the equation required the factorization of
143—which no one knows but the receiver.

The number d (d for decoding), which in this case equals 103, is the secret
decoding number that we keep to ourselves. That’s it! Whenever we select the
numbers p, g, ¢, and d in the manner described above, the coding scheme will
always work.

WHY DO THOSE NUMBERS WORK?

Let’s see why this coding and decoding scheme always works. Before we give
an overview of why the RSA coding scheme works, we have to confess that
what follows is difficult. What makes it difficult? The answer is that there are
many steps. Although each step on its own is no great intellectual feat, when we
string them together, one after another, the logic and modular arithmetic can
get out of hand. These details are more interesting to some than to others. So
readers who decide to invest the energy to learn what follows must expect to
struggle and to reread the information several times. Other readers may decide
to limit their investment in this topic and move on—remember Vietnam.
We begin our explanation by a quick recap: First we picked two primes,

p=11 and g=13.

Their product is 143, and that is one of the public numbers. We next com-
puted

(p—D@-1)
or, in this case,
10 X 12 =120
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