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Traditional mathematics: subjects 3

attention on what is relevant for a particular point of view and temporarily
disregards the rest so that we can get to the heart of a structure or an argument.
In making these connections and finding these deep structures we package up
intractably complex situations into succinct units, enabling us to address yet
more complicated situations and use our limited brain power to greater effect.
This starts with numbers, where instead of saying “1 + 17 all the time we can
call it 2, or we fit squares together and call the result a cube, and then build up
to more complex mathematical structures as we’ll see throughout this book.

This is what I think the power and importance of abstract mathematics are.
The idea that it is relevant to the whole of life and thus illuminating for ev-
eryone may be surprising, but is demonstrated by the wide range of examples
that I have found where category theory helps, despite the field being consid-
ered perhaps the “most abstract” of all mathematics. This includes examples
such as privilege, sexism, racism, sexual harassment. These are not the sort of
contrived real life examples involving the purchase of 17 watermelons, but are
real real life questions, things we actually do (or should) think about in our
daily lives.

If people are put off math then they are put off these ways of thinking that
could really intrigue and help them. The sad part is that they are put off an
entirely different kind of math usually involving algorithms, formulae, mem-
orization and rigid rules, which is not what this abstract math is about at all.
Math is misunderstood, and the first impression many people get of it is enough
to put them off, forever, something that they might have been able to appreciate
and benefit from if they saw it in its true light.

Traditional mathematics: subjects

. . . category theor
A typical math education is a sory Y

series of increasingly tall hur-
dles. If these really were hur-

dles it would make sense not to group theory/topology
try higher ones if you’re unable
to clear the lower ones. calculus

algebra/geometry

arithmetic H
n

times tables
[

“Hurdles” model of math learning.
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algebra/
. t
However, math is really more ool
like an interconnected web of
ideas, perhaps like this; every-
thing is connected to every- {jmes
thing else, and thus there are tables
many possible routes around \
this web depending on what mathematical

. thought
sort of brain you have.

arithmetic calculus

group theory/
topology

category theory

“Interconnectedness” in math learning.

Some people do need to build up gradually through concrete examples to-
wards abstract ideas. But not everyone is like that. For some people, the con-
crete examples don’t make sense until they’ve grasped the abstract ideas or,
worse, the concrete examples are so offputting that they will give up if pre-
sented with those first. When I was first introduced to single malt whisky I
thought I didn’t like it, but I later discovered it was because people were trying
to introduce me “gently” via single malts they considered “good for begin-
ners”. It turns out I only like the extremely smoky single malts of Islay, not the
sweeter, richer ones you might be expected to acclimatize with.

I am somewhat like that with math as well. My route through the web of
mathematics was something like this diagram.

algebra/ My progress to higher level

eometr . .
8 4 mathematics did not use my
arithmetic calculus

knowledge of mathematical

subjects I was taught earlier.

;;?I?s gmur theory/ In fact after learning category
N\ topology theory I went back and un-

mathematical derstood everything again and
thought ——— category theory much better.

I have confirmed from several years of teaching abstract mathematics to art
students that I am not the only one who prefers to use abstract ideas to illu-
minate concrete examples rather than the other way round. Many of these art
students consider that they’re bad at math because they were bad at memoriz-
ing times tables, because they’re bad at mental arithmetic, and they can’t solve
equations. But this doesn’t mean they’re bad at math — it just means they’re
not very good at times tables, mental arithmetic and equations, an absolutely
tiny part of mathematics that hardly counts as abstract at all. It turns out that
they do not struggle nearly as much when we get to abstract things such as
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higher-dimensional spaces, subtle notions of equivalence, and category theory
structures. Their blockage on mental arithmetic becomes irrelevant.

It seems to me that we are denying students entry into abstract mathematics
when they struggle with non-abstract mathematics, and that this approach is
counter-productive. Or perhaps some students self-select out of abstract math-
ematics if they did not enjoy non-abstract mathematics. This is as if we didn’t
let people try swimming because they are a slow runner, or if we didn’t let
them sing until they’re good at the piano.

One aim of this book is to present abstract mathematics directly, in a way
that does not depend on proficiency with other parts of mathematics. It doesn’t
have to matter if you didn’t make it over some of those earlier hurdles.

Traditional mathematics: methods

When I studied modern languages at school there were four facets tested with
different exams: reading, writing, speaking and listening. Of those, writing and
speaking are “productive™ where reading and listening are “receptive”. For full
mastery of the language all four are needed of course, but if complete fluency
is beyond you it can still be rewarding to be able to do only some of these
things. I later studied German for the purposes of understanding the songs of
Schubert (and Brahms, Strauss, Schumann, and so on). My productive German
is almost non-existent, but I can understand Romantic German poetry at a level
including some nuance, and this is rewarding for me and helps me in my life
as a collaborative pianist.

I think there is a notion of “productive” and “receptive” mathematics as well.
Productive mathematics is about being able to answer questions, say, home-
work questions or exam questions, and, later on, produce original research.
There is a fairly widely held view that the only way to understand math is to
work through problems. There is a further view that this is the only way of
doing math that is worthwhile. I would like to change that.

I view “receptive” mathematics as being about appreciating math even if
you can’t solve unseen problems. It’s being able to follow an argument even if
you wouldn’t be able to build it yourself.

I can appreciate German poetry, restaurant food, a violin concerto, a Car-
avaggio, a tennis match. Imagine if appreciation were only taught by doing. |
can even read a medical research paper although I can’t practice medicine. The
former is still valuable. In math some authors call this “mathematical tourism™
with undertones of disdain. But I think tourism is fine — it would be a shame
if the only options for traveling were to move somewhere to live there or else
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stay at home. I actually once spoke to a representative from a health insurance
company who thought this was the case, and did not comprehend the concept
that I might visit a different state and ask about coverage there.

One particular feature of this book is that I will not demand that the reader
does any exercises in order to follow the book. It is standard in math books to
exhort the reader to work through exercises, but I believe this is offputting to
many non-mathematicians, as well as some mathematicians (including me). I
will provide “Things to think about” from time to time, but these will really
be questions to ponder rather than exercises of any sort. And one of the main
purposes of those questions will be to develop our instincts for the sorts of
questions that mathematicians ask. The hope is that as we progress, the reader
will think of those questions spontaneously, before I have made them explicit.
Thinking of “natural” next questions is one important aspect of mathematical
thinking. Where working through them is beneficial to understanding what
follows I will include that discussion afterwards.

The content in this book

Category theory was introduced by Eilenberg and Mac Lane in the 1940s and
has since become more or less ubiquitous in pure mathematics. In some fields
it is at the level of a language, in others it is a framework, in others a tool, in
others it is the foundations, in others it is what the whole structure depends on.

Category theory quickly found uses beyond pure math, in theoretical physics
and computer science. The view of things at the end of the 20th century might
be regarded like this, with the diagram showing applications moving outwards
from category theory:

finance

applied math

engineering pure

math
theoretical (" category ) computer
physics theory science
systems

chemistry

biology

However, since then category theory has become increasingly pervasive,
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finding direct applications in a much wider range of subjects further from pure
mathematics, such as ecological diversity, chemistry, systems control, engi-
neering, air traffic control, linguistics, social justice. The picture now might be
thought of as more like this:

linguistics

social

engineering justice
chemistry category systems
theory
biology computer
theoretical pure science

physics

Mac Lane

For some time the only textbook on the subject,
from which everyone had to try and learn, was the
classic graduate text by Mac Lane, Categories for
the Working Mathematician (from 1971). The sit-
uation was this: there was a huge step up to Mac
Lane, which many people, even those highly mo-
tivated, failed to be able to reach.

As is the way with these things, what started as a research field had become
something that graduate students (tried to) study, and eventually it trickled
down into a few undergraduate courses at individual universities around the
world that happened to have an expert there who wanted to teach it at that level.
This spawned several much more approachable textbooks at the turn of the 21st
century, notably those by Lawvere and Schanuel (1997), followed by a sort
of second wave with Awodey (2006), Leinster (2014) and Riehl (2016). There
was still a gap up to those books, and the gap was still insurmountable for many
people who didn’t have the background of an undergraduate mathematician,
either in terms of experience with the formality of mathematics or background
for the examples being used. "

In 20151 wrote How to Bake m, a book about category theory for an entirely

T Lawvere and Schanuel include high school students in their stated target audience but I think
they have in mind quite advanced ones. There are also some recent books aimed at specific
types of audience, which are less in the vein of standard textbooks; see Further reading.



10 Prologue

How to Bake m is not exactly a prerequisite but having read it will almost
certainly help.

This material is developed from my teaching art students at the School of the
Art Institute of Chicago. Most of the students had bad experiences of school
math and many of them either can’t remember any of it or have deliberately
forgotten all of it as they found it so traumatic. This book seeks to be different
from all of those types of experiences. It might seem long in terms of pages,
but I hope you will quickly find that you can get through the pages much faster
than you can for a standard math textbook. If the content here were written in a
standard way it might only take 100 pages. I didn’t want to make it shorter by
explaining things less, so T have made it longer by explaining things more fully.
I will gradually introduce formal mathematical language, and have included a
glossary at the end for quick reference. I occasionally include the names of
related concepts that are beyond the scope of this book, not because I think
you need to know them, but in case you are interested and would like to look
them up.

One obstacle to non-mathematicians trying to learn category theory is that
the examples used are often taken from other parts of pure mathematics. In
this book I will be sure to use examples that do not do that, including examples
from daily experience such as family relationships, train journeys, freezing
and thawing food, and more hard-hitting subjects such as racism and privilege.
I have found that this helps non-mathematicians connect with abstract mathe-
matics in ways that mathematical examples do not. Where I do include math-
ematical examples I will either introduce them fully as new concepts, or point
out where they are not essential for continuing but are included for interest for
those readers who have heard of them.

In particular, if you think you’re bad at mental arithmetic, terrible at algebra,
can’t solve equations, and shudder at the thought of sketching graphs, that need
not be an obstacle for you to read this book. I am not saying that you will find
the book easy: abstraction is a way of thinking that takes some building of
ability. We will build up through Part One of the book, and definitely take off
in Part Two. It should be intellectually stretching, otherwise we wouldn’t have
achieved anything. But your previous experiences with math need not bar your
way in here as they might previously have seemed to do. Most of all, aside
from the technicalities of category theory I want to convey the joy I feel in the
subject: in learning it, researching it, using it, applying it, thinking about it.
More than technical prowess or a huge litany of theorems, I want to share the
joy of abstraction.



PART ONE

BUILDING UP TO CATEGORIES



Copyrighted material



Categories: the idea

An overview of what the point of category theory is, without formality.

I like to think of category theory as the mathematics of mathematics.

I admit this phrase sounds a bit self-important, and it comes with another
problem, which is the widespread misunderstandings about what mathemat-
ics actually is. This problem is multiplied (or possibly raised to the power of
infinity) here by the reference of math to itself.

Another problem is that it might make it seem like you need to understand
the whole of mathematics before you could possibly understand category the-
ory. Indeed, that is not far from what the prevailing wisdom has been about
studying category theory in the past: that you have to, if not understand ail of
math, at least understand a large amount of it, say up to a graduate level, before
you can tackle category theory. This is why category theory has traditionally
only been taught at a graduate level, and more recently sometimes to upper
level undergraduates who already have a solid background in upper level pure
mathematics. The received wisdom is that all the motivating examples come
from other branches of pure mathematics, so you need to understand those first
before you can attempt to understand category theory.

Questioning “received wisdom™ is one of my favorite pastimes. I don’t ad-
vocate just blindly going against it, but the trouble with received wisdom, like
“common sense”, is that it too often goes unquestioned.

My experience of learning and teaching category theory has been different
from that received wisdom. I did first learn category theory in the traditional
way, that is, only after many undergraduate courses in pure math. However,
those other subjects didn’t help me to understand category theory, but the other
way round: category theory was much more compelling to me and I loved and
understood it in its own right, whereupon it helped me to understand all those
other parts of pure math that I had never really understood before.

I eventually decided to start teaching category theory directly as well, to
students with essentially no background in pure mathematics. [ am convinced
that the ideas are interesting in their own right and that examples illustrating

13
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those ideas can be found in life, not just in pure math. That’s why I'm starting
this book with a chapter about those ideas.

I think we can sometimes unintentionally fall into an educational scheme
of believing that we need to learn and teach math in the order in which it
was developed historically, because surely that is the logical order in which
ideas develop. This idea is summed up in the phrase “ontogeny recapitulates
phylogeny”, although that is really talking about biological development rather
than learning.” I think this has merit at some levels. The way in which children
grasp concepts of numbers probably does follow the history of how numbers
developed, starting with the counting numbers 1, 2, 3, and so on, then zero, then
negative numbers and fractions (maybe the other way round) and eventually
irrational numbers. However, some parts of math developed because of a lack
of technology, and are now somewhat redundant. It is no longer important to
know how to use a slide rule. I know very few ruler and compass constructions,
but this has not hindered my ability to do category theory, just like my poor
skills in horse riding have not hindered my ability to drive a car. Of course,
horse riding can be enjoyable, and even crucial in some walks of life, and by the
same token there are some specific situations in which mental arithmetic and
long division might be useful. Indeed some people simply enjoy multiplying
large numbers together. However, none of those things is truly a prerequisite
for meeting and benefiting from category theory.

Crucially, I think we can benefit from the ideas and techniques of category
theory even outside research math and aside from direct technical applications.
Mathematics is among other things a field of research, a language, and a set
of specific tools for solving specific problems. But it is also a way of thinking.
Category theory is a way of thinking about mathematics, thus it is a way of
thinking about thinking. Thinking about how we think might sound a bit like
convoluted navel-gazing, but I believe it’s a good way of working out how to
think better. And in a world of fake news, catchy but contentless memes, and
short attention spans, I think it’s rather important for those who do want to
think better to find better and better ways of doing it, and share them as widely
as possible rather than keeping people under a mistaken belief that you have to
learn a huge quantity of pure math first.

I have gradually realized that I use the ideas and principles of category the-
ory in all my thinking about the world, far beyond my research, and in areas
that probably wouldn’t be officially considered to be applications. It is these
ideas and principles that I want to describe in this first chapter, before starting
to delve into how category theory implements those ideas and how it trains us

¥ Also the phrase was coined by Ernst Haeckel who had some repugnant views on race and
eugenics, so I’'m reluctant to quote him, but technically obliged to credit him for this phrase.
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is to make sure we are always aware of and specific about what context we’re
considering. This is relevant in all aspects of life as well. For example, the
context of someone’s life situation, how they grew up, what is going on for
them in their personal life, and so on, has a big effect on how they behave,
and what their achievements represent. The same achievement is much more
impressive to me when someone has struggled against many obstructions in
life, because of race, gender, gender expression, sexual orientation, poverty,
family circumstance, or any number of other struggles. Sometimes this is con-
troversially referred to as “positive discrimination” but I prefer to think of it as
contextual evaluation.

1.4 Relationships

One of the crucial ways in which category theory specifies and defines context
is via relationships. It takes the view that what is important in a given context
is the ways in which things are related to one another, not their intrinsic char-
acteristics. The types of relationship we consider are often key to determining
what context we’re in or should be in. For example, in some contexts it mat-
ters how old people are relative to one another, but in other contexts it matters
what their family relationships are, or how much they earn. But if we’re think-
ing about, say, how good different people will be at running a country, then it
might not seem relevant how much money they have relative to one another.
Except that in some political systems (notably the US) being very rich seems
quite important in getting elected to political office.

There can also be different types of relationship between the same things in
mathematics, and we might only want to focus on certain types of relationship
at any given moment. [t doesn’t mean that the others are useless, it just means
that we don’t think they are relevant to the situation at hand. Or perhaps we
want to study something else for now, in something a bit like a controlled
experiment. Numbers themselves have various types of relationship with each
other. The most obvious relationship between numbers is about size, and so
we put numbers on a number line in order of size. But we could put numbers
in a different diagram by indicating which numbers are divisible by others. In
category theory those are two different ways of putting a category structure on
the same set of numbers, by using a different type of relationship. We will go
into more detail about this in Chapter 5.

The relationships used in category theory can essentially be anything, as
long as they satisfy some basic principles ensuring that they can be organized
in a mildly tractable way. This will guide us to the formal definition of a cat-
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egory. To build up to that we will look at the idea of formalism in Chapter 6,
to ease into this aspect of mathematics that can sometimes be so offputting. In
Chapter 7 we’ll look at a particular type of relationship called equivalence rela-
tions, which satisfy many good properties making them exceedingly tractable.
In fact, they satisfy too many good properties, so they are too restrictive to be
broadly expressive in the way that category theory seeks.

We will see that category theory is a framework that achieves a remarkable
trade-off between good behavior and expressive possibilities. If a framework
demands too much good behavior then expressivity is limited, as in a totalitar-
ian state with very strict laws. On the other hand if there are too few demands,
then there is great potential for expressivity, but also for chaos and anarchy.
Category theory achieves a productive balance between those, in the way it
specifies what type of relationship it is going to study.

Part One of the book will build up to the formal definition of a category.
We will then take an Interlude which will be a tour of mathematics, presenting
various mathematical structures as examples of categories. The usual way of
doing this is to assume that a student of category theory is already familiar with
these examples and that this will help them feel comfortable with the definition
of category theory. I will not do that, but will introduce those examples from
scratch, taking the ideas of category theory as a starting point for introducing
these mathematical topics instead. In Part Two of the book we will then look
more deeply into the sorts of things we do with category theory.

1.5 Sameness

One of the main principles and aims of category theory is to have more nuanced
ways of describing sameness. Sameness is a key concept in math and at a
basic level this arises as equality, along with the concept of equations. Indeed,
many people get the impression that math is all about numbers and equations.
This is very far from true, especially for a category theorist. First of all, while
numbers are an example of something that can be organized into a category,
the whole point is to be able to study a much, much broader range of things
than numbers. Secondly, category theory specifically does not deal in equations
because equality is much too strong a notion of sameness in category theory.
The point is, many things that we write with an equals sign in basic math
aren’t really equal deep down. For example when we say (5+1=1+5 we
really mean that the outcomes are the same, not that the two sides of the equa-
tion are actually completely the same. Indeed, if the two sides were completely
the same there would be no point writing down the equation. The whole point
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is that there is a sense in which the two sides are different and a sense in which
the two sides are the same, and we use the sense in which they’re the same to
pivot between the senses in which they’re different in order to make progress
and build up more complex thoughts. We will go into this in Chapter 14.

Numbers and equations go together because numbers are quite straightfor-
ward concepts, so equality is an appropriate notion of “sameness” for them.
However, when we study ideas that are more complex than numbers, much
more subtle notions of sameness are possible. To take a very far opposite ex-
treme, if we are thinking about people then the notion of “equality” becomes
rather complicated. When we talk about equality of people we don’t mean that
any two people are actually the same person (which would make no sense) but
we mean something more subtle about how they should be treated, or what
opportunities they deserve, or how much say they should have in our democ-
racy. Arguments often become heated around what different people mean by
“equality” for people, as there are so many possible interpretations.

Math is about trying to iron out ambiguity and have more sensible argu-
ments. Category theory seeks to study notions of sameness that are more subtle
and complex than direct equality, but still unambiguous enough to be discussed
in rigorous logical arguments. Sometimes a much better question isn’t to ask
whether two things are equal or not, but in what ways they are and aren’t equal,
and furthermore, if we look at some way in which they 're not equal, how much
and in what ways do they fail to be equal? This is a level of subtlety provided
by category theory which we sorely need in life too.

1.6 Characterizing things by the role they play

Category theory seeks to characterize things by the role they play in context
rather than by some intrinsic characteristics. This is related to the idea of con-
text and relationships being so important. Once we understand that objects take
on very different characteristics in different contexts it becomes clearer that the
whole idea of intrinsic characteristics is rather shaky.

I think this applies to people as well. I don’t think I have an intrinsic person-
ality because I behave very differently depending on what sort of situation I'm
in. In some situations I'm confident and talkative, and in other situations I'm
nervous and shy. Even mathematical objects do something similar, although in
that case the characteristics we’re thinking about aren’t personality traits, but
mathematical behaviors.

T Actually they’re very profound, but once they’re defined there’s not much nuance to them.
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For example, we might think the number 5 is prime “because it’s only di-
visible by 1 and itself”, but we really ought to point out that the context we’re
thinking of here is the whole numbers, because if we allow fractions then 5 is
divisible by everything really (except 0).

In normal life we often mix up when we’re characterizing things by role and
by property in the way that we use language. For example “pumpkin spice”
is named after the role that this spice combination plays in classic Ameri-
can pumpkin pie, but it has now come to be used as a flavoring in its own
right in any number of things that are not actually pumpkin pie, but it’s still
called pumpkin spice, which is quite confusing for non-Americans. Conversely
“pound cake” is named after the fact that it’s a recipe consisting of a pound
each of basic cake ingredients. So it’s named after an intrinsic property, and
it’s still called pound cake even if you change the quantity that you use. I,
personally, have never made such an enormous cake.

One of the advantages of characterizing things by the role they play in con-
text is that you can then make comparisons across different contexts, by finding
things that play analogous roles in other contexts. We will talk about this when
we discuss universal properties in Chapter 16. This might sound like the oppo-
site of what I just described, as it sounds a bit like properties that are universal
regardless of context, but what it actually refers to is the property of being
somehow extreme or canonical within a context. This can tell us something
about the objects with that property, but it can also tell us something about the
context itself. If we go round looking at the highest and lowest paid employees
in different companies, that tells us something about those companies, not just
about the employees. It is only one piece of information (as opposed to a whole
distribution of salaries across the company) but it still tells us something.

1.7 Zooming in and out

One of the powerful aspects of category theory’s level of abstraction is that it
enables us to zoom in and out and look at large and small scale mathematical
structures in a similar light. It’s like a theory that unifies the sub-atomic level
with the level of galaxies. This is one of my favorite aspects of category theory.

If we study birds then we might need to make a theory of birds in order
to make our study rigorous. However, that theory of birds is not itself a bird
— it’s one level more abstract. On the other hand if we study mathematical
objects then we similarly might need a theory of them. I find it enormously

T Also this is more of a characterization than a definition.
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satisfying that that theory is itself also a mathematical object, which we can
then study using the same theory. Category theory is a theory of mathematics,
but is itself a piece of mathematics, and so it can be used to study itself. This
sounds self-referential, but what ends up happening is that although we are still
in category theory we find ourselves in a slightly higher dimension of category
theory. Dimensions in this case refer to levels of relationship. In basic category
theory our insight begins by saying we should study relationships between
objects, not just the objects themselves. But what about the relationships? If
we consider those to be new mathematical objects, shouldn’t we also study
relationships between those? This gives us one more dimension.

Then, of course, why stop there? What about relationships between relation-
ships between relationships? This gives us a third dimension. And really there
is no logically determined place to stop, so we might keep going and end up
with infinite dimensions. This is essentially where my research is, in the field
of higher-dimensional category theory, and we will see a glimpse of this to
finish the book. To me this is the ultimate “fixed point” of theories. If category
theory is a theory of mathematics, then higher-dimensional category theory is
a theory of categories. But a theory of higher-dimensional category theory is
still higher-dimensional category theory.

This is not just about abstraction for the sake of it, although I do find abstrac-
tion fun in its own right. It is about subtlety. Category theory is about having
more subtle ways of expressing things while still maintaining rigor, and every
extra dimension gives us another layer of possible subtlety.

Subtlety and nuance are aspects of thinking that I find myself missing and
longing for in daily life. So much of our discourse has become black-and-white
in futile attempts to be decisive, or to grab attention, or to make devastating
arguments, or to shout down the opposition. Higher-dimensional category the-
ory trains us in balancing nuance with rigor so that we don’t need to resort to
black-and-white, and so that we don’t want to either.

I think mathematics is a spectacular controlled environment in which to
practice this kind of thinking. The aim is that even if the theory is not directly
applicable in the rest of our lives, the thinking becomes second nature. This
is how I have found category theory to help me in everyday life, surprising
though it may sound.

1.8 Framework and techniques

As I have described it so far, category theory might sound like a philosophy
more than anything else. But the point is that it is only guided by these vari-
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Every academic discipline provides a way of reaching truths of some form.
Each discipline is seeking a particular type of truth, and develops a method or
framework for deciding what counts as true. In this era of information excess
(and indeed general excess) I think understanding those methods and frame-
works is far more important than knowing the truths themselves. The important
thing is to know how to decide what should count as true — how to build good
foundations on which to base our understanding. I strongly believe that this
understanding of process and framework is what is most transferrable about
studying any subject, especially math.

2.2 The twin disciplines of logic and abstraction

The framework of mathematics involves the twin disciplines of logic and ab-
straction. Math is not unique in its use of either of these things, but I regard it
as being more or less defined by its use of these in combination.

I would say that philosophy uses logic, but applies it to real questions about
life experiences. Art uses abstraction, but does not primarily build on its ab-
stractions by logic. Math uses logic and abstraction together. It uses logic to
build rigorous arguments, and uses abstraction to ensure that we are working
in a world where logic can be made rigorous.

This might make it sound like we can never be talking about the “real” (or
rather, concrete”) world as we will always be working in an abstract world.
While this is in some sense true, it is also reductive. Abstractions are facets
of the concrete world, or views from a particular angle. While they will never
give us the full explanation of the concrete world, it is still valuable to get a
very full understanding of particular aspects of the concrete world. As long as
we are clear that each one is only a partial view, we can then move flexibly
between those different views to build up a clearer picture.

There is a subtle difference between this and the approach of studying the
concrete world directly. In the direct approach we typically get only a partial
understanding, because the concrete world is too messy for logic. The follow-
ing diagram illustrates the difference.

T What is real anyway?
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“concrete math” abstract math
[ direct use of math ’ [ indirect use of math ‘
to study the world to study the world
fuller details of concrete world partial view of concrete world
partial unjerstanding fuller understanding

Thus abstract math still studies the world, just in a less direct way. Its starting
point is abstraction, and the starting point for abstraction is to forget some
details about a situation.

2.3 Forgetting details

Abstraction is about digging deep into a situation to find out what is at its core
making it tick. Another way to think of it is about stripping away irrelevant
details, or rather, stripping away details that are irrelevant to what we’re think-
ing about now. Those details might well be relevant to something else, but we
decide we don’t need to think about them for the time being. Crucially, it’s a
careful and controlled forgetting of details, not a slapdash ignoring of details
out of laziness or a desire to skew an argument in a certain direction.

If someone says “women are worse at math than men” then they are omit-
ting crucial details and opening up ambiguities, or deliberately using data in
a misleading way. This inflammatory statement has some truth in some sense,
which is that fewer women are currently employed as math professors than
men, not that there is any evidence that women are innately worse at math than
men. It’s a pedantically correct expression of the fact that women are currently
doing worse in the field of mathematics than men are.”

Whereas if we observe that one apple together with another one apple makes
two, and that one banana together with another banana makes two, and we say
that one thing together with another thing makes two, then we are ignoring the
detail of applehood and bananahood as that is genuinely irrelevant to the idea
of one thing and another thing making two things. That is abstraction, and is
how numbers come into being. Numbers are one of the first abstract concepts
we come across, but we don’t always think of them as being abstract. That is
a good thing, as it shows that we have raised the baseline level of abstraction
that we’re comfortable with in our heads. This is like the fact that things can

T In The Art of Logic 1 wrote about pedantry being precision without illumination. In this case
it’s even worse: it’s precision with active obfuscation.
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seem hard at first, but later seem so easy they’re second nature. It is all a sign
that we’ve progressed.

2.4 Pros and cons

Before I go into more detail about how we perform abstraction, I want to talk
about the pros and cons. It might be tempting just to talk about all the bene-
fits of doing something, but that can be counter-productive if other people see
disadvantages and think you’re being dishonest or misleading. Instead, I think
it’s important to see the pros and cons of doing something, and weigh them up.
There are rarely exclusively positives or negatives to doing something.

The advantages of abstraction, as I see them, are broadly that we unify many
different situations in a sort of inclusivity of examples; this then enables us to
transfer insight across different situations, and thus to gain efficiency in our
thought processes by studying many things at once. The world is a complicated
place and we need to simplify it in order to be able to understand it with our
poor little brains. One popular way to simplify it is to ignore some of the detail,
but I think that’s a dangerous way of simplifying it. Another way is to make
connections inside it so that our brains can deal with more of it at once. I think
this is a better way. The best way overall is to become more intelligent so that
the world becomes simpler relative to our brains.

So much for the advantages; I will now acknowledge some disadvantages
of abstraction. One is that it does take some effort, but I do think this is about
front-loading effort in order to reap rewards from it later. I think that it’s an in-
vestment, and the extra effort early means that we can understand more things
more deeply with less effort later.

Another disadvantage is that we lose details. However, I think this just
means we shouldn’t remain exclusively in the abstract world, but should al-
ways bear in mind that at some point some details will need to go back in.
Losing the details temporarily is an important part of finding connections be-
tween situations, so again I think that this is a net positive.

Another disadvantage is that this takes us further from the normal every-
day world that we’re used to, which can be scary. It can be scary because it
can seem like we don’t have our feet on the ground any more. It can be scary
because we can’t touch things or feel things or see things, and we can’t use
a lifetime of intuition any more. However, intuition is itself a double-edged
sword." Intuition both helps and hinders us, whether in math or in life. It helps

T I've always found the metaphor of a double-edged sword a bit strange, as it doesn’t seem to me
that the two edges of a double-edged sword work in opposition to one another.
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us in situations where we do not have enough information or time to use logic.
It helps us by drawing on our experience quickly. But it is thus also limited by
our experience, and if it is used instead of logic it can be dangerously mislead-
ing. For example, it’s unavoidable to have a gut instinct when we meet a new
person, but it’s wrong to hold onto that instead of actually responding to the
person as we get to know them, especially when our gut instinct is skewed by
implicit bias as it (by definition) always is.

Likewise, in math it’s not wrong to have intuitions about things, and indeed
this is how much research gets started, by a vague idea coming from inside a
mathematician’s figurative gut somewhere. But the key is then to investigate it
using logic and not rely too much on that intuition.

One crucial point is that the framework of building arguments by rigorous
logic in math can take us much further than our intuition can. It can take us
into places where we have no intuition, such as infinite-dimensional space, or
worlds of numbers that have no concrete interpretation in the normal world.
For example, one of the points of calculus is to understand what gives rise to
interesting features in graphs, like gaps, spikes, places where the graph changes
direction. This means we can seek those features even when the graph itself is
much too complicated to draw, so that we can’t just look for them visually.

One possible objection to this “advantage™ is that you might think you’ll
never find yourself in a place that’s so far beyond your intuition. That may
well be true. But it might still be good for your brain to be stretched into
those places, so that your intuition can develop. I am convinced that my years
of stretching my brain in those abstract ways have enabled me to think more
clearly about the world around me, and more easily make connections between
situations, connections that others don’t see. Often when I give my abstract
explanations of arguments around social issues such as sexual harassment,
sexism, racism, privilege, power imbalance and so on, people ask me how I
thought of it. The answer is that a lifetime of developing my abstract mathe-
matical brain makes these things come to me quite smoothly. It’s good to train
yourself to be able to do more than you think you’ll need, so that the things
you do need to do feel easier.

The last advantage 1 want to give for abstraction is that it can be fun. Fun
can seem a little frivolous in trying political times, but if we only stress the
utility of something it might start sounding awfully boring. I find it enormously
satisfying to strip away outer layers of a situation to find its core. It appeals to
my general aesthetic, which is typically that I am not so interested in superficial
appearances, but care about what is going on in the heart of things, deep down,
far below the surface. Abstraction in its own right really does bring me joy.
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2.5 Making analogies into actual things

Abstraction comes from seeing analogies between different situations. This is
a particular form of detail-forgetting, based in finding connections between
different situations, rather than just arbitrarily ignoring details.

If we say that one situation “is analogous to” another situation, essentially
what we are saying is that if we ignore some surface-level details in each situ-
ation then the two are really the same. In math, unlike in normal life, we don’t
just say that the situations are “analogous”, but we make very precise what
feature is the same in both situations, which is causing the analogy we want to
consider. Some of what follows I have also written about in The Art of Logic.

If we think about two apples and two bananas, we can consider them to
be analogous because they’re both examples of two things. But we could also
consider them to be analogous because they’re both examples of two fruits.
Neither of those is “right” or “wrong”, neither is “better” or “worse”. What we
can say, however, is that “two things” is a further level of abstraction than “two
fruits” because it forgets more of the details of the situation; conversely, saying
“two fruits” is less abstract and leaves us closer to the actual situation.

The more abstract version takes us further away from “reality” (whatever
that is), and one major upside is that it enables us to include more distant
examples in our analogy. In this example it means we could include two chairs,
or two monkeys, or two planets.

In a way, abstraction is like looking deeper into a situation, but it is also like
taking a step back and seeing more of the big picture rather than getting lost
in the details. The fact that we can find different abstractions of the same thing
makes it sound ambiguous but is in fact key. I find it helpful to draw diagrams
of different levels of abstraction.

Here is a diagram showing that two apples 2 things

and two bananas are analogous because

they’re both two fruits, but also that if we 2 fruits

go up further to the level of two things then /

we get to include two chairs as well. 2apples  2bananas 2 chairs

The key in math is that we don’t just say that things are analogous. Rather,
we precisely specify our level of analogy, and then go a step further and regard
that as an object in its own right, and study it. That is how we move into
abstract worlds, and it is in those abstract worlds that we “do” math. In the
above example that’s the level of “2 things™: the world of numbers.

Pinning down what is causing the analogy, rather than just saying things
are analogous, is like the difference between telling someone there is a path
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Things To Think About \

f
T 2.1 What are some senses in which addition and multiplication are “the

same”? What are some senses in which they are “different™?
L J

Addition and multiplication are both binary operations: they take two inputs
and produce one answer at the end. In the first instance they are binary opera-
tions on numbers, but as math progresses through different levels of abstraction
we find ways of defining things like addition and multiplication on other types
of mathematical object as well.

As binary operations, they have some features in common, including that the
order in which we put the numbers doesn’t matter (which is commutativity) and
nor does how we parenthesize (which is associativity). However, addition and
multiplication behave differently in various ways. For example, addition can
always be “undone” by subtraction, but multiplication can only sometimes be
“undone” by division: multiplication by O can’t be undone by division. This is
sometimes thought of as “you can’t divide by (” but we’ll come up with some
better abstract accounts of this later.

2.7 Abstraction journey through levels of math

As mathematics progresses, aspects of it become more and more abstract.
There is a sort of progression where we move through levels of abstraction
gradually, through the following steps:

see an analogy between some different things,

specify what we are regarding as causing the analogy,

regard that thing as a new, more abstract, concept in its own right,

become comfortable with those new abstract concepts and not really think
of them as being that abstract any more,

5. see an analogy between some of those new concepts,

6. iterate. ..

W=

One of the advantages of taking abstract concepts seriously as new objects is
that we can then build on them in this way. Here’s an example of an initial
process of abstraction in basic math.
This is the infamous process of “turn-
b\A ing numbers into letters”, which is the
> stage of math many people tell me is
where they hit their limit.
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(In fact there was a level below that, where we went from objects like apples
and bananas to numbers in the first place.) Why have the numbers turned into
letters? It’s so that we can see things that are true abstractly, regardless of what
exact numbers we're using. For example:

1+2 = 241 Something analogous is going on in all of these situa-

1+3 341 tions, and it would be impossible for us to list all the com-

243 342 binations of numbers for which this is true as there are

5+7 = 745 infinitely many of them. We could describe this in words
as “if we add two numbers together it doesn’t matter what
order we put them”, but this is a bit long-winded.

The concise abstract way of saying it is: given any numbers a and b,
a+b=b+a.

We have “turned the numbers into letters” so that we can make a statement
about tons of different numbers at once, and make precise what pattern it is
that is causing the analogy that we see. Not only is this more concise and thus
quicker to write down (and mathematicians are very lazy about writing down
long-winded things repeatedly), but the abstract formulation can help us to go
a step further and pin down similarities with other situations.

But there’s a level more abstract as well, in the direction we were going at
the end of the previous section. If we think about similarities between addition
and multiplication we see that they have some things in common. For a start,
they are both processes that take two numbers (at a basic level) and use them to
produce an answer. The processes also have some properties that we noticed,
such as commutativity and associativity.

When we call them a “process that takes two numbers and produces an an-
swer” that is a further level of abstraction. It’s an analogy between addition
and multiplication.

Here is a diagram showing that
new level, with the symbol ® rep-
resenting a binary operation that

\

a+b xb
could be +, X or something else. / / \
There is a journey of abstrac- 1+2 243 1 %2 2% 3
tion up through levels of this di- / \
agram that is a bit like the journey 2 apples and 2 cookies and
through math education. 3 apples 3 cookies

At the very bottom level we have the sorts of things you might do in pre-school
or kindergarten where you play around with familiar objects and get nudged
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in the direction of thinking about numbers. At the next level up we have arith-
metic as done in elementary school, perhaps, and then we move into algebra as
done a little bit further on at school. The top level here, with the abstract binary
operation, is the kind of thing we study in “abstract algebra” if we take some
higher level math at university. Binary operations are studied in group theory,
for example, and this is one of the topics we’ll come back to. Incidentally I
always find the term “abstract algebra” quite strange, because all algebra is
abstract and, as I've described, what we even consider to count as “abstract™
changes as we get more used to more abstraction.

There is indeed a further level of abstraction, which one might call “very
abstract algebra”. At this level we can think about more subtle ways of com-
bining two things, where instead of taking just any two things and producing
an answer, we can only take two things that fit together like in a jigsaw puz-
zle. For example, we can think about train journeys, where we can take one
train journey and then another, to make a longer train journey — but this only
makes sense if the second journey starts where the first one ends, so that you
can actually change train there. This means you can’t combine any old train
journeys to make longer ones, but only those that meet up suitably where one
ends and the other begins.

This is the sort of way we’ll be combining things in category theory. Binary
operations are still an example of this, but as with all our higher levels of
abstraction, we will now be able to include many more examples of things that
are more subtle than binary operations. This includes almost every branch of
math, as they almost all (or maybe even all) involve some form of this way
of combining things. Here is a diagram showing that, including the names of
some of the mathematical topics we’ll be exploring later in this book.

aob

(O]

2N

a

a+ 27/
£}
I've included “life” in the examples here, to emphasize that the higher level
of abstraction may seem further away from normal life, but at the same time,

the higher level is what enables us to unify a much wider range of examples,
including examples from normal life that are not usually included in abstract

SN
o,

1+ +3 1x X3 functions  relations  homotopies --- life
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mathematics. I think this is like swinging from a rope — if you hang the rope
from a higher pivot then you can swing much further, provided you have a long
rope. It’s also like shining a light from above — if you raise it higher then the
light will become less bright but you will illuminate a wider area. The result is
perhaps more of an overview and an idea of context, rather than a close-up of
the details. However, you won’t lose the details forever as long as you retain
the ability to move the light up and down. Furthermore, if you can find a way to
make the light itself brighter, then you can see more detail and more context at
the same time. I think this is an important aspect of becoming more intelligent,
and that abstract mathematics can help us with that.

“More abstract” doesn’t necessarily mean less relevant and it doesn’t nec-
essarily mean harder either. Too often we assume that things get harder and
harder as we move up through those levels of abstraction, and thus that we
shouldn’t try to move up until we’ve mastered the previous level. However I
think this is one of the things that can hold some people back or keep them ex-
cluded from mathematics. Actually the higher levels might be easier for some
people, either because, like me, they enjoy abstraction and find it more sat-
isfying, or because it encompasses more examples and those might be more
motivating than the examples included at the lower levels. If you're stuck at
the level of @ + b and the only examples involve adding numbers together then
you may well feel that the whole thing is tedious and not much help to you
either. After all, some things are fun, some things are useful, and some things
are both, but the things that are neither are really the pits.

I think we should stop using the lower levels of abstraction as a prerequisite
for the higher ones. If at the higher levels you get to deal with examples from
life that you care about more than numbers, perhaps examples involving people
and humanity, then it could be a whole lot more motivating. Plus, if you enjoy
making connections, seeing through superficiality, and shining light, then those
higher levels are not just useful but also fun.
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Patterns

We can make something abstract, then find patterns, then ask if those patterns
are caused by some abstract structure. This chapter still has little formality.

3.1 Mathematics as pattern spotting

Patterns are aesthetically pleasing, but they are also about efficiency. They are
a way to use a small amount of information to generate a larger amount of
information, or a small amount of brain power to understand a large amount of
information.

Humans have used patterns across history and across most, if not all, cul-
tures. Patterns are used for designs on fabric, on floors, on walls.

One carefully designed tile can be used to
generate a large and intricate pattern cover-
ing a very large surface, such as in this tiled
wall at the Presidential Palace of Panama.
If you look closely you can see that the pat-
tern is actually made from just one tile, ro-
tated and placed at different orientations.”

Using one tile like this requires much less “information” than drawing an
entire mural from scratch. But aside from this sort of efficiency, patterns can
be very satisfying. They give our brains something to latch onto, so that they
don’t get too overwhelmed. It’s like when a chorus or refrain comes back in
between each verse of a song.

Mathematics often involves spotting patterns. This can help us understand
what is going on in general, so that we can use less of our brain power to
understand more things.

™ Tt might be hard to see in black-and-white, but you can see a color version at this link:
eugeniacheng.com/tile/.

35
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3.2 Patterns as analogies

Patterns are really analogies between different situations, which is what cat-
egory theory is going to be all about. At a visual level, we could talk about
“stripes”, for example, and understand that we mean alternating lines in differ-
ent colors. We might not know the specific details — how wide the lines are,
what the colors are, what direction they’re pointing — but there is something
analogous going on between all different situations involving stripes, and the
abstract concept behind it is the concept of a “stripe”. Patterns for clothes are
also analogies, this time between different items of clothing. A dress pattern is
like an abstract version of the dress.

In our previous examples of numbers we were looking at analogies between
numbers. With the repeating patterns of final digits on multiples of numbers it
was analogies between multiples. The numbers 10, 20, 30, 40, 50, and so on
are all analogous via the fact that they consist of two digits: some number n
followed by 0.

With the 12-hour clock the pattern on the table was an analogy between the
different rows: in each row, the numbers go up one by one to the right (and
the number 1 counts as “one up” from the number 12). The only difference
between the rows is then what number they start at.

The analogy between clocks with different numbers of hours is then a sort of
meta-pattern — an analogy between different patterns. The thing the different
tables have in common is the “shifting diagonal” pattern. We have, in a sense,
gone up another level of abstraction to spot a pattern among patterns. '

p Things To Think About 3
T 3.3 What patterns can you think of in other parts of life? In what sense

could they be thought of as analogies between different situations? You could
think about patterns in music, social behavior, politics, history, virus spread,
language (in terms of vocabulary and grammar). . .
L

J

3.3 Patterns as signs of structure

Spotting patterns in math is often a starting point for developing a theory. We
take the pattern as a sign of some sort of abstract structure, and we investigate
what abstract structure is causing that pattern.

T At this point in writing I went into lockdown for the COVID-19 crisis and finished the draft
without leaving the house again. I feel the need to mark it here.
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p Things To Think About \
T 3.4 Here is an addition table for the numbers 1 to +11 2 3 4
4. Can you find a line of symmetry on this table, that is, 112 3 4 5
a line where we could fold the grid in half and the two 213 4 5 6
sides would match up. Why is that line of symmetry 3la 5 6 7
there? What about in a multiplication table for the same
45 6 7 8§

numbers?
\ J
Here’s the addition table for the numbers | to 4 with \‘\+~ 1 2 3 4
a line of symmetry marked. I have also highlighted an 1 I 2 3 4 5
example of a pair of numbers that correspond to each 5 |3 45 6
other according to this line of reflection. The one on

. 314 5 6 7
the lower left is the entry for 3 + | whereas the one on als 6 7 ‘\8
the upper right is the entry for 1 + 3. R

We can see that these entries are the same, but the reason they are the same
is that 3+ 1 = 1 4 3, which we might know as the commutativity of addition. If
you check any other pair of numbers that correspond under the symmetry, you
will find that they are all pairs of the form a + b and b + a. The entries on the
diagonal where the line is actually drawn are all examples of x + x so switching
the order doesn’t change the entry. That is a form of symmetry in itself: in the
expressiona + b = b + a, if @ and b are both x then the left and right become
the same. We say the equation is symmetric in a and b.

An analogous phenomenon happens in the multiplication table, with the line
of symmetry now being a visual sign of commutativity of multiplication. Of-
ten when we spot visual patterns we ask ourselves what abstract or algebraic
structure is giving rise to that visual pattern.

p Things To Think About \
T 3.5 Hereis a grid of the num- 0 1 2 3 4 5 6 7 8 9
bers 0 to 99. We have already 10 11 12 13 14 15 16 17 18 19
talked about the patterns for mul- 29 21 22 23 24 25 26 27 28 29
tiples of 2, 5, and 10. If we mark 3 37 30 33 34 35 36 37 38 39

mallt}_lemultlp]eso:'&whatpat- 40 Al 42 43 44 45 46 47 48 49
tern arises and why? What about S0051 52 53 54 55 56 57 58 59

Itiples of 9?
multiples of 9 60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 19

80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99
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Here is a picture of the multiples of 0 1 2 3 4 5 6 7 8 9
3 on the number grid. When we only 10 11 12 13 14 15 16 17 18 19
listed their last dlgl[S it was less obvi- 20 21 22 23 24 25 26 27 28 29
ous how much of a pattern there was, 30 31 32 133 34 35 36 37 38 39
because it seemed a bit random: 0, 3, 40 41 42 43 44 145
6,9, 2,5, 8, 1, 4, 7. However, when
we draw them on this square it’s visu-
ally quite striking that the multiples of
3 go in diagonal stripes, a bit like the
diagonal stripe pattern we saw on the
addition table above.

46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 719
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

This is because the last multiple of 3 under 10 is one less than it, and so
when we move down a row in this table, the pattern shifts one to the left. If
the last multiple were 2 less than it, then the pattern would shift two to the left
and be less striking. In this picture of multiples of 9 we see something similar
happening, just with fewer stripes.

This pattern is essentially where we
get that cute trick for the 9 times ta-
ble where you hold down one finger at
a time and read the number oft the re-
maining fingers. So for 4 x 9 you can
hold up all 10 fingers, then put down
the fourth one from the left, and read
off 3 from the left of that and 6 from
the right to get 36. Tricks like that can 70 71 72 73 74 75 76 77 78 19
be a way to bypass understanding ora 80 81 82 83 84 85 86 87 88 89
way to deepen understanding. 90 91 92 93 94 95 96 97 98 99

0 1 2 3 45 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69

p Things To Think About \
T 3.6 How does that trick generalize for other multiples? We will have to
change what base we’re working in.
L

J

A general principle of pattern spotting is that visual patterns might be easy
to spot in simple examples, but the abstract structure might be easier to reason
with, use or even verify, in more complex situations. It would be harder to draw
the table for multiples of a much larger number, and if the patterns in the table
were less obvious then it would be harder to see them. In situations of higher
dimensions it is then even harder.
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ARV VLY

It is fairly easy to see all sorts of patterns of dif-
ferent sized triangles in this grid. However if this
were a 3-dimensional space filled with triangular
pyramids it would be rather harder to see, and in
higher-dimensional space we can’t even fit it into our
physical world. But those are very helpful structures
in many fields of research; it just requires more ab-

stract ways of expressing them. N /N /\ /\

3.4 Abstract structure as a type of pattern

If category theory is the mathematics of mathematics, then categorical struc-
ture is about patterns in patterns. It’s about seeing the same pattern in different
places, and about making analogies between patterns.

Here’s an example. We might talk about a “mother—daughter” relationship
abstractly, as opposed to thinking about a specific mother’s relationship with
their daughter. Now we could think about a relationship between someone’s
grandmother and mother. This is another type of “mother—daughter” relation-
ship; it’s just a particular type where another generation also does exist. The
difference this makes to our considerations depends on the context.

Here’s a tiny family tree for that structure. In a family Alex
tree we're not taking into account any context other than |
parent—child relationships. In the diagram there is no difference Billie
in the abstract structure depicted between the grandmother and |
her daughter, or the mother and her daughter. Cat

However, if we’re writing a book about sociology, or the psychology of fam-
ily units, or about motherhood, then we might well want to think about how
the relationship between a mother and her daughter changes when the daugh-
ter has her own daughter in turn. However, the abstract similarity between the
grandmother—mother and the mother—daughter relationships is still an aspect
of what frames this question.

Another example is if we think about power dynamics between different
groups of people in society. White people hold structural power over non-white
people, and male people hold structural power over non-male people. This is
about overall structures, not individuals — it doesn’t mean that every white
person holds power over every individual non-white person, or that every male
person holds power over each individual non-male person. It’s about the way
the structures of society are set up. In any case even if you dispute this fact
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we can still depict the abstract structure that I am describing, because we can
describe abstract structure as a separate issue from the question of how the
abstract structure manifests itself in “real life”.

We could depict these power struc- white people male people
tures like this, emphasizing the l l

analogy that I am claiming exists

non-white people non-male people
between the two structures,
We could emphasize it further group who holds power in society
by going one level more abstract l
to this, which immediately unifies those not in that group

many situations.

This now includes all sorts of other examples such as straight people over
non-straight people, cisgender’ people over trans people, rich people over non-rich
people, educated people over non-educated people, employed over unemployed,
people with homes over people experiencing homelessness, and so on.

3.5 Abstraction helps us see patterns

Finding the abstract structure in situations and expressing it in some way, of-
ten as a diagram to make it less abstract, can help us see the patterns and
relationships between situations. It can help clear our mind of clutter and dis-
traction and emotions. Distraction and emotions aren’t bad per se, they can
just get in the way of us seeing the actual structure of an argument rather than
the window-dressing. Sleight of hand and flattering clothing can be fun, but if
we’re at the doctor’s getting diagnosed for something it would be much more
productive to show the whole truth and not be afraid of getting naked.

One of my favorite examples is the way I have been drawing diagrams of
analogies and levels of abstraction. This way of specifying their structure has
helped me pin down much more clearly where disagreements around analogies
are coming from. I described it in The Art of Logic in terms of disagreements
largely taking two possible forms.

It starts by someone invoking an analogy in this form, X
between two ideas A and B, but crucially without specify- / \
ing what abstract level X they’re referring to. A B

 Cisgender people are those whose gender identity matches the one they were assigned at birth.
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dry. I think a more accurate view is that it’s a living tree, whose base is fixed
but it can still sway and its branches and roots still grow. An impatient explorer
might say “Trees are boring. They don’t move.” And yes, perhaps compared
with lions and elephants they don’t move. But if you take time to stare at them
long enough they might become fascinating.

4.1 Distance

We’re going to look at a world in which some familiar things behave differently
from usual. Although actually it’s a very common world in “real life”, it just
behaves differently from some common mathematical worlds that might be
regarded as “fixed”, which is not really ifs fault.

We’re going to think about being in a city with streets laid out on a grid —
so probably not a European city. Of course, even American cities aren’t on a
perfect grid — there are usually some diagonal streets somewhere, but we’re
going to imagine a perfectly regular grid with evenly spaced parallel roads.

Now, when traveling from A to B we can’t take the diag-
onal because there isn’t a street there. Instead, the distance
we’d actually have to go along the streets will be some-
thing like in this diagram. We have to go 3 blocks east and B
4 blocks south making a total of 7 blocks.

Calculating the distance “as the crow flies”, that is, the direct distance through
the air in a straight line regardless of obstacles, is rather academic as we can’t
usually make use of that route (unless we’re pinpointing a location by sound
or something, as in the film “Taken 27).

P Things To Think About \

- . 3
I'4.1 We can use Pythagoras to calculate the distance as YI
4
5

the crow flies which in this case will be 5 blocks. Is the
road distance always more than the crow distance?

Is the road distance between two places always the same
even if we turn at different points, for example as in this
diagram? B

L J

This type of distance is sometimes called “taxi-cab” distance (as if we all travel
around in taxis all the time).
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The taxi distance can be the same as the crow distance 1 B
if A and B are on the same street, but the taxi distance can
never be smaller than the crow distance.

Also it doesn’t matter where you turn as long as you don’t
go back on yourself, because wherever you turn you still
have to cover the same number of blocks east and the same
number of blocks south, making the same total. By contrast
the path shown on the right covers more blocks because it
does go back on itself.

It might seem like I'm trying to say something complicated, but it really is just like
counting the blocks you actually walk when you walk around a city laid out on a
grid. If your brain is flashing “Math class!” warning lights then you might be trying
to read too much into this. No hypotenuse is involved.

We can now think about what a circle looks like in this world. You might
think a circle is just a familiar shape, but there is a reason that shape looks
like that, and in math we are interested in reasons, or ways we can characterize
things precisely.

How could you describe a circle to someone down the
phone? One way is to say that you pick a center and a dis-
tance and draw all the points that are this distance away
from that center. That chosen distance is called the radius.

center

But in the taxi world we can’t do distance along diagonals, so what will “all
the points the same distance from a chosen center” look like? Let’s try a circle
of radius 4 blocks.

Here are the most obvi- Here is something So we definitely can’t get

ous points that are a dis- we can’tdo. all these points — most
tance of 4 blocks from A. aren’t on the grid at all.
} . % S
4 4 / \
4 1A 4 A A
4
N J/
N /
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However we can go 4 If we do this in all If we also do 3 blocks
blocks with a turn in possible  directions and 1 block to make 4
the middle. we get these points. we get all these points.
An T An A
T o

The last picture is what a circle looks like in this taxi world. After filling in the
points for going “2 blocks and 2 blocks™ you might have seen the pattern to
help you realize you could also do 3 and 1, which is good.

However, you might also have been tempted to join
the dots like this picture. You are welcome to do so on
paper but it won’t mean anything in the taxi world be- A
cause those lines are not lines we can travel on. They
include points we can’t get to in the taxi world — the
taxi world circle really doesn’t include those lines.

So a circle in this taxi world is just a collection of disconnected dots in a
diamond shape. How does that make you feel? Do you feel uncomfortable, as
if this somehow violates natural geometry? Or do you feel tickled that a circle
can look so funny? Both reactions are valid. The main thing is to appreciate
that even some of the most basic things we think we know are only true in a
particular context, and things can look very different in another context. It is
important to be

a) clear what context we’re considering at any given moment (which we usu-
ally aren’t in basic math lessons), and
b) open to shifting context and finding different things that can happen.

Technicalities

What we have done here is find a different scheme for measuring distance
between points in space. In fact there are many different possible ways of mea-
suring distance and these are called metrics. Not every scheme for measuring
distance will be a reasonable one, and in order to study this and any abstract
concept rigorously we decide on criteria for what should count as reasonable.
A metric space is then a set of points endowed with a metric. The idea of a met-
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ric space is to focus our attention on not just the points we’re thinking about,
but the type of distance we’re thinking about.

The usual way of measuring distance “as the crow flies” is called the Eu-
clidean metric. The taxi-cab way really is called the taxi-cab metric or the
rectilinear metric. More formally it is called the L; metric and is the first in an
infinite series of L, metrics. The next one, L, is in fact the Euclidean metric.

4.2 Worlds of numbers

Many people say to me “Well, one plus one just does equal two.” T reply, “In
some worlds it’s zero.”

It’s true that 1 + 1 = 2 in ordinary numbers. But that’s because it’s how
“ordinary numbers” are defined. Most people who think | + 1 just does equal
2 are not considering that this is only true in some contexts and not others, as
they’re so used to one particular context. This is a bit like people who’ve never
visited another country, and don’t realize that people drive on the other side of
the road in other places. Some people who haven’t traveled don’t understand
that some ways of doing things are highly cultural and possibly arbitrary. For
example:

e “it’s math not maths” (not in the UK);
e “steering wheels are on the right of a car” (in the UK).

Some people can’t imagine not having a car and others can’t imagine having
one.

We have seen that distance is contextual and thus “circles™ are also depen-
dent on context. We will now see a way that the behavior of numbers is also
dependent on context. So all the arithmetic we are forced to learn in school is
contextual, not fixed; it’s not an absolute truth of the universe, unless we take
its context as part of that truth. The context is the integers, that is, all the whole
numbers: positive, negative and zero. The set of integers is often written as Z.
Here is a diagram showing those different points of view.

“Truth is absolute™ “Truth is contextual”

arithmetic absolute truth

= absolute truth © vs . arithmetic =

inZ inZ
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Arithmetic might seem like absolute truth if you think the integers are the only
possible context. But in fact most people do know other contexts, they just
don’t come to mind when thinking about arithmetic. For example if you dump
a pile of sand onto a pile of sand you still just get one pile of sand; it’s just
bigger.

r Things To Think About \

T 4.2  What contexts can you think of in which 1 + 1 is something other than
27 Can you think of other contexts in which it’s 1? What about 0, or 3 or more?

What about other ways in which arithmetic sometimes works differently?
\ J

Here are some places where arithmetic works differently.

Telling the time. 2 hours later than 11 o’clock isn’t 13 o’clock unless you're
using a 24-hour clock. On a 12-hour clock it’s 1 o’clock, thatis 11 +2 = 1. On
a 24-hour clock 2 hours later than 23 o’clock is not 25 o’clock, it’s 1 o’clock,
thatis 2342 = 1. (While we don’tusually say “23 o’clock™ out loud in English,
it does happen in French.)

I’'m not not hungry. Particular kinds of children find it amusing to say things
like “I’m not not hungry” to mean “I am hungry”. If we count the instances of
“not”weget 1 +1 =0.

Rotations. If you rotate on the spot by one quarter-turn four times in the
same direction you get back to where you started, as if you had done zero
quarter-turns. So if we count the quarter-turns, 1 + 1 + 1 + 1 = 0. We could
generalize this to any n by rotating » times by % of a turn each time.

Mixing paint. If you add one color paint to another you do not get two colors,
you get one color. Likewise a pile of sand or drop of water. So 1 + 1 = 1.

Pairs. If one pair of tennis players meets up with another pair for an afternoon
of tennis, there are 6 potential pairs of tennis players among them, if everyone
is happy to partner with any of the others.t

The first three of these situations all have something in common and we are
now going to express exactly what that analogy might be.

 This example was brought to my attention by my art students at SAIC.

¥ This example was also brought to my attention by my art students at SAIC, though in a less
child-friendly formulation.
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Relationships

The idea of studying things via their relationships with other things. Revisiting
some of the concepts we’ve already met, and reframing them as types of rela-
tionship, to start getting used to the idea of relationships as something quite
general.

In the last chapter we saw that objects take on very different qualities in dif-
ferent contexts. Now we’re going to see that different contexts can be provided
by looking at different types of relationship. For example, if we relate people
by age we get a different context from if we relate them by wealth or power.

One example we investigated was taxi-cab distance. Distance can be viewed
as a relationship between locations, and the taxi-cab relationship gives us a
different context from the “crow distance™ relationship. There are also other
possibilities — we could take one-way streets into account, or we could use
walking distance, which might be different, since cars and pedestrians often
have access to different routes.

In the case of the n-hour clocks we saw a different type of relationship be-
tween numbers, in which, for example, 1+ 1 can equal 0. This equation is really
a relationship between the numbers 1 and 0. We do not have this relationship
in the ordinary numbers, where we only have 1 — 1 = 0 (and -1 + 1 = 0). So
the existence of the relationship 1 + 1 = 0 tells us we are in the context of the
2-hour clock, technically called the integers modulo 2.

In the case of the zero world, everything is related by being the same. Of
course, everything isn’t actually the same, but is considered to be the same
in that world. This is an important distinction that we will keep coming back
to. When we focus on context, we are looking at how things appear in that
context. Things can appear the same in one context but not another, just like
when I take my glasses off and everyone looks more or less the same to me.

In this chapter we will develop a way of dealing with relationships that heads
towards the way in which category theory deals with them. We will also start
drawing diagrams in the way they are drawn in category theory.

52
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5.1 Family relationships

We sometimes depict family relationships in a family tree like this:

Alex m. Sam

I
| 1 1 |

Steve Emily Jason Paul
Tom Greg Richard  John Dom

There are only three types of relationship directly depicted here: marriage,
parent—child, and siblings. In fact we could view “parent—child” and “sibling”
as part of the same depiction, in which case we are depicting only two types
of relationship. In any case, we don’t need to depict grandparents directly,
because we can deduce those relationships from two consecutive parent—child
relationships.

Here are two ways to depict is a parent of 5 is a parent of

A

this. The first one is a little |
B \_//
C

more rigid as it depends on po- is a grandparent of
sitions on the page.

If we represent a relationship using arrows rather

than physical positioning on the page, we can draw A—>B
things any of these ways up (and others) without

affecting the relationship we’re expressing:

ope—2x
= — by

That is the point of the arrowhead. Different choices might help us visually, so
the flexibility is beneficial (as flexibility typically is). The arrows also encour-
age us to “travel” along them to deduce other relationships such as:

sister of B mother of C A sister of B mother of C mother of

A\_/ ~_

is an aunt of great-aunt of

p Things To Think About \
T 5.1 Can you think of any situations where we can travel along two arrows

and the resulting relationship could be several different things?
\ J

Note that we all have a relationship with our-

i sister of B sister of C
self: A=A for any person A. For this ~_ -
among other reasons things might be ambigu- sister or self

ous as in these examples.
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A mother of B child of c N child of B parent of c
\*—__-_/
self or partner or ex-partner or co-parent or ... self or sibling

We are going to see that this way of depicting and compiling relationships is
remarkably fruitful. Itis general and flexible enough to be usable in a vast range
of situations, and illuminating enough to have become a widespread technique
in modern math and central to category theory. However we will see that we
do need to impose some conditions to make sure we don’t have ambiguities.

5.2 Symmetry

Some things might not initially seem like a type of relationship, but can be
viewed like that by shifting our point of view slightly. We are going to see that
categories are built from a very general type of relationship, so if we can view
something as a relationship we have a chance of being able to study it with
category theory. This is often how we find new examples of existing mathe-
matical structures — it’s not exactly that the example is new, but we look at
it in a new way so that we see the sense in which it is an example. It’s a bit
like the fact that if we consider traffic like a fluid then we can understand its
flow better using the math of fluid dynamics, leading to effective (and perhaps
counter-intuitive) methods for easing congestion.

Symmetry is something that we might think of as a property, but we can
alternatively think of it as a relationship between an object and itself. For ex-
ample a square has four types of rotational symmetry: rotation by 0°, 90°, 180°
or 270°. (It doesn’t matter which direction we pick as long as we’re consistent.)

. . x50
The symmetry can be seen as this property of a ;
square: if you rotate it by any of these angles it —_—>
goes back to looking like itself.

a0

Y01I1tcan ttell the difference unless I put something THIS >
on 1t.

THIS
WAY

Now, the fact that we can do this is a property. It’s a property that a rectangle,

fOr examp]e, dOesn’t possess.
.90
e

A rectangle in general looks different after we ro-

tate it 90° even without anything written on it. ’
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In abstract math we are moving away from facts and moving towards pro-
cesses. The process of turning a shape around is a relationship.

In the case of the rectangle it’s a relationship be-
tween these two pictures.

In the case of the square it’s a relationship between
these two pictures: the square and itself.

Note that now we’re thinking of symmetry as a process or relationship we can
ask what happens if we do one process and then another.

0 - 180°
For example if we do these two processes — —
2707
the end result is the same as doing this all )
—_
in one go.
x50 x-180°
. - . o £>ﬂ s '_]
We can Sf?e this b.y checkling th.at with the THIS g2 EE
words written on it looks like this: z
Things To Think About 3

" 5.2 What happens if we do 90° and then 270°7 Remember the end result
should be one of our rotations: 0°,90°, 180°,270°.

@ e ™

~

J

If we rotate by 90° and then 270° that’s the same as rotating by 360°, but this
isn’t in our list of rotations because it’s “the same” as doing 0°.

Here “the same”™ means the resulf of rotating by 360° is [ THIS
; . s

the same as the result of rotating by 0° as shown here. ~ |[WVAY WAY
We could put all that information in this 20 3270
single diagram, which has the added ben- ! ‘
efit of looking just like the diagrams we
drew for family relations previously. (The ~_ "
symbol looking like two short vertical lines 2y
is a rotated equals sign.) '

. . L 0 90 180 270
We could depict all these relationships in
a table like our previous addition and mul- 0
tiplication tables, to help us keep track of 90
what is going on. So far we have these re- 180 270
lationships. 270 0




