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Preface

This book has been written to present certain aspects of modern finite mathematics from an elementary point of view, with
empbhasis on relevance to real-world problems. The objective is to create a positive attitude toward mathematics for the non-
science-orientated college student and to demonstrate its usefulness in solving problems that we frequently encounter in our
complex society.

Throughout the text, the aim has been to de-emphasize difficult theoretical concepts; thus, an intuitive treatment leads to
practical applications of the various subject area topics. We believe that with such an approach, the modern college student
will complete this course with the good feeling that mathematics is not only useful but enjoyable to work with.

The Joy of Finite Mathematics has several distinguishing features:

The text has been written for students with only high school mathematics.

Diagrams and graphs are used to illustrate mathematical concepts or thoughts.

Step-by-step directions are given for the implementation of mathematical methods to problem solving.
Emphasis has been placed on usefulness of mathematics to real-world problems.

To provide motivation to the reader, most chapters are preceded by a short biography of a scientist who made
important contributions to the subject area under consideration.

Mathematical concepts are introduced as clearly and as simply as possible, and they are followed by one or more
examples as an aid to thorough understanding.

Each chapter ends with a complete summary that includes the definitions, properties, and rules of the chapter, fol-
lowed by a Review Test.

Each chapter contains numerous critical thinking and basis exercises with problems that reflect on the mainstream of
the chapter.

The book has been designed to give the instructor wide flexibility in structuring a one or two-semester course, or a full-
year course. Although some chapters are dependent on other others, many options are allowed (see accompanying diagraph).
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Several Options for a Semester Course
in Finite Mathematics

Five possible options in designing a basic course in finite mathematics are given below, along with some remarks for each
selection.

Options 1 and 2 offer a detailed coverage of specific topics in math, each spanning seven chapters:
Option 1:

Chapters Covered Title

Chapter 1 The Usefulness of Mathematics
Chapter 2 Logic

Chapter 3 Sets

Chapter 4 Counting Techniques

Chapter 5 Probability

Chapter 8 Statistics

Chapter 9 Geometry

Covering materials necessary for the CLAST (College Level Academic Skill Test) exam, excluding algebra, these six

topics are often taught collectively. In addition to the necessary high school algebra, these topics prepare a student well for
the CLAST exam.

Option 2:
Chapters Covered Title
Chapter 1 The Usefulness of Mathematics
Chapter 2 Logic
Chapter 3 Sets
Chapter 5 Probability
Chapter 6 Bernoulli Trials
Chapter 7 The Bell-shaped Curve
Chapter 8 Statistics

Option 2 provides the materials necessary for a comprehensive understanding of basic probability and statistics. This
option is a broad introduction, including the underlying probabilities necessary to compute basic descriptive statistics, as
well as inferential statistics in terms of interval estimates and tests of hypothesis.

Xvii
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Options 3-5 offer a more detailed coverage of specific topics in math, each spanning six chapters:
Option 3:

Chapters Covered Title
Chapter 1 The Usefulness of Mathematics
Chapter 3 Sets
Chapter 4 Counting Techniques
Chapter 5 Probability
Chapter 6 Bernoulli Trials
Chapter 7 The Bell-shaped Curve

These topics enhance the study of probability. Option 3 begins with the basic concepts of categorization into sets,
counting sets, and measuring basic probabilities empirically. It then continues with measuring basic probabilities hypo-
thetically using either the discrete binomial probability distribution, or the continuous normal probability distribution.

Option 4:

Chapters Covered Title

Chapter 1 The Usefulness of Mathematics
Chapter 4 Counting Techniques

Chapter 5 Probability

Chapter 6 Bernoulli Trials

Chapter 7 The Bell-shaped Curve
Chapter 8 Statistics

Option 4 covers materials necessary for the study of the basic aspects of statistics. This option includes counting basic

empirical and hypothetical probabilities empirically. It also includes the basic necessities of statistics, descriptively and
inferentially, for means and proportions.

Option 5:
Chapters Covered Title
Chapter 1 The Usefulness of Mathematics
Chapter 2 Logic
Chapter 3 Sets
Chapter 4 Counting Techniques
Chapter 9 Geometry
Chapter 11 Arithmetic and Algebra

Option 5 covers materials necessary to gain a basic understanding of the language of deterministic math. This option
provides a basic understanding of logic, sets, counting, geometry, and algebra.
Note: Game theory can be included in any scheme that includes the algebra and arithmetic.



Several Options for a Semester Course in Finite Mathematics ~ xix

A SUMMARY OF THE PROPOSED OPTIONS

Depending on which option you choose (1, 2, 3, 4, or 5), the purple indicates which chapters should be included; the green
indicates optional chapters in each scheme.

Options
ChapterQ
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Joy of Finite Mathematics

Special Features

Motivation

The usefulness of mathematics, especially those branches that constitute finite math, is illustrated both from a historical
perspective, and by the role it plays in our daily lives.
We emphasize an interactive approach to teaching finite mathematics.

The Language

Teaching any student basic finite mathematics requires a basic understanding of the underlying symbolic language.
Mathematics has many dialects: logic, set theory, combinatorics (counting), probability, statistics, geometry,
algebra, and finance, for example. Learning through relevance and interpretation of symbolism is vital.

The Relevant Questions

A complete introduction of mathematics in a finite world, the notation used, and the underlying interpretation is pre-
sented. Relevant and useful questions associated with each dialect are posed, which will be answered through the process
of learning finite mathematics.

The Review

Reviews of each basic concept are given at the end of each chapter. The reviews enhance the learning of the basic aspects
of each topic and their usefulness.

Step-by-Step

Clear and concise step-by-step procedures are used in the development of various methodologies. Procedures are easy to
follow, comprehend, and use to solve problems.

Highlights

Definitions, rules, methods and procedures are highlighted with boldface and their meanings and usefulness follow
with an abundance of relevant examples and applications.

Graphs and Tables

Throughout the book, emphasis is placed on the extensive use of tables, diagrams, and graphs to clearly illustrate
definitions, outlined methods, comparisons, etc. These visual aids invite clear interpretation of what they represent
and their relevance to the text.

Applications and Interpretation

We utilize a step-by-step approach in the illustrated examples (applications) that relate to the various dialects and their
interpretations that have been introduced. Emphasis is placed on properly denoting the problems symbolically, inter-
preting the argument, outlining the defined set, measuring the probability, or, in general, finding the solution. Then, we
encourage the student to clearly state any conclusions that can be drawn from the application.

xXxi



xxii Joy of Finite Mathematics

Critical Reviews

Each chapter ends with a review of: the new mathematical vocabulary, the most important concepts and methods, an
abundance of review exercises, and a practice test that is based on the material from the preceding chapter.

Inspiration

Throughout the book, we utilize important historical facts and pose interesting and relevant questions. We also
include humorous events, pictures, graphs, tables, biographical sketches of famous scientists, popular and classical
quotes, and more. These are all tools to challenge, inspire and motivate students to learn the mathematical thinking and
to illustrate the absolute relevance of math to our society.

Challenging Problems

Throughout the book, there are sections and challenging problems that are somewhat more advanced for a basic course
in finite mathematics and are left to the discretion of the instructor.
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2 Chapter |1 The Usefulness of Mathematics

If people do not believe that mathematics is simple,
it is only because they do not realize how
complicated life is.

John Louis von Neumann

The essence of mathematics is not to make simple
things complicated, but to make complicated things
simple.

S. Gudder

Go down deep enough into anything and you will
find mathematics.
Dean Schlicter

The man ignorant of mathematics will be
increasingly limited in his grasp of the main forces
of civilization.

John Kemeny

Pure mathematics is, in its way, the poetry of logical
ideas.
Albert Einstein

Mathematics is a more powerful instrument
of knowledge than any other that has
been bequeathed to us by human
agency.
Descartes

Mathematics is the Queen of the
Sciences.
Carl Friedrich Gauss

Mathematics is the science of definiteness,
the necessary vocabulary of those
who know.
W.J. White

Mathematics is the science which uses easy words
Sor hard ideas.
Edward Kasner and James R. Newman

Philosophy is a game with objectives and no rules.

Mathematics is a game with rules and no objectives.

Goals and Objectives

The main objective of this chapter is to give an overview and motivate the
non-mathematically oriented student about the usefulness of mathematics in
several important fields. We begin with a brief historical perspective of the
subject and proceed to discuss the importance and usefulness of all the areas
that we believe constitute a course in Finite Mathematics. The diagram
below illustrates the areas covered. Although not all the chapters of the
textbook need to be covered in a one semester or two quarter course, we
believe that the student can gain some basic knowledge by studying this
chapter.

Arithematic

(-—\Igeh ra

Thus, our goal here is to familiarize you with different areas and “dialects”
of Math and:

Learn about the history of Math

Learn about the Math that is the foundation of logic

Learn about the interplay of Math and sets

Learn about counting techniques

Learn about Math used to obtain probabilities of events

Learn about binomial trials that leads to the Bernoulli probabilities
Learn about the paramount importance of the Bell-Shaped Curve
Learn about using Math to develop useful statistical methods

YVVVVVVYYVY



» Learn how Math is used to obtain measures of the earth or geomeiry

» Learn the Math that is arithmetic and algebra

» Learn how we use Math to answer basic financial questions

» Learn how we use Math in Game Theory, solving systems of equations to
optimize strategies.

1.1 Introduction to Math 3

Pythagoras of Samos was the first to call himself a philosopher, Greek for “lover of wisdom.” Pythagorean ideas greatly
influenced western philosophy. Best known for the theorem which carries his name, Pythagoras was also a mathematician,

scientist, musician, and mystic.

He founded the religious movement called Pythagoreanism. The Pythagoreans first applied themselves to mathematics, a
science which they improved, and penetrated within, they fancied that the principles of mathematics were the principles of
all things. A younger contemporary, Eudemus, shrewdly remarked that “they changed geometry into a literal science; they

diverted arithmetics from the service of commerce” ... Aristotle.

1.1 INTRODUCTION TO MATH

Mathematics played a very significant role in all our technological, scientific,
medical, educational and economic accomplishments in our global society.
However, just as important is the fact that mathematics indirectly interweaves
every aspect of our daily lives; mathematics is the most powerful interdisci-
plinary language in almost all fields of engineering, every aspect of health
sciences, education, social and physical sciences, economics, finance, envi-
ronmental sciences, Global Warming, and of course music and art, among
many other disciplines.

The word mathematics comes from the Greek word matheno which means
I learn. Historically mathematics has its origin in the Orient when the Baby-
lonians, in about 2000 BC, collected a lot of materials on the subject that we
identify as elementary algebra. However, the modern concept of mathematics
started in Greece around the fifth and fourth centuries BC. At this time, math-
ematics was subjected to philosophical discussion that was a unique priority in
the Greek city states. The Greek philosophers were quite aware of the math-
ematical difficulties involved in understanding continuity, infinity, motion and
the problems of making measurements of arbitrary quantities. Eudoxus’ theory
was very significant in geometrically understanding these concepts that were
later significantly improved by Euclid’s elements. Thus, the Greeks have an
enormous influence on the tremendous development of today’s mathematics.

Math is the language of thought. We think faster
than we speak and we speak faster than we write. ..
therefore, to convey our thoughts quickly,
Mathematicians abbreviate everything.

Rebecca D. Wooten
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Mathematics is the “brain”™ for

>
=
>
>
>
=
>
=
=)
=)
=
=)

Engineering
Health Sciences
Education

Social Science
Physical Sciences
Economics
Finance
Environmental Sciences
Global Warming
Music

Art

Among others...

Discrete
,@ Apart or detached from others; separate;

distinct

Absolute
5 Not mixed or adulterated; pure

Relative

Something having, or standing in, some
relation to something else

Continued
’g To go on with or persist in; to continue an

action

Stable
‘g Not likely to fall or give way, firm, steady

Moving
E{ To pass from one place or position to

another

The Usefulness of Mathematics

H. Weyl, one of the truly great mathematicians of the twentieth century, stated
“without the concepts, methods, and results found and developed by previous
generations right down to the Greek antiquity, one cannot understand either
the aim or the achievements of mathematics in the last 50 years” (American
Math Monthly, Vol. 102, 1995).

Historically mathematics was defined as the logical study of shape,
arrangement, and quantity. Furthermore, attempts have been made to think
of mathematics as two branches: Applied Mathematics and Pure or
Abstract Mathematics. The branches of applied mathematics are concerned
with the study of physical, biological, medical or sociological worlds. Pure or
Abstract Mathematics is concerned with the study and development of the
principles of mathematics as such and is not concerned with their immediate
usefulness.

In addition, we also had a divide of mathematics in the discrete and
the continuous. Herbert W. Turnbull, in his essay on the “World of Math-
ematics” states: To Pythagoras we owe the very word mathematics and its
double fold branches; that is,

Mathematics

relative

absolute

Geometry

Arithmetics

This double fold of mathematics played a major role in the development
and usefulness of mathematics. In fact, Aristotle summarizes this historical
divide as follows:

“The Pythagoreans first applied themselves to mathematics, a science which
they improved; and, penetrated with it, they fancied that the principles of math-
ematics were the principles of all things.” And a younger contemporary,
Eudemus, shrewdly remarked that “they changed geometry into a literal science;
they diverted arithmetic from the service of commerce”.

The Joy of Finite Mathematics is written to show at a very basic level,
that mathematics is useful to virtually everyone, especially those students



who do not like mathematics as we approach mathematics as a language
used to describe simple and complex problems that we encounter in our
daily lives.

In the essay on “The Nature of Mathematics,” by Philip E B Jourdain, he
begins with “An eminent mathematician once remarked that he was never
satisfied with his knowledge of a mathematical theory until he could
explain it to the next man that he met in the street.” This is so very true
and we believe it is our responsibility in writing this text to explain to our
students the usefulness of mathematical methods and theories using real
world problems. Thus, the student has the right to ask “what is the usefulness
of mathematics?”

We have taken that aspect of the student asking such questions as our
responsibility in positively responding. We proceed to address this important
issue by raising several relative questions in the interdisciplinary structure of
mathematics that constitute the areas of the subject that we have identified as
“Finite Mathematics.” Thus, in what follows is the main thrust of the basic dia-
lects of mathematics for students whose primary interest is not the subject
matter, but how to enhance their understanding of the usefulness of mathe-
matics. For motivating the students we begin each branch of mathematics
by stating several real world questions, the answers to which will lead to
the importance and usefulness of mathematics. We believe that this interactive
approach will motivate the learning process and take our students on a very
“joyful ride” to learn finite mathematics.

1.2 WHAT IS LOGIC?

Logic is derived from the Greek Aoyiki} meaning conforming to laws of rea-
soning. The branch of philosophy that treats forms of thinking, reasoning or
arguing is also referred to as Logic. Averroes defines logic as “the tool for
distinguishing between the true and the false.” Logic is divided into two
parts: inductive and deductive reasoning. Inductive reasoning draws con-
clusions based on specific examples whereas deductive reasoning draws
conclusions from definitions and axioms.

Thus, our goal in learning Logic is to be in a position to make logical deci-
sions regarding such questions as:

O Politics: A politician claims “if you don’t vote for me, then you will not get
the tax cuts”—does this imply that if you do vote for him, that you will get
the tax cuts?

O Health: If you work out more, then you will lose weight and tone your
muscles, and if you watch your calorie intake, you will lose weight. Does
this mean that if you lost weight that you must have both worked out and
watched your calorie intake?!

O Travel: If Athens is in Greece and Berlin is in Germany, then when I visit
Germany and not Athens, then does it follow that I went to Berlin?

O Lottery: If Frank wins the lottery, then Frank will take you to dinner.
Frank did not win the lottery and did not take you to dinner. Did Frank lie?

O Law: If you are 17, then you are a minor. Jordan is not 17; therefore, can
we conclude that Jordan is not a minor?

1.2 What Is Logic? 5

Intelligence is the ability to adapt to change.
Stephen Hawking

Number is the within of all things
Pythagoras

My goal is simple. It is a complete understanding of
the universe, why it is as it is and why it exists at all.
Stephen Hawking

Archival Note

Averroes as he is known in Greek is Abi
’I-Walid Muhammad bin Ahmad bin Rushd,
and he defined logic and is the founder of
Algebra.

Debate between Averroes and Porphyry
Monfredo de Monte Imperiali Liber de herbis,
14th century
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Archival Note

Georg Ferdinand Ludwig Philipp Cantor was
a German mathematician, the inventor of Set
Theory, and the first to establish the importance
of one-to-one correspondence between sets.

Archival Note

Julius Wilhelm Richard Dedekind was another
German mathematician who worked with Cantor
and is also well known for his work in abstract
algebra.

Categorical
g Unambiguously explicit and direct

‘@g Data consisting of nominal information

‘g Qualitative data organized in a
contingency table

Venn Diagram
A set diagram that shows all possible
relations between finite collections

Archival Note
Counting only involves the whole (counting)
numbers, 0, 1, 2, 3... It first started with the
natural counting numbers, and then we
introduced the number zero to represent
“nothing” or the number of elements in the
empty set. It was Jiu zhange suan-shu who first
used red rods to denote “positive” values and
black rods to denote “negative™ values in his
writing Nine Chapters on the Mathematical Art.
For a long period of time, negative solutions to
problems where considered “false.”
Diophantus, in the third century AD,
referred to the idea of “2x+10 =07 as absurd.

The Usefulness of Mathematics

It is the aim to teach logical reasoning to enable students to reason using
the art of deduction and to draw correct conclusions when confronted
with facts.

1.3 USEFULNESS OF SETS

The word “set” has more definitions than any other word in the English lan-
guage due to its many origins. One origin of the word set is from the Old
English seftan meaning cause to sit, put in some place, fix firmly, and another
is from the Old French seffa, meaning collection of things. The branch of
mathematics which deals with the study of sets is called Set Theory. The
modern study of Set Theory was begun by Georg Cantor and Richard
Dedekind in the 1870s. The language of sets can be used to define nearly
all mathematical “objects” such as functions.

Set Theory begins with a fundamental binary relationship (similar to logic)
between objects O and a set §, namely that of membership. Either an object
(element) belongs to a set, or it does not.

Usefulness of Sets: To present data, relevant information in a systematic
manner so that it will be visually attractive and easily understood and so that
it can be used effectively to address various questions of interest. Thus, our
goal in learning about sets is to be in a position to make categorical decisions
regarding such questions as:

O Business: A store owner notes that more people like chocolate
muffins than blueberry muffins. With this information, how many
of each should be made? How many customers are expected to
purchase both?

O Cancer: If survival is a function on the type of treatment(s) received,
then which treatment is better or is a combination of treatments better?

O Meteorology: Given 20 readings of temperatures over a period of 14 days
taken at two relatively close stations, when comparing these temperatures;
do they appear to fall in the same temperature range?

It is our aim in learning Set Theory that students will be able to describe infor-
mation categorically as well as to be able to display information graphically in
Venn diagrams and use these graphics to support any inferences made
regarding relationships among the various sets.

1.4 COUNTING TECHNIQUES

Count is from the Old French counter meaning add up, but also tell a story.
Some of the first known use of counting was with shepherds who, when
tending their sheep, would tie knots in a rope as they sent their sheep out
to graze. In the evening, when the sheep returned to the fold for safety during
the night, the shepherd would untie a knot and if there were any knots in the
rope, they knew there were sheep that needed to be found. The branch of math-
ematics dealing with counting can extend from tally marks—making a mark
for each number and then tallying these marks, enumeration—counting aloud



or on your fingers to more complex counting techniques such as combinations
and permutations.

Thus, our goal in Counting Techniques is to be in a position to count and
discern the implication of such questions as:

0 Social: At a social get-together of ten individuals, how many introductions
will be needed to ensure everyone has met face-to-face?

O Coding: When coding a confidential letter using only the letters in
the English alphabet, how many distinct codings are there? How many
are needed such that no letter is mapped to itself in the coding?

O Civics: A board of directors consisting of ten women and 15 men need
to form a five member committee to oversee next year’s fund raiser.
How many possible committees consist of exactly three men and
two women?

O Job Assignment: A real estate agency has ten realtors and only nine
new property listings. How many possible assignments of realtors to
a house?

O Diet: There is a list of ten fruits you are willing to eat and your goal is to eat
four fruits a day. To mix it up each day you create a meal plan that covers
all possible combinations of four out of ten fruits. How many options are
there for fruits in this meal plan?

The purpose in learning various counting techniques is to enable the student
to determine the logistics necessary in such detailed coordination of a complex
operation. This ranges from counting people or supplies to organizing com-
mittees and daily life.

1.5 PROBABILITY

Probability is from the French probabilite’ meaning quality of being probable
or something likely to be true. Probability is the branch of mathematics which
1s a way of expressing knowledge (or belief) that an event will or will not occur
numerically, a form of empirical inductive reasoning leading to statistical
inferences.

The idea of probability originated with games of chance in the seven-
teenth century. The earliest writings in the area were the result of the collab-
oration of the eminent mathematicians Blaise Pascal and Pierre Fermat, and a
gambler, Chevalier de Mere. To them, there seem to be contradictions
between mathematical calculations and the events of actual games of chance
involving throwing dice, tossing a coin, spinning a roulette wheel, or
playing cards.

Thus, our goal in learning about Probability is to be in a position to compute
and interpret the relevance of probabilities and address such questions as:

O Breast Cancer: A patient goes to the doctor with a lump in her breast.
What is the probability that it is a tumor? What is the probability that it
is cancerous?

O Finance: What is the probability that the value of the Dollar will be higher
than the Euro in 20157

0 Sports: What is the probability that the USF quarterback will complete
half of his passes in a given game?

O Engineering: What is the probability that a computer software package
will fail?

1.5 Probability 7

Combination

‘@5 When r out of n objects are taken without
replacement and without distinction in
ordering

Permutation

1@5 When r out of n objects are taken without
replacement and with distinction in
ordering

Counting is the religion of this generation. It is its
hope and its salvation.
Gertrude Stein

1t s not the voting that's democracy, it's the
counting.
Alfred Emanuel Smith

Innumerable actions are going on through us all the
time. If we started counting them, we should never
come to an end.

Vinoba Bhave

Music is the pleasure the human mind experiences
from counting without being aware that it is
counting.

Gottfried Leibniz

Probability is the very guide to life.
Cicero

Probability is expectation founded upon partial
knowledge.
George Boole
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Discrete
A type of measure such that the outcomes
are separate and distinct

Random
Taken such that each individual is equally
likely to be selected

Variable
A distinct characteristic of an individual
to be observed or measured

How dare we speak of the laws of chance? Is not
chance the antithesis of all law?
Joseph Bertrand

The Usefulness of Mathematics

O Sociology: What is the probability that a disadvantaged child in an urban
area will pass the Florida Comprehensive Assessment Test (FCAT)?

O Meteorology: What is the probability that a hurricane will obtain hur-
ricane status category 3 or more?

[0 Statistics: What is the probability that the mean number of accidents
during New Year’s Eve will exceed that of the previous year’s number
of accidents?

O Physiology: What is the probability that an experimental animal
will convulse upon administration of a certain pharmacological agent?

O Education: What is the probability that an individual’s score on an intel-
ligence test will show significant improvement following a refresher
course in verbal skills?

It is our aim to learn some of the very basic aspects of probability so that we not
only answer questions such as those given above, but also to understand the
role the subject plays in our daily lives. Learning probability is intended to
put the student in a position to apply probability to any area of study that they
are interested in: statistics, engineering, operations research, physics, med-
icine, business, economics, accounting, education, sociology, physiology,
agriculture, meteorology, linguistics and political science, among others,
and to use this information to make knowledgeable decisions.

1.6 BERNOULLI TRIALS

Trial is Anglo-French meaning act or process of testing. A Bernoulli trial is
an experiment whose outcome is random, but has one of only two possible out-
comes: success or failure. The discrete probability distribution that we use to
answer such questions, among others, is the binomial or Bernoulli proba-
bility distribution; a mathematical expression that generates the actual prob-
ability for specific inputs that relate to a given question. We encounter many
important situations that can be characterized by a discrete random variable
with this developed distribution.

It is our goal in studying Bernoulli trials to put ourselves in a position to
compute binomial probabilities and address such questions as:

O Births: A baby born less than 36 weeks is consider premature. What is the
probability that a baby will be born premature?

O Medicine: What is the probability that a given drug will be effective to
cure a specific disease?

O Politics: What is the probability that Candidate A will be elected president
of the US?

O Gambling: What is the probability that I will obtain an odd number in a
single roll of a fair die?

0O Computers: What is the probability that the computer you purchased
online will be operable (non-defective)?

We will learn how to use this very important probability distribution to answer
the above questions, among others.

1.7 THE BELL-SHAPED CURVE

The Bell-shaped Curve is commonly called the normal curve and
is mathematically referred to as the Gaussian probability distribution.



Unlike Bernoulli trials which are based on discrete counts, the normal dis-
tribution is used to determine the probability of a continuous random
variable.

The normal or Gaussian probability distribution is the most popular
and important distribution because of its unique mathematical properties,
which facilitate its application to practically any physical problem in the
real world; if not for the data’s distribution directly, then in terms of the dis-
tribution associated with sampling. It constitutes the basis for the devel-
opment of many of the statistical methods that we will learn in the
following chapters.

Thus, our goal in studying the Bell-Shaped Curve is to put ourselves in a
position to compute and interpret probabilities associated with continuous
random variables and address such questions as:

O Cancer: What is the probability that in a given group of lung cancer
patients, an individual selected at random is Asian?

00 Education: What is the probability that a student will have a final grade in
finite mathematics between 85 and 957

O Sports: What is the probability that a given lineman’s weight on the USF
football team will be between 275 and 325 pounds?

O Rainfall: What is the probability that the average rainfall in the
State of Rhode Island in the year 2012 will be between 16 and 24
inches?

O Chemistry: What is the probability that an acid solution made by a spe-
cific method will satisfactorily etch a tray?

The objective in learning the mathematical properties of the normal prob-
ability distribution is to realize its usefulness in characterizing the
behavior of continuous random variables that frequently occur in daily
experience.

1.8 STATISTICS

The branch of Statistics, meaning quantitative fact or statement, is becoming
more widely accepted as a necessity for understanding all aspects that
influence our daily lives. In almost every field of study, statistics is used to
estimate the unknown, a characteristic of the individual we would like to know
about in a given population. It is similar to the Scientific Method, in that we
must first understand and clearly state the problem, gather the relevant infor-
mation, formulate a hypothesis and test this hypotheses by recording and ana-
lyzing the data, before we can interpret the data and state our conclusion.

The basic idea behind descriptive statistics is to reduce a set of data down
to one piece of information that describes some aspect of the data—an estimate
of the population mean, or its central tendency, deviation, range, extremes, etc.
Thus, our goal in studying Statistics is to be able to analyze and interpret real
world data so that we will better understand the phenomenon that we are
studying and address such questions as:

0  Business: What is the mean profit made per hours of production time as a
function of employees on the floor?

O Politics: What percentage of the people truly desire a tax increase given
only 40% of individuals vote?

O Chemistry: What is the point of saturation for carbon dioxide in the
atmosphere?

O Medicine: What is the mean tumor size in a patient with brain cancer?

1.8 Statistics 9

Continuous
A type of measure such that the outcomes
are dense, that is, between any two
outcomes, other possible outcomes exist.

Jix)

The graph of the normal probability
distribution is a “bell-shaped” curve, as shown
in the figure above. The constants p and ¢ are the
parameters.

ftx)

The area under the curve represents the
underlying probability of the situation.

Statistics
5 The art of decision making in the presence
of uncertainty
As opposed to statistic—
a numerical datum

Hypothesis
5 Greek meaning “to suppose”

A statistical analysis, properly conducted, is a
delicate dissection of uncertainties, a surgery of
suppositions.

M.J. Moroney

Statistics may be defined as “a body of methods for
making wise decisions in the face of uncertainty.”
W.A. Wallis
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Euclid is the Father of Geometry best known
for his book Elements which consist of 13 books
covering Euclidian Geometry.

Title page of Sir Henry Billingsley’s first English
version of Euclid’s Elements, 1570

I've always been passionate about geometry and the
study of three-dimensional forms.
Erno Rubik

There is geometry in the humming of the strings;
there is music in the spacing of the spheres.
Pythagoras

Give me a lever long enough and a fulcrum on which
to place it and I shall move the world.
Archimedes

The Usefulness of Mathematics

O Engineering: What is the mean maximum load (kN) for a fishing line?
What is the mean elongation?

O Astronomy: What is the mean temperature fluctuation in the Sea of Tran-
quility on the moon?

O  Agriculture: What is the mean yield of corn per acre given the number of
acres planted?

O Sociology: What is the mean number of texts sent by a cellular phone
user in a given month? Is there a difference in usage between teens
and adults?

The point in learning basic statistics is to be able to efficiently gather,
organize, analyze and interpret data in order to address questions that arise
from every field of study and that apply to everyday living in a growing global
society.

1.9 GEOMETRY

Geometry is from the Ancient Greek word yewpetpix meaning measurement
of earth or land. This branch of mathematics is concerned with questions
regarding the shape, size, relative positions and properties of space.
Euclidean geometry is a mathematical system that assumes a small set of
axioms and deductive propositions and theorems that can be used to make
accurate measurement of unknown values based on their geometric relation
to known measures.

Thus, our goal in studying Geometry is to be able to accurately measure
the world around us, perform basic calculations that address such
questions as:

O Agriculture: Using similar triangles, given the height of a stick and the
length of its shadow at 2:00 PM, measuring the shadow of the tree at
the same time, determine the height of the tree.

O Carpentry: If two boards, mitered at a 60° angle, are reversed and
attached to create a frame, what is the angle formed by the joint?

0 Playground: How large should a sandbox be if only 5 ft of wood is
available and how much sand is needed if the wood is 6 in. tall?

O Rubik Cube: How many squares are there on the surface of a Rubik Cube?

O Business: If a showroom has 10,000 square feet of space to be converted
into offices, but must leave 5000 square feet for the showroom floor and
each office must be 200 square feet of space, how many offices can be
created at most?

O Chemistry: What is the shape of a sugar molecule? How does this differ
between mono-dextrose and poly-dextrose sugars? What is the difference
in volume?

The intention behind learning Geometry is to enable the student to be pro-
ficient in both the art and science of geometry. Geometry is used in areas
ranging from graphic design to Einstein’s theory of general relativity; when
a surveyor plots land, a manufacturer determines the best packaging for a stack
of spherical oranges to be shipped or a car manufacturer redesigns a parabolic
headlight, for example.

1.10 ARITHMETIC AND ALGEBRA

Arithmetic means the art of counting, and Algebra means reunion of broken
pieces. Arithmetic is the oldest and most elementary branch of mathematics
and deals with the study of quantity such as those that result from combining
other quantities, which leads directly to Algebra. Algebra is a branch of



mathematics outlining arithmetics, the rules of operations such as addition,
subtraction, multiplication and division, but also relations such as equal-
ities, inequalities and functions.

Arithmetic and Algebra are the building blocks of most areas in math-
ematics, usually taught as part of the curriculum in primary and secondary
education. However, even at university level, these topics are extremely
useful allowing general formulations to be the first step in the systematic
exploration of more complex problems that can be solved using Math.
Thus, our goal in studying Arithmetic & Algebra is to be able answer such
questions as:

O Health: Based on the nutritional information for three dog foods
based on three required nutrients, how much of each type of dog
food should be included in a single serving to optimize the nutritional
intake?

O Farming: Given 100 feet of fencing, how should the length of a pen be
related to the width, if the fence is to create two adjacent pens sharing
a common size with maximum area?

O Business: If you sell tickets for $20 each and you sell as many as you can,
which beforehand is an unknown quantity, x, how does your profit relate to
this unknown value x?

0 Social: If you know that you have x adults coming for dinner and one
child, and each adult eats three manicotti shells and the child eats one,
how many shells must be made, y, as a function of the number of adults
invited, x.

The aim of learning Arithmetic and Algebra is to refresh the student’s
understanding of the subject matter and to introduce more relevant uses
of this dialect of Math. Remember: we think faster than we speak and
we speak faster than we write. Therefore, to address large complex
problems such as building a bridge, we need a very short handed language.
This universal language is Math, and Arithmetic and Algebra are a large
part of this language.

1.11 FINANCE

Finance means to ransom, or to manage money. This science of funds man-
agement includes business finance, personal finance and public finance. Our
goal is to use mathematics to teach the student to have a better understanding of
basic personal finance; such finances will include savings and loans in terms
of time, money, risk and how they are interrelated in addition to spending and
budget.

Thus, our goal in studying the Basics of Finance is to be able to understand
and manage personal finances and address such questions as:

O Personal Budget: How much do you spend each month on Rent, Elec-
tricity, Phone, Internet, Food, Gas, Insurance, etc.

O Wedding: How much can I afford to spend? If I finance a wedding on
credit, how long will it take to pay off this debt and how much will it
eventually cost?

O Transportation: What should be the maximum payment I should agree to
in order to ensure my vehicle is not repossessed.

O Housing: Can you afford to move out of your apartment and into a house?
What is the expected down payment? Inspection fees? The expected
property taxes?

1.11 Finance 11

Diophantus is traditionally known as the Father
of Algebra, but this has recently put up to debate
in that Al-Jabr, the author of Arithmetic gives
the elementary algebra before Diophantus in
200-214 CE.

y=x"—6x+5

150

-1o 5 0 3 10

How does y relate to x?

In the business world, the rearview mirror is always
clearer than the windshield.
Warren Buffett
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Budget

Eg An estimate, often itemized, of expected
income and expense for a given period of
time in the future

E{ A sum of money set aside for a specific

purpose

In the absence of the gold standard, there is no way
to protect savings from confiscation through
inflation. There is no safe store of value.

Alan Greenspan

- C o L Faw - 3 ‘e
If thou dost play with him at any game,
Thou art sure to lose, and, of that natural luck,
He beats thee " gainst the odds.

Shakespeare

The Usefulness of Mathematics

00 Home Repairs: How long would it take to save enough to replace an air
conditioning unit? How much can be saved be investing into a sinking
fund versus using credit?

O Credit: If you make the minimum required payment and have a
minimum purchase each month, how long will you be indebted to the
creditor?

O Christmas Funds: How much needs to be put into a sinking fund in order
for you to have saved up $1000 in a Christmas fund over a period of
11 months starting in January?

In is imperative in today’s economy that everyone has a basic under-
standing of finance. Many individuals are overwhelmed when confronted with
mounting bills or credit; however, it is important that they budget, even if the
final amount is negative. Once we are aware of the problem, we can begin to
work out the solution. Understanding the basic mathematics behind Basic
Finance, we will be in a position to make positive changes in our present
financial state and better plan for the future.

1.12 GAME THEORY

Game Theory is a study of strategic decision making between two rational
decision-makers. Here, we address two-person zero-sum games; games
designed such that one players gain equals the second player’s loss.

O  Strictly Determined Games: The Saddle Point
O Games with Mixed Strategies
O Reducing Matrix Games to a System of Linear Equations

CRITICAL THINKING AND BASIC EXERCISE

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.
1.11.
1.12,

What is Pythagoreanism?

What does the word “setta” mean?

among the various sets?
1.13.
1.14.
1.15.
1.16.
1.17.
1.18.
1.19.
1.20.
1.21.
1.22.
1.23.

Name three counting techniques.

Who was the first to call himself a philosopher?

What does the word “matheno™ mean?

Mathematics can be divided into what two branches?

Who wrote “The Nature of Mathematics™?

What word is derived from the Greek meaning conforming to laws of reason?

Distinguish between the two types of reasoning.

In Logic, which type of reasoning is used to draw correct conclusions when confronted with facts?

The modern study of sets began with two mathematicians; name them and state where they are from.
Sets are used for what type of measure: numerical or categorical?
What diagram is used to graph categorical information and to support any inferences made regarding relationships

What are some of the first known uses of counting?

Name the area of study that is a form of empirical inductive reasoning leading to statistical inferences.

In what area of study are Blaise Pascal, Pierre Fermat and Chevalier de Mere known to have collaborated?
Who said “Probability is expectation founded upon partial knowledge™?

A binomial experiment is also known by what other name?

In a Bernoulli trial, there are exactly how many possible outcomes?

The binomial probability distribution is characterized by what type of random variable? Continuous or Discrete.
The normal probability distribution is also known by what other name?

Outline the steps associated with the Scientific Method.

Distinguish between Descriptive and Inferential Statistics.
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1.24. List the points you need to learn in basic statistics to be an efficient researcher.

1.25. What branch of mathematics is concerned with questions regarding shape, size, relative positions and properties
of space?

1.26. Name the mathematical system that assumes a small set of axioms and deductive propositions and theorems that can
be used to make accurate measurement,

1.27. The art of counting is better known by what name?

1.28. Name the rules of operations in Algebra.

1.29. Why are Arithmetic and Algebra important?

1.30. Name the science of funds management.

1.31. Name the study of strategic decision making between two rational decision-makers.

SUMMARY OF IMPORTANT CONCEPTS

The first chapter, The Usefulness of Mathematics, introduces Mathematics and its history. This motivational chapter
answers the question “what is logic™; outlining the usefulness of Sets; the start of Counting Techniques and how counts
are the foundation of empirical probabilities. The first chapter also includes the usefulness of Mathematics in basic Prob-
ability and Statistics, Geometry, and Finance; an overview of basic Arithmetic and Algebra along with Game Theory.

The second chapter on Logic covers statements and their truth values; outlines the symbolisms used to express state-
ments in the short hand language of Math including logical operators: conjunction, disjunction, negation and implication;
how to construct truth tables and determine equivalent statements. This chapter helps the student understand logical
reasoning by interpreting logical symbolism by giving their English translation. Properties of Logic covered include
Tautologies, Self-Contradictions, Paradox, Equivalence, and Algebra of Statements; Variations on the Conditional
Statement; Quantified Statements; Testing the Validity of an Argument and Applications of Logic.

The third chapter on Sefs gives an introduction to Set Theory, covers collections of objects, the symbolisms used to
express these collections (sets) in the short hand language of Math including set operators: intersection, union, complement
and subset; and how they relate to logical operators. This chapter covers the Algebra of Sets, some basic counting principles
applied to sets.

The fourth chapter on Counting Techniques introduces counting principles beyond that of simple sets to that of the
Multiplication Principle, Permutations and Combinations, Distinct Orderings, and other counting techniques such as the
Binomial Theorem, and Pascal’s Triangle.

The fifth chapter on Basic Probabilities gives an introduction to probability and various definitions: personal probability,
empirical and theoretical. This chapter covers the experimental probabilities using sample spaces, the basic laws of prob-
ability, conditional probability and Bayes rule.

The sixth chapter on Binomial Probability introduces discrete random variables, discrete probability distribution in
general including expected value and variance followed by the Binomial Probability Distribution and the expected value
and variance for the Binomial random variable.

The seventh chapter on Normal Probability introduces continuous random variables and the Normal probability distri-
bution. This chapter also ties back in with discrete random variables covering Normal Approximation to the Binomial.

The eighth chapter on Descriptive Statistics covers gathering and organizing data; graphical representations of quali-
tative information and quantitative information; and measuring central tendencies and deviations from the center.

The ninth chapter on Geometry covers rounding and types of measurement; properties of lines: linear, linear pairs, two
lines and three lines; properties of angles: categorization and additive principles; properties of triangles: categorization and
similar/fequivalent triangles; and properties of quadrilaterals and polygons. This chapter also covers area, surface area and
volume.

The tenth chapter on Arithmetic and Basic Algebra covers the real number system, basic arithmetic: addition, sub-
traction, multiplication and division; pattern recognition: sequences and series; algebraic expressions and relationships;
equations: equalities and systems of equations; and functions: linear and quadratic equation.

The eleventh chapter on Finance covers basic financing including sinking funds and amortization: various savings sit-
uations and comparison shopping: credit versus cash, leasing versus purchasing, and renting versus owning. This chapter
also covers effective rates and uses them to compare CD versus credit and comparisons of credit cards. There is also a section
on personal finance: how to create a monthly budget; insurance: what every homeowner should know and your credit report.

The twelfth chapter on Game Theory covers two-person zero-sum games. This chapter covers the Matrix Game; strictly
determined games, games with mixed strategies and instructions on how to reduce Matrix Games to Systems of Equations.
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In the field of mathematics, Aristotle is probably best noted for his contributions to the methods of proofs. He was the first to
provide clear distinctions between axioms, postulates, and definitions. In addition, he contributed theorems of geometry,
infinity, and continuity. He was considered to be a philosopher, but the philosophy of his time included what is now classified
as natural sciences. Among Aristotle’s writings on logic (called later the Organon) are Prior Analytics, Posterior Analytics,
and Sophisms. In these and in his other works, he systematized the formal rules of logic and introduced syllogism, a form of
deductive reasoning.

Aristotle was a student of Plato’s Academy and later became a teacher. When he was forty-one, he began to supervise the
education of Alexander the Great, for which he received the beginnings of his fortune. He later taught in the Lyceum in
Athens and began amassing a book and map collection for a museum of natural history. This arrangement eventually
led to a “school” after his death at the age of sixty-two.

Aristotle’s influence was so encompassing and pervasive that many of his contributions were not even questioned until
the middle of the nineteenth century even though many of his theories were incorrect. His writings, including accurate as
well as misdirected ideas, were accepted as the ultimate authority during the medieval period and were upheld by the Roman
Catholic Church beyond the time of Galileo (Aristotle had believed in the geocentric, i.e., earth-centered solar system,
which Galileo unsuccessfully argued against in the Inquisition). Although his dogmatic followers deterred further advances
for many centuries, Aristotle did much to advance science in his time. His many fields of study included biology (he devised
classifications for all kinds of plants and animals), metaphysics and logic, ethics and politics, rhetoric and poetics, weather,
and the other physical sciences.

2.1 LOGIC

Logic . Why should we have chosen to begin the study of finite mathematics with a
D;I,?:,'Mﬁvm 'Thf _G"""‘f‘ ;','m'd "_(’_’""'"“ chapter on logic? The following argument is offered by way of illustration:
el means reason or @iscourse Mathematics must be based on logic. This is a basic course in mathematics

Syllogism with emphasis on its usefulness. Therefore this course must be based on logic.
An argument supported by two An argument of this form is known as a syllogism. A syllogism is a typical
premises; deductive reasoning Aristotelian argument. Aristotle gave the first systematic treatment of the

@~ An extremely subtle, but sophisticated principles of logical reasoning which earlier Greeks had begun to formulate.
argument Aristotelian logic is the fundamental form of logical reasoning which is still

utilized today.

The assertion that mathematics must be based on logic is justifiable
because virtually all mathematical results are obtained by logical
deductions from other previously obtained results now generally accep-
ted as true, or from assertions which have been assumed without
proof. Sometimes, making logical deductions is not as straightforward
and simple as we might like; thus, it is true here as in many other situa-
tions that possession of a set of rather specific rules makes the task
much easier.

George Boole (1815-1864), an English mathematician, integrated
logic into algebra and essentially founded the field of mathematical logic.
He introduced the use of symbols to represent statements or assertions,
which greatly increases the ease and speed of manipulation of concepts

problems, and in deductive logic. Mathematical logic is also known as symbolic
2. To obtain proficiency in the correct logic for this reason. In this chapter some of the fundamental concepts of

methods of logical reasoning. mathematical logic will be discussed with a view toward enabling the
reader:

Aristotelian
Of, pertaining to, based on, or derived
from Aristotle or his theories.

1. To be able 1o apply logic 1o analyze




... no general method for the solution of questions in the theory of probabilities can
be established which does not explicitly recognize ... those universal laws of
thought which are the basis of all reasoning ...

George Boole

To this end, we must consider that we think faster than we speak,
we speak faster than we write, therefore to think quickly and communi-
cate these ideas, we must learn to abbreviate almost everything. A summary
of modern symbolic logic can be found in the summary, at the end of the
chapter.

2.2 STATEMENTS AND THEIR TRUTH VALUES

In this section we shall discuss one of the basic concepts of logic; namely, that
of a statement. We shall also introduce some other important terms and
symbols. We begin with a definition.

Definition 2.2.1 Statement

A statement is a declarative sentence which is either true or false, but not both. We shall
denote statements symbolically by lower case letters p., q. r...

We judge statements with respect to their truth value. That is,

Definition 2.2.2 Truth Value

The truth value of a statement is the truth or falsity of the statement. We shall denote
trie by T and false by F.

Example 2.2.1 Classify Sentences

Consider the following sentences; classify each as statement, question or command:
{a) London is in France

(b) 3+5=8

(c) Who is here?

(d) Put the book on the shelf.

{e) Sometimes it rains.

Solution

Sentence (a) is a false statement, and sentences (b) and (e) are true statements. However,
sentences (c) and (d) are not statements because neither can be assigned a truth value of
true or false. Sentence (c¢) is a question and sentence (d) is a command.

2.2 Statements and Their Truth Values

17

True Statements:
= Monday is a day of the week
® 5 s a natural number

False Statements:
®  January is a day of the week
= 5isanegative integer

Facts:

{a) London is, in fact, not in France
(b) 3+5isequalto 8

(c) Not a statement

(d) Not a statement

(e) Sometimes it does rain.

Simple Statements:

®  Today is Monday

= Tomorrow is Christmas

w  The sun is shining

®  There are rain clouds in the sky
= [ will study English

= [ will study Math
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The statements given in the preceding example are composed of terms in a
certain relation to each other.

Compound Statements:

= Today is Monday and it is the day before
Christmas

8 The sun is not shining and there are rain
clouds in the sky.

= [ will study English or Math

Note: iff reads “if and only if”

Let b represent Deb is beautiful and s represent
Deb is smart.
(a) bAs

A reads “and”
Let h represent Matthew is here, w represent
Washington is in the United States and s
represent Sugar is sweet.
(b) (h—=w)vs

— reads “implies”
V reads “or”

Good, too, Logic, of course; in itself, but not in fine
weather

A. H. Clough

English Poet (1848)

A
reads
‘t’and!!

“and”
means

“bo:h”

Definition 2.2.3 Compound Statement

A statement consisting of a single such relationship is called a simple
statement.

However, consider the statement “The square root of thirty-six is six and
six is an even number.” This statement is a combination of two components;
namely, “The square root of thirty-six is six” and “six is an even number.”
Thus, we have a compound statement.

Definition 2.2.4 Compound Statement

A compound statement is a statement composed of two or more state-
ments connected by the logical connectives, “and.” “or,” “if then,” “not,” and *if
and only if.” A statement which is not compound is said to be a simple statement.

Example 2.2.2 Simple/Compound Statement

Consider the following statements:

(a) “Deb is beautiful and Deb is smart.” This statement is a compound statement
composed of the simple statements “Deb is beautiful” and “Deb is smart” linked
by means of the logical connective “and.”

(b) “If Matthew is here, then Washington is in the United States, or sugar
is sweet.” This is a compound statement composed of the compound
statement “If Matthew is here, then Washington is in the United
States™ and the simple statement “Sugar is sweet” by means of the logical con-
nective “or.”

The truth value of a compound statement is completely determined by the
truth values of the simple statements that form the compound statement.

We shall now study some of the most important connectives and illustrate
their meanings by various examples. In logic, connectives are referred to as
operators.

Definition 2.2.5 Conjunction: pAg

The conjunction of two statements p and ¢ is the compound statement “p and ¢™:
written symbolically, p Aq, where the symbol A is read “and” or “but.”




The truth value of p Aq is determined using property 2.2.1.
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Property 2.2.1 Conjunction: pAg

If p is true and gq is true, then p Ag is true: otherwise p Aq is false.

Columns 1 and 2 give all possible truth value combinations of the state-
ments p and g. Column 3 gives the truth value of the statement p A g for each
of the four combinations of the individual truth values of p and g. We observe
that p and ¢ is true only when p and ¢ are both true; otherwise p A ¢ is false. This
table defines the truth value of the compound statement p A ¢ as determined by
the truth values of p and g separately. The representation shown by Table 2.1 is
called the truth table for the conjunction p Ag.

Example 2.2.3 Truth Values

Determine the truth value of each of the following conjunctions:
{a) Athens is in Greece and Rhodes is an island.

(b) Berlin is in Germany and Casablanca is in Williamsburg.
(¢) Roses are red and violets are blue.

Solution

By Property 1, “pAg” is true only when p and ¢ are both true. Thus, we have (a) true,
(b) false, and (c) true.

Definition 2.2.6 Disjunction: p v ¢

The disjunction of two statements p and ¢ is the compound statement “p or ¢'"; written
symbolically is, pv g, where the symbol v is read “or.”

Example 2.2.4 Symbolism in Logic

Let p and g represent the statements “George teaches mathematics™ and “George lives in
Greece™; then pvgq denotes the disjunction “George teaches mathematics or George
lives in Greece.”

TABLE 2.1 Truth Table for the conjunction pAg

Column

Row 1: When both p and q are true, the
statement “p and q" is true.

Row 2: When p is true, but q is not true, the
statement “p and q" is false.

Row 3: When p is false, and only q is true, the
statement “p and q" is false.

Row 4: When both p and q are false, the
statement “p and q" is false.

Facts:

(a) Athens is in Greece Rhodes is an island

(b) Berlin is in Germany Casablanca is in
Morocco

(¢) Roses are red Violets are blue

reads
“0’.”
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A good decision is based on knowledge and not on
numbers.

Row 1:

Row 2:

Row 3:

Row 4:

Plato

Inclusive
“or”
means
“at least one”

When both p and q are true, the
statement “p or " is true.

When p is true, bur q is not true, the
statement “p or q" is true.

When p is false, and only q is true, the
statement “p or q" is true.
However, when bothp and q are false,
the statement “p and q" is false.

A mind all logic is like a knife all blade, it makes the
hand bleed that uses it’s

Tagore

The truth value of pVvgq is determined by:

Property 2.2.2 Disjunction: pv g (Inclusive)

When p is true or g is true, or if both p and g are true, then p v ¢ is true; otherwise pv g is
false. Thus, the disjunction p v g of the two statements p and g is false only when both p
and g are false.

That is, the standard disjunction v is the inclusive disjunction which is
true if at least one of the statements is true. The exclusive disjunctive, sym-
bolized Vv is only true if one or the other statements are true, but not both.
Thus the truth value of p Vg is determined by: p is true and ¢ is false, or p
is false and ¢ is true. In this text “or” will be inclusive. The truth value of
pVq is determined from the truth values of p and ¢ by the following truth
table (Table 2.2):

Column 3 tells us that the disjunction, pV g, is false only when both p is
false and g is false; in other words, when p and ¢ are both false.

Example 2.2.5 Disjunctions

Obtain the truth value of each of the following disjunctions:
(a) 3+5=9%9ord4+10=14.

(b) Atlanta is in Florida or Armstrong landed on the moon.
(¢) The earth is square or football is a gentle game.

Solution

By Property 2, “pv¢” is false only when p and ¢ are both false. Thus, we have (a) true,
(b) true, and (c) false.

TABLE 2.2 Truth Table for the inclusive disjunction pvg

Column 1 2 3
P 4 prvy

[
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TABLE 2.3 Truth Table for the exclusive disjunction pvg Row 1: When both p and g are true, the
statement “p or q” is false.

Row 2: When p is true, but q is not true, the
statement “p or q" is true.

Row 3: When p is false, and only q is true, the
statement “p or q" is true.

Row 4: However, when bothp and q are false,
the statement “p and q” is false.

Column

Exclusive
“or”
means

“exactly one”

For the exclusive “or,” that is “p or g, but not both,” the truth value is deter-

mined by: Not true is false

Not false is true

Property 2.2.3 Disjunction: pVgq (Exclusive)

When p is true and ¢ is false, or when p is false and g is true, then p V q is true: otherwise
PV q is false. Thus, this alternative disjunction pV ¢ of the two statements; p and g are
false only when both p and g are false and when both p and ¢ are true.

In Table 2.3, Column 3 tells us that the exclusive disjunction pV g is true
only when exactly one of the statements p and g are true. If p and ¢ have the
same fruth value then p vgq is false.

Many times it is necessary to negate a given statement, p, forming the
“negation of p.” This is accomplished by writing “It is false that” before p,
or, if possible, using the word “not” in the statement p.

Example 2.2.6 Negations

Following is the statement p, give its corresponding negation ~p:
(a) 4+ 6=10.

(b) London is in England.

(c) Maria is pretty.

(d) Jonathan is not here.

Solution

(a) ~(4+6=10)is 4+ 610, (b) It is not the case that London is in England or London
is not in England, (¢) Maria is not pretty, (d) Jonathan is here.

Definition 2.2.7 Negation: ~p

The negation of p is denoted by ~ p. The truth value is obtained from the property: If p
is true, then ~p is false and if p is false, then ~p is true. The symbol ~ is read as not;
that is, ~p is the statement “not p.” Other common denotations of the negation of p are
p. —p or even —p; however, we shall use the notation ~p.
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Statements:

® [ like vanilla ice cream

& [ am not a Leo

= My favorite color is green
Their Negations:

& [ do not like vanilla ice cream
®  Jama Leo

8 My favorite color is not green

—
reads
“implies”

Hypothesis
’@/ From the Greek—basis or supposition

An assumption or concession made for

the sake of argument
g A preceding event, condition or cause

Conclusion
The necessary consequence of a
preceding event, condition or cause
Something necessarily following from a
set of conditions

TABLE 2.4 Truth Table for the negation ~p

Column _1 2

T
(e
CEJCT

The truth value of the negation ~ p is determined by the following property:

Property 2.2.4 Negation: ~p

When p is true, then ~p is false; if p is false, then ~p is true.

We observe that the truth value of the negation of any statement is always
the opposite of the truth value of the original statement.

The following truth table defines the truth value of ~p as it depends on the
truth values of p, Table 2.4.

It is clear that the first column in Table 2.4 gives the original statement
while Column 2 gives the corresponding negation.

Just as in English, a double negative statement is the positive statement;
that is, not “not p” is p; symbolically ~ (~p) is p.

Definition 2.2.8 Conditional Statement: p—g¢q

Statements of the form “if p then g™ are called conditional statements and are denoted
by p—gq. The statement p is called the hypothesis (condition/antecedent) while
statement ¢ is called the conclusion (consequence). The truth value of p— g is given
by the property: p— ¢ is false only when p is true and q is false; otherwise p — ¢ is true.

It is not the statements’ truth value we are concerned with, but whether the
implication *— " fails to be true. The key word here is “if,” this condition is often
misinterpreted. A mother say to the child, “if you misbehave, you will not get to
go outside and play” and the child is horrible but the mother says, “Just go and
play.” This teaches the child that either mom is lying or “if” has no meaning.
Unfortunately, children often assume the latter. However, this is not true, “if”
is a very powerful word; only “if”* the premise is true does the implication have
to lead to the conclusion. Without the condition, the implication is vacuously
true. Given the statement “if I win the lottery, then I will buy you dinner”
and then this person does not win the lottery, but does buy me dinner, this does
not make the original statement a lie (false), it simply has not come to pass.

Example 2.2.7 Conditional Statements

Consider again the following statements:
p: 1 win the lottery.
q: 1 will buy you dinner.




Example 2.2.7 Conditional Statements—cont’d

Hence, p — g represents “If I win the lottery, then I will buy you dinner.” If I win the
lottery and I buy you dinner, then [ have kept my word. Thus, p — ¢ is true when p is true
and g is true. However, if I did not win the lottery and do not buy you dinner, or I did not
win the lottery but do take you to dinner, I did not break my word. Hence, p— g is true
when p is false whether ¢ is true or false. Only when I win the lottery and do not take you
to dinner has my word been broken. Hence, the only time that p — ¢ is false is when p is
true, but (and) q is false.

Under what conditions is this conditional statement p — ¢ is true.
This example leads us to the following property for the conditional
statement p —gq:

Property 2.2.5 Conditional Statement: p —g¢

The conditional statement p — ¢ is false only when p is true and g is false; otherwise
pP=q is true.

Table 2.5 defines the truth value of p — g, dependent on the truth values of p
and ¢q.

Column 3 tells us that the conditional statement p— ¢ is false only when p
is true and g is false; in other words, when the hypothesis is true and the con-

clusion is false.

Example 2.2.8 Conditional Truth Values

Determine the truth value of each of the following conditional statements:
{a) If2+ 3=5, then6 +9=15.

(b)y 1If6+8=10,thenl1+1=2

(¢) 1f2+1=4, then2+3=6.

(d) 3+7=10,thend4 +7=14.

Solution

We observe that (d) is the only conditional statement having the hypothesis
“3 + 7=10" true and the conclusion “4 + 7 = 14" false. Thus, (d) is a false statement.
Statements (a), (b), and (c) are all true. Note that even though the hypothesis in both (b)
and (c) is false, the resulting conditional statement is true because of Property 5.

TABLE 2.5 Truth Table for the conditional statement p — ¢
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Row 1: When both p and q are true, the
statement “if p, then q" is true.

Row 2: When p is true, but q is not true, the
statement “if p, then q" is false.

Row 3: When p is false, and only q is true, the
statement “if p, then q” is not false;
that is, true.

Row 4: However, when both p and q are false,
the statement “if p, then ¢ is not
false; that is, true.

(a) T=TisT

(b)) F=TisT

(¢) F=FisT

(d) T=FisF

TRUE WHEN
T-T
F-T
F—F

If p true, it is suffice to say, then q is true.
However, q only needs to be true when p is true.

{a) 2+3=5
6+9=15
(b) 6 +8=10
1+1=2
c) 2+1=4
2+3=6
d) 3+7=10
4+7=14

mSmEaE T

(a) F=TisT
(b) T=TisT
(¢) F=FisT
(d T—=FisF

Common: Conditional Statement

There are four common ways in which the
conditional statement p — ¢ can be expressed.
1. p implies q (Direct statement)

2. ponlyifq

3. p is sufficient for g

4. gq is necessary for p

If science and logic chatters as fine and as fast as he

can; though I am no judge of such matters, I'm sure
he's a talented man

W. M. Praed

Write of “The Talented Man™ (1830)
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Necessary
Being essential, indispensable,
or requisite

’g Existing by necessity

Sufficient
g Adequate for the purpose; enough

,@/ Of a condition

P=q
A bi-conditional statement

Bi
’@/ From the Latin “bis” meaning twice
P=q

The following example depicts the usage of the preceding expressions.
However, it should be noted that a frequent usage of “p implies g is the
meaning that ¢ is true whenever p is true. The conditional “p—¢” is a
new statement compounded from two given statements, while the impli-
cation “p implies ¢” is a relation between two statements. The connection
is the following: “p implies ¢” means the conditional statement p—gq is
always true.

Example 2.2.9 Necessary and Sufficient

Obtain the truth value of each of the following conditional statements:
(a) 3+ 7=11 is a sufficient condition for 4 + § =12.

(b) 4+ 11 =15 is a necessary condition that 3x3 =9,

(¢) Sugar is sour implies vinegar is sweet.

(d) 4+ 10=14 only if 5x4=23.

Solution

Statement (a) can be expressed as “If 3 +7=11, then 4 + 8=12," which is
true because the hypothesis “3 + 7=11" is false and the conclusion “4 + §=12" is
true. Statement (b) can be expressed as “If 3x3=9, then 4+ 11=15," which is true.
Statement (c) can be restated in the form “If sugar is sour, then vinegar is sweet.” We
observe that since both hypotheses and the conclusion are false, the given conditional
statement is true. Statement (d) can be restated as “If 4 + 10 = 14, then 5x4= 23"
which is false because the hypothesis “4 + 10 =14" is true but the conclusion
“5x4=23" is false.

Definition 2.2.9 Bi-conditional Statement: p < ¢

A statement of the form “p if and only if ¢” is called a bi-conditional statement, written
in shorthand, you will often write “p iff g, symbolically, p+gq.

Its truth value is obtained from the property 2.2.6. If p and g are both true or
if p and g are both false, then p <> g is true; if p and g have opposite truth values,
then p <> q is false. This is due to the fact that the statement p <> ¢ is equivalent
to the conjunction of conditional statements, (p — ¢) A (g—p), hence if both p
and g are both true then both p — g and g —p are true and if both p and ¢ are
both false then both p— ¢ and ¢ — p are vacuously true; thus (p—gq) A(g—p)
is true.

A convenient way to analyze logically compound statements formed by the
connectives A, V,~, — and < is by structuring their truth tables. Truth
tables will be introduced in Section 2.4,

Example 2.2.10 Bi-Conditional Statement

Let p represent the statement “Maria is happy™ and g “Maria looks beautiful”; thenp < g
denotes the bi-conditional statement “Maria is happy if and only if she looks beautiful.”

The following property is used to determine the truth value of the
bi-conditional statement:
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TABLE 2.6 Truth Table for the bi-conditional statement p < g

Column

FEEEN
FEEE] [
T

=

Row 1: When both p and q are true, the

statement “p iff q" is true.

When p is true, but q is not true, the

statement “p iff q" is false.

Row 3: When p is false, and only q is rrue, the
statement “p iff q” is false.

Row 4: However, when both p and g are false,

Property 2.2.6 Bi-Conditional Statement: p ¢

If p and g are either both statements are true or both statements are false, then p—gq is Row 2:
true; if p and ¢ have opposite truth values, then p < ¢ is false.

The truth value of the biconditional statement p <> ¢ is given in Table 2.6.

In Table 2.6, Column 3 tells us that the bi-conditional statement p < gq is
true only if p and ¢ have the same truth value, as in the first and fourth lines
of the table.

the statement “p iff q” is true.

Example 2.2.11 Bi-Conditional Statement Truth Value I

Determine the truth value of each of the following bi-conditional statements:
(a) 4+8=12if and only if 3+7=10.

(b) London is in France if and only if “Sharks” live on the moon. I
(¢) 14+5=20if and only if 3+8=15.
(d) 5+3=8if and only if 6 is greater than 8. I

Solution

We observe that only in Statements (a), (b), and (c) have p and g have the same truth value,
both being true in (a) and both false in (b) and (c). Thus, we can conclude that Statements
(a), (b), and (c) are true, whereas Statement (d) is false.

(a) TeTisT
(b) FeFisT
(¢) FeFisT
(d) TeFisF

We should also mention here that a bi-conditional statement, p < g, is often
stated in the form “p is necessary and sufficient for g.”
Ifitwas so, itmight be; and if it were so, it would be :
but as it isn't, it ain’t. That's logic
Example 2.2.12 Bi-Conditional Statement Truth Value Lewis Carroll
Logician in Through the
Looking Glass (1872)

Obtain the truth value of each of the following bi-conditional statements:
(a) 4+5=9 is a necessary and sufficient condition for 8+7 = 15.

(b) Honey is sweet is necessary and sufficient for 8+ 10 = 25.

Solution

We can rewrite Statement (a) as “4 + 5=29 if and only if 8 + 7 =15, which is true.
Statement (b) can be restated in the form “Honey is sweet if and only if
8 + 10 =25, which is a false bi-conditional statement since p and ¢ have opposite truth
values.
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EXERCISES
Critical Thinking
Indicate which phrases are acceptable statements; and for those which are, indicate whether they are true or false.

2.2.1. Sparta is in Greece.
2.2.2. 11 + 1=10.
2.2.3. Who is coming?
2.2.4. Put the fish in the water.
2.2.5. Florida has a cold climate.
2.2.6. Tennis is fun.
2.2.7. =3+45=2.
2.2.8. Goodbye Columbus.
2.2.9. Put your shoes on.
2.2.10. Casablanca is in North Africa.
2.2.11. Tampa is the capital of Florida.
2.2.12. Answer the phone.
2.2.13. This statement is false.

Analyze the given statements and indicate the appropriate connectives and the simple statements.

2.2.14. 4 + 1 =5 and Maria is pretty.

2.2.15. If you are swimming in the Gulf, then Washington is in England or 4+7 =10.

2.2.16. If Columbus was from Italy or Columbus was from Portugal, then 1492 was an Italian year.
2.2.17. If Jonathan is thirsty, then Maria needs water, but 1977 is a dry year.

2.2.18. If4—11=7,then —4 + 11=10and 6— 7= —1.

2.2.19. Deb is athletic if Maria and Jonathan are, but Mathew is a basketball player.

2.2.20. It is not the case that it is raining and the sun is shining.

Basic Problems
Write each statement in symbolic form using the indicated letters to represent the corresponding simple statement.

2.2.21. Roses are red (r), Violets are blue (b)

2.2.22. 1 will travel by train (), plane (p) or automobile (a).

2.2.23. I will study art (@) and music (m) as a minor.

2.2.24. You may go to the movies (m) if and only if you clean your room (r).
2.2.25. If I win the lottery (I), then I will buy you dinner (d).

2.2.26. Give a verbal translation of each compound statement given p represents “I love Lucy” and g represents “Lucy is a
research scientist.”

a. pAq e. ~pV ~gq
b. pvg f. pA~q

c. ~pAq g ~pvq

d. ~(pAg)

Write the negative of each statement.

2.2.27. Our coffee shop showed profit this year.
2.2.28. My cats name is Snowflake.

2.2.29. My cat is not a Siamese.

2.2.30. Peggy loves chocolate cake.

2.2.31. All positive integers are even

2.2.32. All rhombi are rectangles.

2.2.33. Some democrats are politicians.

2.2.34. The number 5 is a whole number.
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2.2.35. Everyone likes ice cream.
2.2.36. There are no absolutes; that is nothing is certain.
2.2.37. All circles are round.

Determine the truth value of the given statements or give the conditions that will make the statement true.

2.2.38. 4+16=19 and Florida is in Canada.

2.2.39. Peter is a swimmer and Alex a boxer.

2.240. 4—6=0and 5+5=10.

2.2.41. Sopoto is in Greece and Chris is from Sopoto.
2242. 3—3=00r9+1=8.

2.2.43. Miami is in Mississippi or Newport is in Rhode Island.
2.2.44. The earth is round or the moon is square.

2.2.45. If Houston is in Texas, then Boston is in New York.
2.2.46. If 6+3=8 then 6—3=8.

2.247. If 5+3=8, then 6+2=8.

2.2.48. If the sun is shining, then it is cold.

2.2.49. If 6 —11= — 5, then Chris is Greek.

2.2.50. 6+6=12 if and only if 3+6=09.

2.2.51. Chicago is in Michigan if Tampa is in Florida.
2.2.52. Patras is in the Corinthian Gulf if and only if Peter is from Sopoto.
2.253. 11+4=15ifand only if 6—11=—5.

2.2.54. 6+11=17 is a sufficient condition for 6+8=12.
2.2.55. Honey is sweet implies Jan is sour.

2.2.56. 6+14 =20 is a necessary condition for 3+8=11.
2.2.57. 9+22=31 only if 17+6=21.

2.2.58. If 16 +22 =38, then Alex is pretty.

2.2.59. San Francisco is in California.
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2.3 TRUTH TABLES
Often, in logical reasoning, complex compound statements are formed by the ,@/ And
logical connectives such as conjunctive, disjunctive, negation, implication and v

&5 o

bi-implications written symbolically:
A, V,~,—= and—

along with simple statements p, ¢, r... Our aim in this section is to learn how to ‘@, Not

determine the truth value of such a compound statement when the truth values

of its components p, g, r... are known. An effective way of doing this is by -

using truth tables. ,@/ Implies, if ..., then ...
Given n simple statements, then there are 2" different possible combina-

tions of true values. This can be seen in previous examples; when there is a

single statement as in Table 2.4 when the negation is considered, there are only <

2'=2 possibilities, either p is true or p is false. When there are two simple state-

ments as in Table 2.1 when the conjunction of two simple statements is con- g ... if and only if ... “iff’

sidered, there are 22=4 possibilities: TT, TF, FT, and FF. Notice, half the first

are T and half are F: this is also true for the second, however they are “half™;
that is, half the T’s for the first statement are T for the second statement and
half for the second statement are F as well as half the F’s for the first statement
are T for the second statement and half for the second statement are F.
Extending this “halving” technique, for three simple statements, there are
23=8 different possible combinations; for the first statement, four are T and
four are F; for the four T’s statements, two are T and two are F which is
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b4 TABLE 2.7 Truth values for three simple statements

T |r1TT
T q r

P
vy (D
T | TFT [T][r][E]

F| [[E]

F | TFF HEE
T |FTT [E](T] (]
T [F] [ [E]
_[F |FTF [F1F][T]
T | FFT [EIE][E]

F
F | FFF

If I do not have to work today, then I will go
to the store.

the same for the F’s. Then, for each of the given possibilities, the last statement

Not true is false and not false is true: is either true or false (Table 2.7).
(a) ~T=F

(b)y ~T=F

(c) ~F=T Example 2.3.1

(d) ~F=T

Determine the truth table for ~p —g.

Fails only when premise is true and the
conclusion does not follow:

(a) ~T—=TisT Solution

() ~T—FisT First we observe that this statement is composed of the simple statements ~p and ¢
(¢) ~F=TisT along with the connectives ~ and —. Since there are just two simple statements, p
(d) ~F—=FisF and g, involved, each one being either true or false, the truth table will have 4 rows,

giving all possible truth-value combinations of p and g. We present this procedure in
five steps, as illustrated below:
STEP 1: Construct the truth table for the given number of simple statements

P q

STEP 2: We determine the truth values for ~p by using Table 2.4

P q -p
| |
[T CE
I [ |
[EE]CT ]

STEP 3: Lastly, we determine the truth values for ~p — g using statement builder
tables.

P 4 ~p P49
S | T
I |




Solution—cont’d

The last column was obtained by using the truth values of ~p and g along with the
truth table in Property 2.2.5, defining the truth value of a conditional statement.

An alternative way of constructing the truth table is to reproduce this information as
in the chart below allowing a column for each connective.

STEP 4: Reproduce information need in final statement.

(e

P 9

STEP 5: Then use this information to construct the conditional statement ~p —gq

N |

[
EN|EE

The entire problem presented in a single table as follows:

I S
EEEE|-

EEIEE)]=-

FIEIEE [

Example 2.3.2

Construct a truth table for the (pvg)—p

Solution

Or, alternatively

We note from the answer column indicates that (pvg)—p is false only when p is
false and g is true; otherwise (pvgq)—p is true.
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If you have pride or money, then you have
pride.

Hence, when you have pride and have
money, then you do have pride, this is true.

Then when you don’t have pride but you do
have money, then stating this implies pride is
fallacious.

When you have pride, but do not have
money, then you can conclude you have pride.

However, when you don’t have pride and you
don’t have money, then stating “If you have
pride or money, then you have pride” is not
false, and is therefore true.

If we may believe our logicians, man is
distinguished from all others creatures by the
faculty of laughter

The Spectator (1712)
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If you know Math, English and Science, then
you know Math or English.

Table 2.1
1 2 3

1 2 3

Regardless of the validity of each simple
statement, the statement is always true; hence, a
tautology.

Example 2.3.3

Construct a truth table for the statement [p— (pAg)|V ~p

Solution

p 4 prqg p—(pag) ~p [po(pAg)v~p

o | I | T ]
I | I || F |
o | | | I | | T |
(FIFICF ) 1 [T ]| T I

Or, alternatively
1 2 3 5 4 7 6

p q [p = prql v -p

| R | [
F
I O | |

» Step 5 is obtained from Steps 3 and 4, giving the truth value of p— (p Aq). We see that
p— (pAq) is false only when p is true and (p Aq) is false. Table 2.4 is used to complete
the column.

» Step 7 is obtained by using the truth values in Steps 5 and 6 along with Table 2.2 for
the disjunction. Note that the disjunction [p— (pAq)|V ~p is false only in the second
line, where bothp— (pAq) and ~p are false.

Example 2.3.4
Determine the truth table for [(pAg)Ar]—(pVvq)

Solution

Since there are three simple statements forming this compound statement; namely, p, g,
and r, the truth table will have 2* =8 rows.

Following the indicated steps carefully, using Table 2.1 for the conjunction A,
Table 2.2 for the disjunction v and Table 2.5 for the conditional —, we have

=

g [(prg)ar]—>(pve)
I T

prag (pag)ar p

| I |

=]

FEEEIEEEE

W
T
T
T
LT
T
T
F
F

FEEEEEEE
FEEEEEEE] -
LSl et et et ] e et L sl
== = = e

== == ===

=[=][=]




Alternatively,

1 2 3 - 6

n

-
5
< ||
=
o

p g r [prg) A

SN | | | 5
S I |
I |
L]
L]

EREEE
HIEEEE]

1

BIE
IIIIIIII

An analysis of Step 8 reveals that the compound statement
[(pAgq)AFr]— (pVq) is true, regardless of the truth values of p, ¢, and r. Step
8 was computed from Steps 6 and 7 by use of Table 2.5, which defines the

conditional.

Example 2.3.5

Construct a truth table for (pA ~q)<r.

Solution

Following the indicated steps carefully, we can write

P 4 r ~q4 prgq (pA~gq)e>rOR

r e (pa-q)

FCF F

FALF T

| | | || T
(S | | | || F
(| | I | || I
I ||| T
|| F

T F | T

Alternatively,

EEEEE] <~

ES=

Note that Step 7 was obtained from Steps 5 and 6, making use of Table 2.6 for the
bi-conditional statement.

Example 2.3.6

Construct a truth table for the statement (pvg) = (pA ~q)
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There is rain and not sunshine if and only if
there are clouds in the sky.

Let p represent “there is rain,” g represent
“the sun is shining” and r represent “there are
clouds.”

This statement is not true when:

There is sunshine with the rain, regardless of
the clouds; or, there is no rain when there are
clouds.

Table 2.6
1 2 3
P 4 peryq

[ {13 | .
[TE]LF ]
[(FIECF ]
[FIFIC T ]

“You can have ice cream and not cake if and
only if you finish your dinner”

This statement is false when: I have cake or
ice cream without finishing my dinner; this
includes cake and ice cream; or | don’t have

cake and I don’t have ice cream when I do finish
my dinner.

“If you want to drink either chocolate milk
or soda, then you may have chocolate milk, but
not a soda.” This statement is false when: I have
the soda and not chocolate milk.

If there is either a cheaper guitar or a
payment plan r, then I will buy a cheaper guitar
and not take the payment plan. This statement is

false when: There is not a cheaper guitar and [

do take the payment plan.
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Solution

Following the indicated steps we have

P 4 pvg ~q pr~q (pvg)—=(pa~q)

S | | S S | I | T |
| N | T |
I JLE ] F ] E |
[EJF]LE JLT ][ £ ]| T |
Or, alternatively
1 2 3 7 4 6 5
r q (pvg) - A ~q)
e E ] E L]
FIFEICF LT ]CEIFE]CT ]

pAg=~(p—q)

Let p represent “John is smart,” q represent
“Leroy is tall” and r represent “Sherrie is

bashful.”

It is the logic of our times, no subject for immortal
verse — that we who lived by honest dreams. Defend
the bad against the worse
C. Day-Lewis
Anglo-Irish Poet (1943)

Example 2.3.7

Let the connective A be defined by the truth table,

P 4 phg
[ [
[TIECE ]
[
[FI[F][F |

Find the truth value for p—[~pA(~gAp)]

P 4 P ~1 ~qap -~pA(~qrp) p > [-PA(~grp))

[ ] Ce ] ]| I |
| I | I I |
G0 [ | I | I |
[FIF]CT LT D S |

=== =
=||=(]=|]=

Alternatively,

|| |
I | O | 3 [

Step 7 giving the truth values of ~gAp was obtained from Steps 5 and 6,
making use of Table 2.1 for A. The truth values for ~pA( ~¢g Ap) were obtained
from Steps 4 and 7 and the truth table for the connective A given at the
beginning of this problem. Finally, the answer in Step 9 was derived from Steps
3 and 8, making use of Table 2.5 for the conditional statement.




Example 2.3.8

Determine the truth value of the following statement: *John is smart or Leroy is tall if
and only if Sherrie is bashful implies John is not smart.” Given that John is smart,
Leroy is not tall and Sherrie is bashful.

Solution

First, we note that “John is smart or Leroy is tall” can be written symbolically as

pvyq
Secondly, we can write the statement “Sherrie is bashful implies John is not smart™
as
r—n~p.

Thirdly, joining the two statements with the bi-conditional “if and only if,” we can
represent the entire statement as

(pvg) e (r—~p)
Now, since (pV ¢q) is true when p is true and g is false and (r— ~p) is false when r is
true and p is true, we can write
(TVF)=(T—~T)
(T) > (T—F)

This leads us to T« F, which means that the given statement is false.

EXERCISES
Critical Thinking

Exercises

33

2.3.1. How many rows are required in a truth table for a compound statement that contains four simple statements,

P, q, r, and s?

2.3.2. How many rows are required in a truth table for a compound statement that contains five simple statements,

P q, 1, s and £?

Basic Problems

Construct the truth table for the following statements:

2.3.3. ~gAp 2.3.11. [(pAgq)vgql—p
2.34. ~(pAq) 2.3.12. [(p—q)V ~p|—q
2.3.5. ~(~pV~gq) 2.3.13. pv(gAr)

2.3.6. pA(gvp) 2.3.14. (pvq)A(pvr)
2.3.7. (pvq)—p 2.3.15. pA~g

2.38. (pAg)—p 2.3.16. ~pAq

2.39. (pvg)—(pAq)
2.3.10. [(p—q)Vp]

Determine the truth value of the following statements given p is true, g is false and r is true.

2.3.17. p—(qVvr)
2.3.18. pA(qvr)
2.3.19. pV ~p
2.3.20. pA~(g—r)
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Tautology

,ﬁ From the Greek word tTavToLOYia
meaning a formula which is
unconditional true, tautology was first
applied by Ludwig Wittgenstein 1o
redundancies of propositional logic in
1921.

A tune is a kind of tautology ... complete in itself
Wittgenstein

If you do not have both p and q, then you are
missing at least one; hence, you either don’t have
p (or not q), or you do have p—this is always
true. With anything, you either you have it, or
your do not, this is an unconditional truth.

If you don’t know, then you know.

You must clean both your room and the
kitchen, but you don’t have to do at least
one of these.

2.4 PROPERTIES OF LOGIC

In certain cases of logical reasoning we are concerned with statements that are
always true; for example, p vV ~ p is always true. If p is true then we have TVF,
which is true; however, if p is false then we have Fv T, which is true. More
specifically, consider the following definition:

Definition 2.4.1 Tautology

A compound statement, 7, is said to be a tautology or logically true if it is true for all
possible truth values of its components.

In other words a tautology, 7, is a compound statement which has only true,
T, in the last column of its truth table. Note that in Example 2.16 the

[(pAg)AF]—= (pVq) is a tautology.

Example 2.4.1 Tautology

Show that the statement ~(p Ag)Vp is a tautology.

Solution

Constructing the truth table for the statement ~ (p Ag) Vp, we have

p 4 prg ~(prg) ~(prg)vp
NS { I |
CECE ]|
(N I { I | I |
[(FIFICF ][ 1 ]

=||={[=]]=

Since the truth table for the statement ~ (pAg)vp is true, T, for
all possible truth value combinations of p and ¢, the statement is a
tautology.

Analogous to tautologies, there are statements that are logically false; for
example, p A ~p is always false. If p is true then we have T A F, which is false;
however, if p is false then we have F AT, which is false.

That is,

Definition 2.4.2 Contradiction

A compound statement, ¢, is said to be a self-contradiction or logically false if it is
false for all possible truth values of its components.

This means that a self-contradiction, ¢, is a compound statement that has
only false, F, in the last column of its truth table. Consider the following
example:



Example 2.4.2 Self-Contradiction

Show that the statement (pAg) A ~ (pVq) is a self-contradiction.

1 2 3 4 5 6

p ¢ prg pvg ~(pve) (pragh~(pve)
0 | | I | | F |
(rE]ICE QO 0 F F |
S [ SR | | A | F |
[EFILF JLF J[ 1T ] F |

Observe that Step 6 was obtained from Steps 3 and 5, making use of
Table 2.1 for the conjunction. Since only F appears in Step 6, we conclude that
the statement (pAg)A ~ (pVq) is a self-contradiction.

Definition 2.4.3 Paradox

A paradox is an apparently true statement or group of statements that leads to a
contradiction.

For example, the liars’ paradox: “this statement is false™; when this
statement is true, this implies it is false or vice versa.

In logical reasoning we often encounter statements that are the same or
equivalent.

That is,

Definition 2.4.4 Equivalent

Two statements r and s are said to be logically equivalent or simply equivalent if they
have identical truth tables; that is, if r< s is a tautology. To symbolize two equivalent
statements r and s, we wrile r=s or r<s.

Similarly, we write p=>¢ when the statement p— ¢ is a tautology.

Example 2.4.3 Equivalent Statements

Show that the statement ~p Vg is equivalent to the statement p —gq.

Solution

We begin by constructing the truth table for (~pvgq)«<(p—gq).

P 4 ~p ~pvg p=q (~pvg)e(p—q)
(| O | I | | T |
FILF QL F [ F | T |
|
|

1 | | I | I | T
CEIFEICT ] T J T T

Since (~pVvgq) <« (p—q) is a tautology, we see that (~pVvgq)=(p—q).
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When you do both, then you did not listen when
1 stated you don’t have to do at least one, and
when you don’t do both, you did not listen to
the first statement which stated do both your
room and the kitchen.

Archival Note

The Epimenides paradox (circa 600 BCE), is a
liar's paradox; what do you think form a man
from Crete when he states “Cretans are always

liars.”
Syntactically

r=s
Semantically

res

I will not win the lottery ticket or I will take you
to dinner is equivalent to stating if I win the
lottery, then I will take you to dinner.

Lottery

,@/ From the ltalian lotteria meaning
arrangement for a distribution of
prizes by chance

If the sun is shining, then I will go
swimming is equivalent to stating if |
don't go swimming, then the sun was
not shining.

If you are seventeen, then you are a
minor is equivalent to stating if you are
not a minor, then you are not

seventeen.

If you have an A in this course, then
you understand logic is equivalent to
stating if you do not know logic, then
you will not have an A in this course.

If you are seventeen, then you are a
minor is NOT equivalent to stating if
you are a minor, then you are sev-
enteen. There are many ways to be a

minor and not be seventeen.

Minor
A person under the age of full legal
responsibility
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Example 2.4.4 Contrapositive: ~g— ~p

Show that (p—gq)=(~g— ~p).

Solution

It suffices to show that the statement (p — q) < ( ~g— ~p) is a tautology. We can show
this by structuring the appropriate truth table.
That is,

P g9 ~P ~q4 P4 ~4=~p (Po9)e(~4--~P)

(e Jle ] J 1 T |
CoEICE ] F JF T |
R Je ] J 1 ] T |
I | | | | | | T |

Example 2.4.5 Converse: g —p

Show that the statement p — ¢ is not logically equivalent to the statement g —p.

If the figure is a square, then the rectangle is
NOT equivalent to stating if the figure is a
rectangle, then the figure is a square. A rect-
angle has equal angles whereas a square has
both equal angles and equal sides.

Given it is not the case that if you are an adult,
then you do drive, this is equivalent to stating
there are adults out there that do not drive.

Solution

We begin by constructing the truth table for the statement (p—q)<(g—p).

P 4 Poq4 4P (Pod)e(~9-~p)

| | | T |
0| { S | | I |
| | | T | E |
I | | O | | |

It is clear from the results of Step 5 that the statement
(p—q)<(~qg— ~p) is not a tautology; thus

(p—q)#E(~q— ~p),

where # is read “not equivalent.”

Example 2.4.6 Not Implied: ~(p—gq)

Is the statement ~ (p—gq) is equivalent to the statement pA ~q?

Solution

We begin by constructing the truth table for the statement ~(p—g)«(pA ~gq).

1 2 3 4 5 6 7

P 4 ~q4 P>qg ~(P>4q) PA~q9 ~(Po>9)o(PA~9)

e J ¢ JCF ] T |
ECCE JC T T | T |
E)E]L J[_F ][ F ]| 1 |

T JL_F [ E || T |




We observe that the truth table for the statement ~ (p—¢g) in Step 5 is the
same as the truth table for pA ~g in Step 6. Thus, we conclude that
~(p—q)=(pA~q). This means that the negation of the conditional
statement, p — ¢, is equivalent to p A ~q. Moreover, using this equivalence
in  conjunction  with  the  equivalence in  Example 2.4.3,
~(~pVq)=(pA ~q):; this distributive property called De Morgan’s Laws.

Example 2.4.7 Equivalent Statements

Show that (pAg)Ars=pA(gAr).

Solution

The equivalence relation of these two statements can be seen by constructing the fol-
lowing truth table:

1 2 3 4 5 6 7 8

pAalgar) (pag)ar
>

palgar)
|

[T

P 4 r paq (pAag)ar gqar

(=
(|~

CE N
(EIE]E]L

=== (=== ==
=== (=== ==
=HEIE

T T T T
=== {|= ==

Since the truth table for (p Ag) Arin Step 5 is identical to thatp A (gAr) in
Step 7, we conclude that, indeed, the two statements are equivalent. This is
further seen in Step 8 which shows that (p Ag) Ar<—p A (g Ar) is a tautology.

The statements that we have studied under the equivalence relation, =,
satisfy some very basic laws of algebra listed below. We shall state these laws
and illustrate their usefulness with some examples. In order to prove any of
these laws of algebra it is sufficient to construct a truth table to show that
the given equivalence statement is indeed true.

Let p, g, and r represent given statements.

Rule 2.4.1 Idempotent

pVp=p and p Ap=p

Idempotent describes the property of operations, as in mathematics and
computer science, which yield the same result after the operation is applied
multiple times.
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Given it is not the case that if you try to get
pregnant that you will get pregnant is equiv-
alent to stating there are those out there who
try to get pregnant and do not get pregnant.

Given it is not the case that having money
implies happiness is equivalent to stating
there are those who have money, but are
not happy.

Commutative

/@/ From Latin commutate to change

Involving the quality that quantities
connected by operators give the same
result when commuted

axb=bxa
Tautology
From the Greek tautologia—the same
saying

A statement that is triee by necessity or
by virtue of its logical form

Idempotence
Applied a multiple number of times
without change

Example:
Sflx)=x
f(f(x)J=f{x}=
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Comparable to Association in Addition and
Multiplication

(a+b)+c=a+(b+c)
(axb)xc=ax(bxc)

Comparable to Commutative in Addition and
Multiplication

a+b=b+a

axb=bxa

Not directly comparable to Distributive in
Addition and Multiplications multiplication
is distributive over addition, but not the
reverse.

Whereas in Logic, conjunction distribu-
tions over disjunction and disjunction distri-
butions over conjunction.

Not exactly comparable to the Identity in
Addition and Multiplication as the last
statement would not follow in addition

a+0=av
axl=ay
ax0=0,,
atl=ax

Directly comparable to maximum of 0/1 versus
minimum 0/1; that is,
a=0 (false) and a=1 (true):

maxia, 0} = a v
min{a, 1} = a v’
min{a, 0} = 0v"
maxia, 1} =1+

or = addition
and = multiply

Rule 2.4.2 Associative
(pvq)vr=pv(gvr) and (pAg) ArspA(gAr)

Associative describes the property of operations that enables statements to
re-associate while yielding the same result. The associative law in logic is com-
parable to the associative law of addition and multiplication in algebra; that is,
(a+b)+c=a+(b+c) and (axb)xc=ax(bxc).

Rule 2.4.3 Commutative

pVg=qVp and p Ag=q Ap

Commutative describes the property of operations that enables statements
to move or commute while yielding the same result. The commutative law in
logic is comparable to the commutative law of addition and multiplication in
algebra; that is, a + b=b +a and axb=bxa.

Rule 2.4.4 Distributive
pVv(gar)=(pvg)A(pvr) and pA(gvr)=(pAq)V(pAr)

Distributive describes the property of one operator to be expanded in a par-
ticular way which yield the same result; that is, an equivalent expression. The
distributive law in logic is more extensive than the distributive property in
algebra. In logic, the operator for “and” is distributive over the operator for
“or” and vise verse, whereas in algebra, this relation only works for “multipli-
cation” over “addition” but not “addition over multiplication.” However, the
idea of distribution of one operator over a second operator is comparable; for
multiplication over addition we have a(b+c)=ab +ac and for power over
multiplication we have (axb)"=a"xb".

Rule 2.4.5 Identity

If 7 is a tautology and ¢ is any contradiction, then

pV¢d=p, pht=p,.pAd=¢ and pv =1

Identity is the state or fact of remaining the same one or ones, as under
varying aspects or conditions, to identify. Hence, a contradiction in a dis-
junction identifies the truth value of the statement p, but in conjunction iden-
tifies the contradiction. A tautology in disjunction identifies the tautology,
whereas in conjunction identifies the true value of the statement p. The first
two are comparable to the identity property of addition and multiplication:
a+0=a and ax1=a, where 0 is compared to the contradiction and 1 is com-
pared to the tautology; therefore, “or” is comparable to “addition” and “and” is
comparable to “multiplication.” The third is comparable to zero property,
ax0=0; however, the four as will the law of distribution is not exactly com-
parable to any given algebraic property or law. These comparisons will come
back into play in Chapter 3, which introduces the fundamental principle of
counting; basically “and” means “multiply” (when there are more than one
independent events) and “or” means “add” (minus overlap).



Rule 2.4.6 Complementary

If 7 is a tautology and ¢ is any contradiction, then

PV ~p=tT, pA~p=¢h, ~(~p)=p, ~1=¢h and ~P=r

A complement is the part needed to make complete or perfect; in logic, this
is the relationship between frue and false, an event and not the event, etc. In
logic, the statement is true or the statement is false and thus pv ~p is a tau-
tology, 7; however, a statement cannot be both true and false; hence,p A ~p is
a contradiction, ¢. Furthermore, as in English, a double negative is the positive
statement; not “not p” then p. Finally, logically speaking, the negation of a tau-
tology is a contradiction and the negation of a contradiction is a tautology.
They complement each other, without tautologies, contradictions would
not exist.

Rule 2.4.7 De Morgan’s Rule
~(pVg)=E~pA~qgand ~(pAq)=~pV ~q

De Morgan’s Rule illustrates the fact that “or” is the complement of “and”
and vice versa. In logic, “or” means at least one and “and” means both; hence,
when you do not have at least one, ~(pV q), this is equivalent to you do not
have either, or you are missing both, ~p A ~ g; you do not have the first and
you do not have the second. Similarly, when you do not have both, ~(pAq),
this is equivalent to you are missing at least one, ~pV ~ g; you do not have the
first or you do not have the second. The idea of “negation” will be discuss
further in Section 2.6.

It is left to the student as an exercise to construct the truth tables to show the
stated equivalence of the preceding laws of algebra. However, we use these
laws to simplify compound statements.

Example 2.4.8 Properties of Logic

Simplify each of the following statements by using the laws of statements and using f for
tautologies and ¢ for contradictions:

(b) pvipAg)
(d) [~(pAg)lVipA~gq)

(a) (pvg)A~p
(©) [~(pvg)|v(~prg)

Solution

Statement (a) Reason

Commutative Law
Distributive Law
Complement Law
Identity Law

(pvg)A~p=~pA(pVq)
=(~pAp)V(~pAq)
=pv(~prg)

=(~pAg)

B =
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Directly comparable to maximum of 0/1 versus
minimum 0/1; that is, a=0 (false) and
a=1 (true); if p is a, then ~pis 1—a:
max {a,1—a}=1
min{a,1—a}=0
1-1=0
1-0=1

De Morgan was a British mathematician and
logician who formulated De Morgan’s laws and
introduced rigor to mathematical induction.

This will be similar in sets or events:

When you do not have at least one, then you
do not have the first and you do not have
the second.

When you do have both, you are missing at
least one; either the first one or the second
one (or you are missing both), you just do
not have both.

Let’s use the following laws:
= Comnutative

S Distribution

S Complement

= ldentity

< De Morgan’s Law

I'will do the dishes or wash the car, but I will not
do the dishes is equivalent to saying I will not do
the dishes and I will wash the car.
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I have ice cream, or I have ice cream and cake is
equivalent to I have ice cream, and I have ice
cream or cake.

Either I don’t have at least one (p or q) or I am
missing the first (p) and have the second (q) is
equivalent to I don’t have the first (p). As for the
second, I either have it or I do not—it is
irrelevant.

Either I do not have both (p and q) or I have the
first (p) and not the second (q) is equivalent to
stating I do not have both the first and second.

I lost my pen and paper, or I have the pen
and not the paper is equivalent to stating I lost
either the pen or I lost the paper; that is, I do not
have both the pen and paper.

EXERCISES

Summary

< Idempotent Law

= Associative Law

PA(gAT)=(pAg)Arp Ap=p

2 Commutative Law

< Distributive Laws

pVv(gar)=(pvg)r(pVve)

< Identity Law

Statement (b)

Reason

pvipAg)=(pvp)alpvy)

Distributive Law

2. =pAlpvy) Identity Law
Statement (c) Reason

1. [~(pvq)v(~pAg) De Morgan’s Law
S(~pA~q)V(~pAq)

2, =~pA(~gVvq) Distributive Law

3. =~pAT Complement Law

4. =~p Identity Law
Statement (d) Reason

L. [~(pAg)VipA~q) De Morgan’s Law
=(~pv~q)VipA~q)

2. =[(~pV~q)Vp|A|(~pV ~q)V ~q] Distributive Law

3. =pv(~pV~q)|A[(~pV ~q)Vv ~q] Commutative Law

4. =[(pv~p)Vg|A[~pV(~qV ~q)] Associative Law

5. =[tv ~g|A[~pV(~gV ~q)] Complement Law

6. =(tv ~g|A[~pV ~q] Idempotent Law

7. STA[~pV ~q] Identity Law

8. =~pV~gq Identity Law

9. =~(pAg) De Morgan’s Law

pvp=p

pApP=p

PAG=qAp

pV(gvr)=(pvq)Vvrpvp=p

pPvVq=qVp

pA(gvr)=(pAq)V(pAr)

pVd=p, pAT=p, pAd=¢, pVi=t1

< Complement Law

pV~p=t, pA~p=g,

2 De Morgan’s Laws

~(pvq)

Critical Thinking

2.4.1. Is the statement ~ (pVg)Ap a tautology?
2.4.2. Show that pv ~(pAgq) is a tautology.

~(~p)=p. ~T=, ~h=t

~PA~g, ~(PAGQ)=~pV~q

2.4.3. Determine whether or not the statement (~p A ~g)V(pVg) is a tautology.

2.4.4. Is the statement (pvg)V ~(p Ag) a tautology?

2.4.5. Determine whether or not the statement (pvg)— ~ (pAq) is a self-contradiction.
2.4.6. What can you say about the two statements g—p and ~p— ~gq



2.4.7.
2.4.8.
2.4.9.
2.4.10.
2.4.11.
2.4.12,
2.4.13.

2.5 Variations of the Conditional Statement

Show that the statement (pAg)V ~ (pVgq) is a self-contradiction.

Is the statement p— g logically equivalent to the statement g — ~ p?

Prove that (pvq)Vr=pVi(gvr).

Show that (pVg)A ~p=~pAgq.

Is the statement p Vg equivalent to ~(~pA ~gq)?

Verify the associative law (p Aq) Ar=p A (g Ar) by constructing the appropriate truth table.
Prove the distributive law pv (gAr)=(pvq)A(pvr).

Basic Problems

2.4.14.
2.4.15.
2.4.16.
2.4.17.
2.4.18.
2.4.19.

Show that ~ (pAg)=~pV ~q.

What can you say about the statements ~ (~p) and p?
Simplify the statement (pAg)A ~p.

Using the laws of algebra simplify the statement pA (pAq).
Simplify ~(pAg)A(~pAq).

Simplify ~(~pAgq).

Determine if the following statement is a tautology, self-contradiction and paradox.

2.4.20.
2.4.21.
2.4.22,

2.4.23.

2.5 VARIATIONS OF THE CONDITIONAL
STATEMENT

There is an exception to every rule; except this rule.
To be or not to be.

41

You travel back in time and kill your grandfather before he meets your grandmother. Hence, you are never born and,

therefore, you couldn’t go back in time and kill your grandfather.
Yes and no, and I don’t mean maybe.

Conditional

We have seen that equivalent statements have identical truth tables and may be &7~ Sentences that discuss factual
thought of as different forms of the same statement. In this section we shall be implication
concerned with some of the different forms by which the conditional statement

p — q can be expressed. That is, given a conditional statement p — g, we shall
study three variations formed from statements p, ¢, and the logical connectives,

Example:
If you are seventeen then you are a minor.
If you are a minor, then you are

’@/ Subject to one or more requirements

— and ~. seventeen.
If you are not seventeen, then you are not
Statement Name a minor.
p—q Conditional Statement If you are not a minor, then you are not
g—p Converse of p—gq seventeen.
~p— o~ Inverse of p—gq
~g— ~p Contra-positive of p—q Given the conditional statement is true, the
) X o ) inverse and the converse need not follow.
A comparison of the truth tables for these statements is given by Table 2.8. If the converse and the inverse do hold,
this would be a bi-conditional.
TABLE 2.8 Conditional variations Common: Equivalent Statements
Analyzing Table 2.8 on the previous page we
1 2 3 4 5 6 7 8 observe that
P 4 ~p ~§ p—=>q q—2p ~p—=r~q ~q—=>~p 1. p—q is not equivalent to g—p because
Columns 5 and 6 are not identical.
l Gl | il | - | 2 p—»uq is not equivalent to ~p— ~gq
l F " L ” I ” L " L ” I I because Columns 5 and 7 are not
| T " F ” T ” F " F ” T I identical.
| T]fr]jl 1T J[ T | T [ T | 3. p—q is equivalent to ~g— ~p because

Columns 5 and 8 are identical.
4. g—p is equivalent to ~p— ~g because
Columns 6 and 7 are identical.
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If I win the lottery, then I will buy you dinner.

If I buy you dinner, then I will win the
lottery? This is not equivalent.

If I do not win the lottery, then I cannot
buy you dinner? This does not follow.

If I do not take you to dinner, then I have
not won the lottery. This is true.

Among the three different forms statements,
the first two are equivalent to each other.

Conditional Statement
rP—q
Converse
q—p
Inverse
Contrapositive

Original Statement:
A well supported figure.

/

Inverse Statement:

Not the same support

N

Converse Statement:

Not the same support as the original, but the
same as the inverse.

.

Contrapositive Statement:

Same support as the original figure.

)

Therefore, there are two equivalences: p—g=~g— ~p and similarly
qg—p=~p— ~¢q. Hence, a conditional statement is equivalent to the counter
of the positive statement, that is, the contra-positive.

Example 2.5.1 Contra-positive

Given the conditional statement “If you are seventeen, then you are a minor,” find the
converse, inverse, and the contra-positive of the statement.

Solution

Converse: If you are a minor, then you are seventeen.
Inverse: If you are not seventeen, then you are not minor.
Contra-positive: If you not a minor, then you are not seventeen.

By definition of a minor, both the original conditional statement and the
contra-positive statement both true (that is, equivalent statements) whereas,
the converse and inverse are not true. If you are a minor, you might be twelve
and not seventeen; and if you are not seventeen, then you might be sixteen
which is still a minor. Hence, in this case the conditional statement and the
contra-positive statement are true and the converse and the inverse are false;
however, this need not be the case. If all four statements are true, then the con-
ditional statement is actually a bi-conditional statement. However, in general,
— is not commutative; that is, p—>¢q # g—p.

Example 2.5.2 Conditional Statements

Suppose that p is true and g is false. What is the truth value of the following statements?
(a) p—gq

(b) The inverse of ~g—p

(¢) The contra-positive of ~g— ~p

(d) g is sufficient for ~p

(e) ~p is necessary for ~q

(f) The converse of ~gq only if p

Solution

(a) For p—gq we have T — F, which is false by Table 2.8.

(b) The inverse of ~g—p is ~(~g)— ~p or equivalently g — ~p. Thus, we have
F— ~T or F—F, which is vacuously true.

(¢) The contra-positive of ~g— ~p is ~(~g)— ~(~p) or equivalently g—p.
Hence, F — T, which is vacuously true.

(d) The statement “g is sufficient for ~p™ is another way of saying “if ¢ then ~p™ or,
symbolically g — ~p. Thus, we have F— ~T, which is equivalent to F—F,
which is vacuously true.

(e) The statement * ~ p is necessary for ~g" is another way of saying “if you have ~gq,
then it was necessary that you had ~p™; in other words, “if ~ g then ~p™ or written
symbolically ~g— ~p. Hence, ~F — ~T, which gives us T'— F, which is false.
Alternatively, ~g— ~p is the contra-positive of p—g which, by (a) is false.

(f) “~g only if p” can be written as ~g—p and therefore the converse is p— ~q.
Since p is true and ¢ is false, we have T'— ~F, that is, T — T, which is true.




Example 2.5.3 Associative

Show that the associative rule does not hold for —: that is, (p—gq) —>r#p—(g—r).

Solution

Here, to prove that (p—¢g) —r is not equivalent to p— (g —r).
This is shown by structuring the following truth table:

1 2 3 4 5 6 7 8
p g r p2q g—or (pogq) po (p=q)—r
—=r {q—)r} —
p—(g-r)
MEEC T JCr JC 0 1]
r)FEC JCF JF JCF 1 ]
I | | I | | G | | T |
(I | | I | | I | | 1 |
5 | || AN | | G | | T |
ClEEC I JC ] ¢ ]
EIFEC T JCr JC T 1]
(FIE]E]C 7 JC T J[ ¢ J[ 1 ]| F |

Since Steps 6 and 7 do not yield identical truth tables for (p —¢)—r and
p—(g—r), we observe that these two statements are not equivalent; that is,

(p—q)—r+<p—(g—r) is not a tautology. Thus — is not associative.

Example 2.5.4 Equivalency

Show that the following statements are equivalent without the use of truth tables:
(a) p—=~qgand ~g—p
(b) p—(gvp)and (~gA~r)— ~p

Solution

(a) The contra-positive of p— ~g is ~g— ~(~p), which we know is equivalent to
~q—=p
(b) The contra-positive of p—(qvp) is ~(gvr)j—~p and since by
De Morgan's Law, ~(gqVr)=~gA ~r; hence, p—(gVvp) is equivalent to
(~gA~r)—= ~p.
In logical reasoning it is often necessary to prove a statement of the form “p if and
only if g”'; that is, p<¢. A truth table may be used to show that p < ¢ is equivalent to

(p—=q)A(g—p): thatis, p—g=(p—q) A(qg—p).

EXERCISES
Critical Thinking

Given the logical statement, give the converse, inverse, and contra-positive.

2.5.1. “If John is blonde then Sandra is a brunette”

Exercises

P—=q=qV ~p
&
gq—=r=rv~q
are equivalent to
(p—=q)=(gv ~p)—r

&
p—(g—r)=
p—=(rv~q)

therefore
LHS=rv ~(qV ~p)
=rv ~gqAp
and

RHS=(rv ~q)Vv ~p
=rv ~q\,|" ~p

If you have significant debt than you should not

by more cloths is equivalent to If you have
money to buy new cloths, then you are not

in significant debt.

If you have a National Merit Scholarship,
then you can afford to go to university in
the State of Florida or out of State is equiv-
alent to If you cannot afford to go to university
out of state and you cannot afford to go to uni-
versity in the State of Florida, then you must

not have a National Merit Scholarship.

2.5.2. Given the logical statement “If Maria leaves for the moon then Liz will be going to Albuquerque”
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Let p and g represent two statements where p is false and ¢ is true. Determine the truth value of the following statements:

2.53. p—q,
2.5.4. The inverse of ~p—gq,
2.5.5. The converse of ~p only if q.

Let p and g represent two statements where p is false and ¢ is true. Determine the truth value of the following statements:

2.5.6. p—gq
2.5.7. The inverse of ~p—gq,
2.5.8. The converse of ~p only if q.

Show that the logical statements are equivalent.

259, ~(pvq)V(pA~gq) and ~q
2.5.10. pvgand (pvg)A~(pAq)

Archival Note

Categorical propositions are discussed in
Aristotle’s Prior Analytics. These types of
propositions occur in categorical syllogisms.

Syllogism
From the Greek 6vALOyioudc meaning
to conclude or infer

A discourse in which, certain things having been
supposed, something different from the things
supposed results of necessity because these things
are so.

Aristotle

Leonhard Euler was a Swiss mathematician and
physicist working in such fields as mechanics,
fluid dynamics, optics and astronomy; whereas
in set theory, he introduce Euler circles, he also
defined the mathematical constant e.

2.6 QUANTIFIED STATEMENT

There are four other commonly used forms of English phrases with which one
should become familiar. These are the quantifying statements:

I. Allp are q Universal Affirmative
II. Nop are ¢ Universal Negative
III. Some p are not ¢  Particular Affirmative

IV. Some p are g Particular Negative

In order to see how to negate these forms, we must first consider exactly
what they mean.

FORM I: Universal Affirmation

Form I: The universal affirmative; this extreme “all p are ¢ is actually a con-
ditional statement; for example in the statement “all teachers (are people who)
give exams,” if the antecedent is that “you are a teacher,” then consequence is
that “you give exams.” In addition, as with any conditional statement, this
implication only goes one way. That is, if you are known to give exams, this
does not necessarily imply that you are in fact a teacher: for example, you may
be a doctor giving a physical exam. Hence, the statement “all teachers give
exams” is equivalent to “if you are a teacher, then you give exams.” Thus,
abbreviate “you are a teacher” as f and “people who give exams™ as e, then
mathematically, the statement “all teachers give exams™ written as f— e.

Another way to think of “all # are e is in the context of containment (or as
subsets). The group of teachers is contained in the large group of people who
give exams. This idea can be illustrated using circles: a Swiss mathematician
name Euler used them in the 1700s and for this reason these circles are some-
times called Euler circles. Whatever, if we let one circle represent the group of
“teachers™ (abbreviated T) and another circle represent the group of people
who give “exams” (abbreviated E), then the relationship between these two
circles or sets of people can be illustrated as shown to the left.



Example 2.6.1 “All p are ¢ to “If p, then ¢”

“All mothers are teachers” written in “if ... then ..."” form is “if you are a mother, then
you are a teacher.”
Hence. “all p are ¢” is logically equivalent to p—g.

FORM II: Universal Negative

Form II: The universal negative is the extreme “none (no) p are ¢ is also a
conditional; for example consider the statement “there are no good men” or
“no man is good.” Opinions aside, if the antecedent is that “you are a man,”
the consequence is that “you are not good.” In addition, as with any conditional
statement, this implication only goes one way. That is, if you are known to be
bad (not good), this does not necessarily imply that you are in fact a man:
because if you are bad, then you could have been a woman. Hence, the
statement “there are no good men” is equivalent to *“if you are a man, then your
not good.” Note: for all those who think this statement is false will have the
opportunity to contradict me later, but for now this statement is assumed to
be TRUE. Thus, if we let “you are a man” be abbreviate as m and “you are
good” be abbreviated as g, then the statement “there are no good men” can
be written mathematically as m — ~g.

Another way to think of “none (no) m are g” is in the context of non-
containment (mutually exclusive). The group of men has nothing to do with
the group of people who are good and the group of good people has nothing
to do with the group of men. If we let one circle represent the group of
“men” (abbreviated M) and another circle represent the group of people are
“good” (abbreviated G), then the relationship between these two circles or sets
of people can be illustrated as follows.

Example 2.6.2 “No p are ¢”" to “If ..., then ...”

“No vegan eats eggs” written in “if ... then...” form is “If you are a vegan, then you do
not eat eggs” or “if you eat eggs, then you are not a vegan.” Hence, “no p are ¢” is log-
ically equivalent to p— ~gq or g — ~p.

FORM III: Negation of “All p are ¢’

Form III: This particular level of logic is not an extreme; in fact, “some p are
not ¢” is the exact opposite of the extreme “all p are ¢”; for example, in the
statement “some teachers do not give exams” is equivalent to the statement
“Not all teachers give exams.” Common sense aside, this statement leads to
several consequences; that is, for you to be the one who make this statement
true, then you must both be a teacher and not give exams; maybe you teach
kindergarten? However, if you are not a teacher, you still may or may not give
exams. Hence, the statement “Some teachers do not give exams” is not as easy
to write any other way. Therefore, the best way to consider of “some are not™ is
in the context of partial-containment (overlapping sets). The group of teachers
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= A proposition is a universal affirmative: All
SisP

= E proposition is a universal negative: No
SisP

® [ proposition is a particular affirmative:
Some S is P

= O proposition is a particular negative:
Some S is not P

Universal Negatives:
% No man is mortal.
% No publicity is bad
% No man is an island

The above statements are equivalent to:

% If you are a man, then you are not mortal

» If it gets you publicity, then it is not bad

» If you are a man, then you are not an
island
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Using Euler circles, we can illustrate the
universal negative as mutually exclusive events.

Vegan

Coined by Donald Watson o
distinguish those who abstain from all
animal products including eggs and
cheese and not just those who merely
refuse to eat the meat from an animal.

This second logic, then, I mean the worse one, the
teach to talk unjustly, and prevail

Aristophanes

The Clouds (423 BCE)

Particular Affirmative:

» Some men are boys

3 Sometimes too much is bad thing
¥ Some horses are white

Is there any relationship among them?

Y
is read as
“for all”

is only partially contained in the group of people who give exams. If we let one
circle represent the group of “teachers™ (abbreviated T) and another circle rep-
resent the group of people who give “exams™ (abbreviated E), then the rela-
tionship between these two circles or sets of people can be illustrated as
follows.

“Some teachers do not give exams”

Example 2.6.3 “Some p are not g”

“Some automobiles are not cars” translates to “It is not the case that all automobiles are
cars” or “it is not the case that if a vehicle is an automobile then it is a car.” Hence,
“some p are not ¢” is logically equivalent to ~ (p—gq).

FORM IV: Negation of “No p are ¢”

Form IV: This particular level of logic is not an extreme; in fact “some p are ¢”
is the exact opposite of the extreme “none (no) p are ¢”; for example the
statement “some men are good” is equivalent to the statement “it is not that
there no good men.” Proper English aside, this statement can again lead to
several consequences; that is if you are the one who make this statement true,
then you must both be a man and you must be good; there are a few of you?
However, if you are not a man, you still may or may not be good. Hence, the
statement “some men are good” is not as easy to write any other way.
Therefore, the best way to consider “some ... are ...” is again in the context
of partial-containment (overlapping sets). The group of men is only partial
contained in the group of people who are good. If we let one circle represent
the group of “men” (abbreviated M) and another circle represent the group of
people who are “good” (abbreviated G), then the relationship between these
two circles or sets of people can be illustrated as follows.

“Some men are good” a’

Example 2.6.4 “Some p are ¢

“Some children are well behaved” translates to “It is not the case that there are no well-
behaved children™ or “It is not the case that if you are a child that you are not well
behaved.”

Hence, “some p are ¢ is logically equivalent to ~(p— ~gq) or ~(g— ~p).

Let p(x) be an open statement or predicate; for example, let p(x)= “if x is odd, then
x—227." Consider the truth value of this statement for U={1, 2, 3, ...}, then the open
sentence p(x) represents many statements, one for each xeU.

p(l)="if 1 is odd, then 1—=2=7" is false, whereas

p(2)="if 2 is odd, then 2—2=7" is vacuously true.
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Definition 2.6.1 Universal Quantifier: ¥V \
Vs.
The universal quantifier is “for all”, denote by an upside-down A, ¥. The statement 3

VYx€Ulp(x)| is true if and only if p(x) is true for all x€U.

1. The statement P(x.y) holds for all x and for
For example, let the universal set be the set of integers, then “for all natural all y if and only if the statement
numbers n, n is greater than zero™ can be translated as P(x,y) holds for all y and for all x.
2. Given there exists an x and there exists a
Vx(x>0) ¥ such that the statement holds true if
and only if there exists a y and there
exists an x such that the statement holds

Example 2.6.5 “For all” true.

Given U={0,1,2,3,4,5,6,7,8,9}, determine the truth value for Vx(x2<8]). 3 ‘(;wer: r:xcre efl::(s a")'t;'::: 1hatfo;aﬂ$
€ statemen. X,y o rue, if an

only if for all y, there exists an x such
that the statement P(x.y) holds true.

Solution

Vx(x*<81) translates to “for all digits, the digit squared is less than 81.” However, the
set of digits squared is {0,1,4,9,16,25,36,49,64,81 ) and hence the truth value of this is
false; there exists a digit such that the digit square is not less than 81, but equal to 81.

Definition 2.6.2 Existential Quantifier: 3

The existential quantifier is “there exist,” denote by a backwards E, 3. The statement
Ax e Ulp(x)] is true if and only if there exist at least one x € U for which p(x) is true.

For example, “there exists a integer such that this integer squared is less
than 5,” can be translated as

Ax (x*<5).

Example 2.6.6 “There exist”
Given U={0,1,2,3,4,5,6,7,8,9}, determine the truth value for Ix(x +3>10)

Solution

Jx(x + 3=10) translates to “there exists a digit such the value three more than the digit is
greater than or equal to 10.” Since the subset A={7, 8, 9} has three elements such that
x €A —x+3>10, there exists at least one value of x such that x + 3>10 is true, and thus
Ax(x +3210) is true.

Example 2.6.7 “For all” and “There exist”

Let the universal set be the set of all college students and
plx,y)=xis a friend of y
g(x,y)=x takes a class with y
Write the English sentence from the symbolic statement:
() VxVylp(x,y)—q(x.y)]
(b) Vx3y[p(x,y)]
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EXERCISES
Critical Thinking

Solution

(a) For all college students, x and y, if x is a friend of y, then x takes a class with
student y.
(b) For all college students, x, there exist a student y such that x is a friend of y.
Let p(x,y) be an open statement regarding two variables x and y, the following are
equivalent
(1) VYxVyp(x,y)oVyVxp(x.y)
(2) FxJyp(x,y)=3yIxp(x.y)
(3) 3xVyp(x,y)=Vydepx,y)
However, it should be noted that any other exchanges of ¥ and 3 needs to be handled
very carefully as they are unlikely to give equivalent statements for all cases.

Write the given statements in symbolic form and illustrate with Euler circles.

2.6.1. All elephants are pink.
2.6.2. Some cars are Hondas
2.6.3. Some politicians are dishonest

2.6.4. Some people are not Democrats

2.6.5. No children are allow to drive

The following statements are from the writings of Lewis Carroll. Write each statement in “if ... then ...” form.

2.6.6. All my poultry are ducks.
2.6.7. All my sons are slim.

2.6.8. Opium-eaters have no self-control.

2.6.9. Donkeys do have not horns.
2.6.10. Some apples are not ripe.
2.6.11. No porcupines are talkative.
2.6.12. Some chickens are cats.

Translate the following in to complete English statements assuming the universal discourse is the set of all real

numbers.

2.6.13. Vx,x*>0

2.6.14. Vx3Iy(y=2x)

2.6.15. VxVy[(x=y)— (x*=)?)]
2.6.16. Ixy(xy=2)

Archival Note
Symbolic logic was discussed in Aristotle’s
Prior Analytics as part of deductive reasoning

2.7 NEGATING STATEMENTS

Symbolic logic may be usefully employed to solve an interesting problem;
namely, that of forming an accurate and concise negation of an English
statement. In order to correctly negate a statement, one must first translate
it into symbolic form. To accomplish this task, we can use some of the algebra
of statements discussed in previous sections. We should then be able to
translate the symbolic negation into smooth and correct English. The principal
rules that are involved in our task have negating English has been previously
discussed. They are as follows:




Common: Negations

~(~p)=p Double negative, is the positive statement ~(pVg)=~pA ~g Not
at least one is equivalent to not having either: that is, not the first and
not the second (De Morgan’s Law)

~(pAG)=~pV ~q “Not both” is equivalent to not having at least one; that is, “not the
first or not the second.” (De Morgan’s Law)
~(p—=q)=pA~q When the first statement does not imply the second statement, the

first statement can be true when (and) the second statement fails (that
is, is false)

Note that De Morgan’s laws state clearly the correct way to negate both the
disjunction and the conjunction of two statements p and g. That is, De
Morgan’s laws indicate the method to use in negating English statements that
involve the words “or” or “and™ as the primary connective. Example 2.7.1 is
concerned with the negation of conditional statements. With these rules one
can accurately negate even very complex English statements. We shall illus-
trate their use in the following examples:

Example 2.7.1 ACC Championship

Consider the statement “The ACC championship was won by UNC or Wake Forest.”
What is its negation?

Solution

Suppose that we wish to negate this statement. We could simply say that “it is not the
case that the ACC championship was won by UNC or Wake Forest.”

However, this style is stilted and it is still not clear exactly what is meant. To clarify
matters let us first translate the original statement into symbolic form by letting

u: UNC won the ACC championship
w: Wake Forest won the ACC championship.

The original statement is wvw. By De Morgan’s law, we have
~(uvw)=~un~w. Translating this into English we see that the negation of our
original statement is

The ACC championship was not won by UNC and it was not won by Wake Forest.

Another way to express this is to say
The ACC championship was won by neither UNC nor Wake Forest.

This statement is concise and cannot be easily misunderstood. Also, note that u rep-
resents UNC and w represents Wake instead of the conventional p and g. Hence, state-
ments can be represented by the standard lower case letters, p, ¢ and r; or statements can
be represented by distinct lower case letters that better represent the statement itself.
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First symbolism in logic:
a=belongs to every
e=belongs to no
i=belongs to some
0 =does not belong to some

Hence, categorical sentences may then be
abbreviated as follows:
AaB = A belongs to every B (Every B is A)
AeB =A belongs tono B (No B is A)
AiB = A belongs to some B (Some B is A)
AoB = A does not belong to some B (Some B
is not A)

Disjunction
V.
Conjunctions

In Football, AAC stands for the Atlantic Coast
Conference

UNC stands for the University of North
Carolina

Wake Forest University is located in
Winston-Salem, North Carolina
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Example 2.7.2 Voter Approved

Let us now negate the statement “The voters approved amendments one and three to
the constitution.”

Solution

This statement is the conjunction of the statements by letting
o: The voters approved amendment one.
t: The voters approved amendment three.
That is, the original statement symbolically is

onNt
By De Morgan’s law we have
~(oAt)=~oV ~t
That is, the negation of the original statement is the English statement

The voters did not approve amendment one or they did not approve amendment three.

Another way to express this is to say

The voters failed to approve at least one of the two amendments offered.

Example 2.7.3 High School Pranks

Consider the conditional statement

If the fountain is turned on, then the students will put Jell-O in it.

Solution

Letting
Jf: The fountain is turned on,
J: The students put Jell-O in the fountain,
the original statement symbolically becomes f —j.

If the cold weather does not break, then gas
will become scarce and schools will close.

Example 2.7.4 Weather causes schools to close

Negate the statement “If the cold weather does not break, then gas will become scarce
and school will be closed.”

Solution

Letting
¢: The cold weather breaks,
g: Gas will become scarce,
5: School will close,
we have ~¢— (g As). Negating this symbolically we get

~[~e—(gAs)|E=~eA~(gAs)=E~cA(~gV ~5).
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The negation of this statement (that is, when this
statement is false) is when the cold weather
Thus, the English negation of the original statement reads as follows: breaks and gas is not scarce and schools do not
“The cold will not break but gas will not become scarce or school will not close.” close.

Solution—cont’d

Common: Quantifying Statements
There are four other commonly used forms of English phrases with which one should
become familiar. These are the quantifying statements:

L All p are ¢ Not “All p are ¢" is equivalent to “Some p are not g”
I1. No p are g Not “No p are ¢” is equivalent to “Some p are ¢
111 Some p are g Not “Some p are ¢” is equivalent to “No p are ¢
v, Some p are not g Not “Some p are not g” is equivalent to “All p are ¢"

“All B are A”

In order to see how to negate these forms, we must first consider exactly A
what they mean.

Consider first Form I. This extreme “all p are ¢” is actually a conditional
statement p— q. The negation of Form I is, therefore,

Negative of “All B are A”

~p—=q)=pr~q.
That is, we may negate a statement of the form “All p are ¢ with a
statement of the form “Some p are not ¢.”

“No B are A"

O
®

A

“All p are ¢” Not “all p are ¢
“Some p are not ¢”

Example 2.7.5 “All elections are honest” Negative of “No B are A”
Negate the statement “All elections are honest.”
Solution
Letting
e: The occurrence is an election, AllPareQ=p—q
h: Occurrence is honest, NotallPare Q=p A ~q

the original statement can be written as e —h. Hence, NoPareQ=p— ~q

~(e—h)=eA~h Not the case that no P are Q=pAgq

That is, “The occurrence is an election which is not honest.” Putting this thought
into smoother English, we see that the negation of the statement “All elections are
honest™ is the statement “Some elections are dishonest.”

Form II can be handled similarly. To say that “no p are " is to say that “if
one is a p then he is not ¢.” Hence, Form II can be expressed symbolically as

p—~q
and negated symbolically by ~(p— ~q)=pAq.
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That is, we may negate a statement of the form “no p are ¢”” with a statement

of the form “Some p are q.”

“No p are ¢ Not “No p are ¢”
“Some p are g”

When it is not the case that “no fights are fixed”

then we can say that “some fights are fixed.”

When is not the case that “some people are
democrats” then we can say that nobody is a
democrat.

Example 2.7.6 “No fights are fixed”

The negation of the statement “No fights are fixed” is the statement “Some fights are
fixed.” Here we see that to negate a Form II statement we use Form III. Hence, in order
to negate Form III, we should use Form II. That is, the negation of a statement of the
type “Some p are ¢ is a statement of the type “No p are ¢.”

Negation: “Some fights are fixed”

Example 2.7.7 “Some people are Democrats™

Negate the statement “Some people are Democrats.” The desired negation is
literally “No people are Democrats” or, in better English, “Nobody is a Democrat.”

Example 2.7.8 Translations

In each of the following cases, express the given statement into symbolic form; negate

the statement symbolically; and translate the negation into smooth, concise English:

(a) You will lose weight only if you stop stuffing yourself.

(b) A necessary condition for being a successful student is that you own a pair of
grubby jeans.

(¢) No mathematicians are sneaky.

(d) Cafeteria food is cheap and nourishing.

Solution
(a) Let
I You lose weight,
EH You stop stuffing yourself.
Original statement: ~E = =5
Negation: IA ~5
Translation: You can lose weight and continue to stuff yourself.
(b) Let
5 You are a successful student,
g You own a pair of grubby jeans.
Original statement: ~E— g
Negation: SA~g
Translation: You can be a successful student but not own a pair of grubby

jeans.
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Solution—cont’d
() Let
m: You are a mathematician,
5t You are sneaky.
Original statement: m— ~s
Negation: mAs
Translation: Some mathematicians are sneaky.
{(d) Let
c: Cafeteria food is cheap,
n: Cafeteria food is nourishing
Original statement: cAn
Negation: ~cN ~n
Translation: Cafeteria food is not cheap or else it is not nourishing.

The following exercise is intended to extend the ideas presented in this section
as well as to give the student practice in translating statements from English into
symbols and vice versa. The ability to make such translations quickly is essential
to the work to follow concerning the testing of arguments for validity.

Common: Universal/Existential Qualifiers

In addition, there are the universal quantifier and the existential qualifier, ¥ and 3,
respectively,
~[VxVyp(x,y)|<3xy[~p(x,y)
~[Vx3yp(x.y)|e3xVy[~p(x.y)
~[3xVyp(x,y)|=VxIy[~p(x.y)
~[3x3yp(x.y)|eVxVy[~p(x.y)

} SYMBOLIC EQUVALENCES
I ~="not”

Y="forall”
] d="there exist”

BN

<="logicalequvialent to”

The above four equivalence, the first of which translates to “when it is not

true that for all x and y the open statement p(x,y) holds” is equivalent to “there

exist an x and y for which p(x,y) does not hold.” The second statement trans-

lates to “when it is not true that for all x, there exist a y such that the open

statement p(x,y) holds™ is equivalent to “there exist a x such that for all y,
p(x.y) does not hold.”

EXERCISES
Critical Thinking

2.7.1. Consider the bi-conditional statement p «<>¢g. Note that we have shown that p < g=(p —¢q) A(g—p). Use this infor-
mation to symbolically negate p < gq.
2.7.2. Consider the exclusive disjunction:
a. Show that pvg=(pvg)A ~(pAg).
b. Use the above equivalence to symbolically negate pvg.
c. Verbally negate the statement “You can take calculus or finite mathematics but not both.”

Basic Problem
2.7.3. Let

d: He drinks Singapore slings.
P He sees pink elephants.
g He has a good time at parties.
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Using this notation put each of the following into symbolic form, negate each symbolically, and translate the
negation into smooth English:
a. If he drinks Singapore slings then he will see pink elephants.
b. Drinking Singapore slings is necessary for having a good time at parties.
c. He sees pink elephants only if he drinks Singapore slings.
d. All people who see pink elephants have a good time at parties.
e. Drinking Singapore slings is necessary and sufficient for having a good time at parties.
f. In order not to see pink elephants, it is sufficient that one not drink Singapore slings.
Negate verbally each of the following:
a. All politicians are devious.
b. Some college presidents are devious.
¢. Some college presidents are politicians.
d. All Southerners like grits.
e. No Republicans voted for a Democrat.
f. Some people did not vote.
g. No Italians do not like spaghetti.
Let r: You can register early.
a: You are an athlete.
t: You are tall.
s: You are in style.
Using this notation put the following into symbolic form, negate each symbolically, and translate the negation
into concise English:
a. If you are an athlete or tall, then you can register early.
b. If you are an athlete and tall, then you are in style.
¢. You are an athlete or tall.
d. You are short but in style.
e. You are neither tall nor in style but you can register early.
f. For each integer, x, there exists an integer, y, such that y=./¢

2.8 TESTING THE VALIDITY OF AN ARGUMENT

One of the most important applications of logic is to determine whether an
argument is valid or fallacious (false). We begin our study of this topic with
the following definitions:

Definition 2.8.1 Deductive Reasoning

Reasoning or deductive reasoning is a cognitive process using arguments to move
from given statements or premises, which are true by assumption, to conclusions.

Archival Note The conclusions must be true when the premises are true.
Deductive reasoning was largely advanced by
the French philosopher and Mathematician
Rene Descartes.

Example 2.8.1 “All men are mortal”

Given “all men are mortal” and “Aristotle is a man,” therefore we can deduce “Aristotle
s mortal.”

Deductive reasoning is often contrasted with inductive reasoning in that
inductive reasoning is the process of reasoning in which the premises are an
argument are believed to support the conclusion, how do not entail it; that
is, they do not ensure it but is a generalization.



Example 2.8.2 “That which goes up, must come down”

Given the proposition, “this object fell when dropped.” therefore one can infer “all
objects fall when dropped.”

Definition 2.8.2 Argument

An argument is an assertion that a given collection of statements py,ps,....p, called
premises yields another statement r called the conclusion.

We symbolize an argument as

b

7, .
. ppremises

P,

S

Where the symbol .. is read “therefore” and the p’s represent the
statement of the argument; the horizontal line simply separates these premises
from the conclusion.

Definition 2.8.3 Valid/Fallacy

An argument is valid if the conclusion r is true whenever the conjunction of the pre-
mises py.pa,....p, 1 true; that is, pyAp, A... Ap, —r is a tautology. Otherwise the
argument is said to be a fallacy. In other words, an argument is valid whenever all
the premises are true, the conclusion is true.

The validity of an argument can be checked by constructing a truth table.
This procedure is illustrated by several examples.

Example 2.8.3 Law of Detachment

Test the validity of the following argument:

P—=q
P

q

Solution

It suffices to show that [(p — g) Ap| — ¢ is a tautology. This means that if both premises,
p—q and p. are true, then the conclusion g is true.
The truth table is

1 2 3 4 5

P 4 p=q (pogap [(poa)rp]—g
| | | T
(rFELCF ] F T
| | { - | T
[(FI[FI_T ][ F 1| T

Hence, [(p—¢q) Ap] — q is a tautology; and therefore if p— ¢ is true and p is true,
then the conclusion g is true. The above argument

P—=q
P

g

Continued
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Archival Note

The word argument comes from the French
meaning a statement and reasoning in support
of a proposition. The word premise is the
grounds or basis of the argument, that which
comes before. The word conclusion is the
deduction reached by reasoning.

is read
"therefore"

Valid
LA
Fallacy

If you have a dime, you have ten cents.
You have a dime.
Therefore, you have ten cents.

This is rather redundant except the first two are
premises and the third is a conclusion. The
second statement has been detached from the
condition set forth in the first statement.
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Solution—cont’d

is called the law of detachment. In this form, the law of detachment is called modus
ponens. Similarly, the argument

r—=q

~q

SL~p
using the contrapositive statement, the above argument is one form of the law of
detachment called modus tollens.

Law of Detachment
&
Modus Ponents
&
Modus Tollens

Comparable to transitivity in equality:
If a=b and b=c. then a=c.

Archival Note

The word syllogism comes from old French
silogisme meaning inference, conclusion,
computation or calculation.

Example 2.8.4 Law of Syllogism

Show that the following argument is valid:

P—=q
q—>r
Lp—r

Solution

It suffices to show that [(p = ) A (g —r)| = (p —r) is a tautelogy. This can be shown by
constructing its truth table.

1 2 3 4 5 6 7 8

p g r p=2q g—r (p2rqalgor) por [(p=2glalgor)-=(p—r)
I [ | T ] i |
3 S I | | i |
(CE]CE LT E LT ] I |
EJE]LCE LT ] F JLE ] T |
IS | I || r LT 1 r ]
CEE] L JCE [ F J T I |
EJE]TC T JL T | T L1 ] I |
(EJEJ[F]L T ][ T ]| T JL T I |

The above argument is called the law of syllogism (hypothetical syllogism) or the
transitive property of implication.

Example 2.8.5 Fallacies in Arguments

Show that the following argument is fallacious:

rP—q
q

P

Solution

If suffices to show that the statement [(p —q) Ag| —p is not a tautology.
The truth table is

3 4

1 (poa)rg [(p—4a)

|| |

>
T
F| ||
T
T

un

>

P pl=p

R (-
| O s e

(===

== ==




Solution—cont’d

The third line tells us that the conclusion p is false when both the premise p—gand g
is true. Hence, the argument is a fallacy or fallacious.

Example 2.8.6 Test the Validity

Test the validity of the argument
If it snows, then Maria will ski.

I did not snow.
Therefore, Maria will not ski.

Solution

We first translate the argument into symbolic form. Let p represent “it snows™ and ¢
represent ““Maria will ski.” Thus, the argument takes the form

pP—=q

~pP

S~
The truth table of the argument is given by

1 2 3 4 5 6 7

p a4 p2q ~p (poar~p ~q [P a)r~p]
o~q

N { | | | F |[F ]| T |

(T][F]_E_J[E || F_ ] 1] T ]

(FT]_ T J[rJ__ ™ |[E | F |

(FIF]IL T J[T][ T [T | T |

In the third line of Step 7 we observe that both the premise p— ¢ and ~p are true,
but the conclusion ~g is false. Thus, the argument is a fallacy.

Example 2.8.7 Test the Validity

Test the validity of the following argument:
If T study, then I will not fail statistics.

If I do not play tennis, then I will study.

I failed statistics.
Therefore, [ played tennis.

Solution

Let p represent “I study,” ¢ represent “I failed statistics,” and r represent “I play
tennis.” Thus, we can translate the argument into symbolic form:

p—~q
~r=p
q

T

To test the validity of this argument, we must show that whenever the pre-
mises p— ~¢q, ~r—p and g are true, that the conclusion r must also be true.
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- N
1 "

A NUMBER
A NUMBER

N
1l
[y

If I win the lottery, then I will take you to dinner.

I took you to dinner.

... win the lottery???

If I study, then I will not fail statistics.
If I do not play tennis, then I can study.

I failed statistics.

... I played tennis
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If I fail statistics, then I did not study.
If I did not study, then I will play tennis.
1 failed statistics.
= 1 played tennis

If I fail statistics, then I did not study and if I don’t
study, then I will play tennis.
s A fail statistics, then I played tennis.

If I fail statistics, then I play tennis.
I failed statistics.
= A played tennis

1 2 3 4 5 6 7
CASE P ¢4 » =~9q ~r P—==~q ~r—4q
(I | {0 OO | | |
e ] E O
[T | | s o { s S |
Ca TEECC] e ]
(I | | | { I |
Co JEIEFE ] JCF ]
7 JEIE] O e
(s EIFIFELT](c] v ][ F ]

We observe, by crossing out all those that don’t hold true, that the premises
p— ~¢q, ~r—pand g are true only in Case 5, and in that case the conclusion r
is also true. Thus, the above argument is valid. Otherwise, we could have
extended the table to include the conjunction of the premises and then finally
the conditional statement (p — ~gq) A ( ~r— p) Ag—r; however, this becomes
extremely tedious. Alternatively, we could have used equivalence and the law
of detachment and law of syllogism.

Since p— ~qg = qg— ~p and ~r—p = ~p—r, the contrapositive, the
argument becomes

q—~p
Np —r
9
oy

Hence, by the law of syllogism,

q—~p
NP—)r
Sg—=r

yielding

gq—r

q
ST

this is valid by the law of detachment or modus ponens. This type of argument
will be extended to proof patterns later in this section.

Example 2.8.8 Test the Validity

Test the validity of the argument
If Fred loves Maria, then Bill will leave town.

Either Bill leaves town or Maria is divorced.
Therefore, if Maria is divorced, then Fred does not love Maria.

Solution

Let p represent “Fred loves Maria,” g represent “Bill will leave town,” and r represent
“Maria is divorced.” Thus, the argument takes the form

P—=q
qvr
S F—=~p
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We now construct the truth table of the statements p—gq. gvr and r— ~p

3 4 5 [ 7
r ~p p=>q 4gvr r—=-~p
(0 O | | |
1] I | | |
(MEJCF JL JF ]
] S | | |
(50 I | S | |
130 S | | | |
N | | | { S | |
(8 JEIFFELT]C T JCE T ]

Recall that an argument is valid if the conclusion is true whenever the premises are
true. However, in Case 1 of the preceding truth table, the premises p—g and g vr are
both true, but the conclusion r— ~p is false. Thus, the argument in Example 1.7.6 is a
fallacy.

If an argument has two or three premises, we can always use the concept of a truth
table to check its validity. However, when there are more than three premises, a truth-
table analysis is quite awkward. An easier approach to check validity in such instances is
by use of proof patterns. We have already seen two such patterns; namely, in Example
1.8.1: law of detachment

P—q
P

g

and Example 1.8.4: law of syllogism

P—q
q—r
Lp—r

The law of syllogism may be extended to more than two premises, all of
which are conditionals. For example, we can write

pP—=q
q—r
r—s
s—=1
I—=u
Lp—=u

We observe that in the preceding proof pattern, one just follows the arrows.
The validity of most arguments can be tested using only the laws of detachment
and syllogism. However, when only these proof patterns are used, it is often
necessary to replace one or more of the premises with an equivalent statement;
for example,

Statement Equivalnce Reason

r—q ~— ~p Contrapositive
~(pAg) ~pV ~q De Morgan’s Law
~(pvq) ~pA~q De Morgan’s Law
~pNq P—q Disjunctive Syllogism

The last statement ~p V¢ is true when the implication is true since, ~pVp
is a tautology; hence, if p— ¢ is true, then

2.8 Testing the Validity of an Argument
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Detachment

’@/ The action of detaching
’@/ The condition of being detached

Svllogism
Bring together, the premise and

conclusion
/@{ Deductive Reasoning

Contrapositive
V.
Disjunction
V.

De Morgan’s Laws
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~pV p =~pVq.
!

q

Alternatively, pvg is equivalent to ~p—g since by double negatives,
pVg=~(~p)Vvg, which is equivalent to ~p —¢ by implication.

We shall now give some examples on the use of proof patterns to prove the
validity of certain arguments.

Example 2.8.9 Test the Validity

Prove the validity of the following argument using a proof pattern:
It is raining.
If it is cold, then it is not raining.

If itis not cold, then I cannot go skating.
Therefore, I cannot go skating.

Solution

Let p, g, and r represent the given statements:
p: It is raining
q: It is cold
r: I can go skating

In symbolic form the argument translates to

p

q—=>~p

~q— ~r

So~F
Statement Reason

1. p Premise
2. qg— ~p Premise
3. ~— ~T Premise
4, p—~q Contrapositive of (2.)
5. p— ~r Syllogism using (3.) and (4.)
6. ~F Detachment using (1.) and (5.)

Thus, the argument in Example 1.6.7 is valid because, when the premises p,
qg— ~p and ~¢g— ~r are true, then the conclusion ~r is true.

Example 2.8.10 Test the Validity

Prove the validity of the following argument using a proof pattern:
If Jacob graduates, then he will go to Greece.

If he goes to Greece, then he will visit Athens.

If he does not visit Sparta, then he will not visit Athens.

Jacob did graduate.

Therefore, Jacob will visit Sparta.

Solution

Let p, g. r, and s represent the following statements:
p: Jacob graduates,




Solution—cont’d

q: He will go to Greece,
r: He will visit Athens,
s: He will visit Sparta.
Then, the above argument translates into

P—=q
q—r
~§— o~
p

S8

A proof pattern of the argument is constructed as follows:

Statement Reason

1. rP—=q Premise

2. qg—r Premise

3. ~§ = ~F Premise

4, r Premise

5. p—r Syllogism using (1.) and (2.)
6. r—s Contrapositive of (3.)

7. p—s Syllogism using (5.) and (6.)
&, s Detachment using (4.) and (7.)

Thus, we conclude that the argument in Example1.7.8 is valid because the
conclusion s is true whenever the premises p—¢q, g—r, ~s— ~r and p are
all true.

Example 2.8.11 Test the Validity

Is the following argument valid?
Maria is a good dancer or Matthew is intelligent.
If Deb is a beautiful girl, then Maria is not a good dancer.

Matthew is not intelligent.
Therefore, Deb is a beautiful girl.

Solution

Let p, g. and r represent the given statements:
p: Maria is a good dancer
g: Matthew is intelligent
r: Deb is a beautiful girl
Then the argument translates to

pvy
r—=~p
~q
or
Statement Reason
1. pvg Premise
2. r— ~p Premise
3. ~q Premise
4, ~p—q Disjunctive Syllogism using (1.) and (3.)
5. r—gq Syllogism using (2.) and (4.)
6. ~f— ~T Contrapositive of (5.)
7. ~r Detachment using (3.) and (7.)

Hence, r is false by definition of negation and therefore we see that the above
argument is nor valid; that is, this argument is invalid because the conclusion r is false
when all the premises are true.

2.8 Testing the Validity of an Argument
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Premise
Vs,
Syllogism
VS,
Contrapositive
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Example 2.8.12 Test the Validity

Is there a valid conclusion to the following argument?
All men eat cake.
I am a man.

Archival Note

Euler circles or diagrams are related to Venn
diagrams and where used by Leonhard Euler to
represents sets and their relationship.

Solution

Let p represent “people who are men™ and ¢ represent “people who eat cake.”

Recall, this extreme in logic can be rewritten in terms of a conditional; for example,
“all p are g” is equivalent to p — g. Therefore, you could rewrite this extreme as a con-
ditional and use the logic discussed previously.

Alternatively, you can use Euler circles. Just as above, a conclusion can be drawn in
two situations. Let P be the set satisfying p and Q be the set satisfying q.

Then, the Example 2.44, the conditional argument is: “all p are ¢" and p; this situ-
ation can be illustrated as follows.

From this illustration, you can logically deduce ¢; that is, modus ponens. The pre-
mises can be written as
P—=q
14

=7

which, by modus ponens, has g is the valid conclusion.

Example 2.8.13 Valid Argument

Is the following argument valid?
All boys like bugs.
Alexis does not like bugs.
Therefore, Alexis is not a boy.

Solution

Let p represent “people who are boys™ and g represent “people who like bugs.”
The given argument is: “all p are ¢” and ~g: this situation can be illustrated as
follows.

~q Q

@

From this illustration, you can logically deduce ~p.
Hence, given the two premises, p—q and ~g. the logical conclusion is ~p. Note,
the premise can be written in argument form are
P—q
bt 20
So~p
which, by modus tollens, has ~p is the valid conclusion and therefore, this is a valid
argument.




Example 2.8.14 Valid Conclusion

Is there a valid conclusion?
All elephants are pink.
Brownie is a not an elephant.

Solution

Let p represent “animals that are elephants™ and ¢ represent “animals that are pink.”
Consider the argument “all p are ¢” and ~p: this situation can be illustrated as
follows.

N

From this illustration, you can see that there are two ways this can be situation can
conclude, therefore a single conclusion cannot be logically deduced. Hence, there is no
valid conclusion to this argument; any conclusion drawn would be invalid.

Example 2.8.15 Test the Validity

Is the following argument valid?
All gadgets are thingamajigs.

A wiper snap is a thingamajig.

Therefore, all wiper snaps are gadgets.

Solution

Let p represent “things that are gadgets”™ and g represent “things that are thingamajigs.”
Given the argument “all p are ¢” and g: this situation can be illustrated as follows.

q — 7

From this illustration, you can see that there are still two ways this can be situation
can be concluded, therefore a single conclusion cannot be logically deduced; any con-
clusion drawn under such premises would be invalid. A wiper snap may or may not be a
gadget; therefore, this is an invalid argument.
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Thingamajig
Something that is hard to classify or
whose name is forgotten or unknown
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Widgets

’@/ A doodad or gadget

An unnamed article considered in a
hypothetical example

Jams

,@/ Blocked or wedged

Example 2.8.16 Test the Validity

Is there a valid conclusion?
No widgets are wedges.
The doohickey is a widget.

Solution

Let p represent “widgets™ and g represent “wedges.”

The statement “no p are g” is equivalent to p— ~g. Therefore, you could rewrite
this extreme as a conditional and use the logic discussed previously.

Alternatively, you can use Euler circles; just as before, a conclusion can be drawn in
two situations. Let P be the set satisfying p and Q be the set satisfying q.

Then, the case given in Example 2.45, “no p are ¢” and p can be illustrated as
follows.

From this illustration, you can logically deduce ~ ¢g. Therefore, a valid conclusion is
that the doohickey is not a wedge.

Example 2.8.17 Valid Conclusion

Is there a valid conclusion?
No widgets are wedges.
The jam is a wedge.

Solution

Let p represent “widgets” and g represent “wedges.”
Therefore, the argument “no p are ¢ and g can be illustrated as follows.

From this illustration, you can logically deduce ~p. Therefore, the jam is not
a wedge.

Example 2.8.18 Valid Argument

Is the following argument valid?
No real man wears hoop skirts.

Dana does not wear hoop skirts.

Therefore, Dana is a realman.




Solution

Let p represent “people who are real men™ and g represent “people who were hoop skirts.”
Consider the argument “no p are ¢” and ~p; this argument can be illustrated as
follows.

From this illustration, you can see that there are two ways this situation can be con-
cluded, therefore a single conclusion cannot be logically deduced. Therefore, the con-
clusion “Dana is a real man” is an invalid argument. Not because Dana is not a real man,
but because there is insufficient evident to prove that Dana is or is not a real man. Dana
is a real man does not follow from the argument made.

Example 2.8.19 Valid Conclusion

Is there a valid conclusion?
Some women are strong.
Sam is a woman.

Solution

Let p represent “people who are women™ and g represent “people who are strong.”
Consider the argument: “some p are g and p, which can be illustrated as follows.

NN
From this illustration, you can see that there are still two ways this can be situation

can concluded, therefore a single conclusion cannot be logically deduced. That is, there
is no valid conclusion. Sam may or may not be strong.

EXERCISES
Critical Thinking
pP—q
2.8.1. Test the validity of the argument ~g
S~p

~p—q
2.8.2. Show that the following argument is valid: g— ~r
AP ~r
2.8.3. Is the following argument valid? p
oq
2.8.4. Test the validity of the following argument:
If it stops raining, then Chris will play tennis.
It did not stop raining.

Therefore, Chris did not play tennis.

Exercises
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2.8.5.

2.8.6.

2.8.7.

2.8.8.

2.8.9.

2.8.10.

2.8.11.

2.8.12.

2.8.13.
2.8.14.
2.8.15.

Determine the validity of the argument
If Diane invites Dennis, then John will attend her party.
Diane did not invite John.

Therefore, John attended theparty.

Test the validity of the argument

~p—=q
r—~p

Test the validity of the following argument:

If Linda does not study, then she will fail her course.
If Linda played tennis, then she did not study.

Linda passed her course.

Therefore, Linda did not play tennis.

Is the following argument valid?

If Chris marries Deb, then John joins the Navy.

Either Deb divorces Chris or John joins the Navy.

Therefore, if Deb is divorced, then John joins the Navy.

Using proof patterns prove or disprove the validity of the following argument:

It is hot.

If it is hot, then it is not raining.

If it is not raining, then Maria can go swimming.

Therefore, Maria did not go swimming.

Prove or disprove the validity of the argument

If Sue graduates in the top 10% of her class, then she will go to medical school.
If Sue goes to medical school, then she will specialize in heart disease.

If Sue did not specialize in heart disease, then she did not go to medical school.
Sue graduated in the top 10% of her class.

Therefore, Sue specialized in heart disease.

Show that the following argument is false:
If you like finite mathematics, then you will study.

Either you study or you will fail.

Therefore, if you failed, then you do not like finite mathematics.

Is the argument following argument valid?
r—q
~q

So~p

Illustrate Problem 2.8.8 using Euler circles.
Illustrate Problem 2.8.9 using Euler circles.
Illustrate Problem 2.8.10 using Euler circles.

2.9 APPLICATIONS OF LOGIC
Proof by Induction

The logic associated with conditional statements can be used to prove a
property holds for an infinitely large set. For example, 2" >n + 1 for all natural
numbers, let P(n) be the statement, the property hold for the natural number n.
Then if we can show that P(n) — P(n + 1) and P(1) is true, then P(n) holds for



all natural numbers, by induction: P(1) and P(1)— P(2) true, implies, by
modus ponens, P(2) is true, P(2) and P(2)—P(3) true, implies, by
modus ponens, P(3) is true, so forth and so on for all » an element of the
natural numbers. In general, proof by induction can be bounded below
by n=c. That is, if the conditional statement in regards to sequentially defined
equation “if it is true for m=k, then is it is true for m=c¢ greater than or
equal to ¢.”

It should be noted that Mathematical induction (proof by induction)
is not a form of inductive reasoning, but rather an extended form of
deductive reasoning. Proof by induction is a three-step procedure; two of
the steps are the proving the conditional statement and one step to show
for true for n=1. “Show for true for n=1" can be done first or last, clearly
label each step.

STEPS: Proof by Induction

Step 1.
Step 2.
Step 3.

Show for true for n=1 or for n=¢., where ¢ is the first n.

Assume the antecedent is true; that is assume true for n=k.

Show true for n=k + 1; since the only conditions under which the conditional
statement fails it when the antecedent is true and the conclusion is false.

If we can show that true for n =k, implies the equation it is true forn=k + 1;
then we have shown that the conditional statement is always true.

Be sure to clearly state what you “need to show” (NTS); clearly define the
left hand side (LHS) and the right hand side (RHS).

Example 2.9.1 Sum of Whole Numbers

nin+1)

Prove l+2+3+---+ﬂ=T for all natural numbers: n €N, where € is read “an
element of,”
Proof
Step 1: Show true for n=1
1(1
1+
2
1=1
True
Step 2: Assume true for n=k; that is,
k(k+1
1+2+3+m+)’c=g
2
Step 3: Show true for n=k + 1; that is, we NTS
k+1)((k+1)+1
1+2+3+---+k+(k+1)=( )((2 )+1)
or equivalently,
k+1)(k+2
1+2+3+---+k+(k+1)=¥

Hence, LHS=1+2+3---+k+ (k+1), which by assumption becomes
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Archival Note
Recall, proof by inductions was introduced with
great rigor by Aristotle. The basic idea is 1o get
into an infinite loop.
First, show that the statement holds for n=1.
Second, assume that the statement is true for
n=k in general.
Third, prove using the assumption stated in
the second part that the statement holds true for
n=k+1.

NTS="Needto show”
LHS="Left hand side"”
RHS="Right hand side”

Natural Number
,@{ The ordinary counting numbers:
1,23, ..




P q Pvy PAg

1 1 Max (1,1) = 1 Min (1,1) = 1
I 0 Max (1,0) =1 Min (1,0)=0
0 1 Max (0,1) = 1 Min (0,1)=0
0 0 Max (0,0)=0 Min (0,0)=0

Furthermore, if we consider the negation to be the (truth-value+1) mod 2;
or in layman’s terms, the opposite truth-value, we have the following.

P ~pP
1 0
0 1

Now for conditionals, it is easier to consider its disjunctive equivalent; but
if you insist one just an algebraic rule, a conditional is the maximum of the
opposite of the antecedent’s truth-value and the consequence’s truth-value;
this is in essence the disjunctive equivalent.

P q ~P P—2q=~pvyq
1 [ 1] o Max (0,1) = 1
1 o] o Max (0, 0) = 0
0|1 1 Max (1, 0) = 1
0 0 1 Max (1,0)=1

Hence, if we interpret the 1’5 as true and the 0’s as false, these truth-values
create the same truth tables introduced previously.

Switching Circuits

The logic of compound statements is often utilized in the design of switching
networks in electrical circuit theory. In this section we shall introduce some of
the basic theory necessary for the construction of switching networks. We
begin by defining what is meant by a switching network.

Definition 2.8.4 Switching Network

A switching network is a collection of wires and switches connecting two terminals, A
and B. A switch may be either open, O, or closed, C. An open switch will not permit the
current to flow while a closed switch will permit current to flow, (Figure 2.1).

We shall now proceed to develop the relationship between logic and the

A B A P B A P B

Single Wire
FIGURE 2.1

Open switch, P Closed switch, P

Various wires.

design of simple switching networks. Given a switch, P, let p be a statement
associated with this switch having the property that

p is true if and only if P is closed

or

2.9 Applications of Logic
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Archival Note
Boolean logic is the logical calculus of truth
values developed in the 18405

Calculus
’@/ From Latin calculus “reckoning,

account”

Warning: + and x

When using Boolean algebra, remember we
changed the meaning of + and X: these new
definitions lead to similar but very different

properties, some of which look alike and some
of which look vastly different.
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p is false if and only if P is closed.
Two switches, P and Q, may be connected in two fundamental ways: in
series or parallel.

I SERIES

Figures 2.2 and 2.3 illustrate how the switches P and Q are connected in series.
Here, we observe that the current will flow from A to B if and only if both

1 1 ) QRS S

A P Q B
FIGURE 2.2 Closed switches.

P Q B

A
FIGURE 2.3 Open switches.

switches P and Q are closed; that is, if and only if p Aq is true. Also, current
will not flow from A to B if one of the switches is open as shown by Figures 2.3
and 2.4.

That is, p Aq is false. The behavior of P and Q when they are connected in

A P Q B
FIGURE 2.4 P closed, Q open.

series is summarized in the following table.

P Series Circuit P 9 pAg
|
[clo][ o Tjor|[T][E][F_]
G | [
OJoll_o 1 [EIEFEILFE ]

Thus, it is clear that p A g is true only when both P and Q are closed.

II Parallel

When the switches P and Q are connected in parallel they appear as shown by
Figures 2.5 and 2.6. These two figures illustrate two of the four possible switch
positions.

From these figures it is clear that current will flow from A to B if and only if
either P or Q is closed. That is, in logical terms, current will flow from A to B if



P
L e
A B
J/J,_
Q

FIGURE 2.5 P and Q open.

P
[ L .
A B
J/g_
Q

FIGURE 2.6 P closed, Q open.

and only if p v g is true. Note also that in Figure 2.5 current will not flow from A
to B since P and Q are open. That is, pV ¢ is false.

P Q Parallel Circuit 4 pvy

P
LT ]

[ | 14 3

OJoI_o 1]

I [ |

CEEICF ]

Hence, current will flow from A to B in three out of four possible combi-
nations; namely, P open and Q open, P closed and Q open, P open and Q closed,
or P closed and Q closed.

Example 2.9.3 Current flow from A to B?

Given the following network, when does current flow from A to B?

2.9 Applications of Logic
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Definition 2.8.6 Equivalent Electrical Networks

Two electrical networks are said to be equivalent if they have the same electrical prop-
erties concerning the flow and non-flow of current.

This definition simply states that their corresponding statements are log-
ically equivalent. We shall illustrate this concept in the following examples:

Example 2.9.4 Equivalent Electrical Network

Find a network equivalent to the one given in Figure 2.7.

Note that the dashed line indicates the path of the electrical flow. The current in this
network will flow from A to B whenever the logical statement (pv ~p) A (qV ~q) cir-
cuits is true.

| P | Q
- — — I___l F—- — -
A | | B
| |
*f/l— [ S e U
P’ | Q |
L - __— __

FIGURE 2.7 Network diagram of the electrical circuit (pV ~p) A(gV ~q).

Solution

A network equivalent to Figure 2.7 can be obtained as follows:

Statement Reason
1. (pV ~p)AlgV ~q) Statement describing the circuit
2. =TAT Complement Law
3. =7 Identity Law

Thus, the above network can be designed equivalently by any tautology such as
pV ~p. That is,

=
es]

Example 2.9.5 Equivalent Electrical Network

Obtain a network equivalent to the network given in Figure 2.8
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Solution—cont’d

Observe that the dashed path indicates the path of the electrical flow from A to B.
Now, we proceed to find a statement equivalent to the logical statement already given.
This statement is simply p v g That is,

Statement Reason

1. pv(~pAg)|V(pA~q) Statement describing the circuit
2. =[(~pvp)ApVvq)VIipA~q) Distributive Law (from the left)
3. S[tAlpvg)|VipA~q) Complement Law

4. =(pvg)Vipa~q) Identity Law

5. =(pA~q)Vipvyg) Commutative Law

6. =[(pA~q)vplvg Associative Law

7. =[pa~q)vipap)lvag Distribution Law (from the right)
8. =pA(~gqvp)lvg Distribution Law (in reverse)

9. =(pvg)n[(~gvp)vy] Distribution Law (from the right)
10. =(pvg)Allpv ~q)vq] Commutative Law

11. =(pvg)Aalpv(~gvy) Associative Law

12. =(pvg)alpvr) Complement Law

13. =(pvg)at Identity Law

14. =pVg Identity Law

Thus, the complicated network shown by Figure 2.8 is equivalent to a network made
up of two switches P and Q, connected in parallel; that is,

A B

Example 2.9.6 Equivalent Electrical Networks

Draw a switching network corresponding to the compound statement

[(pv~g)vgv(~pAg)|A~q.

Also find an equivalent network simpler in design.

Solution

The switching network described by the preceding logical statement is

pv=q

Vv

e

~q
Q' ]/1/
S -
A Q Q' B
I— 1
~pAY

Continued

2.9 Applications of Logic
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2.4.1. A compound statement, 7, is said to be a tautology or logically true if it is true for all possible truth values of its
components.

2.4.2. A compound statement, ¢, is said to be a self-contradiction or logically false if it is false for all possible truth values
of its components.

2.4.3. A paradox is an apparently true statement or group of statements that leads to a contradiction.

2.4.4. Two statements r and s are said to be logically equivalent or simply equivalent if they have identical truth tables; that
is, if r<>s is a tautology. To symbolize two equivalent statements r and s, we write r=s or r&s.

Qualifiers are terms that indicate to what extent a property holds: all are, none are, some are not and some are. The universal
qualifier is for all, ¥, and the existential qualifier is there exist, 3.

2.6.1. The universal quantifier is “for all,” denote by an upside-down A, V. The statement Yx € U[p(x)] is true if and only
if p(x) is true for all xe U.

2.6.2. The existential quantifier is “there exist,” denote by a backwards E, 3. The statement 3x € U[p(x)] is true if and
only if there exist at least one x €U for which p(x) is true.

2.8.1. Reasoning or deductive reasoning is a cognitive process using arguments to move from given statements or pre-
mises, which are true by assumption, to conclusions. The conclusions must be true when the premises are true.

2.8.2. An argument is an assertion that a given collection of statements py,ps.....p, called premises yields another
statement r called the conclusion.

2.8.3. An argument is valid if the conclusion r is true whenever the conjunction of the premises py,pa. ....p, is true; that is,
PiApP2A ... Ap,—risatautology. Otherwise the argument is said to be a fallacy. In other words, an argument is valid
whenever all the premises are true, the conclusion is true.

2.8.4. Aswitching network is a collection of wires and switches connecting two terminals, A and B. A switch may be either
open, O, or closed, C. switch will not permit the current to flow while a closed switch will permit current to flow.

2.8.5. Two switches are said to be complementary if one switch is open and the other is closed, and vice versa. Thus, if one
switch is P, the complementary switch will be labeled P’ (P prime).

2.8.6. Two electrical networks are said to be equivalent if they have the same electrical properties concerning the flow and
non-flow of current.

We have defined seven basic laws of algebra: idempotent, associative, commutative, distributive, identity, complement, and
De Morgan’s for statements under the equivalence relation. We have also considered various forms of the conditional
statement.

Properties:

2.2.1. Conjunction: If p is true and q is true, then p Ag is true; otherwise p Ag is false.

2.2.2. Disjunction (inclusive): When p is true or g is true or if both p and g are true, then p v g is true; otherwise p v g is false.
Thus, the disjunction p v g of the two statements p and ¢ is false only when both p and g are false.

2.2.3. Disjunction (inclusive): When p is true and ¢ is false, or when p is false and g is true, then p v g is true; otherwise p vV g
is false. Thus, this alternative disjunction p V g of the two statements p and g is false only when both p and g are false
and when both p and ¢ are true.

2.2.4. Negation: When p is true, then ~p is false; if p is false, then ~p is true.

2.2.5. Conditional: The conditional statement p — g is false only when p is true and ¢ is false; otherwise p— ¢ is true.

2.2.6. Bi-conditional: If p and g are either both statements are true or both statements are false, then p < ¢ is true; if p and g
have opposite truth values, then p+ g is false.

Rules:

2.4.1. Idempotent: pvp=p and p Ap=p

2.4.2. Associative: (pvq)Vvr=pV(qvr) and (pAg)ArspA(gAr)

2.4.3. Commutative: pvg=qVp and pAg=qAp

2.4.4. Distributive: pv (gAr)=(pvg)A(pvr) andpA(gvr)=(pAq)V (pAr)

2.4.5. Identity: If 7 is a tautology and ¢ is any contradiction, then pvV@=p, pA7=p, pA@=¢@ and pV1=1

2.4.6. Complement: If 7 is a tautology and ¢ is any contradiction, then pv ~p=t1, pA ~p=@, ~(~p)=p, ~1=¢
and ~@=1

2.4.7. DeMorgan’s Rule: ~(pvg)=~pA~gqgand ~(pAg)=~pV ~q
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Symbol Meaning/
(Abbr.) Name/Origin Read as
— Implication/Conditional “If ..., then...”
pa Bi-conditional ... it and only if
iff “if and only if”
v Universal Qualifier “for all ...”
3 Existential Qualifier “there exist ...”
= Equivalent “Is the same as
saying”
Hebrew “Therefore™
¢ore Greek letter “Phi” or an A contradiction
abbreviation of
contradiction
Tort Greek letter “Tau” or an A tautology
abbreviation of tautology
€ Greek letter “Epsilon™ “An element of” or
“is contained in"”
n Abbreviation of number “Number of simple

statements™

REVIEW TEST

Description

If the antecedent is true that implies
that the consequence must be true

The conditional holds in both
directions

Abbreviation for “if and only if”
An upside down A
A backwards E

Equality between compound
statement

The abbreviation for “therefore”

Statement that is never true

Statement that is always true

Symbol illustrating containment

Used when counting total number of
possible situations

Example/Description

“If T win the lottery, then I
will buy you dinner™

“I am a male if and only if I
have a Y chromosome”

For all real numbers x, x2 > 0

There exist x € Z such that

JE=2

Related to the word: Equal

Used when drawing
conclusions

“This statement if false”
“A rose is a rose”
Let p represent a statement:

PES

Given p,q,r: n=3

Multiple-Choice:

1.

Which of the following is/are not statement(s)?
i. Come here

ii. That is a cute kitty

iii. 2+2=5

A. ionly

B. i and ii only

C. iii only

D. all of them are statements

E. none of them are statements

Which of the following is/are not statement(s)?
i. Watch your step

ii. Susan will call you tonight.

iii. 2+5=7

iv. 2x5=7

A. ionly

B. ii and iii only

C. ii1 only

D. all of them are statements

E. none of them are statements
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Sets

Solution

Let x represent a letter in the word football. Thus, the desired set in set-builder notation
is written

A={x|x a letter in the word football}

The elements in the set can be listed in roster form:

A={f.0.t.b.a.l}.

Note that although the word foorball contains two o's and two ['s, we write them
only once in structuring the set. In this context, the universal discourse is understood
to be the letters of the alphabet; however, universal discourse is logistical jargon, in
set theory, we shall say the universal set.

Definition 3.2.2 Universal Set

The universal set U is the largest set in a given context; that is, the universal set is the
totality of the elements under consideration. Denoted by the capital letter, U normally
written with the upper bars, U, or a tail, U, as to be it distinguishable from the union
symbol U.

Universal Set Universal Set Union Symbol

This is the set from which all other sets will be taken, but it is important that
you understand the given context. For example, if the set is defined in the context
of the natural numbers, then the understood universe is U={1, 2,3, ...} which
the set of all counting numbers including large numbers like 100, 1000, and
1,000,000. However, if the set is defined in the context of the digits, then the
understood universe is the limited set: U={0,1,2,3,4,5,6,7, 8,9} which does
include the element zero by no integer larger than 9.

To help us better understand certain aspects of set theory we shall use
circles and rectangles to denote sets. The diagram approach originated with
an English logician named John Venn (1834-1923), and we refer to them as
Venn diagrams. Similar to Euler circles in Logic, we can draw sets using Venn
diagrams. The main difference begin, in Logic there are not always physical
boundaries other than those represent by the statements themselves (the sets)
and an implied universal discourse; whereas in Set Theory, there is the
boundary of the contextual universal set. This universal set in a Venn diagram
is emphasized in that it is represented by a rectangle which contains the
primary set; for example, the universal set of digits can be illustrated as

U




Definition 3.2.3 Empty Set

This empty set, sometimes call the null set is the smallest set in any context: this set
contains no elements. If we were to write it in “proper” set notation, it would be obvious
that it has no elements, { } or the single symbol @&.

Fo 9 00

An empty set  The empty set A contradicion  Null, Not, Zero
Nothing, Zilch

Hence, it is possible for a set to have no elements, for example, the set
A={y|y a unit digit,y<—1}

has no elements because there is no digit that is less than or equal to —1. In a
Venn diagram, letting a set be described by a circle, then the empty set would
be represented by an empty circle.

U
2 6 5
(0, o
8
0 1
3
-

Example 3.2.6 Bounded Sets

List the elements of the set given by

B={z|z a positive integer, z#=25 and 5<z$25}.

Solution

Here, B is empty because there is no value of z that will satisfy both the condition (a) z is
a positive integer, (b) z> =25, and (c) that is greater than five and less than or equal to 25.
The only positive number that when squared is 25 is 5; which is not greater than five.

There are many situations in which the elements of a given set are also the
elements of another set. For example, let us consider the set F which consists of
all female students of a finite mathematics course and the set U which consists
of all students in our university. Here, all the members of the set F are also
members of the set U. That is, all females students are university students; this
idea of containment. Before we state the definition of a subset, let us consider
another example. Define the sets of even digits E and the set of all digits D as

E={0.2.4,6,8} and D={0,1,2,3.4.5.6,7.8.9}.

We note here that every element of the set E is also an element of the set D.
We symbolize this situation by writing

EcD

3.2 The Concept of a Set

93

U={0.1.2.3.4.5.6.7.8.9)
U={x|xis adigit}
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Solution

Putting these observations in a set form, we have
C={86, 88, 89, 90, 92}.

Recall that all members of a set must be distinct. Therefore, although 88 and 89 were
recorded twice, when we put them in set form we include the observations only once.
Also, the order in which we list the elements of the set is irrelevant.

Consider temperatures recorded for the same period in Sparkling City:

90, 92, 89, 89, 88, 88, 86
degrees Fahrenheit. Putting these observations in a set form, we have
§={86, 88, 89, 90, 92}

Since both sets C and § contain the same recordings, C=S§.

PROBLEMS
Critical Thinking

3.2.1. Indicate which of the following verbal descriptions a well-defined set:
(a) The players of the Tampa Bay Buccaneers football team,
(b) The collection of all good United States senators,
(¢) The states of the United States of America,
(d) The collection of all secretaries who can type at least 75 words per minute,
(e) The golf players who have won the United States Open Golf Tournament.
3.2.2. Let B={—1.a,2,b,c.d}. Indicate which of the following statements are correct:

(a) @ €EB, (b) a € B, (¢) d €B, (d) —I€B
3.2.3. Consider the set A={x|x a positive integer 1<x <8} Which of the following statements are true?
(a) A =1{2,3,4,56,7}, (b) A=1{1,23475, 6}
(c) 4€A, d1gA
(e) a€A, fHy 7€ A

3.2.4. Let C={z|z isaneven integer,1 <x<13}. Indicate which of the following statements are true.
(a) C={1,2,4,6,8,10,12}
(b) C={2,4,6,8,10,12}
() 7gC, (d) 1eC, (e) 8eC
3.2.5. Consider the set of French philosophers during the Age of Reason, an intellectual movement of the 1700s.

P = {de Condorcet, Diderot, Helvetius, Rousseau, Voltaire}.

Indicate which of the following are true or false:
(a) de Condorcet € P, (b) Diderot € P
(c) Helvetius g P, (d) Voltaire € P
3.2.6. Consider the set of drugs useful in the treatment of certain cancers.

D={5 — fluorourucil, methotrexate, cytoxin, Vincristine}.

Indicate which of the following statements are true or false:
(a) 7-fluorourucil €D
(b) cytoxin €D
(¢) 5-fluorourucil & D
(d) Vincristine €D
3.2.7. Write the set which consists of all positive integers less than 15.
3.2.8. Write the set of all integers greater than —3 and less than or equal to 4.
3.2.9. Construct the set of all even integers greater than or equal to zero and less than 16.
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A
Accumulation fund, 464465
Additive law of probability, 159, 161, 1615, 162f
Algebra
associative, 106h
coefficients, 418h
commutative, 107h
complement, 107h
definition, 104h
example, 105h
definition, 4165
DeMorgan’s law, 108
direct variation, 420h
distributive, 107h
evaluation, 419h
examples, 416—417h
formulation, 419420k
idempotent, 1065
identity, 107h
indirect variation, 421b
intersection
definition, 1008
examples, 101-103h
like terms, 418—419, 418-419h
operators, 417h
set difference, 109h
statements, 418h
symmetric difference, 110h
terms, 418, 418h
union, 98-99h
Amortization, 473, 473b
Applied mathematics, 4
Argument
deductive reasoning, 54-55b
definition, 55b
fallacy, 55-56b
symbol, 55
validity
conclusion, 62-65b
definition, 55b
law of detachment, 55b
law of syllogism, 56h
proof patterns, 60b
testing examples, 5S7T-58b, 61b, 63—64h
Aristotle, 16
Arithmetic
base (see Base system)
fractions (see Fractions)
greatest common factor, 4015
least common multiple, 4035
percentages, 406-407h
place-value notation, 398b
prime factorization, 402b

ratios, 406bh
scientific notation, 401, 4015
sequence, 412b
series, 414-415h
Arithmetic and algebrace
definition, 1011
goal, 11
Associative law, 38, 38b
Axiomatic probability, 154-156, 154h

B
Bankruptcy
consequences, 460
definition, 460
United States Code, 459—460
Bar chart
definition, 2756
example, 276b
step-by-step procedure, 2765
Base system
decane, 398, 3994
hexadecimal, 4006
octal, 399-401, 399-400b
Bayes’ rule
examples using, 168, 170b, 172b, 174b
rule of elimination, 169, 169h, 170f
tree diagram, 169, 169/
Bell-shaped curve, 9
Bernoulli, Jacob, 188
Bernoulli probability distribution. See Binomial
probability distribution
Binary operators
addition, 382
decimals, 405h
division, 383
examples, 384b
exponentiation, 383h, 3915
fractions, 4045h
multiplication, 383
order, 392b
sign effects, 385h
subtraction, 383
Binomial expansion, 104—-1055h, 2096
Binomial probability distribution
binomial expansion, 2095
binomial experiment, 208b
binomial theorem, 208-212
common binomial calculations
common question, 212-217
examples, 213-217h
definition, 212h
expected value, 219-222, 219-221h
variance/deviation, 222-223b

Budgeting
definition, 465h, 493
examples, 494-495h
personal, 496497

Buffet, Warren Edward, 458

C
Cantor, Georg, 88
Certificate of Deposit (CD), 464, 467468
Circle graph, 281-282h
Classical probability, 1485
Coefficient of variation (CV), 319-320b
Combinations, 97, 98h, 106
Commutative law, 38, 38
Complementary law, 39, 39h
Conditional probability
definition, 163
examples, 164h
independent events, 166, 166h
multiplicative law, 165h
Contingency table
definition, 279h
example, 279-280b
step-by-step procedure, 2795
Continuous random variables
continuous curve, 234
definition, 191b, 2325
normal probability distributions (see Normal
probability distributions)
probability histogram, 233-234
relative frequency ratio, 233
Contracts, 485-486
Counting techniques
binomial expansion, 104-105h
combinations, 97, 98h, 106
countably finite, 90b
countably infinite, 91h
enumeration, 87h
evolution, 6-7
factorials, 94b
goal, 7
multiplication/sequential counting principle,
96-97
mutually exclusive events, 102h
next coefficient, 1065
overlapping events, 100-102h
partial ordering, 98, 995
permutations, 95b, 97, 98h, 106
Cramer’s rule, 436-437, 437h
Credit
definition, 474
examples, 475h
formula, 474b
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Credit (Continued)
maintenance, 475, 475bh
payments, 476-477h
report, 496
unions, 464

D
De Morgan’s rule, 39, 39b, 49-51
Detachment law, 55b
Diophantus, 378
Discrete random variable
arithmetic/average/sample mean, 1995
definition, 1915
expected value
central tendency, 200
definition, 200h
examples, 198h, 200-202h
population standard deviation, 2035
population variance, 202h, 203
probability distribution function
definition, 193, 194h
examples, 194-196h, 196
residuals, 202h
sample variance
constant adding property, 203-204h
constant multiplication property, 204-205h
definition, 203b
measuring unit, 203
Distributive law, 38, 38b

E
Effective rate, 462, 463bh, 490492
Elementary algebra, 3—4
Emergency reserve fund, 464465
Empty set, 93b
Enumeration, 875
Equations
definition, 423b
elementary operations, 427h
examples, 423-424)
inequalities
absolute value, 429-430h
bounded interval, 428-430, 428-429p
definition, 426b
examples, 426-427h
integers, 429h
linear, 430b
notations, 428h
unbounded interval, 428, 428h
literal, 425b
optimization, 439h
properties, 423h
quadratic (see Quadratic equation)
solving, 425-426h
system (see System equations)
three-steps, 424b
two-steps, 424b
Euclid, 330
Expected payoff, 512-515b
Expected value, 302-303b

F

Field axioms
associative, 386, 389
closure, 385, 389

commutative, 386, 389
distributive, 388, 390
identity, 387, 390
inverse, 387, 390
Finance
amortization, 473, 473b
bankruptcy (see Bankruptcy)
comparison shopping
cash vs. credit, 481485
leasing vs. purchasing,
485487
renting vs. owning, 487489
currency, 458-459
debts, 459, 478b
definition, 11
goal, 11-12
interest
amount of time, 461
effective rate (see Effective rate)
future amount, 462
nominal rate, 461
number of periods, 462
payments, 463
periods per year, 461
principal, 461
rate per period, 462
means, 497
money, 458
and savings (see Savings, financial)
sinking funds (see Sinking funds)
trade, 458
Fractions
definition, 401
improper, 401
mixed, 401, 4035
operators, 4045H
percentages, 407h
proper, 401
reduced form, 401, 4025
summing, 403H
Frequency data, 300-302b
Functions
definition, 189h, 443h
domain restrictions, 443h
linear, 443-444p, 446h
quadratic, 446-—447h
Future amount, 462

G
Game theory, 12
definition, 505
linear equations, 503
mixed-strategy
definition, 511
expected payoff (see Expected payofT)
optimal strategies, 515
payoff matrix, 503
strictly determined
definition, 508
examples, 508-5095
maximin/minimax, 507h, 508
saddle point, 508, 508f
Gaussian probability distribution. See Normal
probability distributions
Gauss, Johann C.F., 237

Geometry
angle
acute angle, 339
07 angle, 339b
complementary angle, 339h
consecutive angle, 336b
definition, 332
exterior angle, 337h
interior angle, 337h
measuring unit, 332
obtuse angle, 339
right angle, 3395, 339
straight angle, 3395
supplementary angle, 340b
vertex diagram, 338
area
of circle, 358-359h
definition, 332h
Heron’s method, 358b
of rectangle, 355h
rectangular solid, surface area, 360-361, 3615
of rhombus, 355h
right circular cylinder, 361-363,
361-362H
of sphere, 362-363h
of square, 354h
surface area, 359h
of trapezoid, 356-357h
of triangle, 357h
distance measurement, 331-332, 331b
evolution, 10
goal, 10
lines
complementary lines, 335h
definition, 333h
intersecting lines, 334-335, 334b
one-sided figures, 333h
parallel lines, 335h, 336
perpendicular lines, 3356
supplementary angles, 334
transverse lines, 336-337h
two-sided figures, 333h
polygons
circumference, 353h
definition, 351h
hexagon, 351
pentagon, 351
perimeter, 352b
regular, 351-352h
quadrilaterals
definition, 345h
kite, 350h
parallelogram, 345-346h
rectangle, 3485
thombus, 346-347h
square, 349h
trapezoids, 345h
symbols, 330
triangles
acute, 341
congruent, 343h
definition, 340h
equilateral, 342
isosceles, 342
obtuse, 341



pythagorean theorem, 341
right, 341
scalene, 342
similar, 342b

volume
cone, 365-366h
cookie cutter shape, 365b
of cube, 364b
definition, 332h
rectangle solid, 364h
right circular cylinder, 365b
sphere, 3665

Greatest common factor (GCF), 401h

H

Histogram
definition, 286h
examples, 286h, 289-290b
step-by-step procedure, 289h

1
Idempotent law, 37-38, 37h
Identity law, 38-39, 38h
Insurance, 493-496
Interest
amount of time, 461
compound, 468, 468h
continuous, 470, 470k
effective rate, 462-463
future amount, 462
nominal rate, 461
number of periods, 462
payment, 463
periods per year, 461
principal, 461
rate per period, 462
simple, 467, 467h

J

Joy of Finite Mathematics, 4-5

L
Logic
argument (see Argument)
Aristotelian logic, 16
Boolean algebra, 68-69
conjunction, 18, 19¢
contradiction, 34-35h
deductive reasoning, 5
definition, 5
disjunction
definition, 19
exclusive, 20, 21h, 21
inclusive, 20, 20t, 20h
equivalent statements, 35h, 37h
associative, 38, 38b
commutative, 38, 38b
complementary, 39, 39H
contrapositive, 36h
converse, 36h
definition, 35b
De Morgan’s rule, 39, 39h
distributive, 38, 38b
idempotent, 37-38, 37h
identity, 38-39, 38b

goals, 5-6
inductive reasoning, 5
not implied statement, 36h
paradox, 35h
proof by induction, 66-68
statement (see Statement, logic)
switching circuits
definition, 69b
parallel, 70-76
series, 70
syllogism, 16
tautology, 34b
truth tables, 27-33
truth value, 17
Long-range investment, 464465

M
Margin of error, 308h
Mean deviation, 314b
Median (M), 296-298h
Mixed-strategy games
definition, 511
expected payoff (see Expected payoff)
optimal strategies, 513
Mode (M), 294-295h
Modus tollens, 55h
Multiplication/sequential counting principle, 96-97

N

Normal/Gaussian probability distribution.
See Bell-shaped curve
Normal probability distributions
bell-shaped curve, 236-237
definition, 235h
examples, 248-250b, 252-254b
fixed p varying o graphical representation,
237, 237f
fixed o varying p graphical representation,
237, 237f
normal approximation
continuity correction factor, 257
example, 258b
property, 260h
normal curve graph, 236-237
notation, 236
overview, 235
standard normal probability distribution
definition, 2396
example, 244h, 245-248
graphical representation, 241-245
probabilities table, 240, 241¢
standard score, 240
variance/standard deviation, 237
Null set, 93b

P
Pareto chart
definition, 277h
example, 277-278h
step-by-step procedure, 277b
Partial ordering, 98, 99h
Pascal, Blaise, 146
Pattern recognition
deductive reasoning, 410-411
examples, 411h

Index

inductive reasoning, 410411, 410b
sequential pattern (see Sequence)
serial pattern (see Series)
Payoff matrix, 503
Permutations, 95h, 97, 98bh, 106
Personal probability, 147b
Pie chart. See Circle graph
Place-value notation, 398h
Population standard deviation, 203h
Population variance, 202h, 203
Powers, 390-391, 3914
Probability
axiomatic probability, 154-156, 154b
basic laws
additive law, 161, 161h, 162f
complement, 157-158h, 158
empty set, 158h
union, 159, 159-1608H
Bayes’ rule (see Bayes’ rule)
classical probability, 148b
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combinatorial techniques, 175-178, 176-177h

conditional probability
definition, 163
examples, 1645
independent events, 166, 166H
multiplicative law, 1655
definition, 7, 146
experiment
compound event, 151h
definition, 150b
examples of, 150
mutually exclusive event, 153b
population, 151h
sample point, 150, 1515
sample space, 152b
simple/elementary event, 151b
goal, 7-8
personal probability, 1475, 148
in professional fields, 146
Pure/abstract mathematics, 4
Pythagoras, 3

Q

Quadratic equation, 432b

R
Random wvariables (RV)

continuous random variables (see Continuous

random variables)
definition, 189, 190h
discrete random variable (see Discrete
random variable)
examples of, 189, 190-191h
Range (R), 312-313h
Real number system
axioms (see Field axioms)
definition, 381
integers, 380h
irrational numbers, 381
natural numbers, 379, 381-382h
number line, 379
operators (see Binary operators)
rational numbers, 381
whole numbers, 380, 380h
zero, 380, 3805
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S
Saddle point, 508, 508f
Savings, financial
budgets (see Budgeting)
CD, 467, 468h
credit balance (see Credit)
definition, 464
discounts, 466, 466h
personal, 464465
taxation, 465, 465-466hH
Sequence
arithmetic, 412h
definition, 411h
examples, 413h
geometric, 412b
term, 411-412h
Sequential counting principle, 96-97
Series
arithmetic, 414-415b
definition, 413h
examples, 414h
geometric, 415b
Set theory
algebra (see Algebra)
Cantor set, 88
common denotations, 90
definition, 6, 89h
empty/null set, 93b
evolution, 6
feature, 89
goal, 6
grouping symbol, 89
roster notation, 89-90, 91h
set-builder notation, 90
subsets
definition, 94-95b
examples, 91h, 95b
proper subset, 94
symbol, 94
universal set, 92
Venn diagrams, 92-93
well-defined set, 90-92
Sinking funds
definition, 4716
examples, 472h
formula, 471bh
Slope formula, 445, 445h
Standard mean, 299-304, 299-300h
Standard normal probability distribution
definition, 2396
example, 244h, 245-248
graphical representation, 241-245
probabilities table, 240, 241t
standard score, 240

Standard population deviation, 315-3165h
Standard population variance, 315b
Standard sample deviation, 316-317h
Standard sample variance, 316b
Statement, logic
bi-conditional statement, 24-25h, 25t
compound statement, 18
conditional statement
conditional truth values, 23b
definition, 22h
necessary and sufficient condition, 24h
property, 23b
variations, 41-43
definition, 17
negating statement
common negations, 49h
definition, 21h, 22¢
De Morgan’s law, 49-51
examples, 49-52b
existential quantifier, 53
translations, 52b
universal quantifier, 53
quantified statement
particular affirmative, 45-46
particular negative, 4648
universal affirmative, 44-45
universal negative, 45
simple statement, 18
Statistics
central tendencies measurement
expected value, 302-303h
frequency data (standard mean), 300-302h
margin of error, 308h
median, 296-298h
mode, 294-295hH
standard mean, 299-304, 299-3006
trimmed mean, 304b, 3055
weighed mean, 305h, 306-307h
data organization
dot plot, 266H
frequency distribution, 269b, 270-272
frequency tables, 2695
listed data, 266
probability distribution, 270-271b
relative frequency, 270b
stem-and-leaf plot, 267-268b
descriptive statistics, 9-10
deviation measurement
coefficient of variation, 319-320bh
definition, 312b
mean deviation, 314b
range, 312-313h
standard population deviation, 315-3165
standard population variance, 315b

standard sample deviation, 316-317h
standard sample variance, 3165
goal, 9-10
qualitative information
bar chart, 275-276b
circle graph, 281-282b
contingency table, 279-280b
Pareto chart, 277-278h
quantitative information
class boundaries, 288b
class limits, 287h
class mark, 288b
class width, 287h
histogram (see Histogram)
Strictly determined games
definition, 508
examples, 508-509hH
maximin/minimax, 507h, 508
saddle point, 508, 508f
Switching circuils
definition, 69h
parallel
complementary, 72h
equivalent electrical networks, 73-75b
switch positions, 70, 71f
series, 70
Syllogism, 16, 56b
System equations
definition, 4345
determines of matrices, 434, 436-437h
elimination, 434-436, 434b
inequalities, 437-438bh
substitution, 434, 435h

T
Taxation, 465, 465-466h

The Nature of Mathematics, 5

Tree diagram, 93b, 95

Trickle effect, 337-338, 3376
Trimmed mean, 304bh, 305H

Truth tables, 27-33

Tukey, John Wilder, 266

Two-person zero-sum game, 505-506

U

Universal set, 92-93

\Y

Venn diagrams, 92-93
Von Neumann, John, 504

w
Weighed mean, 3055, 306-307h



