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INTRODUCTION

For many decades the mathematics curriculum has been stocked
with lots of essential building blocks to enable the student to
navigate properly such disciplines as science, finance, engineering,
architecture, and everyday life—just to name a few! With much to
cover and the stress of moving ahead at a steady clip, there are
many interesting and important mathematics concepts, topics, and
applications that rarely ever get mentioned in the classroom.

When students are presented with finance applications in the
school curriculum, such as computing the effect of interest on a
given principal in the bank, there is a missed chance to enrich them
with a mathematical peculiarity such as the “Rule of 72,” which
enables one to determine how much time is required for a bank
account to double the deposited money at a specified interest rate.

There are amazingly simple geometric phenomena that are rarely
ever shown in classrooms, simply for lack of time. These might
include some of the special yet straightforward characteristics of
quadrilaterals inscribed in a circle, such as the incredible
relationship between the diagonals of a quadrilateral and its sides,
where the product of the diagonals is equal to the sum of the
products of the opposite sides. Remember, this is only true when the
quadrilateral's four vertices lie on the same circle.

Another opportunity missed is to show how the random
placement of a point inside an equilateral triangle shares a common
property with any other point in that triangle, namely that the sum
of the perpendiculars to each of the three sides is always the same.

There are everyday applications that regularly seem to escape
classroom presentations. For example, mechanical algorithms to
multiply numbers mentally. Even though there are electronic
calculators readily available, the facility of manipulating numbers



mentally is clearly an asset that seems to be seen as relatively
unimportant in today's technological world. Here we choose to fill
in this void.

A clever application of the Fibonacci numbers—perhaps the
most ubiquitous numbers in our culture—allows us to convert from
miles to kilometers (or the reverse) mentally. This is particularly
useful for Americans traveling outside of their country's borders,
when they will have to convert distance from kilometer-indicating
signs to the more familiar mileage measures.

There are many uses of algebra that can explain many
mathematical curiosities, which simply bewonder the uninformed.
For example, most teachers will show their students how to look at
a number and determine if it is divisible by 3, but they will not take
the time to explain why this “trick” works. We believe that knowing
why this works is almost as important as knowing how it works. The
same is true for other divisibility rules that we will present in the
pages that follow.

Studying conic sections is a standard part of the high school
curriculum. Teachers typically show physical models but miss quite
a few truly astonishing applications. Take, for example, using the
rays of light emanating from a flashlight to show that they can
generate conic sections. Shining a flashlight onto the ground or onto
a wall at different angles allows different shapes of light to arise.
The boundaries of these shapes are conic sections (assuming that the
aperture of the flashlight is circular). Depending on the angle, we
obtain a circle, an ellipse, a parabola, or a hyperbola. Similarly, a
circular arc (being part of a building, for instance) can appear as an
elliptic arc, a hyperbola, or a parabola if we look at it from different
angles. Furthermore, aspects of the geometry of conic sections can
be found in many architectural masterpieces. Mathematics can also
explain how we create a visual depth perception and draw a picture.
The concept of perspectivity, found in many famous paintings of the
Italian Renaissance, has set the stage to study and perfect this
concept further. Notable among the artists is Leonardo da Vinci,
who also became a model for the famous German artist Albrecht
Diirer. These are some of the aspects of our artistic culture that can
be explained through mathematics, but, sadly, they are often
neglected in the teaching of mathematics.

The topic of probability, which is gaining ever more presence in
the standard curriculum today, has some truly astonishing and
counterintuitive applications that all too often are not shared with
students studying this topic. The famous “birthday problem” is
unfortunately not presented to many classes. This “problem” offers
some highly counterintuitive results. For example, it determines that
the highly unanticipated probability of two people having the same



birth date in a room of thirty people is 70 percent; and, perhaps
more amazingly, it determines that the probability of two people
having the same birth date in a group of fifty-five people is 99
percent. Such omissions clearly weaken the instructional program,
so we now take the opportunity to allow the general readership to
make up for previously lost chances.

The ever-present drive by teachers, who are being rated by their
students’ test performance, to “teach to the test” is one reason why
so many mathematical wonders are omitted from the instructional
program on a nationwide level. The Joy of Mathematics is an
attempt to fill in the many gaps in the American mathematics
education system and at the same time to show the average
American citizen that there are lots of entertaining and useful
mathematics gems that may have eluded them during their school
days. We will do this in short units so as to keep the presentation
crisp and intelligible. We will also use photos and diagrams
extensively to enhance the attraction and function of our examples.
To keep everything accessible, we have used language and content
geared toward the general reader, not the math savant. As such, we
have kept in mind the idea of the French mathematician Joseph Diaz
Gergonne (1771-1859) that “it is not possible to feel satisfied at
having said the last word about some theory as long as it cannot be
explained in a few words to any passer-by encountered in the

street.”]

We hope to provide you with a better grasp of mathematics, and
above all, a greater appreciation for its usefulness, not only in its
many applications, but also in exhibiting the power and beauty of
the subject in its own right.



CHAPTI

ARITH METIC NOVE LTIES

Mi

When you think of arithmetic, you typically consider the four basic
arithmetic operations. With a little more thought, you tend to tag on the
square root operation as well. Unfortunately, most of our school curriculum
focuses on ensuring that we have a good mechanical command of the
arithmetic operations and know the number facts as best we can to service
us efficiently in our everyday life. As a result, most adults are not aware of
the many amazing relationships that can be exhibited arithmetically with
numbers. Some of these can be extremely useful in our everyday life as
well. For example, just by looking at a number and determining if it is
divisible by 3, 9, or 11 can be very useful, especially if it can be done at a
glance. When it involves determining divisibility by 2, we do this without
much thought, by simply inspecting the last digit. We shall extend this
discussion to considering divisibility by a prime number, something that
clearly is not presented in the school curriculum, with which we hope to
motivate the reader to investigate further primes beyond those shown here.
We truly expect that the wonders that our number system holds, many of
which we will present in this book, will motivate you to search for more of
these curiosities along with their justifications. Some of the units in this
chapter will also provide you with a deeper understanding for our number
system beyond merely arithmetic manipulations. Our introduction to a
variety of special numbers will generate a greater appreciation of arithmetic
than the typical school courses provide. Let us begin our journey through
numbers and their operations.

WHEN IS A NUMBER DIVISIBLE BY 3 OR 9?

Teachers at various grade levels often neglect to mention to students that in
order to determine whether a number is divisible by 3 or 9, you just have to
apply a simple rule: If the sum of the digits of a number is divisible by 3 (or
9), then the original number is divisible by 3 (or 9).



An example will best firm up your understanding of this rule. Consider
the number 296,357. Let's test it for divisibility by 3 (or 9). The sum of the
digits is 2 + 9 + 6 + 3 + 5 + 7 = 32, which is not divisible by 3 or 9.
Therefore, the original number, 296, 357, is not divisible by 3 or 9.

Now suppose the number we consider is 457,875. Is it divisible by 3 or
9? The sum of the digitsis4 + 5+ 7 + 8 + 7 + 5 = 36, which is divisible by
9 (and then, of course, divisible by 3 as well), so the number 457,875 is
divisible by 3 and by 9. If by some remote chance it is not immediately
clear to you whether the sum of the digits is divisible by 3 or 9, then
continue with this process; take the sum of the digits of your original sum
and continue adding the digits until you can visually make an immediate
determination of divisibility by 3 or 9.

Let's consider another example. Is the number 27,987 divisible by 3 or
9? The sum of the digits is 2 + 7 + 9 + 8 + 7 = 33, which is divisible by 3
but not by 9; therefore, the number 27,987 is divisible by 3 and not by 9.

If this divisibility rule is mentioned in school settings, what is typically
missing from the instruction of this rule is why it works. Here is a brief
discussion about why this rule works as it does. Consider the decimal
number abcde, whose value can be expressed in the following way:

N=10%+103 +10%c +10d +e= (9 + D)*a+ (9 + 1)3b + (9 + 1)%c +
(9+1)d +e.

After expanding each of the binomials, we can now represent all of the
multiples of 9 as 9M to simplify this as

N=[9M + (1)*a + [OM + (1)°]b + [9M + (1)%]c + [9 + (1)]d + e.

Then, factoring out 9M, we get N=9M[a+b+c+d]+a+b+c+d +ee,
which implies that the divisibility of N by 3 or 9 depends on the divisibility
ofa+b+c+d+eby3or9, which is the sum of the digits.

As you can see, things become so much better understood and
appreciated when the reason for a “rule” is presented.

WHEN IS A NUMBER DIVISIBLE BY 117

When a teacher shows the class something that is not directly specified in
the school curriculum, it often generates some enjoyment and can be
motivating. Take, for example, a method of determining whether a number
is divisible by 11, without actually carrying out the division process. The
problem is easily solved if you have a calculator at hand, but that is not
always the case. Besides, there is such a clever “rule” for testing for
divisibility by 11 that it is worth knowing just for its cleverness.

The rule is quite simple: If the difference of the sums of the alternate
digits is divisible by 11, then the original number is also divisible by 11.
That sounds a bit complicated, but it really isn't. Finding the sums of the
alternate digits means that you begin at one end of the number, and you take



the first, third, fifth, etc., digits and add them together. Then you add the
remaining (even-placed) digits. Subtract the two sums and inspect for
divisibility by 11.

This rule is probably best demonstrated through an example. Suppose we
test 918,082 for divisibility by 11. We begin by finding the sums of the
alternate digits: 9 + 8 + 8 =25 and 1 + 0 + 2 = 3. Their difference is 25 - 3
= 22, which is divisible by 11, and so the number 918,082 is divisible by 11.
We should point out that if the difference of the sums is equal to zero, then
we can conclude that the original number is divisible by 11, since zero is
divisible by all numbers. We see this in the following example: testing the
number 768,614 for divisibility by 11, we find that the difference of the
sums of the alternate digits (7+8+1=16and 6+ 6 +4 =16) is 16 — 16 =
0, which is divisible by 11. Therefore, we can conclude that 768,614 is
divisible by 11.

In case you may be wondering why this technique works, we offer the
following. Consider the decimal number N = abcde, which then can be
expressed as

N=10% +103b + 10%c + 10d + e = (11 - 1)*a + (11 - 1)3b + (11 - 1)%c
+(11-1)d +e.

This can be written as

N=[11M + (=1)*a + [11M + (-1)°]b + [11M + (-1)%]c + [11 + (=1)1d +
e,

where, after expanding each of the binomials, 11M represents the terms
which are multiples of 11 written together. Factoring out the 11M terms, we
get N=11M[a+b +c+d] +a—-b+c—d+ e, which leaves us with an
expression that would be divisible by 11, but only if this last part of the
previous expression is divisible by 11, namely,a—-b+c—-d+e=(a+c +
e) — (b + d), which just happens to be the difference of the sums of the
alternate digits. This is a handy little “trick” that can also enhance your
understanding of arithmetic. By the way, another way of looking at this
trick is to say that the number 24,847,291 is divisible by 11 if and only if we
obtain a number that is divisible by 11; let's see what we get: 2 -4+ 8 -4 +
7 —2 + 9 —1 = 15. Therefore, since the difference of the sums was 15,
which is not divisible by 11, we know that 24,847,291 is not divisible by 11.

DIVISIBILITY BY PRIME NUMBERS

In today's technological world, arithmetic skills and competencies seem to
be relegated to a back burner, since a calculator is so easily available. We
can assume that most adults can determine when a number is divisible by 2
or by 5, simply by looking at the last digit (i.e., the units digit) of the
number. That is, if the last digit is even (such as 2, 4, 6, 8, 0), then the
number itself will be divisible by 2. Furthermore, if the number formed by



the last two digits is divisible by 4, then the original number itself is
divisible by 4. Also, if the number formed by the last three digits is divisible
by 8, then the original number itself is divisible by 8. This rule can be
extended to divisibility by higher powers of 2 as well.

Similarly, for the number 5: If the last digit of the number being
inspected for divisibility by 5 is either a 0 or 5, then the number itself will
be divisible by 5. If the number formed by the last two digits is divisible by
25, then the original number itself is divisible by 25. This is analogous to
the rule for powers of 2. Have you guessed what the relationship here is
between powers of 2 and 5? Yes, they are the factors of 10, the basis of our
decimal number system.

Having completed in the previous discussions, the nifty techniques for
determining whether a number is divisible by the primes 3, 9, and 11, the
question then is: Are there also rules for divisibility by other prime
numbers? Let's consider divisibility rules by prime numbers.

Aside from the potential usefulness of being able to determine whether a
number is divisible by a prime number, the investigation of such rules will
provide for a better appreciation of mathematics, that is, divisibility rules
provide an interesting “window” into the nature of numbers and their
properties. Although this is a topic that is typically neglected from the
school curriculum, it can prove useful in everyday life.

The smallest prime number that we have not yet discussed in our quest
for divisibility rules is the number 7. As you will soon see, some of the
divisibility rules for prime numbers are almost as cumbersome as an actual
division algorithm, yet they are fun, and, believe it or not, can come in
handy. As we begin our quest for divisibility rules for the early prime
numbers, we will begin with the following rule for divisibility by 7.

The rule for divisibility by 7: Delete the last digit from the given number,
and then subtract twice this deleted digit from the remaining number. If the
result is divisible by 7, then the original number is divisible by 7. This
process may be repeated until we reach a number that we can visually
inspect as one that is divisible by 7.

Let's consider an example to see how this rule works. Suppose we want
to test the number 876,547 for divisibility by 7. Begin with 876,547 and
delete its units digit, 7, and subtract its double, 14, from the remaining
number: 87,654 — 14 = 87,640. Since we cannot yet visually inspect the
resulting number for divisibility by 7, we continue the process. We delete
the units digit, 0, from the previously resulting number 87,640, and subtract
its double (which is still 0) from the remaining number to get 8,764 — 0 =
8,764. It is unlikely that we can visually determine whether this number,
8,764, is divisible by 7, so we continue the process. Again, we delete the
last digit, 4, and subtract its double, 8, from the remaining number to get
876 — 8 = 868. Since we still cannot visually inspect the resulting number,
868, for divisibility by 7, we again continue the process.

Continuing with the resulting number, 868, we once again delete its units
digit, 8, and subtract its double, 16, from the remaining number to get 86 —
16 = 70, which is divisible by 7. Therefore, the number 876,547 is divisible
by 7.

Before continuing with our discussion of divisibility of prime numbers,
you might want to practice this rule with a few randomly selected numbers,
and then check your results with a calculator.



Now for the beauty of mathematics! Why does this rather strange
procedure actually work? To see why things work is the wonderful aspect of
mathematics—it enlightens us!

To justify the technique of determining divisibility by 7, consider the
various possible terminal digits (that we are “dropping”) and the
corresponding subtraction that is actually being done after dropping the last
digit. In the chart below you will see how in dropping the terminal digit and
doubling it, we are essentially subtracting a multiple of 7. That is, we have
taken “bundles of 7” away from the original number. Therefore, if the
remaining number is divisible by 7, then so is the original number, because
you have separated the original number into two parts, each of which is
divisible by 7, and therefore, the entire number must be divisible by 7.

There is another way to argue why this method always works, and you
may also want to give this some thought: Removing the final digit and then
subtracting twice this digit from the remaining number is equivalent to
subtracting 21 times the final digit from the number and then dividing the
resulting number by 10. (The latter is certainly possible, since the number
resulting from the first step must terminate in the digit 0.) Since 21 is
divisible by 7, and 10 is not, the resulting number is divisible by 7 if and
only if the original number was divisible by 7.

Terminal | Number Subtracted Terminal Number Subtracted
Digit from Original Digit from Original

1 20+ 1=m21=3.7 5 100+ 5=105=15+7

2 40+ 2=42=6+-7 & 120+ 6=126=18-7

3 60+3=63=9-7 7 1404+ 7=147=21-7

4 80+4=84=12-7 8 160+ 8=168=24-7

9 180+ 9 =189 =277

The next prime number that we have not yet considered for divisibility is
the number 13.

The rule for divisibility by 13: The procedure here is similar to that used
for testing divisibility by 7, except that instead of subtracting twice the
deleted digit, we subtract nine times the deleted digit each time.

Perhaps it is best for us to do an example applying this rule. Let us check
for divisibility by 13 for the number 5,616. We begin with our starting
number, 5,616, and delete its units digit, 6, and subtract nine times 6, or 54,
from the remaining number to get 561 — 54 = 507.

Since we still cannot visually inspect the resulting number for divisibility
by 13, we continue the process. With this last resulting number, 507, we
delete its units digit, 7, and subtract nine times this digit, 63, from the
remaining number, which gives us 50 — 63 = —13, which is divisible by 13;
therefore, the original number, 5,616, is divisible by 13.

In this rule for divisibility by 13, you might wonder how we determined
the “multiplier” to be 9. We sought the smallest multiple of 13 that ends in a



1. That was 91, where the tens digit is 9 times the units digit. Once again
consider the various possible terminal digits and the corresponding
subtractions in the following table.

Terminal| Number Subtracted Terminal| Number Subtracted
Digit from Original Digit from Original

1 90+ 1=091=7-13 5 450 + 5=455=35-13

2 180+ 2=182=14.13 & 540+ 6=546=42-13

3 270+ 3=273=21:13 7 630 +7 =637 =49-13

= 360+ 4=2364=28-13 8 720+ 8=728=56-13

2 810 +9=819=63 13

In each case, a multiple of 13 is being subtracted one or more times from
the original number. Hence, if the remaining number is divisible by 13, then
the original number is divisible by 13.

Divisibility by 17: Delete the units digit and subtract five times the
deleted digit from the remaining number until you reach a number small
enough to determine its divisibility by 17.

We justify the rule for divisibility by 17 as we did for the rules for 7 and
13. Each step of the procedure subtracts a “bundle of 17s” from the original
number until we reduce the number to a manageable size and can make a
visual inspection for divisibility by 17.

The patterns developed in the preceding three divisibility rules (for 7, 13,
and 17) should lead you to develop similar rules for testing divisibility by
larger primes. The following chart presents the “multipliers” of the deleted
terminal digits for various primes.

Tc.‘ TG.St. . 7011 (13 (17 (19|23 |29 |31 |37 |41 [43 |47
Divisibility by
Multiplier 2 |1 12 |5 17|16 (2613 |11 |4 |30]14

You may want to extend this chart. It's fun, and it will increase your
perception of mathematics. You may also want to extend your knowledge of
divisibility rules to include composite (i.e., nonprime) numbers.

Divisibility by composite numbers: A given number is divisible by a
composite number if it is divisible by each of its relatively prime factors.
The chart below offers illustrations of this rule. You might want to complete
the chart to include composite numbers up to the number 48.

To Be Divisible by |6 10 |12 |15 |18 |21 (24 |26 |28
The Number Must (2, |2, (3, |3, |2, |3, |3, |2 |4
Be Divisible by and |and |and |and |and |and |and [and |and
3 5 B 5 9 7 8 13 7




You now have a rather comprehensive list of rules for testing divisibility,
as well as an interesting insight into elementary number theory. An
interested reader may want to test these rules (to instill even greater
familiarity with numbers) and try to develop rules to test divisibility by
other numbers in base ten and to generalize these rules to other bases.

SQUARING NUMBERS QUICKLY

We all learned in school how to multiply two multidigit numbers using
pencil and paper. However, if we want to multiply a number by itself (that
is, to square the number), there exist shortcuts to get the answer. Moreover,
the multiplication of any two numbers can be written as a combination of
squares of sums and differences of these numbers. Hence, knowing how to
add, subtract, and square numbers is actually enough to compute the
product of any two numbers.

Squaring Numbers with a Last Digit of 5

Here is a quick way to square any number with a last digit of 5: We delete
the last digit and we are left with some number N. Multiplying N by N + 1
and appending the digits 2 and 5 at the end yields the correct result.

For example, to compute 852, we delete 5, multiply the remaining digit,
8, by 9, giving 72, and append 25 at the end. The result is 7,225, which is
852,

Why does this rule work? If we let N denote the number that remains
after we have dropped the last digit, then we can write the square of the
number as (10 * N+ 5)2=100 * N2+ 100 * N+ 25=100 * N * (N + 1) + 25.
The product N * (N + 1) represents the amount of hundreds in the result. But
by writing its numerical value in front of the digits 2 and 5, we assign the
place value of a hundred to this number and, according to our little
calculation, will end up with the square of the original number.

Squaring the Numbers between 40 and 60

There is also a quick way to square the numbers between 40 and 60.
Perhaps you have already figured out the rule by yourself. We merely
develop a proof similar to the earlier one. So here is the trick: Any number
between 40 and 60 (not including 40 and 60) can be written as 50 + N,
where N is a single-digit number (for example, 58 = 50 + 8 and 43 = 50 —
7). To do this quick calculation for 572, we begin by adding 25 + 7 = 32 and
tagging on 72 = 49 to get 3,249. By the way, the 7 comes from 57 = 50 + 7.
Similarly, to calculate 482, we subtract 25 — 2 = 23 and tag on 2 = 4, which
we write as 04, to get 2,304. Again, we get the 2 since 48 = 50 — 2. The
reason that this works is that the square of such a number gives (50 + N)? =

2,500 + 100N + N? = 100(25 + N) + N?, so the leading digits of (50 + N)?



are 25 + N, followed by N, written as a two-digit number.

Squaring Arbitrary Numbers

The two tricks we have just discussed settle the case for when the first or
the last digit is a 5 as well as for all numbers between 40 and 60. But what
about all the other numbers? Although the trick presented above relied on
the fact that 2 « 5 = 10, we can use the same kind of reasoning to simplify
computing the squares of arbitrary numbers. Let us compute the square of a
number in which the last digit is less than 5, such as, for example, 732, It is
helpful to think of it as (70 + 3)* = 4,900 + 2 * 210 + 9 = 5,329. On the
other hand, if the last digit is greater than 5, such as 292, we resort to
writing this as 292 = (30 — 1)2 =900 -2 * 30 + 1 = 841.

Summing up, when you want to square a number, you can often simplify
this problem by first decomposing this number in a clever way, or making
use of the digit-5 tricks presented here. Being very good at squaring
numbers can also help you perform arbitrary multiplications, and it gives
you a more sophisticated view of arithmetic.

SQUARES AND SUMS

Squares are rather ubiquitous in mathematics. Yet what is not very well
known is that every integer number is either a square number or the sum of
two, three, or four square numbers. Although conjectured by the Greek
mathematician Diophantus (201-285 CE) in his book Arithmetica, he was
not able to provide a proof to justify his belief. This astonishing fact was
first proved by the French mathematician Joseph-Louis Lagrange (1736—
1813). The result is known as Lagrange's four-square theorem, a concept
unfortunately not presented in the school years.

Let's take a look at what this theorem tells us. Consider the number 18,

and we will try to represent it as a sum of four or fewer squares: 18 = 32 +

32=42+12+12=3%2+22+ 22+ 12 Here we have represented 18 at the
sum of two, three, and four squares.
Here are a few more examples:

23=32+22+22+12
43 =52 +3% + 3*
97 =82+ 5%+ 2% +22

An interested reader may want verify this unusual result with other
numbers.

USING SQUARES TO MULTIPLY ARBITRARY



NUMBERS

If you want to multiply two numbers whose sum happens to be an even
number (that is, two odd numbers or two even numbers), you can use the

formula (a + b)(a - b) = a? - b2 to reduce the problem to computing two
squares and taking their difference. For example, the product 47 * 59 can be

written as (53 — 6)(53 + 6) = 53% — 62 = 2,809 — 36 = 2,773 (and, by the
way, we already discussed earlier how to very quickly compute 53%).
Remember, this trick does not work when one number is odd and the other

is even. However, the product of any two such numbers of different parity
can also be computed as a difference of squares by employing the formula
(a + b)? = a? + 2ab + b°.

We calculate (a + b)2 —(a - .ib)2 =a?+2ab + b® - (02 — 2ab + bz) and
obtain

iy )

(a+b) —(a—b)

4

"

a-b=

which is a representation of an arbitrary product a * b in terms of the
difference of two square numbers.

As a matter of fact, knowing from memory the squares of all numbers
from, say, 1 to 20, and being aware of the formulas presented above, you
can easily compute the product of any two such numbers. In this sense,
remembering multiplication tables for mental arithmetic is not necessary, it
suffices to remember all the squares. The Babylonian clay tablets indicate
that the Babylonians used tables of squares and multiplied numbers in the
way we presented here, that is, by transforming products to differences of

S(.]llEl['ES.l

AN ALTERNATIVE METHOD FOR EXTRACTING A
SQUARE ROOT

Why would anyone want to find the square root of a number today without
using a calculator? Surely, no one would do such a thing. However, you
might be curious to know what is actually being done in the process of
finding the square root of a number. This would allow you some
independence from the calculator. The procedure typically taught in schools
many years ago was somewhat rote and had little meaning to the students
other than obtaining an answer. We will present a method that was
generally not taught in the schools but gives a good insight into the meaning
of a square root. The beauty of this method is that it really allows you to
understand what is going on, unlike the algorithm that was taught in schools
before the advent of calculators. This method was first published in 1690 by
the English mathematician Joseph Raphson (1648-1715) in his book,
Analysis alquationum universalis; Raphson attributed it to Sir Isaac Newton
(1643-1727) in his 1671 book Method of Fluxions, which was not officially



published until 1736. Therefore, the algorithm bears both names, the
Newton-Raphson method.
It is perhaps best to see the method as it is used in a specific example:

Suppose we wish to find J27. Obviously, the calculator could be used here.
However, you might like to guess at what this value might be. Certainly, it

. f Az
is between ¥25 and v36, or between 5 and 6, but closer to 5.
Suppose we guess at 5.2. If this were the correct square root of 27, then

if we were to divide 27 by 5.2, we would get 5.2. But this is not the case;

since ;—jz 5.2, we know that \_I“E =5

In order to find a closer approximation, we will calculate
27 = (5.2) * (5.192), one of the factors (in this case, 5.2) must 'beggger than
v'rﬁ and the other factor (in this case, 5.192) must be less than V27, Hence,
v'rﬁ is sandwiched between the two numbers 5.2 and 5.192; that is, 5.192 <
V27 <5.2.So it is plausible to infer that the average of these two numbers,
that is, 3:2+3.192 =5.196, is a better approximation for JE than either 5.2 or

5.192.
This process continues, each time with additional decimal places, so that

. o 509245196
an allowance is made for a closer approximation. That is, %—:.194,

b

|

=5.192, Since

Lh
)

27 . . '
then ——_=519831. Taking this another step to get an even closer

5.1
217
approximation of Jﬁ) we continue this process: - ]‘
S.1983145.193996 N
2
This continuous process provides insight into the finding of the square
root of a number that is not a perfect square. As seemingly cumbersome as
the method may be, it surely provides you with a genuine understanding
about the value of a square root.

=5.193904, then
983

5.1961530.

SENSIBLE NUMBER COMPARISONS

Comparing large numbers in today's technological world is something that
should not be neglected in the school curriculum. There are numerous
techniques for comparing numbers that are not simply written out in their
typical decimal form but, rather, in exponential form. We will consider one
here, just to give you an opportunity to see the kind of manipulations we
can make to answer questions that initially seem impossible to decipher.
The question we could be faced with is which of the two values is

greater, 311 or 17142 In order to answer this question, we will change these
bases to numbers that can be reduced to a common base. It is clear that

; 1 ‘ w14
311 = 300l = (f} =251 _ 255 Whereas 17" = 16" = [3"‘] = 2%, Now we

o

can clearly see that because 256 > 255 we can conclude that 1714 > 3111,
Because of the enormous magnitude of each of these two numbers, it would



be very difficult to determine which is larger without converting these to
common bases.

Another comparison of number magnitudes can be demonstrated by
determining the following. Which of the two following expressions is
larger, 3fgy or 181 (where the factorial expressionnl =1¢2¢3*4+5-¢..°
n)? In this case, we will raise each of the two numbers to be compared to
the ninetieth power, since 90 is the common multiple of 9 and 10.

Q0

(33’9!} = (9!}3?‘”‘ =(9n" =(91)"-(91)

L aa

(4101)" =(101)is™ = (101" =(91)"-(10)

If we divide each of the two end results by the same number, in this case
(9!)9, we find that the remaining numbers are then 9! and 10°. Since each of
the nine factors of 9! is smaller than the nine factors of 102, 9! is clearly less
than 10%; therefore, we can conclude that (‘{@]w <% 01. Again you will

notice how searching for commonality allows us to make comparisons more
easily than actually computing these incredibly large numbers.

EUCLIDEAN ALGORITHM TO FIND THE GCD

What is the greatest common divisor (gcd) of 15 and 10? Most people
would know intuitively that the answer is 5. This intuition is most likely
built up through the study of the multiplication table and through practice
with arithmetic. Going further, what is gcd(364, 270)? (Symbolically, this
means the greatest common divisor, gcd, of 364 and 270.) At this point,
intuition doesn't help as much as it did when considering the more familiar
numbers 15 and 10. One option is to calculate the prime decompositions of
both numbers and obtain the gcd by looking at the lowest powers of the
distinct primes showing up in both the prime decompositions. Another
method is to perform the Euclidean algorithm.

Consider two positive integers a and b, where a > b. We can always use
long division to find the remainder when we divide a by b, that is, a = gb +
r where q is the quotient and r is the remainder. If we set a = 364 and b =
270, and calculate, then we have 364 = 1 = 270 + 94. The Euclidean
algorithm revolves around the fact that gcd(a, b) = gcd(b, r). (Any divisor of
both @ and b is certainly a divisor of r, and any divisor of both b and r is
certainly a divisor of a.) In our example, gcd(364, 270) = gcd(270, 94).

At this point, performing the long division of 270 divided by 94 would
yield 270 = 2 » 94 + 82. If we think of a = 270 and b = 94, then notice the
previous observation about gcds applies once more: ged(270, 94) = gcd(94,
82).

This process is to be repeated until we get a remainder of 0.

94 =1 +82 + 12, so we have gcd(94, 82) = gcd(82, 12).
82=6°+12+ 10, so gcd(82, 12) = gcd(12, 10).



12=1+10+ 2, s0 gcd(12, 10) = ged(10, 2).
10=5°+2+0, so ged(10, 2) = ged(2, 0).

But the gcd of 2 and 0 is 2 itself, since any integer is a factor of 0, that is,
0 =0 * n for any n. More explicitly,2=1*2 and 0 = 0 * 2, showing that 2
is a divisor of both 2 and 0. Clearly, 2 is the largest divisor that can go into
2, hence gcd(2, 0) = 2.

Using a string of equalities, we have:

gcd(364, 270) = ged(270, 94) = ged(94, 82) = ged(82, 12) = ged(12, 10)
= gcd(10, 2) = ged(2, 0) = 2.

Let's check this result using the prime decomposition method mentioned

earlier. This gives us 364 = 22 ¢ 7 * 13 and 270 = 2 * 33 * 5. The only
common prime is 2, and the lowest power of 2 shown in the prime

decompositions is 1, hence the gcd(364, 270) = 21 =2,

Why would we use the Euclidean algorithm if the prime decomposition
method is available? It seems like the prime decomposition method can be
faster if you can quickly compute the prime decompositions of the integers
in question. The “quickly” part turns out to be the problem. For very large
integers, the prime decomposition can be difficult or inefficient to compute.
In fact, much of the security in commerce and the internet today depends on
the difficulty of figuring out whether or not a large integer is prime. The
Euclidean algorithm avoids this problem if you merely want to the find the
gcd of the numbers in question.

The Euclidean algorithm is a very old and efficient algorithm that can
compute the greatest common divisor of two integers. While intuition is
sufficient in the cases involving relatively small integers, the Euclidean
algorithm is able to leverage the knowledge of long division to find the
greatest common divisors of as large a pair of integers as we desire to
compute. The modest prerequisites combined with the usefulness of the
algorithm ensure its lasting place in our arithmetic tool kit.

SUMS OF POSITIVE INTEGERS

You may have heard the often-told childhood story of the famous German
mathematician Carl Friedrich Gauss (1777-1855), who performed a
remarkable feat when he was just in elementary school. His math teacher
had given the class the task of adding all the positive integers from 1 to 100.
The teacher expected the task of evaluating 1 + 2+ 3 + ¢ * ¢ + 100 to keep
the students, including the young Gauss, busy for some time. After all,
Gauss was just a little boy! To his teacher's amazement, Gauss did the
calculation in just a few seconds, and apparently he was the only one with
the right answer.

Young Gauss explained that rather than adding the numbers sequentially,
as the rest of his class was doing, he realized that the one hundred terms in
this sum can be broken up into pairs: 1 + 100, 2 + 99, 3 + 98, 4 + 97, and so



on. There are 50 such pairs, with each pair having a sum of 101. Therefore,
the total sum is 50 * 101 = 5,050.
Many will recall that Gauss's technique can be extended to find a

n[:n+ 1)

formula for the sum | 47 4...45= , where n is an arbitrary positive

integer. There are other simple ways to establish this formula, which may
not have been shown in school, such as the following visual demonstration.

Consider the diagram shown in figure 1.1, with n boxes in the bottom
row and right-side column.

1+24---4+n
Figure 1.1

The “staircase” in figure 1.1 represents the sum 1 +2+3 +* ¢+ +n. To
see this, break up the staircase into vertical columns. Looking from left to
right, the left-most vertical column has 1 square, the next column over has 2
squares stacked vertically, the third column has 3 squares, and so on. The
last column has n squares stacked vertically. The area of the staircase is the
sum of the areas of the columns, thus the area of the staircaseis 1+ 2 + 3 +
* 00 + n.

N\

%

v

N
N\

7

T

77

77

77777

n-+1

Figure 1.2



Create a shaded copy of the inverted staircase and join it with the
original one to form the rectangle shown in the figure 1.2. The rectangle has
area n(n + 1). The shaded and unshaded “staircases” have the same area.
Thus, dividing the rectangle's area in half, each staircase has an area of

m#+1) Recall that the staircase represents the sum of the integers from 1 to

n. We can, therefore, conclude that | ; 34, "1

-

This sum formula can be demonstrated in different ways, the most
famous of which is probably the one that the young Gauss used. For those
who prefer the visual version, the staircase method provides another elegant
way of seeing how this formula holds true.

SUMS OF ODD POSITIVE INTEGERS

A few simple calculations can sometimes be enough to reveal marvelous

patterns in numbers. Notice that 1 =12, which is a perfect square, that is, a
number that is equal to the product of two equal integers. Notice that 1 + 3
=4=22 alsoa perfect square. Notice that 1 + 3+ 5 =9 = 32, is again a
perfect square. This pattern of squares continues as expected.

We can use the following squares shown in figure 1.3 to understand this
pattern:

Figure 1.3

Looking from left to right, we are building progressively larger squares.
At each stage, we are adding on a new L-shaped piece on the bottom right
corner to get to the next larger square. The total area of the original upper
left corner square and the additional L-shaped pieces equals the area of the
whole square. For example, the square on the right represents 1 + 3 + 5+ 7

= 16 = 42, where the 1 and 5 are areas of the shaded pieces, and the 3 and 7
are areas of the unshaded pieces. The L-shaped pieces (and the original
square) all have odd areas, and the sum of these odd areas is equal to the
area of the whole square, which justifies our arithmetic statement about the
sum of odd integers being equal to squares.

We can also construct this pattern another way. Instead of adding odd
positive integers together to get squares, let's consider the following table of
squares and notice where the odd positive integers show up:

0] 0] 0+1=1




1] 1] 1+3=4
2| 4| 4+5=9

3 9] 9+7=16
4| 16] 16+9=25

This is a table that helps us see another pattern. To go from one row to
the next, we are adding odd positive integers to the perfect squares in order
to get the next perfect square. Let's focus on the third column, which
represents the changes to the second column to get to the next row. Observe
that from the first row to the second row, 0 + 1 = 1. From the second row to
the third row, we have 1 + 3 = 4. From the third row to the fourth row,
notice 4 + 5 =9, Similarly, moving along to the next row, we obtain 9 + 7 =
16. In other words, the differences between consecutive perfect squares are
the consecutive odd positive integers, which we might have expected—
given our geometric demonstration above. Notice that by going backward
from the last row up, 16 —9 = 7 and 9 — 4 = 5. Going further back, we also
have 4 — 1 = 3 and 1 — 0 = 1. Thus, starting at 0, we can add up these
differences to get 16: 1 + 3 + 5 + 7 = 16, which once again leads us to
notice that the sum of consecutive odd numbers results in a square number.

Such demonstrations may be helpful if you prefer to learn visually. But
do not despair, for those who prefer algebra, this idea can also be

demonstrated algebraically. Consider the consecutive squares n? and (n +

1)%, for some non-negative integer n. The difference can be computed as
follows:

(m+1)2-n?=n*+2n+1-n?=2n+1.

Notice that the difference simplifies to 2n + 1, which is an odd positive
integer when n is non-negative.

The connection between the sum of odd positive integers and perfect
squares has very humble prerequisites. The pattern itself can be seen in
elementary calculations. Tables of values for the squaring function, some
simple geometry, and a little bit of algebra all work together to further
demonstrate this marvelous pattern in numbers.

THE REALM OF NONTERMINATING DECIMALS

Nonterminating decimals are numbers that have an infinite sequence of
digits after their decimal point. They arise in various situations, some of
which you are certainly familiar with. For instance, dividing one integer by
another may lead to a non-terminating decimal, as well as taking the square
root of some integers. The two most important mathematical constants, e =
2.718281...and 7 = 3.141592..., are also nonterminating decimals. They
have infinite sequences of digits after the decimal point, and human
intuition often fails when encountering mathematical notions of infinity.
There are many astonishing and remarkable facts about nonterminating



decimals, some of which we believe you may not have been aware of.
Repeating Decimals

Dividing two integers using pencil and paper is a basic topic in elementary

arithmetic with which we are all famlhar The result can be a terminating

decimal (for example, i = 3, and I = 1.75, etc.) or a decimal with a

fractional part COHSlstmg of a repeating sequence of digits (for example,
'T— 2.3=2333333. ..). Notice that the bar over the 3 indicates that it repeats

endlessly, or infinitely. The inverse problem is sometimes less emphasized,
that is, given a decimal number with a fractional part, how can we construct
the fraction that this number represents? This is a very easy task if it is a
terminating decimal, but what if the number is something such as
1.428574285742857...7 At first sight it is not so obvious as to how to
convert this number into a fraction. Unfortunately, using a pocket calculator
may not be of much help either. Nevertheless, it can be done without much
effort by applying a little trick. First, we need to know the “length” of the
repeating part, measured in digits. For example, the repeating part of

x= 142857 is 5 digits long. Now multiply x by a corresponding power of
ten and subtract x from the result. This leads directly to the desired
representation of x as a fraction. In our example we would have x = 1 42857,
then, since the repetition is 5 digits, we multiply by 10° to get:
100,000x = 14285742857

Subtracting the first equation from the second yields 100,000x — x =

142,856. So, we obtain 99,999x = 142,856 and, thus, _x=‘:j“5"’, which

cannot be reduced any further. Applying this conversion prdcqulfre to the
repeating decimal 0.9 = 0.999999 . . .reveals that the decimal representation
of a number is not always unique: For x = 0.9, we would get 10x = 9.9, and
by subtracting we get 9x = 9, or x = 1. Thus implying that 0.9 = 1. This
means that 0.9 is really just another representation of 1. Intuitively you

might be tempted to believe that 0.9 should be a tiny little bit smaller than
1, but it isn't (as we just proved). We cannot always trust our intuition when
dealing with infinite sequences.

Irrational Numbers

If a nonterminating decimal does not have a repeating pattern of numbers,
then it cannot be written as a fraction. Thus, it is not a rational number and
therefore, such numbers are then called irrational. Euler's number e and 7
are both examples of irrational numbers. The square root of a natural
number is 1rrat10nal whenever the number_is not a square number; for

[7

example, V2.43.45,46.47.8,4/10. and V11 are all irrational numbers.
They have infinite nonrepeating sequences of digits after the decimal point.

<
Clearly, it is not possible to know all decimal values of , e, or ¥2, since



they go on infinitely far and without any obvious pattern.

Mathematicians are always in search of patterns among the digits of the
decimal approximation of 7, where sometimes patterns can be established.
For example, the British mathematician John Conway (1937-) has indicated
that if you separate the decimal value of 7T into groups of ten places, the
probability of each of the ten digits appearing in any of these blocks is about
1 in 40,000. Yet he noted that it does occur in the seventh such group of ten
places, as you can see from the grouping below:

7T = 3.1415926535 8979323846 2643383279 5028841971 6939937510
5820974944 5923078164 0628620899 8628034825 3421170679
8214808651 3282306647 0938446095 5058223172 5359408128....

However, accompanied by the advances in computational power, the
record precision of numerical approximations to  is steadily increasing.
Recently, the first 22,459,157,718,361 (about 22.5 trillion) decimal places
of  have been computed, but most likely at your reading, this record will
already have been broken. Irrational numbers are a challenge not only for
computers but also for people who like to memorize numbers. Believe it or
not, there are even separate world-ranking lists for memorizing digits of

I
e, and V2, For example, the current record (as of March 2017) for  is held
by Suresh Kumar, who was able to recite its first 70,030 digits, and likely

this will have been superseded at this reading.2 On the other hand, it is often
overlooked that not all irrational numbers have decimal representations that
are hard to memorize. For example, consider the number
0.12345678910111213141516171819202122232425262728293031323334....

Can you see how this sequence continues? This number is called
Champernowne's constant, named after the English mathematician D. G.
Champernowne (1912-2000), who published it as an undergraduate student
in 1933. Its fractional part is obtained by concatenating all positive integers
in order—a sequence everyone can write down immediately. Observe that
any finite sequence of numbers will occur somewhere in the infinite
sequence of digits of this number. In fact, any finite sequence of digits will
even occur infinitely often in Champernowne's number. For example, if we
would use a sequence of numbers to represent the code imprinted in the
sequence of nucleobases in a DNA molecule, then the exact sequence of
numbers representing your own DNA molecule would occur somewhere in
the endless digits of Champernowne's number. Of course, the same would
be true for the DNA molecule of any other organism that lives, or has ever
lived, on Earth. This may be hard to believe, but it is just a simple
consequence of the concept of infinity and the definition of
Champernowne's constant (and it does not imply that this number has any
special meaning).

These strange features of the seemingly all-encompassing
Champernowne's constant once again illustrate that infinite sequences (and
mathematical notions of infinity in general) are completely different from
everything we experience in real life. If you are not used to dealing with
such concepts, then you may be puzzled by some of the counterintuitive
facts accompanying them.



ATOMS IN THE UNIVERSE OF NUMBERS

In chemistry class, we are introduced to the periodic table of elements,
which contains all known extant chemical elements. Some of them have
only been produced in laboratories and do not occur in nature. As far as we
know, all visible matter in the universe is made up of 94 different natural
chemical elements, from the lightest element, hydrogen, to the heaviest,
plutonium. Although 24 even heavier elements have been produced
artificially, they have extremely short half-lives and could not be observed
in nature. The 94 natural chemical elements, representing 94 different sorts
of atoms, can be regarded as the elementary building blocks of our world.
Every piece of matter can be decomposed into a finite number of atoms,
each belonging to one of the different elements. For instance, a droplet of
water is made up of a vast number of water molecules, each of which is
formed by two hydrogen atoms and one oxygen atom. Thus, the droplet
contains some number of oxygen atoms and twice that number of hydrogen
atoms. Similarly, we can decompose every isolated conglomerate of matter
into individual atoms and sort these atoms according to the chemical
elements they represent. The word atom was created by ancient Greek
philosophers and meant the “indivisible,” that is, the smallest unit of matter.
In ancient Greece, philosophy, physics, and mathematics were not separate
disciplines; they all belonged together as “natural philosophy,” meaning the
philosophical study of nature and the physical universe. Ancient Greek
philosophers also noticed that smallest, indivisible units exist in the world
of numbers as well. They are now called prime numbers—from Latin
numerus primus (meaning “first numbers”). A prime number is a natural
number that has exactly two natural numbers as divisors (the number itself
and 1). Bear in mind that 1 is not a prime number by this definition, since it
has no other divisor than itself.

Just as a piece of matter can be decomposed into individual atoms, each
representing a certain chemical element, every integer greater than 1 can be
decomposed into indivisible factors, each of them representing a certain
prime number. But while there are only 94 different natural chemical
elements in nature, there are infinitely many prime numbers.
Notwithstanding the infinite number of primes, the decomposition of an
integer into prime factors is unique, just like the decomposition of matter
into atoms. This important statement is called the fundamental theorem of
arithmetic. Euclid of Alexandria (fl. 300 BCE) gave a proof of this theorem
in his famous book 2 7 0 ¢ x €ta (Greek: Stoicheia), which is now
known as Euclid's Elements. Although the proof is elementary from a
mathematical viewpoint, we will not present it here, since it requires some
special notation with which not all readers would be familiar. We will
instead try to motivate and explain the result on a heuristic level.

The Fundamental Theorem of Arithmetic

Suppose we are given an arbitrary integer greater than 1. Then either this
number is a prime number, meaning it has no divisors other than 1 and
itself, or it is not a prime number. If it is prime, the number itself represents



its unique prime factor decomposition. However, if the number is not prime,
then we can always break it up into prime factors, thereby obtaining a
product of prime numbers representing the given number. Such a nonprime
number is called a composite number. The following table shows the prime
factor decompositions of the forty smallest integers greater than 1, which
are composite numbers. The prime numbers, which are “missing” from the
list are the numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, and
53, and they are identical to their prime factorizations.

4=72° 20=2%-5 33=3-1 46 =2-23
6=2-3 21=3-7 A=2-17 48 =2%-3
g =2 22=2-11 35=5-7 49 =72

Q= 3° 24=2%-3 36=2°-3° 50=2-5°
10=2-5 25 =52 38=2-19 51=3-17
12=22.3 26=2-13 39=3-13 52=22:13
14=2-7 27 =3 40=2%-5 54=2-3°
15=3-5 28=2%-7 42=2-3-7 55=5-11
16 = 2¢ 30=2-3-5 44 =22-11 56=2%-7
18=2- 3¢ 32=2° 45=3%.5 5/ =319

The fact that every integer greater than 1 can be broken up into the
product of prime numbers is not so surprising, given the definition of a
prime number. A number that is not prime must have integer divisors other
than 1 and itself and can therefore be factored, that is, split up into factors
(e.g., 12 = 4 = 3). If any of these factors is not prime, it can also be split up
into smaller factors, and so forth. Evidently, the procedure of factoring will
stop when all obtained factors cannot be divided any further, that is, when
they are all prime numbers (e.g., 12 =2 * 2 * 3 = 22 + 3). So it is actually
quite obvious that integers can be represented as products of prime
numbers. However, the fundamental theorem of arithmetic also states that
this decomposition is unique (the order of the factors is not important; e.g.,
12=2%23=2+32=3¢2+2) For example, 2016 = 2° * 32 + 7, and
there is no other way to represent 2016 as the product of prime numbers.
Thus, independent of the way we do the factorization (by using a certain
algorithm or simply by using a trial-and-error strategy), we will end up with
five 2s, two 3s, and one 7.

Is Prime Factorization Really Special?

Another way of looking at the fundamental theorem of arithmetic is to view
it as a statement on the “composition” of integers rather than on the
“decomposition”: All integers greater than 1 can be constructed or
“composed” by multiplying prime numbers, and for each integer there is



only one special composition of primes representing this integer. Hence,
prime numbers can truly be regarded as the basic building blocks (or the
“atoms”) of integers.

One could argue that every integer can as well be constructed by adding
a unique number of 1s; for example, 12=1+1+1+1+1+1+1+1+1
+1+ 1+ 1,so 1 could then be called the building block of all integers. Yet
there is a decisive difference to prime factorization: If we want a sum of 1s
to become 12, we also need twelve 1s. More generally, if we want to
represent an integer N as a sum of 1s, we need N of them. So we actually
need N to “construct” N as a sum of 1s. As a matter of fact, representing N
as a sum of 1s does not provide any additional information about N; it is
essentially just another way of writing this number (such as writing a
number using Roman numerals). In contrast, when multiplying primes, the
prime numbers themselves “construct” the number N. For instance, to

obtain 12, the prime factorization 22 * 3 already contains all the information
—nothing more is needed.

The Atoms of Numbers

As we pointed out earlier, all molecules (and, more generally, all pieces of
matter) consist of specific numbers of atoms from different chemical
elements. Analogously, every integer greater than 1 consists of specific
numbers of different primes. We can represent molecules by chemical
formulas. For example, H,O for the water molecule (H,O stands for 2

hydrogen atoms and 1 oxygen atom). Furthermore, every integer greater
than 1 can be represented by a unique product of primes, the prime

factorization of this number. For instance, the expression 200327 plays
the same role for the number 2016 as the chemical formula H,O does for

the water molecule.
Applications of Prime Factorization

For more than 2,000 years, prime numbers and the fundamental theorem of
arithmetic seemed to be of little practical value. This changed with the
advent of computer technology. The fundamental theorem of arithmetic
gives no information about how to obtain an integer's prime factorization; it
only guarantees its existence. While there exist systematic methods to
decompose an integer into prime factors, the number of operations required
in such procedures increases very rapidly with the number of digits of the
given integer. Factoring many-digit integers is only possible with the help
of computers. However, if the number to be factored is sufficiently large
(say, several hundred digits), prime factorization is virtually impossible,
even for the most powerful supercomputers. It would simply take too much
time. Many public-key cryptosystems for secure data transmission are based
on this fact. In public-key cryptography, each user has a pair of
cryptographic keys—a public encryption key and a private decryption key.
The public encryption key may be widely distributed, while the private
decryption key is known only to its owner. A typical application of public-



key cryptography are digital signatures used in financial transactions to
demonstrate the authenticity of a digital message. There is a mathematical
relation between the encryption key and the decryption key, but calculating
the private key from the public key is unfeasible, since it would involve
finding the prime factors of a very large number. Thus, the safety of such
cryptosystems directly depends on the mathematical difficulty of factoring
large numbers. Interestingly, a hypothetical quantum computer (that is, a
computation system making direct use of quantum-mechanical phenomena)
could factor even large integers quickly. This was shown by the American
mathematician Peter Williston Shor (1959-), who developed an algorithm
for quantum computers that runs exponentially faster than the best currently
known algorithm running on a classical computer. However, it has not yet
been proved that there does not exist an efficient prime factorization
algorithm for classical computers. It's just that nobody has yet found one.

FUN WITH NUMBER RELATIONSHIPS

Today's the school curriculum seems very heavily focused on testing
students. This has many teachers gearing their instruction toward passing
these examinations. It would be refreshing to encourage teachers to
entertain students with number peculiarities. Frankly, the one advantage of
taking time to show these number relationships is to demonstrate the beauty
that lies well hidden in our number system, which should motivate students
toward embracing mathematics. These unexpected relationships are
boundless in their manifestations. We will present some of these here as a
form of entertainment with the hope that you will then be motivated to seek
other such clever patterns.

Let's begin by considering numbers where we will raise each of the
digits of the number to the third power and show that their sum is equal to
the original number:

407 =43+ 03+ 73
153 =13+ 53 + 33
371=3%+ 73+ 13

A similar situation can be shown for fourth and fifth powers, as in the
following examples:

1,634 = 1%+ 6% + 3% + 4*
4,150 = 4% + 1° + 5° + 0°.

There are many other numbers that can be expressed as the sum of its
digits each taken to the same power. We invite you to begin your search.
But first we will start you off with a clue to one such number: 8,208, which
can be expressed as the sum of its digits taken to a power. We leave it to
you to determine to which power these digits need to be raised.



We can do this again, but this time we have two numbers related to each
other in a similar fashion as above, that is, each number can be expressed as
the sum of the digits of the other number, each taken to the same power. In
our example that follows, the number 136 and the number 244 have this
relationship:

136 = 23 + 43 + 43; now we take these bases to form the number 244 =

13 + 33 + 63, whose bases determine the original number.
Another unusual arrangement of powers can be seen from the value of

2042, which can be shown to be equal to three consecutive numbers taken to
third power: 204% = 233 + 243 + 253,

Taking this a step further, we consider the number 8,000 = 203, which
can also be expressed as a sum of consecutive cubes—this time four cubes
—as follows: 20% = 113 + 123 + 133 + 143,

There are other numbers that can also be expressed as the sum of

consecutive numbers taken to the same power. Before you search for others,
we will further entice you with one more example:

4900=702=12+22+32+42+52+ 62+ eee+20%+21%+222 + 232
+ 242,

Now to consider consecutive exponents. There are also numbers that are
equal to the sum of the digits raised to consecutive powers, such as the
following:

135=11+32+53
175=11+72+53
518 =5+ 12 + 83
598 = 51 + 92 + g3

Expressing numbers as the sum of powers also provides us some further
entertainment. Some of these are quite ingenious. For example, in 1772 the
famous Swiss mathematician Leonhard Euler (1707-1783) discovered that

1594 + 158% = 635,318,657 = 133* + 134% This can be extended to
considering a number, 6,578, which can be expressed as a sum of three
fourth-powers in two distinct ways: 6,578 = 14 + 24 + 94 = 3% + 74 + 84,
This happens to be the smallest number for which this is possible.

We can also express certain numbers as a sum of equal powers—Iless
than the fourth power:

65=82+12=72+42
125=102+52=112+22=53
250=53+53=132+92=152+52
251=13+53+53=234334+¢3

Another unusual sum of powers, where each of the numbers is taken to



the same power as the original number, is shown here: 1027 = 127 + 357 +
537 + 587 + 647 + 837 + 857 + 90”.

Perhaps you will be amused to find a number that is equal to the sum of
all of the two-digit numbers that can be formed by the digits of the original
number. Our example will be with the number 132, which also happens be
the smallest number for which this is possible, namely, 132 = 12 + 13 + 21
+23+ 31 +32.

There are boundless curious patterns that exist in our number system.
Unfortunately, there rarely seems to be a really good opportunity for them
to be presented to students or the general public. However, the fun of
discovering these unusual relationships adds to an aspect of mathematics
that can be entertaining and also enlightening as you search for more such
patterns.

FRIENDLY NUMBERS

As we have indicated, unfortunately, there is hardly enough time in the
course of learning mathematics in school to show some of the unusual
properties that numbers have, and which have given mathematicians
throughout the centuries material to further investigate. We are all aware
that certain numbers have properties in common. For example, even
numbers are all divisible by 2. We know that odd numbers are not divisible
by 2. These are common relationships among numbers. There are, however,
relationships between numbers that are quite unusual. One such relationship
has been termed numbers that are “friendly” to each other. What could
possibly make two numbers friendly? Mathematicians have decided that
two numbers are to be considered friendly—or as is sometimes used in the
more sophisticated literature, “amicable”—if the sum of the proper

divisors? (or factors) of one number equals the second number and the sum
of the proper divisors of the second number equals the first number as well.
Sounds complicated? It really isn't. Just take a look at the smallest pair of
friendly numbers: 220 and 284. The proper divisors (or factors) of 220 are
1, 2, 4,5, 10, 11, 20, 22, 44, 55, and 110. Theirsumis1+2+4+5+ 10 +
11 +20 + 22 + 44 + 55 + 110 = 284. The proper divisors of 284 are 1, 2, 4,
71, and 142, and their sum is 1 + 2 + 4 + 71 + 142 = 220. This shows that
the two numbers can be considered a pair of friendly numbers.

The second pair of friendly numbers, which were discovered by the
famous French mathematician Pierre de Fermat (1601-1665) is 17,296 and
18,416. In order for us to establish their friendliness relationship, we need to

find all of the prime factors of each of the numbers: 17,296 = 24 ¢ 2347,

and 18,416 = 24 « 1,151. Then we need to create all the numbers from these
prime factors as follows. The sum of the factors of 17,296 is

1+2+4+8+16+23+46+47 +92+94 + 184 + 188 + 368 + 376 +
752 +1081 + 2162 + 4324 + 8648 = 18,416.

The sum of the factors of 18,416 is



1+2+4+8+16+ 1151 + 2302 + 4604 + 9208 = 17, 296.

Once again, we notice that the sum of the factors of 17,296, is equal to
18,416, and, conversely, the sum of the factors of 18,416, is equal to
17,296. This qualifies these two numbers to be considered a pair of friendly
numbers.

There are many more such pairs of friendly numbers. The following are
a few of such pairs of friendly numbers for your consideration:

1,184 and 1,210

2,620 and 2,924

5,020 and 5,564

6,232 and 6,368

10,744 and 10,856

9,363,584 and 9,437,056
111,448,537,712 and 118,853,793,424

If you are feeling ambitious, you may want to verify the above pairs’
friendliness!

For the experts, the following is one method for finding pairs of friendly
numbers:

Leta=3*2",b=3+2" _1 and c =32+ 2" _ 1, where n is an
integer greater than or equal to 2, and a, b, and c are all prime numbers. It
then follows that 2"ab and 2"c are friendly numbers.

We can always look for fascinating relationships between numbers. We
now know what is meant by pairs of friendly numbers. With some
creativity, we can establish another form of “friendliness” between
numbers. Some of them can be truly mind-boggling! Take for example the
pair of numbers 6,205 and 3,869.

At first glance, there seems to be no apparent relationship between these
two numbers. But with some luck and imagination, we can get some
fantastic results:

6,205 = 382 + 692, and 3,869 = 622 + 052,

We can even find another pair of numbers with a similar relationship.
Consider these:

5,965 = 772 + 062, and 7,706 = 592 + 652,

Beyond the enjoyment of seeing this wonderful pattern, there isn't much
mathematics in these examples. However, the relationship is truly amazing
and worth noting. Again, mathematics has its hidden treasures, many of
which have passed by the average math student without proper fanfare!

PALINDROMIC NUMBERS



The average school curriculum is rather limited with regard to the types of
numbers that are presented to students throughout their mathematics
instruction. Surely, students know about odd numbers, even numbers, prime
numbers, and even perfect numbers, which we will discuss later in this
chapter. However, there are other kinds of numbers that have an unusual
property and are often neglected, such as numbers that read the same in both
directions. These numbers are called palindromic numbers; they read the
same left to right as they do from right to left. First, recall that a palindrome
can also be a word, phrase, or sentence that reads the same in both
directions. Figure 1.4 shows a few amusing palindromes.

A
EVE
RADAR
REVIVER
ROTATOR
LEPERS REPEL
MADAM I'M ADAM
STEP NOT ON PETS
DO GEESE SEE GOD
PULL UP IF | PULL UP
NO LEMONS, NO MELON
DENNIS AND EDNA SINNED
ABLE WAS | ERE | SAW ELBA
A MAN, A PLAN, A CANAL, PANAMA
A SANTA LIVED AS A DEVIL AT NASA
SUMS ARE NOT SET AS A TEST ON ERASMUS
ON A CLOVER, IF ALIVE, ERUPTS A VAST, PURE EVIL; A FIRE VOLCANO

Figure 1.4

A palindrome in mathematics would be a number, such as 666 or
123321, that reads the same in either direction. For example, the first four
powers of 11 are palindromic numbers:

119=1
1ml=1
112=121
113 =1331
114 = 14641

It is interesting to see how a palindromic number can be generated from
randomly selected numbers. All you need to do is to continually add a
number to its reversal (that is, the number written in the reverse order of
digits) until you arrive at a palindrome. For example, a palindrome can be
reached with a single addition when the starting number is 23: 23 + 32 = 55,
which is a palindrome. Or it might take two steps, such as when the starting
number is 75: 75 + 57 = 132 and 132 + 231 = 363, which has led us to a



