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1

Naive Set Theory

Zermelo—Fraenkel set theory, which forms the main topic of the book, is a
rigorous theory, based on a precise set of axioms. However, it is possible
to develop the theory of sets considerably without any knowledge of those
axioms. Indeed, the axioms can only be fully understood after the theory
has been investigated to some extent. This state of affairs is to be expected.
The concept of a ‘set of objects’ is a very intuitive one, and, with care,
considerable, sound progress may be made on the basis of this intuition
alone. Then, by analyzing the nature of the ‘set’ concept on the basis of
that initial progress, the axioms may be ‘discovered’ in a perfectly natural
manner.

Following standard practice, I refer to the initial, intuitive development
as ‘naive set theory’. A more descriptive, though less concise, title would
be ‘set theory from the naive viewpoint’. Once the axioms have been in-
troduced, this account of ‘naive set theory’ can be re-read, without any
changes being necessary, as the elementary development of aziomatic set
theory.

1.1 What is a Set?

In naive set theory we assume the existence of some given domain of ‘ob-
jects’, out of which we may build sets. Just what these objects are is of no
interest to us. Our only concern is the behavior of the ‘set’ concept. This
is, of course, a very common situation in mathematics. For example, in
algebra, when we discuss a group, we are (usually) not interested in what
the elements of the group are, but rather in the way the group operation
acts upon those elements. When we come to develop our set theory ax-
iomatically we shall, in fact, remove this assumption of an initial domain,
since everything will then be a set; but that comes much later.
In set theory, there is really only one fundamental notion:
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The ability to regard any collection of objects as a single entity
(i.e. as a set).

It is by asking ourselves what may and what may not determine ‘a collec-
tion’ that we shall arrive at the axioms of set theory. For the present, we
regard the two words ‘set’ and ‘collection (of objects)’ as synonymous and
understood.

If @ is an object and z is a set, we write

acx

to mean that a is an element of (or member of) z , and

a&x

to mean that a is not an element of x.

In set theory, perhaps more than in any other branch of mathemat-
ics, it is vital to set up a collection of symbolic abbreviations for various
logical concepts. Because the basic assumptions of set theory are abso-
lutely minimal, all but the most trivial assertions about sets tend to be
logically complex, and a good system of abbreviations helps to make other-
wise complex statements readable. For instance, the symbol € has already
been introduced to abbreviate the phrase ‘is an element of’. 1 also make
considerable use of the following (standard) logical symbols:

— abbreviates ‘implies’
< abbreviates ‘if and only if’
- abbreviates ‘not’
abbreviates ‘and’

¢

abbreviates ‘or

abbreviates ‘for all’

w << < >

abbreviates ‘there exists’.

Note that in the case of ‘or’ we adopt the usual, mathematical interpreta-
tion, whereby ¢ V ¢ means that either ¢ is true or ¢ is true, or else both ¢
and ¢ are true, where ¢,y denote any assertions in any language.

The above logical notions are not totally independent, of course. For
instance, for any statements, we have
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¢ < 1) is the same as (¢ — Y) A (¥ — @)
¢ — 1) is the same as  (—¢) V 1)
6V is the same as  —((—6) A (1))
Jx¢  is the same as  —((Vz)(—¢))
where the phrase ‘is the same as’ means that the two expressions are logi-

cally equivalent.

Exercise 1.1.1. Let ¢4 mean that exactly one of ¢, is true. Ezpress ¢\
in terms of the symbols introduced above.

Let us return now to the notion of a set. Since a set is the same as a
collection of objects, a set will be uniquely determined once we know what
its elements are. In symbols, this fact can be expressed as follows:

z =y < Va[(a € x) — (a €y)].

This principle will, in fact, form one of our axioms of set theory: the Aziom
of Extensionality.

If 2, 1 are sets, we say x is a subset of y if and only if every element of
x is an element of y, and write

rCy
in this case. In symbols, this definition reads’
(z Cy) « Va[(a € z) — (a €y).

We write
rCy

in case x is a subset of ¥ and z is not equal to y; thus:

(zCy) =Sy Alz#y)

where, as usual, we write z # y instead of —(z = y), just as we did with €.
Clearly we have

(z=y) = [(zCy) Ay Ca).

Exercise 1.1.2. Check the above assertion by replacing the subset symbol by
its definition given above, and reducing the resulting formula logically to the
ariom of extensionality. Is the above statement an equivalent formulation
of the aziom of extensionality?

IThe reader should attain the facility of ‘reading’ symbolic expressions such as this
as soon as possible. In more complex situations the symbolic form can be by far the
most intelligible one.
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1.2 Operations on Sets

There are a number of simple operations that can be performed on sets,
forming new sets from given sets. I consider below the most common of
these.

If  and y arc sets, the union of z and y is the set consisting of the
members of z together with the members of y, and is denoted by

rUy.
Thus, in symbols, we have
(z=zxUy) —Va[(a € z) — (a€xVacecy).

In the above, in order to avoid proliferation of brackets, I have adopted
the convention that the symbol € predominates over logical symbols. This
convention, and a similar one for =, will be adhered to throughout. An
alternative way of denoting the above definition is

(aczUy) = (acxVacy).

Using this last formulation, it is easy to show that the union operation on
sets is both commutative and associative; thus

rUy=yUw,

zU(yuz)=(zUy)U -z

The beginner should check these and any similar assertions made in this
chapter.

The intersection of sets z and ¥ is the set consisting of those objects
that are members of both z and y, and is denoted by

TMNy.

Thus
(a€xznNy) < (a€xNa€y).

The intersection operation is also commutative and associative.
The (set-theoretic) difference of sets x and y is the set consisting of those
elements of = that are not elements of ¥, and is denoted by

T —.

Thus
(acz—y)—(aczhady).
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Care should be exercised with the difference operation at first. Notice that
x —y 1s always defined and is always a subset of z, regardless of whether y
is a subset of z or not.

Exercise 1.2.1. Prove the following assertions directly from the definitions.
The drawing of ‘Venn diagrams’ is forbidden; this is an exercise in the
manipulation of logical formalisms.

(i) zUz=2 ; zNx=umr

(i) zCaxUy ; zNyCumx

(i) (@ C 2) A (y € 2)] — [zUy C 2]
() [z C2) Az Cv)] — [z Sz
(v) 2U(yN2) = (2Uy) N (@ U2
(vi) zN(yUz) =(zNy)U(zNz);

(Vi) (zCy) = (zNy=2) < (zUy=y)

Exercise 1.2.2. Let x,y be subsets of a set z. Prove the following assertions:
(i) z2—(z—x) =
(il) (zCy) = [(z—w) € (z—2);
(iii) zU (z — z) = z;
(iv) z=(zUy) = (z—2)N (2 —y);
() z—(zNy) = (z —2) U (2 — y).

Exercise 1.2.3. Prove that for any sets x,y,

r—y=z—(zNy).

In set theory, it is convenient to regard the collection of no objects as a
set, the empty (or null) set. This set is usually denoted by the symbol 0, a
derivation from a Scandinavian letter.

Exercise 1.2.4. Prove, from the axiom of extensionality, that there is only
one empty set. (This requires a sound mastery of the elementary logical
concepts introduced earlier.)
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Two sets © and y are said to be disjoint if they have no members in
common; in symbols,
zNy=0.

Exercise 1.2.5. Prove the following:

(i) z—0=ux

(i) z —x =0

(iii) zN(y —z) =0,
(iv) 0 C =

1.3 Notation for Sets

Suppose we wish to provide an accurate description of a set x. How can we
do this? Well, if the set concerned is finite, we can enumerate its members:
if # consists of the objects ay, ..., a,, we can denote x by

{ay,...,a,}.

Thus, the statement
= {(L]_, .- 1a'n}

should be read as ‘z is the set whose elements are ay,...,a, . For example,
the singleton of a is the set
{a}

and the doubleton of a, b is the set
{a,b}.
In the case of infinite sets, we sometimes write
{ay,as,as,...}
to denote the set whose elements are precisely
a,az,as, ... .

An alternative notation is possible in the case where the set concerned
is defined by some property P: if x is the set of all those a for which P(a)

holds, we may write
z={a| P(a)}.



1.4. SETS OF SETS 7

Thus, for example, the set of all real numbers may be denoted by

{a | a is a real number}.

Exercise 1.3.1. Prove the following equalities:
(i) zUy={alaczVacy}
(i) zNny={a|acxzhacy}

(i) z—y={a|lacxrha gy}

1.4 Sets of Sets

So far, I have been tacitly distinguishing between sets and objects. Admit-
tedly, I did not restrict in any way the choice of initial objects — they could
themselves be sets; but I did distinguish these initial objects from the sets
of those objects that we could form. However, as I said at the beginning,
the main idea in set theory is that any collection of objects can be regarded
as a single entity (i.e. a set). Thus we are entitled to build sets out of
entities that are themselves sets. Commencing with some given domain of
objects then, we can first build sets of those objects, then sets of sets of
objects, then sets of sets of sets of objects, and so on. Indeed, we can make
more complicated sets, some of whose elements are basic objects, and some
of which are sets of basic objects, etc.
For example, we can define the ordered pair of two objects a, b by

(a,b) = {{a},{a,b}}.
According to this definition, (a,b) is a set: it is a set of sets of objects.

Exercise 1.4.1. Show that the above definition does define an ordered-pair
operation,; i.e. prove that for any a,b,a’, b

(a,b) = (a', b)) = (a=a' Ab=1V).
(Don’t forget the case a = b.)

The inverse operations (—)o,(—)1 to the ordered pair are defined thus:
if z = (a,b), then (z)9 = a and (z); = b. If = is not an ordered pair, (z)o
and (z); are undefined.

The n-tuple {(ay, ..., a,) may now be defined iteratively, thus

(a1,...,a,) = ((a1,-..,8n-1), an).
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It is clear that
(a1,...,ap) = (a},...,a,) ifand only if a3 =a\ A ... Na, = al,.

The inverse operations to the n-tuple are defined in the obvious way, so
that if z = (ag,...,an—-1), then ()2 =ag,..., ()" _; = ap_1-

Of course, it is not important how an ordered-pair operation is defined.
What counts is its behavior. Thus, the property described in Exercise 1.4.1
is the only requirement we have of an ordered pair. In naive set theory, we
could just take (a,b) as a basic, undefined operation from pairs of objects
to objects. But when we come to axiomatic set theory a definition of the
ordered pair operation in terms of sets, such as the one above, will be
necessary. Though there are other definitions, the one given is the most
common, and it is the one I shall use throughout this book.

If & is any set, the collection of all subsets of z is a well-defined collection
of objects and, hence, may itself be regarded as an entity (i.e. set). It is
called the power set of z, denoted by P(x). Thus

Plx)={y|y Cz}.

Suppose now that x is a set of sets of objects. The union of x is the set
of all elements of all elements of x, and is denoted by | Jz. Thus

Uz={a |y ezhacy)}
Extending our logical notation by writing
(y € x)
to mean ‘there exists a y in x such that’, this may be re-written as
Uz ={a| @y e z)(acy)}

The intersection of x is the set of all objects that are elements of all
elements of x, and is denoted by [z. Thus

Ne={a|Yyly ez —acy)}

Or, more succinctly,
Nz ={a| (Vy € z)(acy)}

where (Vy € z) means ‘for all y in x’.
If & = {y; | € I} (so I is some indexing set for the elements of x), we
often write

Uicrvi
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for [Jx and
Micryi

for (z. This ties in with our earlier notation to some extent, since we
clearly have, for any sets x, y,

zUy = U{z,y}, zny=N{z,y}

Exercise 1.4.2.
(i) What are U{z} and N{z} ?
(ii) What are |UD and N0 ?
Verify your answers.
Exercise 1.4.3. Prove that if {z; | i € I} is a family of sels, then
(i) Uierzi ={a| (Fi € N(a € zi)};
(i) MNieszi ={a| (Vi€ I)(a € z;)}.

Exercise 1.4.4. Prove the following:
(i) (vie (@i Sy) = (Uieszi S v
(i) (Vi€ Dy € i) — (¥ € Niegmi);

(iil) Ujes(ziUmi) = (Uierms) U (Uiervi)s
(i) Mier(@i Nyi) = (Mierzi) 0 (MNiesvid;
(v) Uier(@i Ny) = (Uierzi) Nu;

(vi) Nies(@iUy) = (Nier®i) Yy

Exercise 1.4.5. Let {x; | i € I} be a family of subsets of z. Prove:
(1) 2= Uies®i = Nies(z — z);
(i) z = Mierzi = Uies(z — @)
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1.5 Relations

If x,y are sets, the cartesian product of x and y is defined to be the set
zxy={(a,b)|acxzrbey}

More generally, if z1,...,x, are sets, we define their cartesian product
by

zy XXz, ={(a1,...,0,) a1 Ex1 A ... Aay € 2}

A unary relation on a set x is defined to be a subset of . An n-ary
relation on x, for n > 1, is a subset of the n-fold cartesian product zx...xz.

Notice that an n-ary relation on z is a unary relation on the n-fold
product x x ... x x.

These formal definitions provide a concrete realization within set theory
of the intuitive concept of a relation.

However, as is often the case in set theory, having seen how a concept
may be defined set-theoretically, we revert at once to the more familiar no-
tation. For example, if P is some property that applies to pairs of elements
of a set x, we often speak of ‘the binary relation P on x’, though strictly
speaking, the relation concerned is the set

{(a,b) laexznbexAPlzy)}

Also common is the tacit identification of such a property P with the rela-
tion it defines, so that P(a,b) and (a,b) € P mean the same.

Similarly, going in the opposite direction, if R is some binary relation
on a set z, I often write R(a,b) instead of (a,b) € R. Indeed, in the specific
case of binary relations, I sometimes go even further, writing aRb instead
of R(a,b). In the case of ordering relations, this notation is, of course,
very common: we rarely write < (a,b) or (a,b) € <, though from a
set-theoretic point of view, both could be said to be more accurate than
the more common notation a < b.

Binary relations play a particularly important role in set theory and,
indeed, in mathematics as a whole. The rest of this section is devoted to a
rapid review of binary relations.

There are several properties that apply to binary relations. Let R denote
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The range of R is defined to be the set
ran(R) = {b | Ja[(a, b) € R]}.

If n = 1, so that R is a binary relation, then it is clear what is meant by
these definitions: elements of R are ordered pairs, dom(R) is the set of first
components of members of R, and ran(R) the set of second components.
But what if » > 1?7 In this case, any member of R will be an (n + 1)-tuple.
But what is an (n + 1)-tuple? Well, by definition, an (n + 1)-tuple, ¢, has
the form (a,b) where a is an n-tuple and b is an object in z. Thus, even if
n > 1, the elements of R will still be ordered pairs, only now the domain
of R will consist not of elements of x but elements of the n-fold product
zx...xz. Soin all cases, dom(R) is the set of first components of members
of R and ran(R) is the set of second components.

Although the notions of domain and range for an arbitrary relation are
quite common in more advanced parts of set theory, chances are that the
reader is not used to these concepts. But when we define the notion of a
function as a special sort of relation, as we do below, you will see at once
that the above definitions coincide with what one usually means by the
‘domain’ and ‘range’ of a function.

An n-ary function on a set x is an (n+1)-ary relation, R, on = such that
for every a € dom(R) there is exactly one b € ran(R) such that (a,b) € R.

As usual, if R is an n-ary function on z and a4, ...,a,,b € z, we write

R(ay,...,a,) =0

instead of
(al,...,an,b) € R.

Exercise 1.6.1. Comment on the assertion that a set-theorist is a person for
whomn oll functions are unary. (This is a serious exercise, and concerns o
subtle point which often causes problems for the beginner.)

I write
fra—y

to denote that f is a function such that dom(f) = x and ran(f) C y.
Notice that if f:x — y, then f Cz xy.
A constant function from a set x to a set y is a function of the form

f=A{(a,k) | a € dom(f)}

where k is a fixed member of y.
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The identity function on x is the unary function defined by
id; = {(a,a) | a € z}.
If frx—yandg:y— z, wedefinego f:a — z by
go f(a) = g(f(a))
for all @ € x.
Exercise 1.6.2. Express go f as a set of ordered pairs.
Let f:x — y. If u C x, we define the image of u under f to be the set
flul ={f(a) | a € u};

and if v C y, we define the preimage of v under f to be the set

F ) ={ac x| fla) € v).

Exercise 1.6.3. Let f : x — y, and let v; € y, fori € I. Prove that:
(1) 7 Uierlvil = Userf~ il
(i) f Mieslvil = Nierf ™ oils
(i) 7 v —vs] = f7 vi] = f 7 [g)

If f:2 — yand u C z, we define the restriction of f to u by
flu={(a, f(a)) | a € u}.
Notice that f[u is a function, with domain w.

Exercise 1.6.4. Prove that if f :x — y and u C z, then
(i) flu] = ran(f [u);
(i) flu= fn(uxran(f)).

Let f:x — y. We say f is injective (or one-one) if and only if

a#b— f(a) # f(b).
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Borel’s conjecture, 130
bound variable, 32

bounded set, 88

branch, 110

cardinal, 76

cardinal exponentiation, 84
cardinal number, 76
cardinal power, 84

cardinal product, 83
cardinal sum, 82
cardinality, 76

cartesian product, 10, 15, 83
chain, 60

child, 151

choice axiom, 56

189

choice function, 57

circular set, 143

class, 46-47, 49

class theory, 46

clopen set, 26

closed set, 103

club set, 103

cofinal, 88

cofinal branch, 112

cofinality, 88

co-inductive definition, 161

Co-Inductive Closure
Theorem, 163, 172

collapsing lemma, 153

complement, 25

complete boolean algebra, 133

complete system, 180

connected relation, 11

constant function, 13

constructible hierarchy, 123

constructible set, 123

constructible universe, 123

constructibility axiom, 125

continuous function, 72

continuum hypothesis, 93

continuum problem, 93

countable, 81

cumulative hierarchy, 38

decoration, 153, 164, 180
describable collection, 32
diagonal intersection, 107
difference, 5

directed edge, 150
directed graph, 150
disjoint, 6



