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Preface

I have a friend who gets a tremendous kick out of science, even
though he’s an artist. Whenever we get together all he wants
to do is chat about the latest thing in psychology or quantum
mechanics. But when it comes to math, he feels at sea, and it
saddens him. The strange symbols keep him out. He says he
doesn’t even know how to pronounce them.

In fact, his alienation runs a lot deeper. He’s not sure what
mathematicians do all day, or what they mean when they say a
proof is elegant. Sometimes we joke that I should just sit him
down and teach him everything, starting with 1 + 1 = 2 and
going as far as we can.

Crazy as it sounds, that's what I'll be trying to do in this
book. It’s a guided tour through the elements of math, from
preschool to grad school, for anyone out there whod like to
have a second chance at the subject— but this time from an
adult perspective. It’s not intended to be remedial. The goal is
to give you a better feeling for what math is all about and why
it’s so enthralling to those who get it.

We'll discover how Michael Jordan’s dunks can help explain
the fundamentals of calculus. I'll show you a simple—and
mind-blowing—way to understand that staple of geometry,
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the Pythagorean theorem. We'll try to get to the bottom of
some of life’s mysteries, big and small: Did O.]. do it? How
should you flip your mattress to get the maximum wear out of
it? How many people should you date before settling down?
And we'll see why some infinities are bigger than others.

Math is everywhere, if you know where to look. We'll spot
sine waves in zebra stripes, hear echoes of Euclid in the Decla-
ration of Independence, and recognize signs of negative num-
bers in the run-up to World War I. And we'll see how our lives
today are being touched by new kinds of math, as we search
for restaurants online and try to understand — not to mention
survive— the frightening swings in the stock market.

By a coincidence that seems only fitting for a book about
numbers, this one was born on the day I turned fifty. David
Shipley, who was then the editor of the op-ed page for the New
York Times, had invited me to lunch on the big day (unaware
of its semicentennial significance) and asked if I would ever
consider writing a series about math for his readers. I loved
the thought of sharing the pleasures of math with an audience
beyond my inquisitive artist friend.

“The Elements of Math” appeared online in late January
2010 and ran for fifteen weeks. In response, letters and com-
ments poured in from readers of all ages. Many who wrote
were students and teachers. Others were curious people who,
for whatever reason, had fallen off the track somewhere in
their math education but sensed they were missing something
worthwhile and wanted to try again. Especially gratifying were
the notes I received from parents thanking me for helping them
explain math to their kids and, in the process, to themselves.
Even my colleagues and fellow math aficionados seemed to en-
joy the pieces—when they weren’t suggesting improvements
(or perhaps especially then!).
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All in all, the experience convinced me that there’s a pro-
found but little-recognized hunger for math among the general
public. Despite everything we hear about math phobia, many
people want to understand the subject a little better. And once
they do, they find it addictive.

The Joy of x is an introduction to math’s most compelling and
far-reaching ideas. The chapters—some from the original
Times series— are bite-size and largely independent, so feel free
to snack wherever you like. If you want to wade deeper into
anything, the notes at the end of the book provide additional
details and suggestions for further reading.

For the benefit of readers who prefer a step-by-step ap-
proach, I've arranged the material into six main parts, follow-
ing the lines of the traditional curriculum.

Part 1, “Numbers,” begins our journey with kindergarten
and grade-school arithmetic, stressing how helpful numbers
can be and how uncannily effective they are at describing the
world.

Part 2, “Relationships,” generalizes from working with
numbers to working with relationships between numbers.
These are the ideas at the heart of algebra. What makes them
so crucial is that they provide the first tools for describing how
one thing affects another, through cause and effect, supply and
demand, dose and response, and so on—the kinds of relation-
ships that make the world complicated and rich.

Part 3, “Shapes,” turns from numbers and symbols to
shapes and space— the province of geometry and trigonom-
etry. Along with characterizing all things visual, these subjects
raise math to new levels of rigor through logic and proof.

In part 4, “Change,” we come to calculus, the most pen-
etrating and fruitful branch of math. Calculus made it possible
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to predict the motions of the planets, the rthythm of the tides,
and virtually every other form of continuous change in the uni-
verse and ourselves. A supporting theme in this part is the role
of infinity. The domestication of infinity was the breakthrough
that made calculus work. By harnessing the awesome power
of the infinite, calculus could finally solve many long-standing
problems that had defied the ancients, and that ultimately led
to the scientific revolution and the modern world.

Part 5, “Data,” deals with probability, statistics, networks,
and data mining, all relatively young subjects inspired by the
messy side of life: chance and luck, uncertainty, risk, volatility,
randomness, interconnectivity. With the right kinds of math,
and the right kinds of data, we'll see how to pull meaning from
the maelstrom.

As we near the end of our journey in part 6, “Frontiers,”
we approach the edge of mathematical knowledge, the bor-
derland berween what’s known and what remains elusive. The
sequence of chapters follows the familiar structure we've used
throughout— numbers, relationships, shapes, change, and in-
finity — but each of these topics is now revisited more deeply,
and in its modern incarnation.

I hope that all of the ideas ahead will provide joy—and a
good number of Aha! moments. But any journey needs to be-
gin at the beginning, so let’s start with the simple, magical act
of counting.
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From Fish to Infinity 1

THE BEST INTRODUCTION to numbers I've ever seen— the
clearest and funniest explanation of what they are and why we
need them—appears in a Sesame Street video called 123 Count
with Me. Humphrey, an amiable but dimwitted fellow with
pink fur and a green nose, is working the lunch shift at che
Furry Arms Hotel when he rakes a call from a roomful of pen-
guins. Humphrey listens carefully and then calls out their order
to the kitchen: “Fish, fish, fish, fish, fish, fish.” This prompts

Ernie to enlighten him about the virtues of the number six.
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Children learn from this that numbers are wonderful short-
cuts. Instead of saying the word “fish” exactly as many times as
there are penguins, Humphrey could use the more powerful
concept of six.

As adults, however, we might notice a potential downside
to numbers. Sure, they are great timesavers, but at a serious cost
in abstraction. Six is more ethereal than six fish, precisely be-
cause it’s more general. It applies to six of anything: six plates,
six penguins, six utterances of the word “fish.” It’s the ineffable
thing they all have in common.

Viewed in this light, numbers start to seem a bit mysteri-
ous. They apparently exist in some sort of Platonic realm, a
level above reality. In that respect they are more like other lofty
concepts (e.g., truth and justice), and less like the ordinary
objects of daily life. Their philosophical status becomes even
murkier upon further reflection. Where exactly do numbers
come from? Did humanity invent them? Or discover them?

An additional subtlety is that numbers (and all mathemat-
ical ideas, for that matter) have lives of their own. We can’t
control them. Even though they exist in our minds, once we
decide what we mean by them we have no say in how they
behave. They obey certain laws and have certain properties,
personalities, and ways of combining with one another, and
there’s nothing we can do about it except watch and try to
understand. In that sense they are eerily reminiscent of atoms
and stars, the things of this world, which are likewise subject
to laws beyond our control . . . except that those things exist
outside our heads.

This dual aspect of numbers—as part heaven, part earth
— is perhaps their most paradoxical feature, and the feature that
makes them so useful. It is what the physicist Eugene Wigner
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had in mind when he wrote of “the unreasonable effectiveness
of mathemarics in the natural sciences.”

In case it’s not clear what I mean about the lives of num-
bers and their uncontrollable behavior, let’s go back to the
Furry Arms. Suppose that before Humphrey puts in the pen-
guins’ order, he suddenly gets a call on another line from a
room occupied by the same number of penguins, all of them
also clamoring for fish. After taking both calls, what should
Humphrey yell out to the kitchen? If he hasn't learned any-
thing, he could shout “fish” once for each penguin. Or, using
his numbers, he could tell the cook he needs six orders of fish
for the first room and six more for the second room. But what
he really needs is a new concept: addition. Once he’s mastered
it, he'll proudly say he needs six plus six (or, if he’s a showoft,
twelve) fish.

The creative process here is the same as the one that gave
us numbers in the first place. Just as numbers are a shortcut for
counting by ones, addition is a shortcut for counting by any
amount. This is how mathematics grows. The right abstraction
leads to new insight, and new power.

Before long, even Humphrey might realize he can keep
counting forever.

Yet despite this infinite vista, there are always constraints
on our creativity. We can decide what we mean by things like 6
and +, but once we do, the results of expressions like 6 + 6 are
beyond our control. Logic leaves us no choice. In that sense,
math always involves both invention and discovery: we invent
the concepts but discover their consequences. As we'll see in
the coming chapters, in mathematics our freedom lies in the
questions we ask—and in how we pursue them—Dbut not in
the answers awaiting us.
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Rock Groups 2

LIKE ANYTHING ELSE, arithmetic has its serious side and its
playful side.

The serious side is what we all learned in school: how to
work with columns of numbers, adding them, subtracting
them, grinding them through the spreadsheet calculations
needed for tax returns and year-end reports. This side of arith-
metic is important, practical, and— for many people—joyless.

The playful side of arithmetic is a lot less familiar, unless
you were trained in the ways of advanced mathematics. Yet
there’s nothing inherently advanced about it. It’s as natural as a
child’s curiosity.

In his book A Mathematicians Lament, Paul Lockhart ad-
vocates an educational approach in which numbers are treated
more concretely than usual: he asks us to imagine them as
groups of rocks. For example, 6 corresponds to a group of rocks

like this:
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You probably don't see anything striking here, and that’s right
—unless we make further demands on numbers, they all look
pretty much the same. Our chance to be creative comes in what
we ask of them.

For instance, let’s focus on groups having between 1 and 10
rocks in them, and ask which of these groups can be rearranged
into square patterns. Only two of them can: the group with 4
and the group with 9. And that’s because 4 =2 x 2 and 9 = 3 x
3; we get these numbers by squaring some other number (actu-

ally making a square shape).

> G @3

A less stringent challenge is to identify groups of rocks
that can be neatly organized into a rectangle with exactly two
rows that come out even. That’s possible as long as there are
2, 4, 6, 8, or 10 rocks; the number has to be even. If we try
to coerce any of the other numbers from 1 to 10—rthe odd
numbers—into two rows, they always leave an odd bir stick-
ing out.

&

W Q

D&
.

Qd

& ©
Q&
Qd

L9
Qb
A

¥
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Still, all is not lost for these misfit numbers. If we add two of
them together, their protuberances match up and their sum
comes out even; Odd + Odd = Even.

D w (@ g ®
SEEN X W X

If we loosen the rules still further to admit numbers greater
than 10 and allow a rectangular pattern to have more than two
rows of rocks, some odd numbers display a talent for making
these larger rectangles. For example, the number 15 can form a
3 x 5 rectangle:

D @D OO

So 15, although undeniably odd, at least has the consolation
of being a composite number—it’s composed of three rows of
five rocks each. Similarly, every other entry in the multiplica-
tion table yields its own rectangular rock group.

Yet some numbers, like 2, 3, 5, and 7, truly are hopeless.
None of them can form any sort of rectangle at all, other than
a simple line of rocks (a single row). These strangely inflexible
numbers are the famous prime numbers.

So we see that numbers have quirks of structure that en-
dow them with personalities. But to see the full range of their
behavior, we need to go beyond individual numbers and watch
what happens when they interact.
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For example, instead of adding just two odd numbers to-
gether, suppose we add all the consecutive odd numbers, start-

ing from 1:
1+3=4
1+3+5=9
1+3+5+7=16

1+3+5+7+9=25.

The sums above, remarkably, always turn out to be perfect
squares. (We saw 4 and 9 in the square patterns discussed ear-
lier, and 16 = 4 x 4, and 25 = 5 x 5.) A quick check shows that
this rule keeps working for larger and larger odd numbers; it
apparently holds all the way out to infinity. But what possible
connection could there be between odd numbers, with their
ungainly appendages, and the classically symmetrical numbers
that form squares? By arranging our rocks in the right way, we
can make this surprising link seem obvious— the hallmark of
an elegant proof.

The key is to recognize that odd numbers can make L-
shapes, with their protuberances cast off into the corner.
And when you stack successive L-shapes together, you get a
square!
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This style of thinking appears in another recent book, though
for altogether different literary reasons. In Yoko Ogawa’s charm-
ing novel 7he Housekeeper and the Professor, an astute but unedu-
cated young woman with a ten-year-old son is hired to take care
of an elderly mathematician who has suffered a traumatic brain
injury that leaves him with only eighty minutes of short-term
memory. Adrift in the present, and alone in his shabby cottage
with nothing but his numbers, the Professor tries to connect
with the Housekeeper the only way he knows how: by inquiring
about her shoe size or birthday and making mathematical small
talk about her statistics. The Professor also takes a special liking
to the Housekeeper's son, whom he calls Root, because the flat
top of the boy’s head reminds him of the square root symbol, ¥ .

One day the Professor gives Root a little puzzle: Can he
find the sum of all the numbers from 1 to 10? After Root care-
tully adds the numbers and returns with the answer (55), the
Professor asks him to find a better way. Can he find the answer
without adding the numbers? Root kicks the chair and shouts,
“That’s not fair!”

But little by little the Housekeeper gets drawn into the
world of numbers, and she secretly starts exploring the puzzle
herself. “I'm not sure why I became so absorbed in a child’s
math problem with no practical value,” she says. “At first, [ was
conscious of wanting to please the Professor, but gradually that
feeling faded and I realized it had become a battle between the
problem and me. When I woke in the morning, the equation
was waiting:

1+2+3+...+94+10=55

and it followed me all through the day, as though it had burned
itself into my retina and could not be ignored.”
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There are several ways to solve the Professor’s problem (see
how many you can find). The Professor himself gives an argu-
ment along the lines we developed above. He interprets the
sum from 1 to 10 as a triangle of rocks, with 1 rock in the first
row, 2 in the second, and so on, up to 10 rocks in the tenth
row:

PO O aa
QDI HO a6

By its very appearance this picture gives a clear sense of nega-
tive space. It seems only half complete. And that suggests a cre-
ative leap. If you copy the triangle, flip it upside down, and add
it as the missing half to what's already there, you get something
much simpler: a rectangle with ten rows of 11 rocks each, for
a total of 110.
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Since the original triangle is half of this rectangle, the desired
sum must be half of 110, or 55.

Looking at numbers as groups of rocks may seem unusual,
but actually it’s as old as math itself. The word “calculate”
reflects that legacy—it comes from the Latin word calculus,
meaning a pebble used for counting. To enjoy working with
numbers you don’t have to be Einstein (German for “one
stone”), but it might help to have rocks in your head.
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The Enemy of My Enemy 3

IT’s TRADITIONAL TO teach kids subtraction right after ad-
dition. That makes sense— the same facts about numbers get
used in both, though in reverse. And the black art of borrow-
ing, so crucial to successful subtraction, is only a little more
baroque than that of carrying, its counterpart for addition. If
you can cope with calculating 23 + 9, you'll be ready for 23 — 9
soon enough.

At a deeper level, however, subtraction raises a much more
disturbing issue, one that never arises with addition. Subtrac-
tion can generate negative numbers. If I try to take 6 cookies
away from you but you have only 2, I cant do it—except in
my mind, where you now have negative 4 cookies, whatever
that means.

Subtraction forces us to expand our conception of what
numbers are. Negative numbers are a lot more abstract than
positive numbers—you can't see negative 4 cookies and you
certainly can’t eat them— but you can think about them, and
you have to, in all aspects of daily life, from debts and over-
drafts to contending with freezing temperatures and parking
garages.

Still, many of us haven't quite made peace with negative
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numbers. As my colleague Andy Ruina has pointed out, peo-
ple have concocted all sorts of funny little mental strategies
to sidestep the dreaded negative sign. On mutual fund state-
ments, losses (negative numbers) are printed in red or nestled
in parentheses with nary a negative sign to be found. The his-
tory books tell us that Julius Caesar was born in 100 B.C., not
—100. The subterranean levels in a parking garage often have
designations like B1 and B2. Temperatures are one of the few
exceptions: folks do say, especially here in Ithaca, New York,
that it’s -5 degrees outside, though even then, many prefer to
say 5 below zero. There’s something about that negative sign
that just looks so unpleasant, so . . . negative.

Perhaps the most unsettling thing is that a negative times
a negative is a positive. So let me try to explain the thinking
behind that.

How should we define the value of an expression like —1
x 3, where we're multiplying a negative number by a positive
number? Well, just as 1 x 3 means 1 + 1 + 1, the natural defi-
nition for —1 x 3 is (1) + (1) + (1), which equals —3. This
should be obvious in terms of money: if you owe me $1 a week,
after three weeks you're $3 in the hole.

From there it’s a short hop to see why a negative times
a negative should be a positive, Take a look at the following
string of equations:

~-1x3=-3
~1x2=-2
“1x1=-1
~1x0=0

—1x-1=2

Now look at the numbers on the far right and notice their
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orderly progression: -3, -2, -1, 0, . . . At each step, we're add-
ing 1 to the number before it. So wouldn’t you agree the next
number should logically be 12

That’s one argument for why (-1) x (=1) = 1. The appeal
of this definition is that it preserves the rules of ordinary arith-
metic; what works for positive numbers also works for negative
numbers.

But if you're a hard-boiled pragmatist, you may be wonder-
ing if these abstractions have any parallels in the real world.
Admittedly, life sometimes seems to play by different rules. In
conventional morality, two wrongs don’t make a right. Like-
wise, double negatives dont always amount to positives; they
can make negatives more intense, as in “I can’t get no satisfac-
tion.” (Actually, languages can be very tricky in this respect.
The eminent linguistic philosopher J. L. Austin of Oxford
once gave a lecture in which he asserted that there are many
languages in which a double negative makes a positive but
none in which a double positive makes a negative—rto which
the Columbia philosopher Sidney Morgenbesser, sitting in the
audience, sarcastically replied, “Yeah, yeah.”)

Still, there are plenty of cases where the real world does
mirror the rules of negative numbers. One nerve cell’s firing
can be inhibited by the firing of a second nerve cell. If that sec-
ond nerve cell is then inhibited by a third, the first cell can fire
again. The indirect action of the third cell on the first is tanta-
mount to excitation; a chain of two negatives makes a positive.
Similar effects occur in gene regulation: a protein can turn a
gene on by blocking another molecule that was repressing that
stretch of DNA.

Perhaps the most familiar parallel occurs in the social and
political realms as summed up by the adage “The enemy of my
enemy is my friend.” This truism, and related ones about the
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friend of my enemy, the enemy of my friend, and so on, can be
depicted in relationship triangles.

The corners signify people, companies, or countries, and
the sides connecting them signify their relationships, which
can be positive (friendly, shown here as solid lines) or negative
(hostile, shown as dashed lines).

(e (=)

O OO 0

Social scientists refer to triangles like the one on the left, with
all sides positive, as balanced — there’s no reason for anyone to
change how he feels, since it’s reasonable to like your friends’
friends. Similarly, the triangle on the right, with two negatives
and a positive, is considered balanced because it causes no dis-
sonance; even though it allows for hostility, nothing cements a
friendship like hating the same person.

Of course, triangles can also be unbalanced. When three
mutual enemies size up the situation, two of them—often
the two with the least animosity toward each other— may be
tempted to join forces and gang up on the third.

Even more unbalanced is a triangle with a single negative
relationship. For instance, suppose Carol is friendly with both
Alice and Bob, but Bob and Alice despise each other. Perhaps
they were once a couple but suffered a nasty breakup, and each
is now badmouthing the other to ever-loyal Carol. This causes
psychological stress all around. To restore balance, either Alice
and Bob have to reconcile or Carol has to choose a side.
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In all these cases, the logic of balance matches the logic of
multiplication. In a balanced triangle, the sign of the prod-
uct of any two sides, positive or negative, always agrees with
the sign of the third. In unbalanced triangles, this pattern is
broken.

Leaving aside the verisimilitude of the model, there are in-
teresting questions here of a purely mathematical flavor. For
example, in a close-knit network where everyone knows every-
one, what’s the most stable state? One possibility is a nirvana
of goodwill, where all relationships are positive and all triangles
within the network are balanced. But surprisingly, there are
other states that are equally stable. These are states of intrac-
table conflict, with the network split into two hostile factions
(of arbitrary sizes and compositions). All members of one fac-
tion are friendly with one another but antagonistic toward ev-
erybody in the other faction. (Sound familiar?) Perhaps even
more surprisingly, these polarized states are the only states as
stable as nirvana. In particular, no three-party split can have all
its triangles balanced.

Scholars have used these ideas to analyze the run-up to
World War I. The diagram that follows shows the shifting alli-
ances among Great Britain, France, Russia, Italy, Germany, and
Austria-Hungary between 1872 and 1907.
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Three Emperors’ League
1872-81

-~
OO
German-Russian Lapse 1890 French-Russian Alliance
1891-94

Entente Cordiale 1904 British-Russian Alliance 1907
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The first five configurations were all unbalanced, in the sense
that they each contained at least one unbalanced triangle. The
resultant dissonance tended to push these nations to realign
themselves, triggering reverberations elsewhere in the network.
In the final stage, Europe had split into two implacably op-
posed blocs— technically balanced, but on the brink of war.

The point is not that this theory is powerfully predictive. It
isn't. It’s too simple to account for all the subtleties of geopoliti-
cal dynamics. The point is that some part of what we observe
is due to nothing more than the primitive logic of “the enemy
of my enemy,” and #his part is captured perfectly by the multi-
plication of negative numbers. By sorting the meaningful from
the generic, the arithmetic of negative numbers can help us see
where the real puzzles lie.
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EVERY DECADE OR s0 a new approach to teaching math comes
along and creates fresh opportunities for parents to feel inad-
equate. Back in the 1960s, my parents were flabbergasted by
their inability to help me with my second-grade homework.
They'd never heard of base 3 or Venn diagrams.

Now the tables have turned. “Dad, can you show me how
to do these multiplication problems?” Sure, I thought, until the
headshaking began. “No, Dad, that’s not how we're supposed
to do it. That’s the old-school method. Don’t you know the lat-
tice method? No? Well, what about partial products?”

These humbling sessions have prompted me to revisit mul-
tiplication from scratch. And it’s actually quite subtle, once you
start to think abourt it.

Take the terminology. Does “seven times three” mean
“seven added to itself three times’? Or “three added to itself
seven times ¢

In some cultures the language is less ambiguous. A friend
of mine from Belize used to recite his times tables like this:
“Seven ones are seven, seven twos are fourteen, seven threes are
twenty-one,” and so on. This phrasing makes it clear that the
first number is the multiplier; the second number is the thing
being multiplied. It’s the same convention as in Lionel Richie’s
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immortal lyrics “She’s once, twice, three times a lady.” (“She’s a
lady times three” would never have been a hit.)

Maybe all this semantic fuss strikes you as silly, since the
order in which numbers are multiplied doesn’t matter anyway:
7 x 3 = 3 x 7. Fair enough, but that begs the question I'd like
to explore in some depth here: Is this commutative law of mul-
tiplication, @ x & = b x a, really so obvious? I remember being
surprised by it as a child; maybe you were too.

To recapture the magic, imagine not knowing what 7 x 3
equals. So you try counting by sevens: 7, 14, 21. Now turn it
around and count by threes instead: 3, 6, 9, . . . Do you feel the
suspense building? So far, none of the numbers match those in
the sevenslist, but keep going . .. 12, 15, 18, and then, bingo, 21!

My point is that if you regard multiplication as being syn-
onymous with repeated counting by a certain number (or, in
other words, with repeated addition), the commutative law
isn’t transparent.

But it becomes more intuitive if you conceive of multi-
plication visually. Think of 7 x 3 as the number of dots in a
rectangular array with seven rows and three columns.

If you turn the array on its side, it transforms into three rows
and seven columns—and since rotating the picture doesnt
change the number of dots, it must be true that 7 x 3 =3 x 7.
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Yet strangely enough, in many real-world situations, espe-
cially where money is concerned, people seem to forget the
commutative law, or don’t realize it applies. Let me give you
two examples.

Suppose you're shopping for a new pair of jeans. They're on
sale for 20 percent off the sticker price of $50, which sounds
like a bargain, but keep in mind that you also have to pay the
8 percent sales tax. After the clerk finishes complimenting you
on the flattering fit, she starts ringing up the purchase but then
pauses and whispers, in a conspiratorial tone, “Hey, let me save
you some money. I'll apply the tax first, and then take twenty
percent off the total, so you'll get more money back. Okay?”

But something about that sounds fishy to you. “No thanks,”
you say. “Could you please take the twenty percent off first,
then apply the tax to the sale price? That way, I'll pay less tax.”

Which way is a better deal for you? (Assume both are legal.)

When confronted with a question like this, many people
approach it additively. They work out the tax and the discount
under both scenarios, and then do whatever additions or sub-
tractions are necessary to find the final price. Doing things the
clerk’s way, you reason, would cost you $4 in tax (8 percent of
the sticker price of $50). That would bring your total to $54.
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Then applying the 20 percent discount to $54 gives you $10.80
back, so youd end up paying $54 minus $10.80, which equals
$43.20. Whereas under your scenario, the 20 percent discount
would be applied first, saving you $10 off the $50 sticker price.
Then the 8 percent tax on that reduced price of $40 would be
$3.20, so youd still end up paying $43.20. Amazing!

But it’s merely the commutative law in action. To see why,
think multiplicatively, not additively. Applying an 8 percent tax
followed by a 20 percent discount amounts to multiplying the
sticker price by 1.08 and then multiplying that result by 0.80.
Switching the order of tax and discount reverses the multiplica-
tion, but since 1.08 x 0.80 = 0.80 x 1.08, the final price comes
out the same.

Considerations like these also arise in larger financial deci-
sions. Is a Roth 401(k) better or worse than a traditional re-
tirement plan? More generally, if you have a pile of money to
invest and you have to pay taxes on it at some point, is it better
to take the tax bite at the beginning of the investment period,
or at the end?

Once again, the commutative law shows it’s a wash, all
other things being equal (which, sadly, they often aren). If, for
both scenarios, your money grows by the same factor and gets
taxed at the same rate, it doesn’t matter whether you pay the
taxes up front or at the end.

Please don’t mistake this mathematical remark for financial
advice. Anyone facing these decisions in real life needs to be
aware of many complications that muddy the waters: Do you
expect to be in a higher or lower tax bracket when you retire?
Will you max out your contribution limits? Do you think the
government will change its policies about the tax-exempt status
of withdrawals by the time you're ready to take the money out?
Leaving all this aside (and don't get me wrong, it’s all impor-
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tant; I'm just trying to focus here on a simpler mathematical
issue), my basic point is that the commurative law is relevant to
the analysis of such decisions.

You can find heated debates about this on personal finance
sites on the Internet. Even after the relevance of the commuta-
tive law has been pointed out, some bloggers don’t accept it. It’s
that counterintuitive.

Maybe we're wired to doubt the commutative law because
in daily life, it usually matters what you do first. You can’t have
your cake and eat it too. And when taking off your shoes and
socks, you've got to get the sequencing right.

The physicist Murray Gell-Mann came to a similar real-
ization one day when he was worrying about his future. As
an undergraduate at Yale, he desperately wanted to stay in the
Ivy League for graduate school. Unfortunately Princeton re-
jected his application. Harvard said yes but seemed to be drag-
ging its feet about providing the financial support he needed.
His best option, though he found it depressing, was MIT. In
Gell-Mann’s eyes, MI'T was a grubby technological institute,
beneath his rarefied taste. Nevertheless, he accepted the offer.
Years later he would explain that he had contemplated suicide
at the time but decided against it once he realized that attend-
ing MIT and killing himself didnt commute. He could always
go to MIT and commit suicide later if he had to, but not the
other way around.

Gell-Mann had probably been sensitized to the importance
of non-commutativity. As a quantum physicist he would have
been acutely aware that at the deepest level, nature disobeys the
commutative law. And it’s a good thing, too. For the failure of
commurtativity is what makes the world the way it is. It’s why
matter is solid, and why atoms don’t implode.

Specifically, early in the development of quantum mechan-



