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1

Introduction

1.1 Challenges

The aim of this book is to give a formal, objective and above all pre-
cise analysis of the language used by mathematicians in textbooks and
papers. Our analysis will closely parallel the analyses of human languages by
syntacticians and semanticians in the generative tradition. In particular, it
will let us take mathematical sentences, determine their syntactic structure,
and extract their underlying meaning in an appropriate logic.

We face a number of central challenges in this task. Some relate to the
scope of the analysis and to our methodology, and some to the nature of
mathematics itself. In this section, we will outline these main challenges.

First and foremost, we aim to give an analysis that can potentially encom-
pass all of pure mathematics. This is considerably harder than developing an
analysis of the language used in a single, isolated area of mathematics, such
as group theory or linear algebra. In order to describe so much mathematics
with a compact theory, we develop ways for our theory to adapt by extracting
mathematical terms, notations and concepts, and all properties thereof, from
their explicit definitions in mathematical texts. So, for example, our theory
will need to be able to extract all syntactic and semantic properties of the
word ‘group’ from the definition of a group, as found in any textbook on
group theory.

Second, we will require that every mathematical term, notation or concept
be extracted from mathematical text rather than being an intrinsic part of
our analysis. Even foundational material must be extracted from text; the
theory must be compatible with the standard foundational accounts using the
ZF(C) axioms, but must not be tied to them. This strategy of full adaptivity is
considerably harder than allowing some mathematics to be encoded directly
into our theory. However, it consistently pays dividends when we reach
sufficiently advanced mathematics. For example, it is substantially harder
to adaptively extract set theory from mathematical texts than to describe
it directly. But if we confront and overcome this problem, we find that the
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2 1 Introduction

same methods we used to extract set theory from texts can be used to extract
category theory from texts. Conversely, if we had directly encoded set theory
into our analysis, we would have encountered real difficulties when facing
category theory.

Third, mathematics is written in a mixture of words and symbols. These
are very different in character. The words resemble words in natural language
texts, but have many differences. The symbols superficially resemble symbols
in artificial languages but, as we shall show, they behave in a way that is
much more complex than in any artificial language. And the interaction
between words and symbols is unlike anything found in any other kind of
language, natural or artificial; although the two are entirely dissimilar, they
are remarkably interdependent. Thus we will need to develop a new kind of
theory of language, unlike theories of both natural languages and artificial
languages, to give a unified account of mathematics. This requirement will
pervade our analyses of individual phenomena.

Fourth, because the theory must describe such a wide range of mathematics,
ambiguity becomes a major problem. As we will see, word sense ambiguity,
attachment ambiguity, coordination ambiguity and other kinds of ambiguity
from natural language recur in mathematics. But moreover, and more prob-
lematically, we will show that the syntactic structure of a fixed expression
in symbolic mathematics can depend on what kinds of mathematical objects
occur in it, i.e. on the types of the objects in it. Thus the syntax of symbolic
mathematics is type-dependent in a way that has no parallel in any other kind
of language, and that requires novel disambiguation techniques. Additionally,
we will demonstrate that ambiguity in words and ambiguity in symbols are very
different in character but are inextricably intertwined; neither can be resolved
without resolving the other. We will also show that existing methods from lin-
guistics and computer science are unable to remove ambiguity in mathematics.
Eventually we will remove the ambiguity by developing a novel method which
tracks the flow of type information inside mathematical sentences, treating
words and symbols in a unified way.

Fifth, we will show that there is a considerable gap between what math-
ematicians claim is true and what they believe, and this mismatch causes a
number of serious linguistic problems. For example, mathematicians claim
that all numbers are really sets, but their use of language consistently
reflects a belief that this is not the case. Our attempts to understand what
is happening here will lead us deep into the foundations of mathematics,
and will show us that our linguistic problems are connected to philosophical
problems. Resolving them will prove to be a major undertaking.

Last, our focus on adaptivity and our close examination of mathematical
material will lead us to the discovery that a notion of time plays a key
part in the language of mathematics in a way that has not previously been
realised. For example, we will exhibit instances of a heretofore undescribed
phenomenon whereby the meaning of a fixed piece of mathematical language
can change as time passes and one learns more mathematics. Equally, we
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will derive constraints on our theory based on the fact that mathematics is
learned in order, and that certain parts of mathematics may or must be learnt
before other parts. All of our descriptions of phenomena in the language
of mathematics will need to be compatible with our novel notion of time.
Ultimately, this notion will come to play a key part in our analysis of the
foundations; it will allow us to find deficiencies in all of the standard accounts
of the foundations of mathematics, and eventually to construct an alternative
account which resolves these problems.
To sum up, the main challenges that we will face are as follows:

Breadth. The theory must be able to describe all of pure mathematics.

Full Adaptivity. All mathematical content must be extracted from math-
ematical text.

Words and Symbols. We will need to analyse all phenomena in mathe-
matics by giving a unified description of their relationships to both the
words and symbols in mathematics, despite the fact that these are highly
dissimilar.

Ambiguity. We will find that ambiguity is utterly pervasive in mathe-
matics, and that it crosses the line between words and symbols in an
unprecedented way. Resolving this will require novel techniques.

Belief and Behaviour. We will need to resolve disparities between the
claims mathematicians make about certain mathematical objects and the
linguistic behaviour of those objects.

Time. We will discover a novel notion of time underlying mathematics,
and all accounts of the language of mathematics and the foundations of
mathematics will need to be compatible with this.

We will return to discuss these in the conclusion (Chapter [9).

1.2 Concepts

1.2.1 Linguistics and Mathematics

Our analysis of the language of mathematics is related to generative linguis-
tics in two ways. First, our aim is to give a completely formal and precise
description of the language of mathematics. Similarly, the central aim of
generative linguistics is to give a completely formal and precise description of
natural languages, such as English. Thus, in a broad sense, all of the work in
this book may be regarded as ‘the application of linguistics to mathematics’.
In this respect, linguistics gives us general ideas about how we can formally
analyse language: it provides us with a mindset which we can use throughout
the entire book.

Second, if we restrict ourselves to the part of mathematics that consists
only of words, there are clear parallels with natural languages. We need to
be careful not to say that these parts of mathematics are written in natural
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language; as we shall see in many of the conventions are different, so
that the same sentence might mean different things in mathematical language
and in general natural language. Nevertheless, much of the machinery of
linguistics may be adapted to describe textual mathematics, before being
combined with novel machinery for describing symbolic mathematics. This
is, surprisingly, almost untrodden ground; as the only linguist to analyse
mathematics, Aarne Ranta, remarks:

Linguistically, the study of mathematical language rather than everyday
language is rewarding because it offers examples that have complicated
grammatical structure but are free from ambiguities. We always know exactly
what a sentence means, and there is a determinate structure to be revealed.
The informal language of mathematics thus provides a kind of grammat-
ical laboratory. Amazingly little use has been made of this laboratory in
linguistics; even the material presented below is just an application of results
obtained within the standard linguistic fragment containing donkey sentences
etc. It is to be expected that a closer study of mathematical language itself
will give experience that is useful in general linguistics as well.

(Rantal [1904)

We should emphasise that Ranta primarily studies the words in mathematics,
rather than the symbols (see for details). We will be concerned with
both, and will therefore have to stray further from the linguistic canon than
Ranta does.

Linguistics is divided into many branches. Those that will be most useful
to us are generative syntax (Chomsky and formal semantics in the
Montagovian tradition (Montague, [1970 , |197§}. We will make partic-
ular use of the semantic theory called Discourse Representation Theory
(Kamp and Revlel,|1993h.

There are some significant ways in which mathematics differs substantially
from natural languages, which will affect our general approach. Most of these
will be described in Chapter [2] which gives a description of the language of
mathematics, but one is worth emphasising here. Mathematics has associated
with it a clear, external, notion of meaning. Since the publication of Principia
Mathematica (Whitehead and Russell, |1910h, it has been accepted that the
language of mathematics can be given a complete semantic representation
in the form of an appropriate logic. Unlike current semantic representations
for natural language, these logical representations for the language of math-
ematics completely capture what mathematical objects ‘are’ and how they
behave.

Further, when mathematicians are writing modern mathematics in a
formal register (see for details of registers), they intend to formulate
meaningful statements in some underlying logic. If it was pointed out that
a particular sentence had no translation into such a logic, a mathematician
would genuinely feel that they had been insufficiently precise. (The actual
translation into logic is never performed, because it is exceptionally laborious;
but the possibility of the translation is held to be crucial.) Thus mathematics
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has a normative notion of what its content should look like; there is no
analogue in natural languages.

1.2.2 Time

As noted in a novel notion of time will play a major part in this book.
In this section, we will briefly sketch the role which this notion plays and
then list the parts of the book in which it is elaborated on.

The importance of time in our theory arises from adaptivity, i.e. the way
in which our theory derives mathematical terms, concepts and notation from
their definitions in texts. We can only refer to a term, concept or notation
after the appropriate definition has been encountered; correspondingly, we
need to pay considerable attention to the temporal order in which definitions
and other material are encountered.

The notion of time will lie in the background when we discuss adaptivity
and definitions (§2.2)), but it will first come to prominence in our discussion in
§2.6lof a (previously unnoted) phenomenon which we call reanalysis, whereby
the meaning of a fixed mathematical expression can change over time, i.e. as
an individual mathematician encounters more mathematics. The notion of
time will then remain in the background throughout most of Chapters 3]
and[6] implicit whenever we discuss operations like definition, where there
is an essential distinction between our picture of mathematics ‘before’ and
‘after’ the operation. It will, however, occasionally surface more explicitly.
Most notably, we will use it to criticise certain disambiguation mechanisms
in to argue that certain pieces of mathematics must not be able to
affect each other in and to argue that certain categories must be able
to grow over time in

It is only when we come to Chapter discussing the foundations of
mathematics, that the concept of time will come into its own. In that chapter,
we will contrast the notion of time with another notion of time from the
philosophical literature (more specifically, from ), introduce
terminology to reflect this and then use the notion of time as our central tool
throughout the remainder of the chapter. It is not too much of a stretch to
say that the significance of the chapter lies in its demonstration of the utility
of our novel notion of time.

1.2.3 Full Adaptivity

Adopting a linear temporal perspective allows us to state a remarkable
property of mathematical language. It is very nearly the case that the
language of mathematics is completely self-contained: that every lexical,
syntactic or semantic property of a mathematical object can be adaptively
extracted from the discourse prior to the first reference to that object. It
is this property that allowed us to even formulate our goal of describing
mathematics using a fully adaptive theory.
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Thus this sentence is in the formal mode. The formal mode also includes the
expression of relationships between mathematical facts, as in:

By Theorem 11 , every bounded monotonic sequence converges.
[ ————T—

mathematical fact mathematical fact

From a linguistic perspective, the formal mode is more novel and interesting
because it is restricted enough to describe completely, both in terms of syntax
and semantics. By contrast, the informal mode seems as hard to describe as
general natural language. We will therefore look only at mathematics in the
formal mode.

Finally, every mathematical text is written in a mixture of some natural
language and symbols. We will only concern ourselves with the case where the
natural language in question is English. The theory of mathematics in, say,
French is unlikely to be that different to the theory of mathematics in English.
But by restricting ourselves to English we gain the ability to abstract away
from certain concerns of general language which are orthogonal to our primary
concerns. In particular, English-language mathematics can be very effectively
captured by an unaugmented phrase structure grammar, and exhibits little
in the way of agreement.

1.4 Structure

Chapter [2] presents a descriptive overview of mathematics from a linguistic
perspective. §2.6]is of particular importance as it highlights a previously
undiscussed way in which the meaning of fixed mathematical expressions may
change as more mathematics is encountered; this section may be of interest
to philosophers of mathematics.

Chapter [3] sets up the basic linguistic framework which is used in the re-
mainder of the book. Syntax is handled using a context-free grammar, and se-
mantics using a variant of Discourse Representation Theory (Kamp and Revlé,
adapted to better fit mathematical phenomena. The theory constructed
in this chapter is comparable to that constructed by Ranta (cf.
below), but covers a much wider range of phenomena and overcomes certain
deficiencies noted by Ranta in his own work.

We should note that Chapter [3] concludes the analysis of material for
which there is a precedent in the literature; subsequent chapters discuss more
advanced topics. Consequently, we make a point of noting particular difficul-
ties that any analysis must face at the beginnings of Chapter [4 Chapter [5]
and Chapter [6] and also in Chapter [7] discussing the foundations of
mathematics, contains a comparable discussion of major difficulties in

Chapter [4] discusses ambiguity in detail. It begins by demonstrating that
ambiguity is pervasive in both words and symbols in mathematics and then
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l 1. Introduction I

A\

[ 2. The Language of Mathematics }

Theory

[6. Typed Parsing] [7. Foundations] [ 8. Extensions ]

L,.——w |
9. Conclusion

Fig. 1.1 Dependencies between chapters

gives a sequence of examples that show that standard mechanisms for
disambiguating formal languages are not adequate for resolving ambiguity
in symbolic mathematics, and that the textual ambiguity and symbolic
ambiguity in mathematics are too intertwined to be handled separately.
Chapter [d] concludes by arguing that a notion of type is needed to resolve
ambiguity in mathematical language, and mathematics is unique in that the
syntax of an expression can depend on the types of the elements it contains.

Chapter [5] begins by showing that showing that the standard notion of
‘type’ conflates two separate notions, and separates these. It then gives a
sequence of examples of the use of mathematical language which narrow down
exactly which type distinctions need to be in place to model mathematics. In
particular, it demonstrates that mathematics contains non-extensional types,
which have no parallel in any other kind of language; it then uses the two
separated notions of type to characterise and interpret this concept. Finally,
it presents the actual formal type system needed to model mathematics. One
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important point arising in Chapter[Gis that everyday usages of mathematical
language cannot be reconciled with the standard account of the foundations
of mathematics.

Chapter [6] shows how the notion of type introduced in Chapter [5] can
be combined with syntax, and gives a unified model for the process of
interpretation of mathematics, including the removal of ambiguity in both
words and symbols.

Chapter [7] treats the foundations of mathematics. It picks up the criti-
cisms of the standard foundational accounts which arose in Chapter [5} and
connects them to a famous criticism arising in the philosophy of mathemat-
ics (Benacerraf, [1965). It then discusses every standard approach to the
construction of numbers and other simple objects, and shows that all of
these are flawed on a variety of linguistic and philosophical grounds. Its

primary tool in this task is a novel notion of fime in mathematics. Finally,
it presents a new approach to the foundations which overcomes all the
linguistic and philosophical problems, and which interacts correctly with the
aforementioned notion of time. It then illustrates this approach using a range
of examples. This chapter may be of interest to philosophers of mathematics
and to mathematicians with a particular interest in the foundations.

Chapter 8] briefly discusses miscellaneous minor phenomena in mathe-
matics which are worthy of note, and one major topic which is relatively
independent of the remainder of the book.

1.5 Previous Analyses

As we noted in the language of mathematics has barely been studied
from a linguistic perspective. To repeat the relevant quote:

Amazingly little use has been made of [the language of mathematics] in
linguistics; even the material presented below is just an application of the
results obtained within the standard linguistic fragment containing donkey
sentences etc..

(Rantal [1094, p. 3)

1.5.1 Ranta

The only substantive work on the language of mathematics appears in papers
by Ranta IRanth, M, MM 1997alb) which operate within the frame-
work of Constructive Type Theory &, . These papers place a
great deal of emphasis on the problem of sugaring, that is, the conversion of
logical representations into sentences in the language of mathematics. We
are not concerned with this problem in this book; our approach follows
a more classical linguistic tradition, and is concerned purely with analysis

rather than synthesis. Equally, we do not base our analysis on Constructive
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Type Theory but on a modified form of Discourse Representation Theory
(Kamp and Revle, [1993) which, as we will show in Chapter [3] is well-suited
to describing a range of mathematical phenomena. Nevertheless, there is a
substantial amount of material in Ranta’s work to which (the earlier parts
of) our theory may be compared, and on which our theory improves. In
particular, we will solve various problems that Ranta notes in his analyses
of plurals (Rantal, p. 11-12; cf. and of variables and quantifiers
, 1994, p. 11-13; cf. 35).

Our own work is more ambitious than Ranta’s in three respects, which
have been introduced in {I.1] First, Ranta exploits Montague’s method of
fragments , , to study small domains in mathematics,
such as plane geometry. By contrast, we aim to produce a theory that
describes all of mathematics, subject to the restrictions given in Thus
we are forced to accord much greater weight to ambiguities and notational
collisions that arise when the theory simultaneously describes many areas of
mathematics.

Second, we extensively analyse symbolic mathematical notation, which
is only discussed briefly in Ranta’s work. (See for details of Ranta’s
analysis). That is, our linguistic theory analyses expressions such as

= E(t) det Ad f°° dt
1) dt| < Ad —
‘ , T “( . T g Jp T

(Hardy and Wright,, [1960], p. 352)

We will find that behaviour of expressions of this kind is complex in a way
that has no analogue in natural languages, computer languages, or any other
theoretically analysed systems that we are aware of In addition, there is
considerable interaction between such symbolic material and the parts of the
language of mathematics that resembles natural language. As noted in §1.1]
some of the most challenging problems solved in this book are motivated
by the need to find a unified treatment of these two dissimilar parts of
mathematical language.

Third, Ranta manually specifies a lexicon for the fragment under consider-
ation. Thus, for example, the theory describing plane geometry is associated
with a hand-crafted lexicon containing entries for ‘a line’, ‘a point’ and ‘the
intersection of X and Y'. As noted in and we do not follow this
approach but instead extract all mathematical terms, concepts and notation
from definitions.

In addition to these, there are various minor respects in which we extend
Ranta’s work. For example, Ranta makes little reference to rhetorical struc-
ture. Given that mathematics exhibits discourse-level phenomena which do
not exist in general language, we need to handle these carefully and explicitly.
(Cf. and §3.5]) We will highlight such improvements as we encounter
them.
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Most of the material that directly corresponds to or improves on Ranta’s
work will be presented in Chapter which presents the basic theoretical
framework of the book. (Several minor and self-contained phenomena are
relegated to Chapter [8] which outlines miscellaneous extensions to the main
theory.) In particular, Chapter [3]will explain how our framework can handle
the problems noted by Ranta in his own work. The remainder of the book
will introduce more severe problems that arise due to our more ambitious
aims, and present solutions to these.

1.5.2 de Bruyn

Parts of this book may be related to de Bruijn’s work on a Mathematical Ver-
nacular (De Bruii;, 1987 ), a formal language intermediate between ordinary
mathematical practice and formalised computer languages for mathematics
(themselves discussed in §T.5.4] below). The Mathematical Vernacular is
adaptive (in the sense introduced in §I.1): its lexicon and grammar are not
fixed, but expand when definitions in mathematical texts are encountered.
Further, de Bruijn’s delimitation of the scope of the mathematical vernacular
(De Bruii;,m may be compared to our notion of the formal mode (.3},
with the caveat that the Mathematical Vernacular excludes assertions about
relationships between mathematical facts.

Nevertheless, there are significant differences between the our work and de
Bruijn’s. The Mathematical Vernacular seems to be intended as a practical
tool, designed to overcome some of the weaknesses in de Bruijn’s computer

theorem-proving language Automath. By contrast, we are analysing actual
mathematical language from a linguistic perspective. Some consequences of
this difference in emphasis are that de Bruijn often takes a prescriptive stance
towards mathematics, that he avoids discussing ambiguity by simply inserting
extra brackets into mathematical texts , 198 EL p. 935), and that
his theory massively overgenerates (see particularly (De Bruijnl,|1987, p. 868,
§1.10)). Another is that divergences between mathematical practice and the

Mathematical Vernacular are often presented without discussion.
In the course of the development of his Mathematical Vernacular, de Bruijn

occasionally discusses specific phenomena in the language of mathematics;
many of these phenomena will also be considered in this book. As de Bruijn
does not base his analysis on any linguistic theory, he tends to organise mate-
rial according to its surface character, rather than the underlying processes.
For example, he makes a detailed taxonomic study of the distinct usages
of the indefinite article in Dutch mathematics , , covering a
number of phenomena with analogues in English mathematics. This includes
phenomena related to pragmatics (§2.3)), variable introduction (§2.4.4] ,
the treatment of material inside definition blocks (§2.5.1), quantifier scope
ambiguity (§4£.2.2) and prepositional phrases and genericity (§8:1). In the
remainder of the book, we will highlight de Bruijn’s observations where they
are directly relevant to the phenomena we are analysing.
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Naproche’s authors remark that it is at a rototyplcal stage, and that the
language is currently ‘inelegant’ , 2009 p- 5, p. 10). It seems likely
that it will come closer to the actual language of mathematics, but as it
stands, NaProChe is sufficiently far removed from that of the language of
mathematics that it of limited relevance to the present work. In particular,
we will not refer to the syntactic aspects of NaProChe at all. Its main area
of relevance is semantic: NaProChe adapts Discourse Representation Theory
(or DRT) thamp and Reylé 1993) to provide a semantic representation, on
the grounds that it is one of the longest estabhshed theories, and that it
can analyse a wide range of phenomena p. 21). We will also
adopt a variant of DRT, albeit for very specific reasons bl We will provide a
comparison of the two DRT-based approaches in §3.5.4

1.5.4 Other Work

We should note that there are a number of sources which give a lin-
guistic analysis of mathematics in some capacity, but are not compara-
ble to the work in this book. For example, 'Wolska and Kruijff-Korbayov4l
(2004) describes an experiment that deals with simulated mathematical
dialogs, but focuses on subjects with ‘little to fair mathematical knowledge’
(Wolska and Krui]'ff—Korbayong’ |ML p. 2). The material produced by these
users is not related to the formal dialect of mathematics studied in this
book (ef. §1.3). (The paper also treats material in German, whereas we focus
exclusively on English.)

5 DRT was developed to handle Geach’s ‘donkey sentences’ , ) and, as
we will show in §3.31] there are similar sentences in real mathematical texts. We
will also be able to adapt DRT to overcome deficiencies noted by Ranta in his
own work; see §3.3.2]for details.



2

The Language of Mathematics

We will now give an informal description of the language of mathematics, and
highlight some of the major issues that arise to confront a theory of mathe-
matical language. No systematic survey of this kind exists in the literature,
and we will therefore for the most part construct our description ab nitio.
Exceptions will be drawn in certain areas where Ranta has discussed similar
phenomena, especially in

We will start by introducing a basic division of the language of mathe-
matics into ‘textual’ and ‘symbolic’ halves (§2.I) and introducing the most
important way in which the language of mathematics differs from natural
languages (§2.2). We will then examine each of textual and symbolic mathe-
matics in greater detail (§2.3]and §2.4)), and finally turn to the macroscopic
discourse structure of mathematical language (§2.5).

2.1 Text and Symbol

At first sight, the most striking feature of mathematical language is the way in
which it mixes material that looks as if it is drawn from a natural language
with material built up out of idiosyncratically mathematical symbols. The
distinction is illustrated in Figure [21]

There are respects in which the ‘natural language’ part of mathematics
differs from genuine natural languages; for example, as we will discuss below,
many pragmatic phenomena are blocked in ‘mathematical natural language’.
Also, the term ‘natural language’ carries particular connotations; for example,
it suggests that one is dealing with a language that has native speakers.
We will therefore use the neutral term ‘textual’ to refer to the parts of
mathematics that resemble natural language. The remaining material will
be referred to as ‘symbolic’, and specific pieces of symbolic mathematics will
occasionally be referred to as mathematical ‘notation’.

The primary function of symbolic mathematics is to abbreviate material
that would be too cumbersome to state with text alone. Thus a sentence

M. Ganesalingam (Ed.): The Language of Mathematics, LNCS 7805, pp. 17-58] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



18 2 The Language of Mathematics

If K < G and there are inclusions gKg~' < K for every g € G, then K < G-
replacing g by g !, we have the inclusion ¢ ' Kg< K, and this gives the reverse
inclusion K < gKg .

The kernel K of a homomorphism f : G — H is a normal subgroup: if a € K,
then f(a) = 1:if g € G, then f(gag™')=f(9)f(a)f(9 ") =f(g)f(9"") = L, and
so gag~' € K. Hence, gKg~' < K for all g € G, and so K 9G. Conversely, we
shall see later that every normal subgroup is the kernel of some homomorphism.

Fig. 2.1 Excerpt from ) Symbolic material highlighted.

The square root of 2 is irrational.
might be expressed more concisely as
V2 is irrational.
or even as
V2¢ Q.

Without the capacity of symbolic material to abbreviate text in a remarkably
compact way, modern mathematics would quickly become unreadable. For
example, the symbolic formula

flgag™) = f(9)f(a)f(g™")
would have to be written as

The value of f at the product of g and a and the inverse of g is equal to the
product of the value of f at g and the value of f at a and the value of f at
the inverse of a.

(This last sentence actually contains some residual symbolic material in the
form of the variables f, a, and g. Eliminating these would require rewriting
the context surrounding the above remark, and the result would be even more
unwieldy.)

Because symbolic material functions primarily in an abbreviative capacity,
symbolic mathematics tends to occur inside textual mathematics rather than
vice versa. Thus mathematical texts are largely composed out of textual
sentences, with symbolic material embedded like ‘islands’ inside text. Most
often symbolic terms are embedded in textual contexts that would accept
noun phrases, and symbolic formulae are embedded in textual contexts that
would accept sentences (i.e. constituents of the category ‘S’). For example, in
the first sentence of Figure[2.1] the term ‘¢!’ and the formula ‘K < G’ ap-
pear in contexts that would accept a noun phrase and a sentence respectively.
Less frequently, one also find substitutions of symbolic material inside the
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mathematical equivalents of individual words; for example one might refer to
a ‘Z-module’, a ‘F,-module’, or a ‘(Z x Z)-module’.

Ranta states that symbolic material may occur inside textual material, but
not vice versa , pp- 10-11). This remark holds in the fragment
he is analysing, which describes only arithmetic and some trigonometry, but
is not true of mathematics in general. A counterexample is given by the
symbolic term

{(z,y) € N*| z and y are coprime}

All counterexamples involve symbolic formulae being used in contexts that
accept textual sentences. (In fact, formulae and sentences appear to have
the same distribution in the register of mathematics we are considering; we
know of no context that admits a sentence but not a formula, or vice versa.)
When one looks at terms and noun phrases, Ranta’s assertion extends to
mathematics as a whole; for example, one may not write:

Vthe smallest element of N.

We will provide a theoretical explanation of this asymmetry of substitutability
between terms and noun phrases at the end of

After discussing another major feature of mathematical language, we will
look at each of textual mathematics and symbolic mathematics in more detail

(£2.3]and §2.4).

2.2 Adaptivity

When one starts to delve into the language of mathematics, one encounters
a phenomenon that is much more remarkable than the use of symbols. Math-
ematical language expands as more mathematics is encountered. The kind of
expansion to which we are referring occurs as an individual mathematician
reads more and more mathematical texts, and is entirely distinct from the
slow change of language over time. All references to ‘change’ or to ‘expansion’
in this book will refer to this distinctively mathematical notion, and not to
conventional language change. We will call this phenomenon, by which the
grammar of an individual mathematician changes as definitions are encoun-
tered, adaptivity.

Adaptivity occurs when certain mathematical statements, known as defi-
nitions, are read. Definitions can change the language of mathematics in two
ways. First, they can expand the lexicon of the textual part of mathematics.
Second, they can expand the syntax of the symbolic part of mathematics. Any
given definitions can perform either or both of these functions. For example,
consider:

If p is a minimal prime of a graded S-module M, we define the multiplicity
of M at p, denoted p, (M), to be the length of M, over S,.

(Hartshornd, [1977, p. 51)



