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Preface

Kim Plofker and I conceived of this book at a meeting of the Mathematical Association of
America several years ago. We agreed that, since there was now available a fairly large collec-
tion of English translations of mathematical texts from Egypt, Mesopotamia, China, India,
and Islam, the time was ripe to put together an English sourcebook. This book would have
texts gathered together so that they could easily be studied by all those interested in the math-
ematics of ancient and medieval times. I secured commitments to edit the five sections from
outstanding scholars with whom I was familiar, scholars who had already made significant
contributions in their fields, and were fluent in both the original languages of the texts and
English. There are a growing number of scholars investigating the works of these civilizations,
but I believe that this group was the appropriate one to bring this project to fruition.

The editors decided that to the extent possible we would use already existing English trans-
lations with the consent of the original publisher, but would, where necessary, produce new
ones. In certain cases, we decided that an existing translation from the original language into
French or German could be retranslated into English, but the retranslation was always made
with reference to the original language. As it turned out, the section editors of both the
Egyptian and Mesopotamian sections decided to produce virtually all new translations,
because they felt that many previous translations had been somewhat inadequate. The other
sections have a mix of original translations and previously translated material.

Each of the five sections of the Sourcebook has a preface, written by the section editor, giv-
ing an overview of the sources as well as detailing the historical setting of the mathematics in
that civilization. The individual sources themselves also have introductions. In addition, many
of the sources contain explanations to help the reader understand the sometimes fairly cryptic
texts. In particular, the Chinese and Indian sections have considerably more detailed explana-
tions than the Islamic section, because Islamic mathematicians, being well schooled in Greek
mathematics, use “our” techniques of mathematical analysis and proof. Mathematicians from
China and India, and from Egypt and Mesopotamia as well, come from traditions far different
from ours. So the editors of those sections have spent considerable effort in guiding the reader
through this “different” mathematics.

The book is aimed at those having knowledge of mathematics at least equivalent to a U.S.
mathematics major. Thus, the intended audience of the book includes students studying
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mathematics and the history of mathematics, mathematics teachers at all levels, mathemati-
cians, and historians of mathematics.

The editors of this Sourcebook wish to thank our editors at Princeton University Press,
David Ireland and Vickie Kearn, who have been extremely supportive in guiding this book
from concept to production. We also wish to thank Dale Cotton, our production editor,
Dimitri Karetnikov, the illustration specialist, and Alison Anderson, the copy editor, for their
friendly and efficient handling of a difficult manuscript. Finally, as always, I want to thank my
wife Phyllis for her encouragement and for everything else.

Victor J. Katz
Silver Spring, MD
December, 2005
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Introduction

A century ago, mathematics history began with the Greeks, then skipped a thousand years and
continued with developments in the European Renaissance. There was sometimes a brief
mention that the “Arabs” preserved Greek knowledge during the dark ages so that it was avail-
able for translation into Latin beginning in the twelfth century, and perhaps even a note that
algebra was initially developed in the lands of Islam before being transmitted to Europe.
Indian and Chinese mathematics barely rated a footnote.

Since that time, however, we have learned much. First of all, it turned out that the Greeks
had predecessors. There was mathematics both in ancient Egypt and in ancient
Mesopotamia. Archaeologists discovered original material from these civilizations and deci-
phered the ancient texts. In addition, the mathematical ideas stemming from China and
India gradually came to the attention of historians. In the nineteenth century, there had been
occasional mention of these ideas in fairly obscure sources in the West, and there had even
been translations into English or other western languages of certain mathematical texts. But
it was only in the late twentieth century that major attempts began to be made to understand
the mathematical ideas of these two great civilizations and to try to integrate them into a
worldwide history of mathematics. Similarly, the nineteenth century saw numerous transla-
tions of Islamic mathematical sources from the Arabic, primarily into French and German.
But it was only in the last half of the twentieth century that historians began to put together
these mathematical ideas and attempted to develop an accurate history of the mathematics
of Islam, a history beyond the long-known preservation of Greek texts and the algebra of al-
Khwarizmi. Yet, even as late as 1972, Morris Kline’s monumental work Mathematical Thought
from Ancient to Modern Times contained but 12 pages on Mesopotamia, 9 pages on Egypt,
and 17 pages combined on India and the Islamic world (with nothing at all on China) in its
total of 1211 pages.

It will be useful, then, to give a brief review of the study of the mathematics of Egypt,
Mesopotamia, China, India, and Islam to help put this Sourcebook in context.

To begin with, our most important source on Egyptian mathematics, the Rhind
Mathematical Papyrus, was discovered, probably in the ruins of a building in Thebes, in the
middle of the nineteenth century and bought in Luxor by Alexander Henry Rhind in 1856.
Rhind died in 1863 and his executor sold the papyrus, in two pieces, to the British Museum
in 1865. Meanwhile, some fragments from the break turned up in New York, having been
acquired also in Luxor by the American dealer Edwin Smith in 1862. These are now in the
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Brooklyn Museum. The first translation of the Rhind Papyrus was into German in 1877. The
first English translation, with commentary, was made in 1923 by Thomas Peet of the
University of Liverpool. Similarly, the Moscow Mathematical Papyrus was purchased around
1893 by V. S. Golenishchev and acquired about twenty years later by the Moscow Museum of
Fine Arts. The first notice of its contents appeared in a brief discussion by B. A. Turaev, con-
servator of the Egyptian section of the museum, in 1917. He wrote chiefly about problem 14,
the determination of the volume of a frustum of a square pyramid, noting that this showed
“the presence in Egyptian mathematics of a problem that is not to be found in Euclid” The
first complete edition of the papyrus was published in 1930 in German by W. W. Struve.
The first complete English translation was published by Marshall Clagett in 1999.

Thus, by early in the twentieth century, the basic outlines of Egyptian mathematics were
well understood—at least the outlines as they could be inferred from these two papyri. And
gradually the knowledge of Egyptian mathematics embedded in these papyri and other
sources became part of the global story of mathematics, with one of the earliest discussions
being in Otto Neugebauer’s Vorlesungen iiber Geschichte der antiken Mathematischen
Wissenschaften (more usually known as Vorgriechische Mathematik) of 1934, and further
discussions and analysis by B. L. Van der Waerden in his Science Awakening of 1954. A more
recent survey is by James Ritter in Mathematics Across Cultures.

A similar story can be told about Mesopotamian mathematics. Archaeologists had begun
to unearth the clay tablets of Mesopotamia beginning in the middle of the nineteenth century,
and it was soon realized that some of the tablets contained mathematical tables or problems.
But it was not until 1906 that Hermann Hilprecht, director of the University of Pennsylvania’s
excavations in what is now Iraq, published a book discussing tablets containing multiplication
and reciprocal tables and reviewed the additional sources that had been published earlier, if
without much understanding. In 1907, David Eugene Smith brought some of Hilprecht’s work
to the attention of the mathematical world in an article in the Bulletin of the American
Mathematical Society, and then incorporated some of these ideas into his 1923 History of
Mathematics.

Meanwhile, other archacologists were adding to Hilprecht’s work and began publishing
some of the Mesopotamian mathematical problems. The study of cuneiform mathematics
changed dramatically, however, in the late 1920s, when Franc¢ois Thureau-Dangin and Otto
Neugebauer independently began systematic programs of deciphering and publishing these
tablets. In particular, Neugebauer published two large collections: Mathematische Keilschrift-
Texte in 1935-37 and (with Abraham Sachs) Mathematical Cuneiform Texts in 1945. He then
summarized his work for the more general mathematical public in his 1951 classic, The Exact
Sciences in Antiquity. Van der Waerden’s Science Awakening was also influential in publicizing
Mesopotamian mathematics. Jens Hoyrup’s survey of the historiography of Mesopotamian
mathematics provides further details.

Virtually the first mention of Chinese mathematics in a European language was in several
articles in 1852 by Alexander Wylie entitled “Jottings on the Science of the Chinese:
Arithmetic,” appearing in the North China Herald, a rather obscure Shanghai journal.
However, they were translated in part into German by Karl L. Biernatzki and published in
Crelle’s Journal in 1856. Six years later they also appeared in French. It was through these arti-
cles that Westerners learned of what is now called the Chinese Remainder problem and how
it was initially solved in fourth-century China, as well as about the ten Chinese classics and
the Chinese algebra of the thirteenth century. Thus, by the end of the nineteenth century,
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European historians of mathematics could write about Chinese mathematics, although, since
they did not have access to the original material, their works often contained errors.

The first detailed study of Chinese mathematics written in English by a scholar who could
read Chinese was Mathematics in China and Japan, published in 1913 by the Japanese scholar
Yoshio Mikami. Thus David Eugene Smith, who co-authored a work solely on Japanese math-
ematics with Mikami, could include substantial sections on Chinese mathematics in his own
History of 1923, Although other historians contributed some material on China during the
first half of the twentieth century, it was not until 1959 that a significant new historical study
appeared, volume 3 of Joseph Needham’s Science and Civilization in China, entitled
Mathematics and the Sciences of the Heavens and the Earth. One of Needham’s chief collabora-
tors on this work was Wang Ling, a Chinese researcher who had written a dissertation on the
Nine Chapters at Cambridge University. Needham’s work was followed by the section on
China in A. P. Yushkevich’s history of medieval mathematics (1961) in Russian, a book that
was in turn translated into German in 1964. Since that time, there has been a concerted effort
by both Chinese and Western historian of mathematics to make available translations of the
major Chinese texts into Western languages.

The knowledge in the West of Indian mathematics occurred much earlier than that of
Chinese mathematics, in part because the British ruled much of India from the eighteenth cen-
tury on. For example, Henry Thomas Colebrooke collected Sanskrit mathematical and astro-
nomical texts in the early nineteenth century and published, in 1817, his Algebra with
Arithmetic and Mensuration from the Sanscrit of Brahmegupta and Bhascara. Thus parts of the
major texts of two of the most important medieval Indian mathematicians were available in
English, along with excerpts from Sanskrit commentaries on these works. Then in 1835,
Charles Whish published a paper dealing with the fifteenth-century work in Kerala on infinite
series, and Ebenezer Burgess in 1860 published a translation of the S#rya-siddhanta, a major
early Indian work on mathematical astronomy. Hendrik Kern in 1874 produced an edition of
the Aryabhatiya of Aryabhata, while George Thibaut wrote a detailed essay on the Sulbasiitras,
which was published, along with his translation of the Baudhayana Sulbasiitra, in the late 1870s.
The research on medieval Indian mathematics by Indian researchers around the same time,
including Bapu Deva Sastri, Sudhakara Dvivedi and S. B. Dikshit, although originally published
in Sanskrit or Hindi, paved the way for additional translations into English.

Despite the availability of some Sanskrit mathematical texts in English, it still took many
years before Indian contributions to the world of mathematics were recognized in major
European historical works. Of course, European scholars knew about the Indian origins of the
decimal place-value system. But in part because of a tendency in Europe to attribute Indian
mathematical ideas to the Greeks and also because of the sometimes exaggerated claims by
Indian historians about Indian accomplishments, a balanced treatment of the history of
mathematics in India was difficult to achieve. Probably the best of such works was the History
of Indian Mathematics: A Source Book, published in two volumes by the Indian mathemati-
cians Bibhutibhusan Datta and Avadhesh Narayan Singh in 1935 and 1938. In recent years,
numerous Indian scholars have produced new Sanskrit editions of ancient texts, some of
which have never before been published. And new translations, generally into English, are also
being produced regularly, both in India and elsewhere.

As to the mathematics of Islam, from the time of the Renaissance Europeans were aware
that algebra was not only an Arabic word, but also essentially an Islamic creation. Most early
algebra works in Europe in fact recognized that the first algebra works in that continent were
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translations of the work of al-Khwarizmi and other Islamic authors. There was also some
awareness that much of plane and spherical trigonometry could be attributed to Islamic
authors. Thus, although the first pure trigonometrical work in Europe, On Triangles by
Regiomontanus, written around 1463, did not cite Islamic sources, Gerolamo Cardano noted
a century later that much of the material there on spherical trigonometry was taken from the
twelfth-century work of the Spanish Islamic scholar Jabir ibn Aflah.

By the seventeenth century, European mathematics had in many areas reached, and in
some areas surpassed, the level of its Greek and Arabic sources. Nevertheless, given the con-
tinuous contact of Europe with Islamic countries, a steady stream of Arabic manuscripts,
including mathematical ones, began to arrive in Europe. Leading universities appointed pro-
fessors of Arabic, and among the sources they read were mathematical works. For example, the
work of Sadr al-TasT (the son of Nagir al-Din al-Tais1) on the parallel postulate, written origi-
nally in 1298, was published in Rome in 1594 with a Latin title page. This work was studied
by John Wallis in England, who then wrote about its ideas as he developed his own thoughts
on the postulate. Still later, Newton’s friend, Edmond Halley, translated into Latin
Apollonius’s Cutting-off of a Ratio, a work that had been lost in Greek but had been preserved
via an Arabic translation.

Yet in the seventeenth and eighteenth centuries, when Islamic contributions to mathemat-
ics may well have helped Europeans develop their own mathematics, most Arabic manuscripts
lay unread in libraries around the world. It was not until the mid-nineteenth century that
European scholars began an extensive program of translating these mathematical manu-
scripts. Among those who produced a large number of translations, the names of Heinrich
Suter in Switzerland and Franz Woepcke in France stand out. (Their works have recently been
collected and republished by the Institut fir Geschichte der arabisch-islamischen
Wissenschaften.) In the twentieth century, Soviet historians of mathematics began a major
program of translations from the Arabic as well. Until the middle of the twentieth century,
however, no one in the West had pulled together these translations to try to give a fuller pic-
ture of Islamic mathematics. Probably the first serious history of Islamic mathematics was a
section of the general history of medieval mathematics written in 1961 by A. P. Yushkevich,
already mentioned earlier. This section was translated into French in 1976 and published as a
separate work, Les mathématiques arabes (VIII*-XV* siécles). Meanwhile, the translation pro-
gram continues, and many new works are translated each year from the Arabic, mostly into
English or French.

By the end of the twentieth century, all of these scholarly studies and translations of the
mathematics of these various civilizations had an impact on the general history of mathe-
matics. Virtually all recent general history textbooks contain significant sections on the math-
ematics of these five civilizations. As this sourcebook demonstrates, there are many ideas that
were developed in these five civilizations that later reappeared elsewhere. The question that
then arises is how much effect the mathematics of these civilizations had on what is now world
mathematics of the twenty first-century. The answer to this question is very much under
debate. We know of many confirmed instances of transmission of mathematical ideas from
one of these cultures to Europe or from one of these cultures to another, but there are numer-
ous instances where, although there is circumstantial evidence of transmission, there is no
definitive documentary evidence. Whether such will be found as more translations are made
and more documents are uncovered in libraries and other institutions around the world is a
question for the future to answer.



Introduction | 5
References

Biernatzki, Karl L. 1856. “Die Arithmetic der Chinesen.” Crelle’s Journal 52: 59-94.
Burgess, Ebenezer. 1860. “The Suiryasiddhanta.” Journal of the American Oriental Society, 6.

Clagett, Marshall. 1999. Ancient Egyptian Science: A Source Book. Vol. 3, Ancient Egyptian
Mathematics. Philadelphia: American Philosophical Society.

Colebrooke, Henry Thomas. 1817. Algebra with Arithmetic and Mensuration from the Sanscrit
of Brahmegupta and Bhascara. London: John Murray.

Datta, B., and A. N. Singh., 1935/38. History of Hindu Mathematics: A Source Book. 2 vols.
Bombay: Asia Publishing House.

Hilprecht, Hermann V. 1906. Mathematical, Metrological and Chronological Tablets from the
Temple Library of Nippur Philadelphia: University Museum of Pennsylvania.

Hoyrup, Jens. 1996. “Changing Trends in the Historiography of Mesopotamian Mathematics:
An Insider’s View.” History of Science 34: 1-32.

Kern, Hendrik. 1874. The Aryabhatiya, with the Commentary Bhatadipika of Paramadicyara.
Leiden: Brill.

Kline, Morris. 1972. Mathematical Thought from Ancient to Modern Times. New York: Oxford
University Press.

Mikami, Yoshio. 1913. The Development of Mathematics in China and Japan. Leipzig: Teubner.

Needham, Joseph. 1959. Science and Civilization in China. Vol. 3, Mathematics and the Sciences
of the Heavens and the Earth. Cambridge: Cambridge University Press.

Neugebauer, Otto. 1934. Vorlesungen iiber Geschichte der antiken Mathematischen
Wissenschaften. I. Vorgriechische Mathematik. Berlin: Springer-Verlag,

. 1935-37. Mathematische Keilschrift-Texte. Berlin: Springer-Verlag.

. 1945, Mathematical Cuneiform Texts (with Abraham Sachs). New Haven: American
Oriental Society.

. 1951. The Exact Sciences in Antiquity. Princeton: Princeton University Press.

Peet, Thomas. 1923. The Rhind Mathematical Papyrus, British Museum 10057 and 10058.
Introduction, Transcription, Translation and Commentary. London.

Ritter, James. 2000. “Egyptian Mathematics.” In Helaine Selin, ed., Mathematics Across
Cultures: The History of Non-Western Mathematics. Dordrecht: Kluwer.

Smith, David Eugene. 1907. “The Mathematical Tablets of Nippur.” Bulletin of the American
Mathematical Society 13: 392-398.

. 1923, History of Mathematics. 2 vols. Boston: Ginn.

Struve, W. W. 1930. Mathematische Papyrus des Staatlichen Museums der Schiénen Kiinste in
Moskau. Quellen und Studien zur Geschichte der Mathematik A1. Berlin: Springer-Verlag.

Suter, Heinrich. 1986. Beitriige zur Geschichte der Mathematik und Astronomie im Islam. 2 vols.
Frankfurt: Institut fiir Geschichte der arabisch-islamischen Wissenschaften.

Thibaut, George. 1875. “On the Sulba-sutra.” Journal of the Asiatic Society of Bengal. 44: 227-275.



6

Victor Katz
Thureau-Dangin, Frangois. 1983. Textes mathématiques babyloniens (Ex Oriente Lux 1).
Leiden: Brill.

Turaev, Boris. A. 1917. “The Volume of the Truncated Pyramid in Egyptian Mathematics.”
Ancient Egypt 3: 100-102.

Van der Waerden, B. L. 1954. Science Awakening. New York: Oxford University Press.

Whish, Charles. 1835, “On the Hindu quadrature of a circle.” Transactions of the Royal Asiatic
Society of Great Britain and Ireland 3: 509-23.

Woepcke, Franz. 1986. Etudes sur les mathématiques arabo-islamiques. 2 vols. Frankfurt:
Institut fiir Geschichte der arabisch-islamischen Wissenschaften.

Wylie, Alexander. 1852. “Jottings on the Science of the Chinese Arithmetic” North China
Herald, Aug.—Nov. nos. 108-13, 116-17, 119-21.

Yushkevich, A. P. 1961. The History of Mathematics in the Middle Ages (in Russian). Moscow:
Fizmatgiz.

. 1964. Geschichte der Mathematik in Mittelalter, Leipzig: Teubner.

. 1976. Les mathématiques arabes (VIIIF —XV® siécles). Paris: Vrin.




Egyptian Mathematics

Annette Imhausen

Preliminary Remarks

The study of Egyptian mathematics is as fascinating as it can be frustrating. The preserved
sources are enough to give us glimpses of a mathematical system that is both similar to some
of our school mathematics, and yet in some respects completely different. It is partly this sim-
ilarity that caused early scholars to interpret Egyptian mathematical texts as a lower level of
Western mathematics and, subsequently, to “translate” or rather transform the ancient text
into a modern equivalent. This approach has now been widely recognized as unhistorical and
mostly an obstacle to deeper insights. Current research attempts to follow a path that is
sounder historically and methodologically. Furthermore, writers of new works can rely on
progress that has been made in Egyptology (helping us understand the language and context
of our texts) as well as in the history of mathematics.

However, learning about Egyptian mathematics will never be an easy task. The main
obstacle is the shortage of sources. It has been over 70 years since a substantial new Egyptian
mathematical text was discovered. Consequently, we must be extremely careful with our
general evaluation of Egyptian mathematics. If we arbitrarily chose six mathematical publi-
cations of the past 300 years, what would we be able to say about mathematical achievements
between 1700 and 2000 ce? This is exactly our situation for the mathematical texts of the
Middle Kingdom (2119-1794/93 BcE). On the positive side, it must be said that the available
source material is as yet far from being exhaustively studied, and significant and fascinating
new insights are still likely to be gained. Also, the integration of other texts that contain
mathematical information helps to fill out the picture. The understanding of Egyptian math-
ematics depends on our knowledge of the social and cultural context in which it was created,
used, and developed. In recent years, the use of other source material, which contains direct
or indirect information about Egyptian mathematics, has helped us better understand the
extant mathematical texts.

This chapter presents a selection of sources and introduces the characteristic features of
Egyptian mathematics. The selection is taken from over 3000 years of history. Consequently,
the individual examples have to be taken within their specific context. The introduction fol-
lowing begins with a text about mathematics from the New Kingdom (1550-1070/69 BCE) to
illustrate the general context of mathematics within Egyptian culture.
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To introduce this text, we need to bear in mind that the development and use of mathe-
matical techniques began around 1500 years earlier with the invention of writing and number
systems. The available evidence points to administrative needs as the motivation for this
development. Quantification and recording of goods also necessitated the development of
metrological systems, which can be attested as early as the Old Kingdom and possibly earlier.
Metrological systems and mathematical techniques were used and developed by the scribes,
that is, the officials working in the administration of Egypt. Scribes were crucial to ensuring
the smooth collection and distribution of available goods, thus providing the material basis
for a prospering government under the pharaoh. Evidence for mathematical techniques comes
from the education and daily work life of these scribes. The most detailed information can be
gained from the so-called mathematical texts, papyri that were used in the education of jun-
ior scribes. These papyri contain collections of problems and their solutions to prepare the
scribes for situations they were likely to face in their later work.

The mathematical texts inform us first of all about different types of mathematical prob-
lems. Several groups of problems can be distinguished according to their subject. The majority
are concerned with topics from an administrative background. Most scribes were probably
occupied with tasks of this kind. This conclusion is supported by illustrations found on the
walls of private tombs. Very often, in tombs of high officials, the tomb owner is shown as an
inspector in scenes of accounting of cattle or produce, and sometimes several scribes are
depicted working together as a group. It is in this practical context that mathematics was devel-
oped and practised. Further evidence can be found in three-dimensional models representing
scenes of daily life, which regularly include the figure of one or more scribes. Several models
depict the filling of granaries, and a scribe is always present to record the respective quantities.

While mathematical papyri are extant from two separate periods only, depictions of scribes
as accountants (and therefore using mathematics) are evident from all periods beginning with
the Old Kingdom. Additional evidence for the same type of context for mathematics appears
during the New Kingdom in the form of literary texts about the scribal profession. These texts
include comparisons of a scribe’s duties to duties of other professions (soldier, cobbler, farmer,
etc.). It is clear that many of the scribes’ duties involve mathematical knowledge. The intro-
duction begins with a prominent example from this genre.

~ Another (and possibly the only other) area in which mathematics played an important role
was architecture. Numerous extant remains of buildings demonstrate a level of design and
construction that could only have been achieved with the use of mathematics. However, which
instruments and techniques were used is not known nor always easy to discern. Past histori-
ography has tended to impose modern concepts on the available material, and it is only
recently that a serious reassessment of this subject has been published.! Again, detailed
accounts of mathematical techniques related to architecture are only extant from the Middle
Kingdom on. However, a few sketches from the Old Kingdom have survived as well, which
indicate that certain mathematical concepts were present or being developed. These concepts
then appeared fully formed in the mathematical texts.

Throughout this chapter Egyptian words appear in what Egyptologists call “transcription.”
The Egyptian script noted only consonants (although we pronounce some of them as vowels
today). For this reason, transcribing hieratic or hieroglyphic texts means to transform the

1See [Rossi 2004].



Egyptian Mathematics | 9

text into letters which are mostly taken from our alphabet and seven additional letters
(3, S h, b, by t, d). In order to be able to read Egyptian, Egyptologists therefore agreed on the
convention to insert (in speaking) short “e” sounds where necessary. The pronunciation of the
Egyptian transcription alphabet is given below. This is a purely modern convention—how
Egyptian was pronounced originally is not known. The Appendix contains a glossary of
all Egyptian words in this chapter and their (modern) pronunciation.

Letter Pronunciation

e
c R

A~
—
=]
-1

—

B
°
=1
=

BB g ™o O ogel

like Arabic h

like ch in “loch”
like German ch in “ich”
voiced s
unvoiced s

sh

emphatic k

k

&

t

like ch in “touch”
d

dg as in “judge”

BRI R A e ®moN IR ™Y S Y NT oo

l. Introduction

The passage below is taken from Papyrus Anastasi I,> an Egyptian literary text of the New
Kingdom (1550-1070/69 BCE). This composition is a fictional letter, which forms part of a
debate between two scribes. The letter begins, as is customary for Egyptian letters, with the
writer Hori introducing himself and then addressing the scribe Amenemope (by the shortened
form Mapu). After listing the necessary epithets and wishing the addressee well, Hori recounts
receiving a letter of Amenemope, which Hori describes as confused and insulting. He then

2The hieroglyphic transcription of the various extant sources can be found in [Fischer-Elfert 1983). An English
translation of the complete text is [Gardiner 1911]; this however is based on only ten of the extant 80 sources. The edi-
tio princeps is [Fischer-Elfert 1986). The translation given here is my own, which is based on the work by Fischer-Elfert.
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proposes a scholarly competition covering various aspects of scribal knowledge. The letter ends
with Hori criticizing the letter of his colleague again and suggesting to him that he should sit
down and think about the questions of the competition before trying to answer them.

The mathematical section of the letter, translated below, comprises several problems similar to
the collections of problems found in mathematical papyri. However, in this letter, the problems
are framed by Hori’s comments (and sometimes insults), addressed to his colleague Amenemope
(Mapu). Hori points out several times the official position which Amenemope claims for himself
(“commanding scribe of the soldiers,” “royal scribe”) and teases him by calling him ironically
“vigilant scribe,” “scribe keen of wit,” “sapient scribe,” directly followed by a description of
Amenemope’s ineptness. In between, Hori describes several situations in which Amenemope
is required to use his mathematical knowledge.

Note that while in each case the general problem is easy to grasp, there is not enough infor-
mation, in fact, for a modern reader to solve these mathematical problems. This is partly due
to philological difficulties: even after two editions the text is still far from fully understood.
The choice of this extract as the first source text is mainly meant to illustrate the social and

cultural context of mathematics in ancient Egypt.

Papyrus Anastasi |, 13,4-18,2

Another topic

Look, you come here and fill me with (the importance of) your office. | will let you
know your condition when you say: “I am the commanding scribe of the soldiers.”
It has been given to you to dig a lake. You come to me to ask about the rations of
the soldiers. You say to me: “Calculate it!” | am thrown into your office. Teaching
you to do it has fallen upon my shoulders.

I will cause you to be embarrassed, | will explain to you the command of your
master—may he live, prosper, and be healthy. Since you are his royal scribe, you are
sent under the royal balcony for all kinds of great monuments of Horus, the lord of
the two lands. Look, you are the clever scribe who is at the head of the soldiers.

A ramp shall be made of (length) 730 cubits, width 55 cubits, with 120 compart-
ments, filled with reeds and beams. For height: 60 cubits at its top to 30 cubits in its
middle, and an inclination (sgd) of 15 cubits, its base 5 cubits. Its amount of bricks
needed shall be asked from the overseer of the troops. All the assembled scribes lack
someone (i.e., a scribe) who knows them (i.e., the number of bricks). They trust in
you, saying: “You are a clever scribe my friend. Decide for us quickly. Look, your
name has come forward. One shall find someone in this place to magnify the other
thirty. Let it not be said of you: there is something that you don’t know. Answer for
us the number (lit. its need) of bricks.” Look, its measurements are before you. Each
one of its compartments is of 30 cubits (in length) and a width of 7 cubits.

Hey Mapu, vigilant scribe, who is at the head of the soldiers, distinguished when
you stand at the great gates, bowing beautifully under the balcony. A dispatch has
come from the crown prince to the area of Ka to please the heart of the Horus of
Gold, to calm the raging lion. An obelisk has been newly made, graven with the
name of his majesty—may he live, prosper, and be healthy—of 110 cubits in the
length of its shaft, its pedestal of 10 cubits, the circumference of its base makes
7 cubits on all its sides, its narrowing towards the summit 1 cubit, its pyramidion
1 cubit in height, its point 2 digits.
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Add them up in order to make it from parts. You shall give every man to its trans-
port, those who shall be sent to the Red Mountain. Look, they are waiting for them.
Prepare the way for the crown prince Mes-Iten. Approach; decide for us the
amount of men who will be in front of it. Do not let them repeat writing while the
monument is in the quarry. Answer quickly, do not hesitate! Look, it is you who is
looking for them for yourself. Get going! Look, if you hurry, | will cause your heart
to rejoice.

I used to [...] under the top like you. Let us fight together. My heart is apt, my fin-
gers listen. They are clever, when you go astray. Go, don't cry, your helper is behind
you. | let you say: “There is a royal scribe with Horus, the mighty bull.” And you shall
order men to make chests into which to put letters that | will have written you
secretly. Look, it is you who shall take them for yourself. You have caused my hands
and fingers to be trained like a bull at a feast until every feast in eternity.

You are told: “"Empty the magazine that has been loaded with sand under the mon-
ument for your lord—may he live, prosper, and be healthy—which has been brought
from the Red Mountain. It makes 30 cubits stretched upon the ground with a width of
20 cubits, passing chambers filled with sand from the riverbank. The walls of its cham-
bers have a breadth of 4 to 4 to 4 cubits. It has a height of 50 cubits in total. [... ] You
are commanded to find out what is before it. How many men will it take to remove it
in 6 hours if their minds are apt? Their desire to remove it will be small if (a break at)
noon does not come. You shall give the troops a break to receive their cakes, in order
to establish the monument in its place. One wishes to see it beautiful.

O scribe, keen of wit, to whom nothing whatsoever is unknown. Flame in the
darkness before the soldiers, you are the light for them. You are sent on an expedi-
tion to Phoenicia at the head of the victorious army to smite those rebels called
Nearin. The bow-troops who are before you amount to 1900, Sherden 520, Kehek
1600, Meshwesh <100>, Tehesi 880, sum 5000 in all, not counting their officers. A
complimentary gift has been brought to you and placed before you: bread, cattle,
and wine. The number of men is too great for you: the provision is too small for
them. Sweet Kemeh bread: 300, cakes: 1800, goats of various sorts: 120, wine: 30.
The troops are too numerous; the provisions are underrated like this what you take
from them f(i.e., the inhabitants). You receive (it); it is placed in the camp. The sol-
diers are prepared and ready. Register it quickly, the share of every man to his hand.
The Bedouins look on in secret. O learned scribe, midday has come, the camp is hot.
They say: ‘It is time to start’. Do not make the commander angry! Long is the march
before us. What is it, that there is no bread at all? Our night quarters are far off. What
is it, Mapu, this beating we are receiving (lit. of us)? Nay, but you are a clever scribe.
You cease to give (us) food when only one hour of the day has passed? The scribe
of the ruler—may he live, prosper, and be healthy—is lacking. Were you brought to
punish us? This is not good. If Pa-Mose hears of it, he will write to degrade you.”

The extract above shows that mathematics constituted an important part in a scribe’s educa-
tion and daily life. Furthermore, it illustrates the kind of mathematics that was practiced in
Egypt. The passages cited refer to mathematical knowledge that a scribe should have in order
to handle his daily work: accounting of grain, land, and labor in pharaonic Egypt. There have
been several attempts to reconstruct actual mathematical exercises from the examples referred
to in this source. All of them have met difficulties, which are caused not only by the numerous
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philological problems but also by the fact that the problems are deliberately “underdetermined.”
These examples were not intended to be actual mathematical problems that the Egyptian
reader (i.e., scribe) should solve, but they were meant to remind him of types of mathemati-
cal problems he encountered in his own education.

TIMELINE? EXTANT MATHEMATICAL TEXTS? SCRIPT
Archaic Period

Dyn. 1-2 (c. 300-2686 BCE)

0Old Kingdom
Dyn. 3-8 (2686-2160 BCE)

First Intermediate Period
Dyn. 9-10 (2160-2025 BCE)

DILVYUHAIH |

Middle Kingdom pMoscow (E4676)

Dyn. 11-12 (2025-1773 BCE
L ( ) Math. Leather Roll

(BM10250)
Lahun Fragments
pBerlin 6619
Cairo Wooden Boards
PRhind (BM10057-8)
Second Intermediate Period
Dyn. 13-17 (1773-550 BCE
New Kingdom Ostracon Senmut 153

. 18-20 (1550-1069 BCE
Dan ( ) Ostracon Turin 57170

Third Intermediate Period
Dyn. 21-25 (1069-656 BCE)

Late Period
Dyn. 26-31 (664-332 BCE)

Greek/Roman Period pCairo JE 89127-30
(332 BCE-395 CE) :
PCairo JE 8913743
PpBM 10399
pBM10520
PpBM10794

pCarlsberg 30

*Dates according to [Shaw 2000].
®In this column Hieratic texts are listed in bold and italic, while Demotic texts are listed in italic.
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Educational texts are the main source of our knowledge today about Egyptian mathemat-
ics. As already mentioned, there are very few sources available. These are listed in the table
above. (Note that only mathematical texts, i.e., texts which teach mathematics, are included
here, and therefore pAnastasi I is not listed.) Egyptian mathematical texts belong to two dis-
tinct groups: table texts and problem texts. Examples of both groups will be presented in this
chapter. These are complemented by administrative texts that show mathematical practices in
daily life.

The following paragraphs present the Egyptian number system, arithmetical techniques,
Egyptian fraction reckoning, and metrology, in order to make the sources more easily accessible.

l.a. Invention of writing and number systems

The earliest evidence of written texts in Egypt at the end of the fourth millennium BCE con-
sists of records of names (persons and places) as well as commodities and their quantities.
They show the same number system as is used in later times in Egypt, a decimal system with-
out positional notation, i.e. with a new sign for every power of 10:

I n e I ) 5 ¥

1 10 100 1000 10,000 100,000 1,000,000

Nagada tablets CG 14101, 14102, 14103

C) e C)' c)u.

Rggg nN'nnn nnn
I
L1111 nanyj [nnn
14101 14102 14103

These predynastic tablets were probably attached to some commodity (there is a hole in each
of the tablets), and represented a numeric quantity related to this commodity. The number
written on the first tablet is 185; the sign for 100 is written once, followed by the sign for 10
eight times, and the sign for 1 five times. The second tablet shows the number 175, and the
third tablet 164. In addition, a necklace is drawn on the third tablet. This is interpreted as a
tablet attached to a necklace of 164 pearls.

Parallel with the hieroglyphic script, which throughout Egyptian history was mainly used
on stone monuments, a second, simplified script evolved, written with ink and a reed pen on
papyrus, ostraca, leather, or wood. This cursive form of writing is known as “hieratic script.”
The individual signs often resemble their hieroglyphic counterparts. Over time the hieratic
script became more and more cursive, and groups of signs were combined into so-called
ligatures.

Hieroglyphic script could be written in any direction suitable to the purpose of the inscrip-
tion, although the normal direction of writing is from right to left. Thus, the orientation of the
individual symbols, such as the glyph for 100, varies. Compare the glyph for 100 in the table above
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and in the illustrated tablets. Hieratic, however, is always written from right to left. While
hieroglyphic script is highly standardized, hieratic varies widely depending on the handwriting
of the individual scribe. Therefore, it is customary in Egyptology to provide a hieroglyphic
transcription of the hieratic source text.

Notation for fractions: Egyptian mathematics used unit fractions (i.e., %, %, -i-, etc.) almost
exclusively; the single exception is 3. In hieratic, the number that is the denominator is writ-
ten with a dot above it to mark it as a fraction. In hieroglyphic writing the dot is replaced by
the hieroglyph < (“part”). The most commonly used fractions 3, 7, 3

» 5> 3> and  were written by
special signs:

hieratic hieroglyphic Value

1’ . 2
=T 3

1

7 — 2
— 1

/ 111 3
1

x X n

More difficult fractions like 3 or 2 were represented by sums of unit fractions written in direct

juxtaposition, e.g., 2 =11 (hieroglyphic = x); 2 =2} (hieroglyphic 7). In transcription,
fractions are rendered by the denominator with an overbar, e.g., § is written as 2. The fraction
; -

2 is written as 3.

|.b. Arithmetic

Calculation with integers: the mathematical texts contain terms for addition, subtraction,
multiplication, division, halving, squaring, and the extraction of a square root. Only multipli-
cation and division were performed as written calculations. Both of these were carried out
using a variety of techniques the choice of which depended on the numerical values involved.
The following example of the multiplication of 2000 and 5 is taken from a problem of the
Rhind Mathematical Papyrus (remember that the hieratic original, and therefore this hiero-
glyphic transcription, are read from right to left):

Rhind Mathematical Papyrus, problem 52

\. 2000 I ¥

N

4 s000 g
Total 10,000 (I

The text is written in two columns. It starts with a dot in the first column and the number that
shall be multiplied in the second column. The first line is doubled in the second line.
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Therefore we see “2” in the first column and “4000” in the second column, the third line is
twice the second (“4” in the first column, “8000” in the second column).

The first column is then searched for numbers that add up to the multiplicative factor 5
(the dot in the first line counts as “1”). This can be achieved in this example by adding the first
and third lines. These lines are marked with a checkmark (\). The result of the multiplication
is obtained by adding the marked lines of the second column. If the multiplicative factor
exceeds 10, the procedure is slightly modified, as can be followed in the example below from
problem 69 of the Rhind Mathematical Papyrus. The multiplication of 80 and 14 is performed
as follows:

Rhind Mathematical Papyrus, problem 69

80
\10 800 0000 "y
2 80 o
\ 4 320 NN2992 i/
Total 1120 ok

After the initial line, we move directly to 10; then the remaining lines are carried out in the
usual way, starting with double of the first line.

Divisions are performed in exactly the same way, with the roles of first and second column
switched. The following example is taken from problem 76 of the Rhind Mathematical
Papyrus. The division that is performed is 30 + 2.

Rhind Mathematical Papyrus, problem 76

22 — 1l
"
\10 25 1 AA Ay
I
\ 2 5 ¥ ¥
Total 12 N e

Again we find two columns. This time the divisor is subsequently either doubled or multiplied
by 10. Then the second column is searched for numbers that add up to the dividend 30. The
respective lines are marked. The addition of the first column of these lines leads to the result
of the division.

Calculation with fractions: the last example of the division included a fraction (22); how-
ever, in this example it had little effect on the performance of the operation. From previous
examples of multiplication (and division) it is obvious that doubling is an operation which has
to be performed frequently. If fractions are involved, the fraction has to be doubled. If the
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fraction is a single unit fraction with an even denominator, halving the denominator easily does
this, e.g., double of 64 is 32 (&= é) If, however, the denominator is odd (or a series of unit
fractions is to be doubled), the result is not as easily found. For this reason the so-called 2 + N
table was created. This table lists the doubles of odd unit fractions. Examples of this table can
be found in the section of table texts following this introduction. Obviously, the level of diffi-
culty in carrying out these operations usually rises considerably as soon as fractions are
involved.

The layout of a multiplication with fractions is the same as the layout of the multiplication
of integers. The following example—the result of which is unfortunately partly destroyed—is

taken from problem 6 of the Rhind Mathematical Papyrus, the multiplication of 3 5 30
with 10.

Rhind Mathematical Papyrus, problem 6

3530 BT
Fﬁﬂ l\li‘ =T
\2 1317030 = _
n n | '/
4 3210 —
M :.| H I
\8 75 Srrlill 1l
[l iy
Total 9 loaves of bread. This is it. o
O 1l s

Note that the multiplication with ten in this case is not performed directly, but explicitly
carried out through doubling and addition.

Divisions with a divisor greater than the dividend use a series of halvings starting either
with $ (4,3, %) or with } (},4,1,...). For instance the division 70 + 931 in problem 58 of
the Rhind Mathematical Papyrus is performed as follows:

Rhind Mathematical Papyrus, problem 58

[RIAIA!
S— NN
| HRAA

933 T
- = MM
\2 463 =TmnNN =
- = N
\4 233 Tl N X/
[Total 2 4]

In more difficult numerical cases the division is first carried out as a division with remainder.
The remainder is then handled separately.
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l.c. Metrology

Note that the following overview is by no means a complete survey of Egyptian metrology, but
includes only those units which are used in the sources of this chapter.

The approximate values given here are derived from the approximation that 1 cubit ~
52.5 cm, which is used in standard textbooks. It must be noted however, that this was deter-
mined as an average of cubit rods of so-called votive cubits, that is, cubits that have been
placed in a tomb or temple as ritual objects. (Some other cubit rods have been unearthed
that bear signs of actually having been used by architects and workers.) A valid “standard
cubit” throughout Egypt did not exist. Naturally, the same holds for area and volume
measures,

Length measures

1 ht =100 cubits =52.5m
1 cubit =7 palms ~52.5 cm
1 palm =4 digits ~7.5cm
1 digit ~ 19 mm

Area measures

1 h3-83 = 10 s83.t ~ 27562.5 m?
1 st3.t = (1 ht)? ~ 2756.25 m?®
1 area-cubit = I cubit x 100 cubit =~ 27.56 m?

Volume measures

1 h3r =16 hg3.t ~76.81°
1 hsr =20 hq3.t = 2/3 cubic-cubit ~ ~96.514
1 hg3.t =10 hnw ~4.81

1 hnw =32r3 ~0481
173 ~15ml

Il. Hieratic Mathematical Texts

Egyptian mathematical texts can be assigned to two groups: table texts and problem texts.
Table texts include tables for fraction reckoning (e.g., the 2 + N table, which will be the first
source text below, and the table found on the Mathematical Leather Roll) as well as tables for
the conversion of measures (e.g., Rhind Mathematical Papyrus, Nos. 47, 80, and 81). Problem
texts state a mathematical problem and then indicate its solution by means of step-by-step
instructions. For this reason, they are also called procedure texts.

3This is the New Kingdom value, from Dynasty 20 onward. In the Old Kingdom and Middle Kingdom, the value
was 1 h3r = 10 hg3.t.
4This is the value found in the Rhind Mathematical Papyrus.
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The extant hieratic source texts (in order of their publication) are

* Rhind Mathematical Papyrus (BM 10057-10058)

* Lahun Mathematical Fragments (7 fragments: UC32114, UC32118B, UC32134, UC32159-32162)
* Papyrus Berlin 6619 (2 fragments)

* Cairo Wooden Boards (CG 25367 and 25368)

* Mathematical Leather Roll (BM 10250)

* Moscow Mathematical Papyrus (E4674)

* Ostracon Senmut 153

= Ostracon Turin 57170

Most of these texts were bought on the antiquities market, and therefore we do not know their
exact provenance. An exception is the group of mathematical fragments from Lahun, which
were discovered by William Matthew Flinders Petrie when he excavated the Middle Kingdom
pyramid town of Lahun.

Il.a. Table texts

UC 32159
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R he X ween 1N — | un " 9
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== A | N |ﬂ 10

Reprinted by permission of Petrie Museum of Eqyptian Archaeology, University College, London.

The photograph shows a part of the so-called 2 + N table from one of the Lahun fragments.
The hieroglyphic transcription of the fragment on the photo is given next to it. This table
was used to aid fraction reckoning. Remember that Egyptian fraction reckoning used only
unit fractions and the fraction . As multiplication consisted of repeated doubling, multi-
plication of fractions often involved the doubling of fractions. This can easily be done if the
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denominator is even. To double a unit fraction with an even denominator, its denominator
has to be halved, e.g., 2x4=1.

However the doubling of a fraction with an odd denominator always consists of a series
of two or more unit fractions, which are not self-evident. Furthermore, there are often sev-
eral possible representations; however, Egyptian mathematical texts consistently used only
one, which can be found in the 2 + N table. Below is the transcription of our example into
numbers:

Column I Column IT

o8]
L¥5]
Wl

2

|

13 15

M
(%3]
Wi

f %)
~
H= |
—
kol
W |
2
=)
W |

t9 6 12 18 2
T 6 136 66 6
6 13 8 128 52 4 104 8
715 10 12 30 2
S Vi 12 1312 51 3 68 4
19 12 1212 76 4 114 l6l

(SN

1091 14 12 42

The numbers are grouped in two columns. The first column contains the divisor N (in the first
line only it shows both dividend 2 and divisor 3). The second column shows alternatingly frac-
tions of the divisor and their value (as a series of unit fractions). For example, the second line
starts with the divisor 5 in the first column; therefore it is 2 + 5 that is expressed as a series of
unit fractions. It is followed in the second column by 5, 1§, 1_5, and 3. This has to be read as 3
of 5is 13 and 15 of 5 is 3. Since 13 plus 3 equals 2, the series of unit fractions to represent
2+5is 3 15.

The Recto of the Rhind Mathematical Papyrus contains the 2 + N table for N= 3 to N= 101.
Here, the solutions are marked in red ink, rendered as bold in the transcription below.
There have been several attempts to explain the choices of representations in the 2 + N
table. These attempts were mostly based on modern mathematical formulas, and none
of them gives a convincing explication of the values we find in the table. It is probable that
the table was constructed based on experiences in handling fractions. Several “guidelines”
for the selection of suitable fractions can be discerned. The author tried to keep the num-
ber of fractions to represent 2 + N small; we generally find representations composed of two
or three fractions only. Another guiding rule seems to be the choice of fractions with a small
denominator over a bigger denominator, and the choice of denominators that can be
decomposed into several components.
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Rhind Mathematical Papyrus, 2+ N Table

N 2:+N N 2+N

3 32 53 301310318679515

5 313153 55 301363306

7 4124284 57 38121142

9 612182 59 3612121823645319

11 6136666 61 401240244 4488861010
13 81285241048 63 42121262

15 1012302 65 39131953

17 12131251368 4 67 4012820 33555368

19 12121276 41146 69 46121382

21 1412422 71 40124 40568871010

23 '-IE1§¢_15_61— 73 6016202193292 43655
25 1513753 75 50121502

27 1812542 77 441243084

29 241624582174 62328 79 6014152373316479010
31 2012201244 1555 81 54121622

33 2212662 83 601320332441554986
35 30164236 g5 51132553

37 24122411132968 g7 58121742

39 2612782 89 60131020356 4534689010
41 24132424663288 91 701510130330

43 4214286212933017 93 62121862

45 3012902 95 60121238045706

47 3012151413 47010 97 56128142867977768
49 281241964 99 66121982

51 34121022 101 10112022 303 3 606 6
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The Mathematical Leather Roll is another aid for fraction reckoning. It contains 26 sums of
unit fractions which equal a single unit fraction. The 26 sums have been noted in two
columns, followed by another two columns with the same 26 sums. The numeric transcrip-
tion given above shows the arrangement of the sums of the source.

Apart from fraction reckoning, tables were also needed for the conversion of different
measuring units. An example of these tables can be found in the Rhind Mathematical Papyrus,
No. 81. Here, two systems of volume measures, hg3.t and hnw, are compared. hg3.t is the basic
measuring unit for grain, with 1 Ag3.f equaling 10 hnw. The hg3.t was used with a system of
submultiples, which were written by distinctive signs:

L 3 hgdt
¢ 1 hat
s 5 hgit
1 ig hagdt
3 % hgit
L whgt

In older literature about Egyptian mathematics these signs are often interpreted as hieratic
versions of the hieroglyphic parts of the eye of the Egyptian god Horus. However, texts from
the early third millennium as well as depictions in tombs of the Old Kingdom, which show the
same signs prove that the eye of Horus was not connected to the origins of the hieratic signs.
1 hg3.t also equals 32 r3, the smallest unit for measuring volumes.

The table found in No. 81 of the Rhind Mathematical Papyrus is divided into three parts.
Each part is introduced by an Egyptian particle (in the translation rendered as “now”). The
first section of the table, arranged in two columns, lists the submultiples of the Ag3.t as hnw.
Due to the values of the submultiples, each line is half of its predecessor. The following two
sections are both laid out in three columns. The first column gives combinations of the sub-
multiples of the hg3.7 and r3.w. The second column lists the respective volume in Anw. The last
column contains the volumes as fractions of the /ig3.1, this time not written in the style of sub-
multiples but as a pure numeric fraction of the unit sg3.1.

The source text of these last two sections shows a rather large number of errors. Out of 82
entries 11 are wrong. Some of these errors seem to be simple writing errors; some follow from
using a faulty entry in a previous line or column to calculate the new entry. The table is given
here with all the original (sometimes wrong) values followed by footnotes that give the cor-
rect value and—if possible—an explanation for the error. It is difficult to account for the large
number of mistakes in this table. The Rhind Mathematical Papyrus (of which this table is a
part) is a collection of tables and problems, mostly organized in a carefully thought out
sequence. It was presumably the manual of a teacher.

3See [Ritter 2002] for a detailed discussion.
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Rhind Mathematical Papyrus, No. 81

Another reckoning of the hnw
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itis 2 hnw
itis 1 hnw
itis 2 hnw
itis 4 hnw
itis 3 hnw

itis 3 hnw

itis 3 of a hqi.t
itis 5 of a hg3.t’
itis 3 of a hyg3.1°
itis 7 of a hg3.t"
itis 4 of a hg.t
itis 5 of a hgi.t
itis [60f]ahgst

itis 5 of a hg3.t
itis 10 of a hq3.1
itis 20 of a hg3.1
itis 40 of a hg3.t
itis 30 of a hg3.t"
itis 60 of a hg3.1"

23

6Correct value: 63 hnw. Possible explanation for the mistake: 2832 hg3.t=6 216 hnw, therefore it is likely that

33 r3.w of the first column were forgotten when the second column was determined.

7Correct value: gf_—i of a hgs.1.
8Correct value: 48 of a hg3.1. B -
9Correct value: 3 48 hnw. Possible explanation for the mistake: What I read as 4 may be a very badly written 40,

but it seems more probable to read 4,
OCorrect value: 4 3248 of a hgs.t.

HCorrect value: 1:5 of a hg3.t.
12Correct value: 30 of a hg.t. Possible explanation for the mistake: Calculation based on wrong entry in previous

line of this column.
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64 hqst 3 r.w itis b hnw' itis 50 of a hg3.t™
2 hqs.t itis 5 hnw itis 2 of a hg3.t

4 hqi.t itis22 hnw  itis 4 of a hg3.t

24 hq3.t itis72 hnw  itis 2 4of a hgs.t
248  hgit itis 82 hnw'®  itis2 4 8 of a hg3.t
28 hg3.t itis 6 4 hnw itis 2 8 of a hgs.t
48 hqi.t itis 24 hnw'®  itis 4 8 of a hg3.t
2832  hgit 33w itis63 hnw  itis 3of a hgd.t
41664 hgit 138w itis33 hmw  itis3ofa hg.t

8 hqs.t itis 14 hnw itis 8 of a hg3.t

ll.b. Problem texts

The extant hieratic mathematical texts contain approximately 100 problems, most of which
come from the Rhind and Moscow Mathematical Papyri. The problems can generally be
assigned to three groups:

* pure mathematical problems teaching basic techniques

* practical problems, which contain an additional layer of knowledge from their respective
practical setting

* non-utilitarian problems, which are phrased with a pseudo-daily life setting without having a
practical application (only very few examples extant)

The following sections present selected problems of all three groups. Because problems are
often phrased elliptically, occasionally other examples from the same problem type must be
read in order to understand the problem. This will be seen from the first two examples (Rhind
Mathematical Papyrus, problems 26 and 27). Unfortunately, due to the scarcity of source
material, many problem types exist only in a few examples or even only in one.

The individual sources share a number of common features. They can generally be
described as rhetorical, numeric, and algorithmic. “Rhetoric” refers to the texts being written
without the use of any symbolism (like +, —, V). The complete procedure is written as a prose
text, in which all mathematical operations are expressed verbally. “Numeric” describes the
absence of variables (like x and y). The individual problems always use concrete numbers.
Nevertheless, it is quite obvious that general procedures were taught through these concrete
examples without being limited to specific numeric values. “Algorithmic” refers to the way
mathematical knowledge was taught in Egypt—by means of procedures. The solutions to the
problems are given as step by step instructions which lead to the numeric result of the given
problem.

B3Correct value: 6 hiw.

YCorrect value: 60 of a hg3.L.

15Correct value: 8 2 4 hnw. Possible explanation for the mistake: the author forgot to write 4.
16Correct value 3 24 hnw. Possible explanation for the mistake: the author forgot to write 3.
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While the problem texts show these similarities, each source also shows some characteris-
tics which make it distinct from the others. For instance, the examples from the Rhind
Mathematical Papyrus usually include problems, the instructions for their solution, verifica-
tion of results, and calculations related to the instructions or calculations as part of the veri-
fication. The examples from the Moscow Mathematical Papyrus only note the problem and the
instructions for its solution. Furthermore, the two texts show slightly different ways of
expressing these instructions. Since it is by no means self-evident to a modern reader how to
read (and understand) these texts, the first example will be discussed in full detail. For the
examples of practical problems, a basic knowledge of their respective backgrounds is often
essential to understand the mathematical procedure. Therefore the commentary to those
problems may contain an overview of their setting.

A note on language and translations

The problem texts show a high level of uniformity in grammar and wording. The individual
parts of a problem, that is, title, announcement of its data, instructions for its solution,
announcement and verification of the result are clearly marked through different formalisms.
This will be mirrored in the translations given in this chapter. The individual termini for
mathematical objects and operations were developed from daily life language. Thus the
Egyptian w3k (“to put down”) became the terminus for “to add.” In my translations I have
used modern mathematical expressions wherever it is clear that the same concept is expressed.
This can be assumed for all of the basic arithmetic operations. However, scholars have not yet
determined if there are, as in the Mesopotamian case, subtle differences between apparent
synonyms. The use of different grammatical structures to distinguish individual parts of a
problem text can be summarized as shown in the following table.

Section of the problem text Grammatical markers
Title infinitive construction
Announcement of given data 2nd person construction,

directly addressing the pupil

Instructions for solution 2nd person,
imperative or sdm.hr.f (see below)

Announcement of intermediate results sdm.hr.f (3rd person)
Announcement of final result nominal constructions
Working purely numerical

The instructions use a special verb form called the sdm.hr.f; which indicates a necessary conse-
quence from a previously stated condition. It is found not only in mathematical texts but also
in medical texts. In mathematical texts it is used in the instructions as well as in announcing
intermediate results. In translations this was traditionally rendered by “you are to..” in instruc-
tions and by the present tense “it becomes” in the announcement of intermediate results. This
practice ignores the fact that the verb form used in both cases is the same, and should,
consequently, be translated as such. In my translations I have used “shall” to express sdm.hr.f.
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Rhind Mathematical Papyrus Problems 26 and 27.
Reprinted by permission of The British Museum.

Rhind Mathematical Papyrus, Problem 26

A quantity, its 4 (is added) to it so that 15 results
Calculate with 4. ~
You shall calculate its 4 as 1. Total 5.

Divide 15 by 5.
\. 5
\2 10
3 shall result.
Multiply 3 times 4.
. 3
2 6
\4 12
12 shall result.
. 12
4 3 Total 15.

The qgantity 12
its 4 3, total 15.

This problem belongs to the group of “h-problems, named after the characteristic term used
in the title of each of these problems.“ is the Egyptian word for “quantity” or “number.” The
ht-problems, as can be seen from the example above, teach the procedure for determining an
unknown quantity (%4°) from a given relation with a known result. This example presents a
quantity to be determined, which becomes 15 if its fourth is added to it. The text of the prob-
lem can be divided into three sections:

» title and given data
» procedure to solve the problem
* verification

The beginning of the problem is marked by the use of red ink (rendered as bold print in the
transliteration). The procedure is then given as a sequence of instructions, sometimes
followed by their respective calculations. For example, after the instruction “divide 15 by 5” we
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see the actual operation carried out. Once the result is obtained a verification is executed, first
in the form of a calculation and then indicated by the use of red ink, as a complete statement.

In order to achieve a close reading of the source text, the individual steps of the solution
have to be followed as such. We can make this procedure clearer if we rewrite the given
instructions using our basic mathematical symbolism (+, —, x, +). The procedure stated in the
problem looks as follows after this rewriting ([ ] indicate ellipses in the text):

4
data 15
1 [1+4]=4
2 4dx4=1
sequence of
. . 3 4+41=5
instructions
4 15+5=3
5 3x4=12
v, 12x4=3
verification ! 4

v, 1243=15

The text starts by announcing the given data of the problem: 4 and 15. In the rewritten form they
are noted above the sequence of instructions. The instructions begin with “Calculate with 4.” Since
4 s the inverse of the first datum (4 ), there must have been one step in the calculation that has not
been noted in the source text, namely the calculation of the inverse of 4. In the rewritten proce-
dure above, we include this as step 1. To indicate that it was not noted in the source text, we use
square brackets ([1 + 4]). Step 2 is the multiplication of the result of step 1 with the first datum
(4 4). Step 3 adds the result of steps 1 and 2: 4 + 1. Step 4 uses the second datum (15) and the
result of step 3: 15 + 5. Step 5 finally is the multiplication of the results of steps 1 and 4: 3 x 4.

By following the procedure in this rewritten form several observations can be made. The
basic structure of the text is sequential; results obtained in one step may be used in later
step(s). Thus the result of 1 is used in 2, 3, and 5; the result of 2 is used in 3, the result of 3 is
used in 4, and the result of 4 is used in 5. Data can be used at any time in the procedure. In
this example the first datum (4 ) appears in steps 1 and 2; the second datum (15) in step 4.
Other numbers appearing in the instructions are either inherent to the specific mathematical
operation carried out (e.g., the number 1 in the calculation of the inverse), or to the proce-
dure itself (we will see an example of this later). The scribe must have known these numbers;
they were learned with the sequence of operations of the procedure.

The different categories of “numbers” can be made even more obvious by rewriting the
procedure again, this time indicating the data as D, (=4 ) and D, (=15), and the result of step
number n by n, and the constants as before by their numerical value:
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Again the sequential character is obvious. Rewriting procedure texts in this way enables a
modern reader to compare the procedure of different problems more easily, as well as to see
similarities between individual examples.

The solution of this example uses the so-called method of false position. A wrong solution
(= 4) is assumed. In order to make this wrong solution suitable for the following calculations,
it is determined here as the inverse of the first datum. The unknown (false solution) and its
fractional part are then added (= 5). This is compared to the given (correct) result (= 15).
Since the result obtained with the assumed number is three times smaller than the given
result, the assumed number has to be multiplied by 3 to obtain the correct solution.

Rhind Mathematical Papyrus, Problem 27
A quantity, its 5 (is added) to it so that 21 results

. 5
5 1 Total 6.
\. 6
\2 12
\ 2 3 Total 21.
\. 32

2 7

\ 4 14 (sic! source text 15)

The quantity 17 2,
its5 .32 Total 21.

Problem 27 also belongs to the group of ‘h%-problems. Indeed, it is very similar to its
predecessor, problem 26. However, after the title, which again includes the given data, only
three calculations are noted, and not a single instruction. A comparison with the calcula-
tions of problem 26 reveals that the procedure of solving this problem is identical. This
can best be seen if we rewrite the procedure in the same way as we have done in problem
26. The rewritten procedure shows the similarity (operations are reconstructed based on
the calculations):

No. 27 No. 26
5 D, 4
21 D, 15
1 [1+5]=5 1 [1+D] 1 [1+4]=4
2 5x5=1 2 1xD, 2 4x4=1
3 5+1=6 3 1+2 3 4+1=5
4 21+6=32 4 D,+3 4 15+5=3
5 32x5=172 5 4x1 5 3x4=12
v, 172 x5=32 v; 5xD, v, 12x4=3

v, 172 +32=21 v, 5+vi=D, v, 12+3=15
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Moscow Mathematical Papyrus, Problem 25

Method of calculating a quantity calculated times 2
together with (it, i.e., the quantity), it has come to 9.
Which is the quantity that was asked for?

You shall calculate the sum of this quantity and this 2.
3 shall result.

You shall divide 9 by this 3.

3 times shall result.

Look, 3 is that which was asked for.

What has been found by you is correct.

This example from the Moscow Mathematical Papyrus shows several differences to the style of
the Rhind Mathematical Papyrus. Only the instructions were noted, no calculation was writ-
ten down. Also, after the statement of the solution, no verification is carried out; instead we
find a note stating that the solution is correct.

The title indicates that it is another example of an % -problem. However, in this example,
instead of adding a fractional part of the unknown quantity to itself, a multiple of it must be
added. Consequently, the procedure to solve this problem differs from the two previous
examples.

2 D,
(1] D,
D3
1 1+2=3 1 D,+D,
2 9+3=3 2 Dy+1

Rhind Mathematical Papyrus, Problem 50

Method of calculating a circular area of 9 it
What is its amount as area? B

You shall subtract its (i.e., the diameter's) 9 as 1,
while the remainder is 8.

You shall multiply 8 times 8.

[t shall result as 64.

It is its amount as area: 64 st3.1.

Calculation how it results:

9
its9 1
subtraction from it, remainder: 8
. 8
2 16
4 32
\8 64

Its amount as area: 64 st3.t.
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This problem teaches the Egyptian algorithm to calculate the area of the circle of diameter
9 ht: one ninth of the diameter is subtracted from it, and the remainder is squared. The pro-
cedure uses the diameter (given in this example as 9 4f) and the constant 9. The source text of
problem 50 shows another feature found in some of the Egyptian problem texts. There is a
drawing of the calculated object, a little bigger than the column breadth in which it is written.
The drawing of the circle has its characteristic dimension, its diameter, written inside it. This
type of drawing has been named an in-line-drawing by Jim Ritter. As in other drawings of
Egyptian mathematical texts, they are sufficiently accurate to show the “idea” of the repre-
sented object. However, they are not technical drawings and the information we can gain from
them is limited.

Rhind Mathematical Papyrus, Problem 48

8 st3.t \ . 9 s13.t

2 16 st 2 18s.t
4 32 s8.t 4 36 st3.t
\8 64 st \8 T72s8.t

Total: 81 st3.1.

Rhind Mathematical Papyrus, Problem 48. Reprinted by permission of The British Museum.

The text of this problem comprises a drawing (into which the number 9 is inscribed) and
two calculations. The calculations can easily be identified as two multiplications, namely
8 times 8 s£3.t and 9 times 9 s¢3.7. The drawing shows a square of base 9 (9 is the number
written inside it) with another geometric figure inscribed into it. The second calculation
(9 times 9 s13.1) determines the area of the square. The first calculation can be interpreted
as the calculation of the area of a circle of diameter 9, as in the previous example of prob-
lem 50. Only the last of the three steps of the algorithm was written down in the form of
its working. This suits the drawing which we can identify as a circle inscribed into a
square. Again, as in the case of the in-line-drawing of the previous problem, the sketch is
sufficiently accurate to give an idea of the objects; however, it is far from being a techni-
cal drawing.!”

UPrevious interpretations of this problem, which tried to use this drawing alone to establish how the Egyptian
method to calculate the area of a circle was developed, ignored this (as well as the two calculations referring to the
drawing). It is not possible from the extant sources to follow the development of mathematical techniques. What we
see are techniques presented in a form suitable for teaching junior scribes, and not the research notes of advanced
scribes.
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The resemblance to the procedure of calculating the area of a circle has already been men-
tioned. Note, however, that if D, is the diameter of the object (which it must be according to
the result of this problem), then the first step is the calculation of double the diameter. If we
accept the second datum d as being 42, we can interpret the first five steps of the algorithm
as the calculation of half the circumference of a circle of diameter (fp-r3) 42. The last step is
then the multiplication of base and height to obtain the area.

Moscow Mathematical Papyrus, Problem 14

Method of calculating a /).

If you are told /] of 6 as height, of 4 as lower side, and of 2 as upper side.
You shall square these 4. 16 shall result.

You shall double 4. 8 shall result.

You shall square these 2. 4 shall result.

You shall add the 16 and the 8 and the 4. 28 shall result.

You shall calculate 3 of 6. 2 shall result.

You shall calculate 28 times 2. 56 shall result.

Look, belonging to it is 56.

What has been found by you is correct.

2, squared 4
6 32 28
2 56
56
4, squared 16
4

2 8 total 28

This problem, again from the Moscow Mathematical Papyrus, teaches the method for calculat-
ing the volume of a truncated pyramid. The truncated pyramid is not designated by an
Egyptian term, but rather by its in-line-drawing /1. After the instructions, a sketch drawing
is made and, exceptional for the Moscow Papyrus, calculations are noted. The sketch includes
the data of the object, and the results of operations performed with these data. Thus, the lower
side is indicated as 4, followed by its square 16 (used in the calculation). The same is done for
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the upper side (2, and its square 4) and the height (6, and its third 2). The multiplication 2 x 4
is indicated below the drawing, followed by the total of 16, 4, and 8 (28). Next to the result of
the calculation of a third of the height (2), the final multiplication carried out in this problem
(2 x 28) is noted. The result of the problem, the volume of the truncated pyramid (56), is indi-
cated inside the drawing.

If one transforms this procedure into a modern formula, the result is
V= %(a2 +2ab +b?),

which is the correct formula for the calculation of the volume of a truncated square
pyramid of upper base 4, lower base b, and height  (not an approximation).

There have been several attempts to determine how this procedure was discovered by the
Egyptians. However, these are all only more or less likely speculations.!” The mathematical
texts themselves give no indications how the procedures taught in them were found, nor do
the administrative texts.

Rhind Mathematical Papyrus, Problem 56

Method of reckoning a pyramid: 360 as base,

250 as height of it. 250
Let me know its sgd.

You shall calculate the half of 360. It shall result as 180.

You shall divide 180 by 250. 2550 of one cubit shall

result.

One cubit is 7 palms. You shall multiply by 7.

. 7_

2 32 _

5 1315

50 1025

Its sqd is 525 palms. | | 360

Problem 56 is one example of the six problems from the Rhind Papyrus relating to pyra-
mids. All six of the problems teach the relation between base, height, and the slope of the
sides. The Egyptians used the term sqd to describe the slope of the walls. The sqd measures
how many palms an inclined plane retreats on a vertical height of one cubit. It is always
measured in palms or palms and digits. Consequently, the sqd of a pyramid can be calcu-
lated as

J base [cubits]

sqd [palms] = 7 [palms] - W

19Gee, for example [Gillings 1964], [Gunn/Peet 1929, 178-185], [Thomas 1931], and [Vetter 1933].
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This problem first gives the base and height of a pyramid. Its sqd is to be determined. The text
of the problem is accompanied by a sketch of a pyramid. The numerical values of base and
height are written next to this drawing.

Rhind Mathematical Papyrus, Problem 41

Method of calculating a circular granary of 9, 10.
You shall subtract 9 of 9 as 1, remainder 8.
Multiply 8 times 8. 64 shall result.

You shall multiply 64 times 10. It shall result as 640.
Add its half to it. It shall result as 960.

It is its amount in h3r.
You shall calculate 20 of 960 as 48.
This is its content in quadruple hg3.t: grain 48 hg3.t

Method of its procedure.

8 ) 64
16 \10 640
4 32 \2 320
\8 64 total 960
10 96
20 48

N .

Rhind Papyrus problem 41 and the following example (problem 42) teach the calculation of the
volume of a granary with a circular base. Egyptian tomb decorations as well as archaeological
finds describe two types of granaries, those with a circular base that look like cones, and those
with a rectangular base. The conic granaries are treated as cylinders in the examples of the math-
ematical problems. Consequently, the calculation of their volume consists of the Egyptian proce-
dure for determining the area of the circle and the multiplication of this area by the given height.
However, this is not the end of the procedure of this problem, as rewriting the algorithm shows:

9
10

1 §><9=1

2 9-1=8

3 8x8=64

4 64x10=640

5 2 x640 = 320

6 640 + 320 = 960

7 20 x 960 = 48

The dimensions of the granary are given in cubits (not explicitly stated in this problem).
Therefore the resulting volume in 4 is obtained in cubic cubits. This needs to be transferred
into the volume units usually used with large amounts of grain, A3 (obtained in step 6 as 960),
and hundreds of hg3.¢ (obtained in step 7 as 48). As in previous examples of the Rhind
Papyrus, we find the actual calculations carried out at the end of the problem.
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Lahun Fragment UC 32160 (Griffith, Petrie Papyri IV.3), column 1-2

12
8
3 8 \. 256
3 4 2 512
total 16 \4 1024
\. 16 N3 853
\ 10 160 total 1365 3
\ 5 80
total 256

The text of this fragment does not have a problem and instructions for its solution. Instead,
we find a drawing and several calculations. They belonged to a problem and its procedure—
which were written either on a separate papyrus or on a now lost part of this papyrus. Three
calculations are associated with the drawing. They are written in two columns under and next
to it. The first calculation (ll. 1-3) is the multiplication 13 x 12 = 16; the second calculation
(Il. 4-7) the multiplication 16 x 16 = 256; and the second column holds the calculation
53 x 256 = 13653.

From these calculations and the numerical values given in the drawing (without knowing
anything else about the problem) we can reconstruct the following procedure (steps are indi-
cated as #’, since there may be steps before the ones reconstructed here):

12 D,

8 D,
1 13x12=16 1’ 13xD,
2" 16x16=256 2 Uxl

3’ 256 x 53 = 13653 3 2x53

At this point it is unclear if 13 and 53 are further data, derived from the given data, or con-
stants inherent to the problem. Also, the second datum (8), which is known from the in-line-
drawing, does not appear in this procedure.

A comparison with the problems of the Rhind Mathematical Papyrus brings us to problem
43 where similar multiplications are carried out: 13x 8 =103 ‘and subsequently 103 x 103 =
1133 9. Following this is the calculation of 1133 9 x 4, 4 being 3 of another datum of problem
43. This also fits our procedure, for the 53—which we meet in the last step of our procedure—
is indeed 3 of 8. Therefore we can reconstruct the following procedure:

12 D,
8 D,

1 13x12=16 1 13xD,

2 16x16=256 2 1x1

3 3x8=53 3 3xD,

4 256 x53=13653 4 2x3
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Problem 43 of the Rhind Mathematical Papyrus is the calculation of the volume of a granary
with a circular base from its given diameter and height. Unfortunately the text of this prob-
lem is corrupt; therefore it was not chosen as an example in this selection. It teaches an alter-
native method of determining the volume of a circular based granary, the result of which is
expressed directly as an amount in A3r.

The drawing found at the beginning of the calculations of the Lahun fragment suits this
interpretation: indicated are the circular shape of the base, the diameter (12), which is written
above it, the height (8), which is written on its side, and its content in A2r (13653), which is
written inside it. Thus the author appears to be calculating the volume in 43r of a cylinder of

2
diameter d and height & in the form (%d) (%h) = %%dzh, This is evidently equivalent to

using the algorithm of problems 48 and 50 of the Rhind Mathematical Papyrus for calculating
the area of a circle of diameter d, which we have expressed in the modern formula

= 1(256) 2,
A_4(81)d

Rhind Mathematical Papyrus, Problem 65

Method of calculating 100 loaves of bread for 10 men

a sailor, a commander, and a watchman as doubles.

Its procedure:

You shall add these beneficiaries (ration receivers). 13 shall result.

Divide the 100 loaves by 13.73 39 shall result.

You shall say:

This is the ration for these 7 men, and the sailor, commander, and watchman as
doubles.

. 7339  the sailor 15 32678
. 7339  the commander 1532678
. 7339 the watchman 1532678
. 7339

. 7339  total: 100.

. 7339

. 7339

The Egyptian ration system was based on the distribution of quantities of grain, and of bread
and beer. It constituted the core of Egyptian administration, and it must have been a frequent
task for a scribe to calculate amounts of food for various beneficiaries (see also the respective
section of the Anastasi I Papyrus in the introduction of this chapter).

This problem has 100 loaves of bread to be distributed among 10 men. Three of them shall
receive double the amount the others do. The solution determines a “corresponding” number
of recipients who would all get the same ration. That is, the three persons receiving the dou-
ble amount are counted twice. In the Egyptian text, this procedure is called “adding the ben-
eficiaries.” The basic ration is then calculated by the division of the given loaves by the number
of “recipients.” For those who get the double share, the basic ration must be doubled. The
verification at the end adds up the individual rations.
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sandals consists of the preparation of the leather, its cutting, and finally the finishing process of
the shoe, which incorporates putting together the leather pieces and, eventually, applying some
kind of decoration to the leather.

The title of the problem provides the information that the work-rate of a cobbler must be
calculated. The following lines state that the cobbler has to cut leather for ten pairs of san-
dals as his work-rate per day if he only cuts the leather; but if the leather has been already
cut, he has to finish five pairs per day. What is looked for is the amount of his contribution,
given the condition that the cobbler does both parts of the sandal production, cutting and
finishing the shoe. The following instructions given to solve the problem use the fact that the
contribution of the cobbler, if he only cuts leather, is twice the contribution if he finishes the
sandals. If he has to cut ten pairs or finish five as his daily work-rate, it will take three days
work to amount to ten pairs of sandals. What was wanted was the number of sandals per day
if he does both. This is obtained by dividing 10 by 3, which results in 34 pairs of sandals.

IlIl. Mathematics in Administrative Texts

The following section introduces several examples of administrative documents, another
genre of texts that incorporate mathematical knowledge. Contrary to the mathematical prob-
lem texts, in this type of text only data and results are noted. The mathematical operations that
were executed to obtain the results from the data are “missing.” Consequently, it is not always
possible to reconstruct the way the results were obtained. Furthermore, many of these texts are
badly preserved, so that some parts of data or results are no longer extant. Finally, not every
administrative text with numerical information is mathematically interesting; many of them
are simple lists of data.

Ill.a. Middle Kingdom texts: The Reisner papyri

The Reisner Papyri provide us with the exceptional case of an example of a reasonably well-
preserved text including some mathematically interesting passages, of which two will be dis-
cussed here. These papyri were found during excavations at Naga ed-Deir conducted by the
Egyptologist George A. Reisner in 1901-1904: “Among the later tombs on the slope below the
cliff, one contained four rolls of hieratic papyri, badly worm eaten; and another yielded a set
of poisoned arrows.”22

The Reisner I Papyrus, from which the following two examples are taken, measures approx-
imately 3.50 meters, and it has a height of 31.6 cm. As in other accounting papyri of the Old
and Middle Kingdoms the papyrus is divided by several horizontal lines which were meant to
help the scribe in aligning his entries. Based on the palaeography, the regnal years found in the
text (without the name of the ruler), and personal names, the text has been assigned to the
reign of Senusret I (19561911 BCE).

The documents are accounts of building construction and carpentry workshops, including
lists of workmen arranged in groups, as well as calculations related to construction projects
and the necessary workers to perform them. Several accounts refer to a dockyard workshop,

22See [Reisner 1904, p. 108]—A photo of the papyri in situ can be found in [Simpson 1963, frontispiece].
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including lists of copper tools (axes, adzes, saws, etc.) by units of copperweight, presumably
for recasting. For the purpose of editing and reference, the editor W. K. Simpson divided the
document into several sections designated by letters of the alphabet. The chosen division
reflects the scribes’ own divisions to a major extent. A number of these sections belong
together due to their subject. Five sections of the Reisner I Papyrus constitute records of the
construction of a building, presumably a temple (sections G, H, I, ], and K, of which section I
is the first of our examples here).?® They contain four accounts followed by a summary. The
layout of these accounts is quite clear. On the left side of the text (= the right side of the trans-
lation) we find six columns that list lengths, widths, depths, units, the product of the four pre-
vious columns, and the respective number of workers (which is left blank in Section I). The
right side of the text (= the left side of the translation) indicates dates and circumstances of
the work recorded otherwise by numeric entries alone. In section I this contains seven dates,
as well as various details about the place of work and the material involved. The dates are given
in the usual way as x. (month) of a season, y day. The Egyptian calendar distinguished three
seasons 34.¢ (inundation), prt (emergence of the crops), and §mw (harvest). Each season had
four months of 30 days. Furthermore, there were five additional days (epagomenals) at the
end of the year.

Unfortunately, some of the terms for materials are not known from any other source, and
the occurrences in this text are not sufficient to establish their meaning. Therefore, the trans-
lation given here is only a provisional one.?* It is interesting to see that all of the activities are
characterized by lengths, widths, depths, and a subsequent multiplier (units), because these
structure the necessary data to calculate the total volume. The individual actions described
seem to indicate that this section of the text is concerned with the production of bricks.

The account lists three dimensions, a number of units, and the product of these. The last
column (enlistees) is left blank. Almost all measurements are given as cubits, except for three,
explicitly marked as palms. In three instances the products have been miscalculated (marked
in my translation by sic! with the correct value given in brackets). In addition there are three
numbers in red (indicated in bold in the translation) written in between the columns. Their
meaning and relation to the other entries in this section are not clear.

The second example, Papyrus Reisner I, section O, records workers’ compensation over a
period of 72 days. The heading of the first column gives a date, presumably the beginning of
the period covered in the table, as well as the information where the work took place. The first
column consists of a list of 20 names. Following this are six columns, each of which includes
a 12-day period. The entries in these columns are divided into the record of days the individ-
ual worker worked in the respective 12 days and the amount of frsst-bread?> he received as
compensation for this work. Within the entries of the record of days worked, black numbers
indicate actual days worked, red numbers indicate absence. In the first column we find 12, 12,
and 2 in red, in the second column 3, 2, and 3, and in the third column 8, 7, 11, and 11. These
days of absence are added, and the totals are noted in black at the bottom of the text: 26 for
the first column, 8 for the second column and 47 (miscalculated for 37) for the third column.

237 useful introduction into the subject is [Arnold 1991].

24For further information see the extensive lexicographical commentary in [Simpson 1963].

25The Egyptians had a variety of bread and cake types. What kind of bread/cake the individual names designate
is not know. The bread used in this text is called #rsst in Egyptian. It is attested in only one other source, which also
deals with rations.
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Since the number of days worked and the compensation in bread are both noted, the num-
ber of trsst loaves divided by the number of days worked results in the number of trsst loaves
given to a worker per day. We would expect this to be constant; however, the number of #rsst
loaves per day for the individual persons varies. Sometimes it even varies for one individual
on different days. It is hard to say what might have caused this variation, since the only infor-
mation we get here is the actual numbers of trsst loaves given to the workers. It is noteworthy,
however, that the most frequent ratio is that of 8 #rsst loaves per day.

The totals given in red at the bottom of the sheet (1610, 1546, 1564, 1530/100, 1280, and
1710) equal only in one instance (1280) the sum of values given in the respective columns
above. Therefore—if we don’t assume that the scribe simply didn’t know how to add—it
scems that values from another source were also used in establishing the totals.

ll.b. New Kingdom texts: Ostraca from Deir el Medina30

No mathematical texts from the New Kingdom are extant. Instead, there is a significant num-
ber of administrative and other texts which show the application of mathematical knowledge.
The majority of these documents come from the area of Thebes.

The tombs of the pharachs of the New Kingdom are located in a desert valley, on the
western bank of the Nile River opposite Luxor. This valley is today known as the Valley of
the Kings. The workers (quarrymen, plasterers, draftsmen, and painters) who constructed
and decorated these tombs lived in a village located in another nearby desert valley. This site
is today known as Deir el-Medina. The village was founded in the eighteenth dynasty and
was inhabited until the end of the twentieth dynasty. Apart from the remains of this settle-
ment, tens of thousands of documents have been discovered there, including (among oth-
ers) letters, administrative and legal documents, magic and religious texts, as well as texts
and sketches relating to the construction of tombs. These sources give us some insight into
daily life at a workers’ settlement during the New Kingdom. The government provided the
workers at Deir el-Medina with all necessary commodities for their life as well as equipment
for their work. Wages consisted mostly of grain. They were higher than what could have
been consumed, and thus supposedly included a surplus used for exchange.

The Egyptian week had ten days, the last two of which were free. In addition there seem to
have been long weekends and afternoons that were free as well. The working day lasted for
approximately four hours in the morning and four hours in the afternoon with a break
around lunch. The crews were divided into two groups, one for the right side of the tomb and
one for the left side. Each group had its own foreman and assistant. The work on the tomb
began with the selection of a site in the valley, probably under the eyes of a royal commission.
Then a plan of the tomb was drawn, presumably on papyrus. The typical tomb consisted of
several descending corridors and a number of rooms, the last of which usually contained the
sarcophagus. The construction of the tomb usually began with quarrying the corridors and
rooms. The plasterers worked behind the quarrymen and covered the uneven walls with a
layer of gypsum and whitewash to enable their further decoration. Then the proposed texts
and designs would be drafted and checked by a master. Finally, these texts were painted or

39A more detailed overview of daily life in Deir el Medina and the construction of tombs in the New Kingdom
can be found in [McDowell 1999] and [Bierbrier 1982].
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texts (easily) into their hieroglyphic counterparts. The grammar is the intermediate stage
between Late Egyptian and Coptic.

Compared to earlier mathematical texts, the demotic sources show some features which are
a continuation of Egyptian tradition, but also several changes, some of which may be due to
a Mesopotamian influence. As in the earlier hieratic corpus, we can distinguish between table
texts and problem texts. The problem texts can still be characterized formally as numeric,
rhetorical, and algorithmic. However, the verb-form sdm.hr.f, characteristic of the hieratic
mathematical texts, is no longer used (in fact, it is no longer existent in demotic at all).
Furthermore the terminology for individual mathematical operations has sometimes
changed. And, as will become obvious from the following examples, the problem types as well
as the algorithms for their solution have been modified.

The extant demotic mathematical papyri comprise eight sources.” Five of them, which
contain 72 short problems and tables, were published in [Parker 1972]. Two more were
published by the same author in two articles, and another, unidentified example was edited by
Eugene Revillout. All of these publications are more than 30 years old and, due to develop-
ment in the study of demotic, are in need of reworking. However, for the time being, Parker’s
translations, based on the knowledge of the entire corpus, are the best available, and so are
used in the following few examples. The problem numbers given are those of [Parker 1972].

IV.b. Table texts
BM 10520 (No. 54)

64
128
192
256
320
384
448
512
576
640
704
768
832
896
960

1024

Written as one column of numbers only, this “table” comprises the multiples of 64 from 64
(= 1x64) up to 1024 (= 16 x 64).

37Detailed references for the individual papyri and their publications can be found in [Fowler 1999, 258 and
note 80].
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BM 10794 (No. 67)
The method of taking [150 to 10]

1toﬁ__
2to$_3_g 450
3to 60 300

4 to 45 225
5t030
61to 30 [150]
7 to 30 90 [450]
8 to 20 300

9 to 30 [45 225]
10 t0 15

One can follow the building of this table according to certain groups; for example, from the
calculation of 2 + 150 = 90 450 it is easy to get to 4 + 150 by simply halving the respective
denominators 90 and 450. This is also possible for the pairs 3 + 150 and 6 + 150 as well as
5+ 150 and 10 + 150. A second technique, which can be observed from 6 + 90 onward, uses
the addition of previous solutions, 7 + 150 = 5+ 150 + 2 + 150 = 30 +90 450 =3090 450.
This technique may have been used for 6 + 150, 7 + 150, 8 + 150, 9 + 150, and 10 + 150 (in
the cases of 8 + 150 and 10 + 150 with a further step, combining two of the unit fractions).

Note that 6 + 150 and 10 + 150 could have been found by both techniques alike.

IV.c. Problem texts
pCairo JE 89127-30, 89137-43 (No. 7)38

The things you (should) know about the articles of cloth. Viz.

If it is said to you: “Have sailcloth made for the ships,”

and it is said to you: "Give 1000 cloth-cubits to one sail;

have the height of the sail be (in the ratio) 1 to 12 the width,”
(here is) the way of doing it. Viz.

Find its half, when it happens that the ratio is 1 to 12: result 1500.
Cause that it reduce to its square root: result 38 3 20.

You shall say: “The height of the sail is 3[8] 3 20 cubits.”

You shall take to it 3—since it happens that it is [to 12] that T makes [a ratio]:
result 253 10 90.

It is the width.

The problem calculates length and width of a rectangular sail from its given area and ratio of
length and width. As we have done in the earlier examples, it is possible here, too, to rewrite
the algorithm in a more symbolic form.

38Translation of [Parker 1972, 19].
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1000 D,

12 D,
1 12x 1000 = 1500 1 D,xD,
2 J1500=38 3 20 2 1

3 3x38320=253 10 90 3 D, x2

The solution determines the height from the given area (D,) and ratio (D,) in steps (1) and
(2); then the width is calculated using the height and the given ratio (3).

To understand these instructions, a look at a modern solution may help. It must be stressed,
however, that this is not a translation of the source into modern terminology, nor is it an expla-
nation how the Egyptian mathematician arrived at this particular algorithm. It is merely
meant as a help for the modern reader to understand what is going on in the algorithm.

MobperN soLuTioN If we designate the height as x and the width as y, the information
given in the data can be expressed as follows:
(1) xx y=1000
() x+y=3 or (II*)y=xx%
(I1*) in (I) : 22 x 2 = 1000 and thus 2 = 3 x 1000

(remember that 3 x 1000 is what is calculated as the first step of the algorithm above).
From this we obtain x = /31000 (which is calculated in the second step of the algo-
rithm); and finally y = $ x x (the last step of the algorithm).

The following problem is well known from Mesopotamian sources. We are given the length of
an erect pole (leaning against a wall). The pole’s foot is then moved outward a given distance,
and it has to be determined how far the top of the pole has been lowered. It is generally assumed
that a transmission of mathematical and astronomical knowledge from Mesopotamia to Egypt
occurred, possibly in the times of Persian rule of Egypt.”® However, a detailed study of this
assumed transmission has yet to be done.

pCairo JE 8912730, 89137-43 (No. 26)*0

A pole which is 10 cubits [when erect to (the) top].

[if the number] of its foot (moved) outward is 8 cubits,

wh(at is the lowering of its top from it?]

You shall reckon 10, 10 times: result 100.

You shall reckon 8, 8 times: result 6[4].

Take it [from 1]00: [result] 36.

Cause that it reduce to its square root: result 6.

Talke it from 10: remainder 4].

You shall say:

“Four cubits is [the]l number [of the lowering of its top from it]”

3See [Hoyrup 2002, 405-6) and [Parker 1972, 5-6].
40Translation of [Parker 1972, 35-37].
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As in the previous problem we can easily follow the algorithm, which we can also compare to
the modern solution:

10 D,
8 D,
1 10x10=100 1 DixD;
2 8x8=64 2 D,xD,
3 100-64=36 3 1-2
4 36 =6 4 3
5 10-6=4 5 D -4

MobperN soLuTioN The pole (of length x), the height
which it measures against the wall once the foot is moved
out (z), and the distance which the foot was moved out (y)
constitute a right triangle.

Therefore

Z=xt-y% z X

(The algorithm calculates x? and y? in the first two steps,
and then the difference (z?) in the third step.)

We are looking for “the lowering of its top from it
which is in our modern terminology x — z (The algorithm
moves on to extract the square root (= z), and finally calcu-
lates the difference x— z.) y

pBM 10520 (No. 64)*"

“ITranslation of [Parker 1972, 71].
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A piece (of land).

Its plan.

12
10 10

12
You shall add the south and the north: {result) 20. Viz.
Its half, 10.
You shall add the east and the west: (result) 24. Viz.
Its half, 12.

You shall reckon 10 <12> times: result: 120.

You shall carry 100 into 120 in order to bring another (formulation):
result 15 (land) cubits.

You shall say:

“In order to bring another (formulation), 15 (land) cubits.”

This problem calculates the area of a rectangular field of sides 10 and 12. We already know an
earlier Egyptian calculation of the area of a rectangle from the Rhind Mathematical Papyrus
(problem 49). The algorithm of that problem multiplies the two sides (as we would expect) to
obtain the area. The algorithm of our problem, however, begins with calculating the sum of
the opposing sides, which is then halved. The results of this, since the geometrical shape is a
rectangle, is of course again the (given) length of the sides. These are then multiplied and
finally the result is calculated in a typical unit for measuring fields, the (land)-cubit, a strip of
1 cubit x 100 cubits. An advantage of this method is its applicability to approximate areas of
all types of quadrilaterals, especially irregular ones, for which it is generally used.
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Hieratic Text: Robins/Shute, 1987, pl. 19-20
MMP, No. 15

Hieratic Text: Struve, 1930, Col. XXX
MMP, No. 23

Hieratic Text: Struve, 1930, Col. XLII

Mathematics in administrative texts

Middle Kingdom texts: the Reisner papyri
Reisner I, Section I

Hieratic Text: Simpson, 1963, pl. 15

Reisner I, Section O

Hieratic Text: Simpson, 1963, pl. 21

New Kingdom texts: Ostraca from Deir el Medina
Ostracon IFAO 1206
Hieratic Text: Wimmer, 2000, pl. XLVI and XLVIII

Mathematics in the late period

Table texts

BM 10520, No. 54

Demotic Text: Parker, 1972, pl. 19
BM 10794, No. 67

Demotic Text: Parker, 1972, pl. 24

Problem texts

Cairo JE 8912730, 89137-43, No. 7
Demotic Text: Parker, 1972, pl. 2
Cairo JE 89127-30, 89137-43, No. 26
Demotic Text: Parker, 1972, pl. 9
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l. Introduction

It is tempting to think that, because it all happened such a long time ago, there is little new
to say about mathematical developments in ancient Mesopotamia (southern Iraq and neigh-
bouring areas). The standard histories of mathematics all tell much the same story: of the
sexagesimal place value system, approximations to V2, Pythagorean triples, and a little
algebra. Those achievements, impressive as they are, are but a tiny fraction of what could and
should be told. Many thousands of Mesopotamian mathematical documents survive, written
on clay tablets in the cuneiform script; hundreds have been edited and published since
the beginning of the twentieth century. New translations of over sixty of them are presented
here, spanning some three thousand years and thousands of square kilometers. Some are just
a few lines of calculation or a roughly sketched diagram; others are long compilations of
mathematical problems or highly sophisticated arithmetical tables.

In fact, as we shall see in this introduction, modern scholarly understanding of Mesopotamian
mathematics is changing and improving at a rate unparalleled since the 1930s. Not only are
dozens of new sources published every year, causing constant reevaluation of the historical
corpus, but recent developments in the scripts, languages, history and archaeology of the
region have stimulated exciting new lines of research that contextualise ancient mathematical
practice in a way that was unimaginable even ten years ago. This introduction briefly sketches
answers to three questions, showing why and how this section of the Sourcebook has been
compiled:

* How have Western views of Mesopotamian mathematics changed over the last two millennia?
* Who wrote mathematics in ancient Mesopotamia, why, and how?
* How have the translations presented here been chosen and produced?

At the end of the introduction there are also practical notes on sources, metrology, and
bibliography.

l.a. Mesopotamian mathematics through Western eyes

Myths and rumors

The mathematical achievements and interests of ancient Iraq have undergone periodic
reassessments over the last two thousand years, ever since writers in the Greek tradition began
to make comments and observations. But the most thorough overhauls have come since the
rediscovery of cuneiform culture in the second half of the nineteenth century and again in the
last decades of the twentieth.

For the most part Greek writers took Egypt to be the birthplace of mathematics, but they
credited the Babylonian, or Chaldaean, priests of southern Iraq with astrology and the ability
to make predictions from the stars. Strabo, for instance, names three Babylonian astronomers,
two of whom have since been identified in cuneiform sources too. The transmission to
Classical science of Babylonian observational data, values of periodicities, and even the
sexagesimal place value system for fractional values in astronomical calculations, all confirm
that there were direct contacts during the Persian and Hellenistic periods (c. 550-150 BCE).
There are no early Greek traditions about Babylonian mathematics, however. It was only
around 300 CE that Iamblichus claimed that Pythagoras had spent time in Babylon—nearly a
millennium earlier, in the sixth century BCE. Without corroboration from earlier or more
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TABLE 2.1:

The Rediscovery of Mesopotamian Mathematics since 1800

Date Scholarly developments’ Political events®
Traditional Biblical narratives, Greek 1638-1918: Iraq under Ottoman rule
pre-1800 stories, and travellers’ tales of
ancient Mesopotamia
1819: Tiny display of undeciphered
1820 cuneiform tablets at the British
Museumn
1842: Anglo-French archaeological
1840 rediscovery of ancient Assyria
(northern Iraq)
1857: Akkadian cuneiform officially
1860 deciphered at the Royal Asiatic
Society, London
1880s—: Mass recovery of cuneiform 1881: Museum of the Ancient Orient
1880 tablets in Babylonia (southern Iraq) founded in Istanbul, the
1900: First drawings of Old Babylonian Ottoman capital
mathematical tablets published
1900 | 1903—: Progress in understanding
sexagesimal numeration and tables
1910s— Widespread adoption of scientific 1914-18: First World War stops
excavation methods excavation
1916: First c%empherment ?f an Old 1920: Formation of modern Iraqi state
1920 Babylonian mathematical problem
1922: First publication of Late Babylonian 1932: Iraqi independence from British
mathematics Mandate
1930-45: “Golden age” of translation; major 1940s: Iraqi excavations begin
1940 editions by Neugebauer, Sachs, and
Thureau-Dangin
1956: First volume of the Chicago Assyrian
Dictionary published
1960 1961—: Publication of mathematics from 1968: Ba’athist coup in Iraq
Susa (southwest Iran) and western
peripheries
1976-: Increased study of third-millennium 1970s—80s: Large-scale damming
mathematics in Sumerian projects on the Euphrates, Tigris and
1980 | 1984: First volume of the Pennsylvania Diyala rivers drive rescue excavations
Sumerian Dictionary published in archaeologically unexplored areas
1990— Hoyrup develops discourse analysis of Iraq
of Old Babylonian mathematics 1990—: Gulf War ends excavations; UN
2000 1997-: Study of archaeological and social sanctions result in widespread

context of Mesopotamian mathematics

archaeological looting

2003: Iraq War results in end of Ba’athist
regime; pillage of museums and
archaeological sites

7For more details of the mathematical historiography see [Hayrup 1996]; for archaeology the best account is still

[Lloyd 1980].

8For the political background see [Tripp 2002].



62 | Eleanor Robson

picture is much more complicated, inviting us to study it on its own terms, not simply as a
precursor to something else. Farther afield, there has been widespread critical examination
of academia’s imperialist legacy. Influenced by Edward Said’s seminal Orientalism, post-
colonialist historians have highlighted and challenged European and American scholarship’s
appropriation of the Middle East’s past for the West. Similarly, an influential anthropological
critique of the categories “us/them” and “sameness/otherness” has drawn attention to the
familiarizing strategies used by nineteenth- and twentieth-century scholars to domesticate
mainstream historical interpretations of ancient Mesopotamian culture toward the West and
away from the Middle East.”

It is hoped that the wide range of mathematical sources translated in this chapter reflects
these changing attitudes: they have been chosen not as extraordinary or surprising examples of
modernity with which you are invited to identify. Rather they represent the typical products of
scribal culture, reflecting a wide variety of textual genres from the simplistic to the sophisticated,
from rote-learned tables and rough calculations to carefully constructed word problems. But
inevitably, as research methodologies develop and multiply, and ever more sources are discovered
and deciphered, the selections and interpretations given here will come to seem as dated as those
of a hundred years ago. Scholarly fashions come and go, but the tablets themselves endure.

I.b. Mathematics and scribal culture in ancient Iraq

Mathematics is not created out of nothing—it is written by individuals operating within the
social and intellectual norms and conventions of the societies in which they dwell. Thus coming
to grips with another culture’s mathematics is not simply a matter of translating one notation
into another. Instead we need to explore the personal, intellectual, and social circumstances
under which it was written. Paradoxically, of all ancient and “other” mathematics,
Mesopotamia provides us with the most potential for contextualising interpretation. First,
relatively imperishable clay tablets leave us with a written legacy of primary sources many times
greater than other ancient societies such as Egypt (or compare the Greek tradition, where orig-
inal documents are almost nonexistent). Second, Iraq has some incredibly well preserved and
carefully recorded urban archaeology, including many sites where mathematical tablets have
been found. To study its mathematics, then, only as mathematics and not as the product of a
person’s body, brain, and culture, we willfully ignore a historical source of unparalleled richness
that has the potential to help us understand the interconnections between mathematics and
other aspects of culture and society that no other ancient civilization can match.

Rather than outlining here such a history of Mesopotamian mathematics (Table 2), we shall
look instead at three different archaeological contexts in which mathematics has been found.
As we shall see, we have to abandon modern notions of universal literacy and numeracy; in this
world reading, writing, and calculating were almost exclusively professional activities to which
even the wealthy and powerful did not necessarily have access. Writing was used only by
temples, palaces, and affluent families, primarily to record property ownership and the rights
to income. It will thus be important for us to distinguish between numeracy, which uses math-
ematics for the accounting and administration of assets, and mathematics, as an intellectual
activity for teaching, learning, and creating new mathematical skills and ideas.'?

9See, e.g., [Fowler 1999; Said 1978; Bahrani 1998].
10See [Robson 2001a] for a discussion of contexualization; and [Robson forthcoming] for a social history of
mathematics in ancient Iraq.
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Overview of Mathematical Developments in, Ancient Mesopotamia

Date Mathematical developments Socio-political background'!

4000 BCE Pre-3200: Preliterate token-based accounting Increasing urbanization in southern Iraq

3500 BCE 3200: Literate numeracy; the first school Uruk period/Early Bronze Age
mathematics Sumerian language

3000 BCE Sophisticated accounting and quantitative Early Dynastic period: city states
planning

2500 BCE School mathematics; c. 2050: first attestation  Akkadian language
of the mature sexagismal place value Territorial empires of Akkad and Ur
system

2000 BCE c. 1850-1650: widespread evidence of City states; empire of Babylon: Middle
“pure” mathematics in scribal training: Bronze Age, or Old Babylonian
line geometry, concrete algebra, quantity period
surveying

1500 BCE Cuneiform culture and sexagesimal “Amarna age” of international
numeracy spread from southern diplomatic contact across the Middle
Iraq East; Late Bronze Age

1000 BCE 800 BCeE-: quantitive methods in Assyrian Assyrian empire; Aramaic language and
scholarship the alphabet; Iron Age

500 BCE 400 BCE—: mathematics in the temples of Persian and Seleucid empires: Late
Uruk and Babylon Babylonian period
0 BCE/CE 75 cE: the last known datable cuneiform Parthian empire

tablet; transmission of mathematical
knowledge and practice to other
languages

Inana’s temple in Uruk, 3200 BCE

By the late fourth millennium, the flat marshlands of the south of modern-day Iraq were
teeming not only with wildlife but also with people. The region’s population centers, which
were the largest the world had yet known, were sustained through a sophisticated network of
socioeconomic interactions. In earlier societies most fit and healthy individuals had been
economically active providers and producers as well as consumers. Now new social relations
of unprecedented complexity relied also on managers, administrators, and organizers, who
earned their living and prestige not through production but through the oversight and control
of the community as a whole. This new social class dispensed justice, managed communal
building and agricultural projects, and took the lead in religious life, and it did so through the
institution of the temple.

The temple was at the literal and metaphorical heart of every large Sumerian settlement.
Made of mud brick and whitewashed in brilliant limestone plaster, it dominated the
flat marshland landscape as a conspicuous emblem of the city’s wealth, prestige, and func-
tionality. At one level the home of the city’s patron god or goddess, it was also the economic
powerhouse of the city and its hinterland. Through offerings and large-scale use of labor,
whether forced or voluntary, temples came to own vast tracts of arable land, where barley was
grown and huge herds of sheep and goats were tended. All of these assets had to be managed
in order to provide for the god and his or her followers; this is the first known context in which

UFor a general overview of Mesopotamian history, see [Kuhrt 1995; Roaf 1990; or Van De Mieroop 2004].
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writing was used. Managers at the goddess Inana’s temple E-ana in Uruk, some time in the
thirty-third century BCE, adapted a long-used system of accounting with clay tokens in order
to record, manage, and predict the wealth of their employer. Onto flattened clay surfaces they
impressed stylized outlines of accounting tokens to represent numbers, and scratched
pictograms and other symbols to stand for the objects they were counting and accounting
for. The accountants used a dozen or so different numeration and metrological systems,
depending on the type of commodity they were dealing with. As trainees they thus had to
learn how to deal with various number bases and conversions between different measurement
systems as well as how to write some 1200 symbols representing all the different categories and
subtypes of objects, people, animals, land, and other assets they managed. The world’s earliest
known piece of school mathematics is an exercise in calculating the areas of two fields, yield-
ing conspicuously round answers (see pp. 73-74). We do not know exactly who wrote it, or
exactly when, but it was found along with about 5,000 other tablets, mostly temple accounts
but including several hundred other school exercises, mostly vocabulary lists. The tablets had
been thrown away when they were no longer needed, along with other rubbish discarded by
the administrators, and then reused as building rubble when Inana’s temple was rebuilt and
refurbished some time before 3000 Bce.!?

A scribal school in Nippur, 1740 BCE

A few hundred miles north of Uruk, and about a millennium and a half later, the city of Nippur
was an important religious center of the kingdom of Babylonia, which covered most of south
and central Iraq. Home of the great god Enlil, it was where kings traditionally came to receive
Enlil’s blessings and permission to rule. Some 100 meters south of his great temple complex
E-kur was an unassuming small house in a block of other small houses, which had been built
out of mud brick in the late nineteenth century BCE. Now some eighty years later it was
occupied by a priest who ran a small school in his tiny front courtyard, where he had built a
bench and a bitumen-lined bin in which to soak and recycle the tablets that his students wrote.

Here he taught one or two students, perhaps his own sons. For their elementary education
he followed a system used by other teachers in the city: first the basics of impressing
wedge-shaped marks in the clay with a reed stylus, then the careful copying, repetition, and
memorization of a standard sequence of visually simple cuneiform signs. Next his young
charges learned how to write the Sumerian words for various objects, grouped according to
the materials they were made of, just as their long-ago predecessors had in Uruk. Then came
a series of more abstract exercises in understanding the complexities of Sumerian and
the cuneiform script, including a set series of multiplication tables and metrological lists
(cf. pp. 82-90). Only then were the students ready to write whole sentences of Sumerian, and
to take their first steps in Sumerian literature, a subject in which this particular teacher had a
special interest. The literary compositions were not simply stories; they educated the young
men in the myths and belief system of the temple, and inculcated in them a strong
self-identity as professionally literate and numerate scribes. (Translations of some of these
literary works are scattered throughout this chapter.) The seemingly endless rote-learning was
interrupted occasionally by the opportunity to practice mathematical calculations—but the
students’ results were not always correct.

12See [Nissen et al. 1993, 1-46) for more detail on the Uruk accounting system.
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Sometime after 1739 BCE, when the house needed to be repaired, nearly 1500 school tablets
were used as bricks and building material, becoming embedded in the fabric of the house for
the rest of its life.!3

A scholarly household in Uruk, 420 BCE

By the late fifth century BCE Babylonia was a province of the enormous Persian Empire,
though so far the end of native rule after millennia had made little impact on the day-to-day
lives of the inhabitants. On the eastern outskirts of Uruk, inside the city wall, was a large
mud-brick house arranged around a central courtyard. It was occupied by a family of scholars
with close associations to the sky god Anu’s temple Resh in the city center, who traced their
descent from an ancestor called Shang@i-Ninurta, “Chief administrator of the god Ninurta.”
The men of the family made their living as incantation-priests and healers, using a mixture of
herbal remedies, incantations, and supernatural diagnostic and prognostic techniques to care
for their patients.

The family owned a library of nearly two hundred scholarly and professional works on clay
tablets and waxed wooden writing boards, stored in large terracotta jars in a special room
off the courtyard. The older men taught the younger male members of the family to write
Sumerian and Akkadian and to calculate. The boys’ early efforts were recycled in a bitu-
minized area of the courtyard near the tablet room. By their late teens they were ready to
copy the sophisticated reference materials of their trade, signing and dating their tablets and
dedicating them to an older family member. Part of their profession involved a deep under-
standing of the complex ominous calendar of auspicious, inauspicious, and evil days so
that their medication and ritual could be as effective as possible. This led to an interest
in astronomy and mathematics, which involved not only copying arithmetical tables and col-
lections of word problems from earlier originals but also checking that the tables were indeed
correct (see pp. 167-170)."* When the family vacated the house, for reasons unknown,
they left the library in situ. The abandoned house eventually collapsed or was demolished,
crushing the storage jars and their contents, and a new house built over the ruins of the old.

These three examples show, then, that mathematics was not a leisure pursuit in ancient
Iraq; nor was it an exclusive professional activity supported by institutional patronage. Rather,
it was a fundamental part of the process of becoming professionally literate and numerate,
whether as accountant, priest, or scholar. All the mathematics presented here should be
understood in such a pedagogical, and usually domestic, context.

l.c. From tablet to translation

Abandonment and discovery

After their useful life was over, most clay tablets were dunked into water and recycled without
ever being baked for posterity. This is true not only of trainee scribes’ school exercises, but also
of archival documents belonging to temples, palaces, and families. With the development
of libraries in the mid-second millennium, reference copies began to be kept of important
scholarly works, both in repositories attached to temples or palaces, and in smaller family

138ee [Robson 2001, 2002] for more on the school known as House F in Nippur.
45ee [Robson forthcoming, chap. 8] for more on the Shangfi-Ninurta family, and other mathematically
inclined occupants of their house.
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Thus I have distinguished consistently between, for instance, symmetrical and asymmetrical
addition: X uY kamarum “to sum X and Y” versus X ana Y wasabum “to add X to Y.” The latter
is a very physical operation; its subtractive counterpart is X ina Y nasahum “to take away X from
Y? Similarly several sorts of multiplication are distinguished within the Old Babylonian mathe-
matical corpus. Simple numerical multiplication of the sort found in tables is represented by the
logogram A.RA “times.” Geometrical multiplication, X uY $utakiilum, in which lines are multi-
plied to form areas, literally “to make X and Y hold each other,” I have translated as “to combine
X and Y Repetition of the same entity N times, X ana N esépum, has become “to copy X N
times.” Finally, there is a more general verb, X anaY nasiim, literally “to raise X to Y;” for which
I have retained the phrase “to multiply X by Y.”

I have also chosen to translate the names of some geometrical figures more literally, as their
semantic range is not identical to ours. Thus mithartum, usually translated “square,” may
mean the area or side of a square, or even square root. I have thus chosen the term “square-
side.” Similarly kippatum, “circle,” may stand for the area of a circle or its circumference; I have
not distinguished them in the translations. On the other hand I have not (yet) been able to
find a satisfactory single translation for siliptum, both “rectangle” and “diagonal,” so I have
translated it with one or the other term as appropriate. Then there is a range of geometrical
figures which have no direct counterpart in modern mathematics: santakkum “wedge” is a
three-sided figure, not strictly a triangle as one or more sides may be curved. A “crescent
moon,” uskarum, is a circle cut by a chord; it usually means a semicircle but may be a larger or
smaller segment than that. Irregular quadrilaterals that may have one or more curved sides are
called piit alpim, “ox’s brow,” while the apsamikkum, a concave square figure composed of four
inverted quarter-segments of the circumference of a circle, I have more loosely rendered as
“cow’s nose.” The shape delimited by two one-third segments of a circle is an “ox’s eye,”
n alpim, while that composed of two one-quarter segments is a “barge,” makurrum. A length
running across the interior of a geometrical figure is called tallun; most often it means a
diameter, but it can have other meanings too, so I translate it here as “dividing line.” Finally, in
geometrical algebra a line may be given an extra dimension, always of length 1, in order to
convert it to an area: this is called a wasitum, or “projection.”

In any event, it is important to remember that, however faithfully I have attempted to
render the original sources into English, what you will be reading are my translations, and thus
interpretations which are open to doubt and challenge. They are not the primary sources
themselves, but an early twenty-first-century representation of them which is necessarily far
removed from the originals. You will be reading alphabetic texts from a printed book in a
familiar language, perhaps seated at a desk in a library or an office, a physical experience far
removed from squatting on the ground in bright sunlight to pore over a clay tablet held in
your hand. It will never be possible to fully comprehend this mathematics as it was meant
to be read, for we cannot entirely escape our own twenty-first-century lives and brains and
training, however hard we try (nor, perhaps, should we want to). But even if the enterprise is
ultimately doomed to failure, that does not mean it is not rewarding and satisfying to try.

l.d. Explananda

Sources
The tablets translated here come from the following collections. For the most part I have based
my translations on personal inspection of the tablets themselves, or of good photographs. This
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was not possible, for obvious reasons, in the case of the tablets from the Iraq Museum (IM),
Baghdad, where published scale drawings (hand copies) have had to suffice.

A
AO, AOT

Ash

BM, UET

CBS, UM

HS
IM, Db, Haddad, W

Plimpton

Strasbourg
TSS
VAT

YBC

The Oriental Institute of the University of Chicago, Chicago.

The Louvre, Paris; including excavations at Telloh (AOT).
Tablets studied courtesy of Béatrice André-Salvini of the
Département des Antiquités Orientales.

The Ashmolean Museum, Oxford. Tablets studied courtesy of
the late Roger Moorey, former Keeper of Antiquities.

The British Museum, London; including the excavations at
Ur (UET). Tablets studied courtesy of Christopher Walker,
formerly Senior Assistant Keeper of the Ancient Near East,
and the Trustees of the British Museum.

Collection of the Babylonian Section, University of Pennsylvania
Museum of Archaeology and Anthropology, Philadelphia.
Tablets studied courtesy of Steve Tinney, Curator of the
Babylonian Section.

The Hilprecht Collection, University of Jena.

The Iraq Museum, Baghdad; including excavations at Tell
Dhiba’i (Db); Tell Haddad, ancient Me-Turan (Haddad);
and Uruk (W).

The George A Plimpton Collection, Columbia University.
Tablets studied courtesy of Jane Siegel of the Rare Book
and Manuscript Library.

Cuneiform collection of the Bibliotheque Nationale et
Universitaire, Strasbourg.

Istanbul Arkeoloji Miizelerinde, Istanbul; excavations at
Shuruppag.

Vorderasiatisches Museum, Berlin. Tablets studied by Jeremy
Black courtesy of Joachim Marzahn, curator.

Yale Babylonian Collection, New Haven. Tablets studied courtesy
of Ulla Jeyes, curator; and with the generous assistance of
Paul-Alain Beaulieu.

Many cuneiform tablets are also in the hands of private collectors. However, as the export
of Iraqi antiquities has been banned for many decades, and the market in them illegal in all
member states of the United Nations since May 2003, the study or purchase of privately owned
material is tantamount to handling stolen goods, except in the extremely rare cases where a
long pedigree of ownership can be proved. Furthermore, the illicit market in cuneiform tablets
encourages the continued plundering of badly protected, fragile archaeological sites and the
consequent destruction of vital historical data for future generations. There is expected to be
an upsurge in the underground international trade in cuneiform tablets as a result of the dev-
astating archaeological looting in the aftermath of the 2003 Iraq War. Tablets for sale in shops,
at auction, or on the web should be reported to the relevant national art theft police authority
or to Interpol so that they may be confiscated and repatriated.
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Metrology1®

Early metrology The accountants of late fourth-millennium Uruk used at least twelve
different metrological systems, depending on what they were measuring or counting. For
instance, when counting discrete objects, their notation distinguished between the living and
the dead, and between fish and cheese. However, identical symbols were used in different
systems with different meanings. Although these systems were reformed and simplified over
the coming centuries, some of the notational ambiguity remained in Early Dynastic metrology,

as did the bundling of number and unit into a single sign.

@ x

~ 39km? ~

D@ -~

Area units:

Length units: =~ 3.6 km 360m ~ 60m ~ 6m
Length measures Area measures
1 rod =2 reeds ~ 6 meters lrodx1rod =1 sar ~ 36 m?2
1 reed = 3 seed-cubits = 3 meters
1 seed-cubit =2 cubits ~ 1 meter 100 sar =1 iku ~ 3600 m?
1 cubit =2 half-cubits  ~ 50 cm leshe =6iku ~2.16 ha
1 cubit =3 double-
hands 1 bur =3 eshe=181iku ~ 6.5 ha
1 double-
hand = 10 fingers ~ 17 cm
1 finger ~ 17 mm 1 shekel =1/60 sar ~ 0.6 m
Capacity measures
1sila = 1 liter
1 ban =10 sila (10 liters)
1 bariga =6 ban (60 liters)
1 lidga = 4 bariga (240 liters)
1 (great) gur =2 lidga (480 liters)
1 granary = 2400 (great) gur (1,152,000 liters)

Metrology from the twenty-first to the sixteenth centuries Standard units of

64.8 ha ~

SN ) >R )

DT> <0<

6.48 ha ~

2.16 ha = 3600 m?

>

calculation (which are often implicit within Old Babylonian problems) are shown in bold.

9Following [Nissen et al. 1993, 30-31; Powell 1990; George 1993: 119].
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Length measure

1 finger = 17 mm

1 cubit =30 fingers (0.5 m)

1 rod =12 cubits (6 m)

1 chain =1 00 cubits or 5 rods (30 m)
1 cable =1 00 rods (360 m)

1 league =30 00 rods or 30 cables (10.8 km)
(1 cubit is the standard unit of height.)

Area and volume measure

1 area sar =1 rod square (36 m?)

1 volume sar =1 area sar x 1 cubit (18 m?)

1 ubu = 50 sar (1800 m? or 900 m?)

1 iku =2 ubu =1 40 sar (3600 m? or 1800 m?)
1 eshe =6 iku (2.16 ha or 108,000 m?)

1 bur =3 eshe (6.48 ha or 324,000 m?)

Units from the iku upward were not written explicitly, but used special unit-specific notation.
These writings are indicated in the translations by putting the units in brackets, thus: “2 (bur)
1 (eshe) 3 (iku) area.” Special, absolute value signs were used to write multiples of the bur: 10,
60, 600, 3600, and occasionally the “big 3600,” or 3600 x 3600.

Capacity

1 sila = 1 liter. The sila may be divided into 60 shekels.
1 ban =10 sila (10 liters)

1bariga =6 ban (60 liters)

1 gur =5 bariga (300 liters)

Ban and usually bariga units were not written explicitly, but used special unit-specific notation.
These writings are indicated in the translations by putting the units in brackets, thus: “1 gur 2
(bariga) 3 (ban) 4 sila.” Multiples of the gur were written with the sexagesimal place value system.

Weight

1 grain ~0.05g

1 shekel =300 grains (8.3 g)

1 mina =1 00 shekels (0.5 kg)
1 talent =1 00 minas (30 kg)

Multiples of the talent were written with the sexagesimal place value system.

Brick measure

1 brick sar = 720 bricks
Size of a small, unbaked brick: 15 x 10 x 5 fingers
Number of small bricks in 1 volume sar: 1 26 24 bricks = 7;12 brick sar

Size of a square, baked brick: 20 x 20 x 5 fingers
Number of square bricks in 1 volume sar: 32 24 bricks = 2;42 brick sar
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First-millennium metrologies
Ariy measure for lengths and areas

1 (big) finger =3 cm

1 arfi cubit = 24 (big) fingers (0.75 m)
1 rod =12 cubits (9 m) lrodx 1rod =1 sar (~81 m?)
1 ubu =50 sar (0.4 ha)
1 iku =2 ubu (0.81 ha)
1 eshe =6 iku
1 bur =3 eshe =18 iku
1 shar = 60 bur
Arii “seed measure” for areas
1 sila ~ 270 m?
1 ban =10 sila (0.27 ha)
1bariga =6ban(l.62ha) =2ika
1 gur =5 bariga (8.1 ha) =10iku
Cable “reed measure” for lengths and areas
1 finger ~2cm
1 cable-cubit = 24 fingers (0.5 m)
1 rod =12 cubits (6 m) 1 rod x 1 rod = 1 sar (36 m?)
1 chain = 5 rods or 50 cubits (30 m)
1 cable =2 chains or 10 rods (60 m) 1 cable x 1 cable = 25 sar (900 m?)

1 iku = 1 40 sar (0.36 ha)

Cable “seed measure” for aren

1 grain =70 cm?

1 nindan = 1800 grams (7.5 m2)
1sila = 10 nindan (75 m?)

1 ban = 6 sila (450 m?)

1 bariga =6 ban (0.27 ha)

1 gur = 5 bariga (1.35 ha)

“Reed measure” for lengths and areas

1finger ~2cm 1 finger x 1 finger = 1 small finger (4 cm?)

1 cubit x 1 finger =1 grain (100 cm?)

1 reed x 1 finger =1 (area) finger (730 cm?)
1 cubit = 24 fingers (0.5 m) 1 cubit x 1 cubit =1 small cubit (0.25 m?)

1 reed x 1 cubit =1 (area) cubit (1.75 m?)
1 reed =7 cubits (3.5 m) 1 reed x 1 reed =1 (area) reed (12.25 m?)
1 rod =2 reeds or

14 cubits (7 m)



