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Preface for the Second Edition

The most primitive of herdsman used a pouch of stones to keep
track of the number of sheep he had in the field. As each sheep
would enter the field, the herdsman would place a stone in a pile.
As the sheep would leave the field, the herdsman would place the
stones back into the pouch. If there were stones left on the ground,
then some sheep were missing. If there were no stones left, and no
sheep left then all was well with the herd. And if there were no more
stones but there were more sheep, then somehow the herdsman had
picked up an ewe or two.

This correspondence between pouch stones and sheep is one of
the most primitive forms of counting known. In today’s language,
this is known as a one-to-one correspondence, or a bijection between
pouch stones and sheep. This kind of counting is continued today
when we make an attendance sheet. Each name on the sheet corre-
sponds to exactly one child in the class, and we know some child is
missing if he or she does not respond to his or her name. A more
important correspondence is found in the grocery store. There we
associate a certain number called a price with each item we put
in our cart. The items in the cart correspond to a number called
the total price of the cart. When we compare our receipt with the
objects in the cart, we are imitating the sheep herdsman’s pouch
stones.

xi
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Believe it or not, mathematicians count like the primitive herds-
men. The number 1 is all sets that match up in an exact manner
to the set {e}. Thus, we say that card({e}) = 1, and we say that
card({*}) = 1. The number 1 becomes all that we associate with
one element. We use the convenient symbol 1 to denote all possible
sets that match up perfectly with {e}. The symbol 1 is convenient
because it is what we have been taught all these years. The number
2 is defined to be all of those sets that match up perfectly with
{eo,%}.

card({e,*}) = 2.

This is 2 because we define it that way. It agrees with our training.
It represents all possible sets that match up exactly with the set
{e, x}. This is exactly what you have been taught.

Next up is what we mean by matches up perfectly. This is the
bijection we alluded to earlier. Sets A and B are called equivalent if
there is a bijection between them. That is, they match up perfectly.
In other words, there is a way of matching up elements between A
and B, called a function or bijection

f:A— B
such that

1. different elements of A are mapped to different elements of B,
and

2. each element of B is associated with some element of A.

For finite sets, this bijection can be drawn as a picture. Let A =
{a1,a2,0a3} and let B = {b;,bs,b3}. Then one bijection between A
and B is

a; — by

g +—— bz

az — by
which matches A up with B in an exact manner. Here is another
such bijection

a; b3

ag +— by

ag — b

between A and B. You see, the bijection you choose does not have
to respect the subscripts. These mappings are bijections because



PREFACE xiii

as you can see the elements a; are sent to different elements b,.
Also each element in B is associated with an element in A. That is
exactly how mathematicians count elements in sets.

An impressive extension of this idea is that we can count infinite
sets in the same manner, but you must use different symbols to
denote card(A4). We let

card(A) = the cardinality of A,

which is simply all sets B such that A is equivalent to B. That
is, card(A) is all those sets B for which there exists a bijection
f: A — B. Hence B € card(A) or card(A) = card(B) exactly
when there is a function f: A — B such that

1. different elements of A are mapped to different elements of B,
and

2. each element of B is associated with some element of A.

Notice that the definition of bijection has not changed.

Since these sets are infinite we need a new symbol to denote
card(A) of infinite sets. It is traditional to use the Hebrew letter
aleph

R

to denote infinite cardinals. Let

N = {0,1,2,3,...},

R = {z|z is a real number}.

So N is the set of whole, nonnegative numbers, and R is the set of

all real numbers. These would be decimal expansions like 1.414 and
3.14159. Then we write

card(N) = Ry

and we say aleph naught. It is quite a surprising mathematical
(universal) truth that there is a cardinal ®; such that

No < N;.

Indeed there is an infinite chain of infinite cardinals

N < N < Np < N3 < -+,
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We will have a chance to expand on this idea in the later chapters
of this book.

This second edition of The Mathematics of Infinity: A Guide to
Great Ideas contains some new ideas about mathematics as logic.
We begin with the binary logic that we all learn at an earlier age.

It is well known that most statements P and @ can have logical
states True or False. This is the basis for most legal conversations
or in scientific argument or in mathematics in general. In fact, some
years ago (up to 1920) several logicians tried to derive most of math-
ematics from binary logic. Four long and laborious volumes on their
research were written. The best effort achieved a proof that 1 + 1 =
2 after almost 2000 pages of logical symbolism. Shortly thereafter
a German logician/mathematician Curt Goédel (circa 1930) proved
that this line of research was mathematically impossible, as no ef-
fort from logic could deduce all of mathematics. There would always
be a mathematical statement that had been missed, or the authors
would have made a mistake.

We approach binary logic in a more traditional manner. We
introduce the operations and, or, not, implies on statements in the
way Aristotle must have defined them some 2600 years ago. We
describe how statements lingually and logically combine under these
operations, and we significantly reduce the importance of the more
recently used charts of symbols P, Q, T, and F. We feel the chart
has its place in the binary design of a computer and not as a form
of conversation or argument between people.

Thus, we define not P so that it changes the logical state from
one state into another. This agrees with the modern chart. We
say that Pand @ is True precisely when both P and @ are True.
Implied in this is that Pand () is False in case either statement is
False. The same lingual manner is applied to defining Por ¢, which
is False precisely when both P and @ are False. The implication
P = () is False precisely when a Truth implies a Falsehood.

The most compelling use of P = @ is to form the classic ar-
guments. So Truth with a correct argument leads to Truth, and a
False premise P can lead us to either a Truth or a False conclusion
(. For this reason, any arguer that proceeds from a False premise
cannot decide the Truth of his conclusions. We will avoid such
arguments, but they do lead us to some fun as we investigate the
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Epimenides Paradox (which is no paradox at all) and the World’s
Hardest Logic Puzzle (which we dispatch in a couple of lines).

We provide an elementary investigation of the logical state of
the Liar’s Paradox This statement is False. Some have concluded
that the Liar’s Paradox is always False, which is a statement no se-
rious mathematician would make. For example, in the conversation
All statements are False, This statement is False, the Liar’s Para-
dox is True, but in the conversation All statements are True, This
statement s False, the Liar's Paradox is False. We prove that the
logical state of the Liar’s Paradox is more like our cultural Walrus
than Aristotle, our ancient Lord of Logic.

The last results in the book are extensions of Gddel’s Theorem
showing that if C is a set of True statements from some logical
system, then there is some statement @) that is True over C but not
deducible from C. This is used to prove that there can be no theory
of everything for any logical intellectual endeavor.
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Chapter 1

Logic

The ideal writing style ascribed to by mathematicians is that in
writing mathematics, less is more. If we can convey the exact idea
of a concept with 5 words instead of 10, then we will use 5. Thus,
we will use the statement Cardinal numbers form a well-ordered
collection over the wordier statement The well-ordered property is
enjoyed by the collection of cardinal numbers. The second statement
is mathematically correct, but it is more than we need to convey
the idea.

I have tried to practice this ideal while writing the mathemat-
ics in this book. The only exceptions to this ideal are made on
the basis of decisions on the educational value of sentence struc-
ture, the anecdotal comments, or discussions of this sort that occur
between mathematical discourse. Sometimes it is good to sacrifice
some mathematical austerity in the interest of getting an important
point across to the reader. As the reader will clearly see, this econ-
omy of words in mathematical writings is not exercised in the text
of a discussion. Discussions and intermediate anecdotes contain ex-
amples and illustrations that are the only tools we have to illustrate
a concept. Since I have sacrificed a good bit of mathematical rigor
in favor of clarity, examples and illustrations are necessary if I am
to get some subtle ideas across to the reader. This form of person-
alized writing style is unavoidable when discussing advanced ideas
from mathematics in the popular press.

We have a bit of a mountain to climb in this book, so please be
patient. Perhaps you can sit down in an overstuffed chair or at a ta-
ble and open the book. Maybe you have a pencil and paper handy.
That'’s a good idea. Some of these topics need to be diagrammed.
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And certainly you have a cup of beverage, coffee would be my choice.
Now turn on that lamp overhead and blend in that final inspiring
ingredient: cream in your coffee. Good luck.

1.1 Axiomatic Method

The Axiomatic Method is how mathematicians apply logic. It is how
we advance from one topic to the next, and so this is how future
generations will discover more sophisticated forms of mathematics.
The section will be brief, but it is how the mathematics in each
successive chapter is treated.

Azioms are mathematical statements that we assume are True.
We do not prove axioms, they come to us as statements whose
Truth we do not deduce. The use of axioms first comes to us from
the Greek slave Euclid circa 300 BC in his book The Elements.
The Elements begins by stating five axioms and five postulates to
be taken as primitive Truths. By assuming these 10 statements,
Euclid was building a foundation on which logic would be used to
deduce the mathematics in the reminder of The FElements. Today,
the method of applying logic to a small set of primitive Truths is
called the aziomatic method. It is the way mathematics has been
practiced for the last 2300 years. It has lasted essentially unchanged
since Euclid wrote it, including the many editions printed in the
various lands in which The Elements was read and studied. It is
how mathematics will progress to find larger thoughts using today’s
theorems.

For example, Euclid defines a right angle as the bisection of a
line, and then he assumes that two right angles are equal. Today,
we would say that it is obvious that any two right angles are equal,
and so it was with Euclid’s contemporaries. You might even suggest
that you can prove it, but when you do you are assuming that any
two lines represent an angle of the same measure, m. You have
assumed what you wanted to prove. Euclid did not have angular
measure, so he could not talk about 7 radians, but he knew what he
was assuming. Thus the fourth postulate of The Elements assumes
that any two right angles have equal measure.

A more subtle axiom is the fifth postulate, today called the
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parallel postulate. This was an attempt to describe the interior
angles of two lines cut by a transversal. After thousands of years of
investigation the parallel postulate has evolved into the equivalent
form that we know today. It states that through a point P not on a
line L there is a unique line L' that is parallel to L. Today’s plane
geometry is based on this parallel postulate. It is an interesting
topic for further reading that one can change the parallel postulate
into two different parallel postulates, and that each has its own use.

1.2 Tabular Logic

Formal logic is the logic used in Computer Science to design and
construct the guts of your computer and its central processing chip.
You have used this logic every time you analyzed regions in a Venn
diagram.

And then there is Aristotle’s logic. This is the logic used by
rational men to form rational arguments. This logic is used to form
arguments to prove that something is, or to prove that something is
not. While we will examine formal logic, we are most interested in
Aristotle’s logic. Before we use Aristotle’s logic to construct argu-
ments we will introduce elementary or primitive logical statements.

The statements P, (), and R are variables. They represent all
statements from the language we are speaking. They do not exclude
values unless we state so. Thus, P represents something simple like
The sky is blue, or 1 # 0, or something more complicated like

The sum of the squares of the lengths of the legs in a
right triangle is the square of the length of the hypothenuse.

Even that last statement is a possible value for P.

Aristotle’s Logic begins with these statements and combines
them using the elementary logical operations not, and, or. There
might be other logical operations but they can be expressed as com-
binations of these three. The logical state of a statement formed by
using P and @ is determined by the entries in a few tables.

The operation not simply changes the logical state of P from one
logical state into the other. In tabular form, not can be described
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by the following.

P | notP
T| F
F| T

In the first column of this table, we are considering all possible
logical states for P. True T and False F are all of the logical states
that P can achieve in this book. (We consider only binary logic
here.) The second column is the logical state of the statement not P.
We should be clear about this. We begin with a table and define
what not means. That defined meaning reflects exactly what you
have used not for in your life. We do not begin with a word not and
then try to make up a table for it. We have tried to define a logical
operation here, and that is what the table does.

Notice that the table for not does just what we first stated not
will do. It takes a logical states for P and changes it from True to
False, or from False to True. Follow the logic for P today.

1. P = The sky is blue is a True statement.
2. not P = The sky is not blue is a False statement.

Of course, if it is a slate gray sky, or if we are on Mars, then The
sky s blue will be a False statement. This is what you mean when
you say to someone What is the color of the sky in your Universe?
You are asking for the logical state of the statement The sky is blue.
You are asking that individual for a logical foundation from which
the two of you can intelligently converse.

Our operation not has a familiar property that comes from that
early English class you had. Given a statement P, then not not P
has the same logical states as P. That is, a double negative does
not change the logical state of P. In terms of a table, we have

P | not P | not not P
T F T
F T F

The first and third columns of the table show that P and not not P
have the same logical state. If P is True, then not not P is True,
and if P is False, then not not P is False. Notice that the first way
we described the double negative, the table we gave for it, and the
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last couple of lines all describe the same operation. From input to
ultimate output, not not does not change the logical state of the
input statement. It does change P, though, doesn’t it. If we let
P =The sky is blue then one reading of not not P is It is False that
the sky is not blue. This last statement will have the same logical
state as P, but it is awkward in its presentation. We will avoid the
double negative whenever possible but we will find that at times we
are forced to deal with it.

The operation and combines two statements P and ¢ and makes
a compound statement P and (). The statement P and () is True
exactly when both P and () are True. So, of course, the other
possible combinations of T and F for P and @ yield logical states
False. Thus, if one or more of P, @ is False then the statement
Pand (@ is False. If we let P = The sky is blue and if we let @ =
I am human then today P and @ is a True statement. The sky is
blue and I am human is a True statement on the day this is written.
But if it is a slate gray sky, then The sky is blue and I am human
is a False statement. If I come from Mars then The sky is blue and
I am human is a False statement. If I am writing this on Mars in
January of 1900 then The sky is blue and I am human is a False
statement because both P =The sky is blue and ) =I am human
are False statements.

The table of values T, F' for and will make the above discussion
short and mechanical. That table is

P QIPandQ
T T T
T F F
F T F
F F F

In other words, P and @ is True exactly when both P and @ are
True. In any other situation, P and ) is False.

The first two columns of the above table gives us all of the pos-
sible pairs of logical states T, F for P and @, and in the third
column we read the corresponding logical states for the compound
statement P and Q. Notice that P and (@ is a True statement ex-
actly when both P and ) are True. Otherwise, P and () is a False
statement. This is an effective shorthand since once we know that
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Pand @ is True exactly when both P and @ are True, then the
logical states in the rest of the table fall into place.

Let us see how the logic of our discussion proceeds. It is ele-
mentary, but it also shows us what the undercurrent of our thought
process is.

1. Let P = The sky s blue and let Q) = I am human.
2. P is True, and @ is True.
3. Pand (@ is then True.

4. Thus The sky is blue and I am human is True.

You may have skipped all of those thoughts but this list of
thoughts fills in all of those nagging details about the logic of the
compound statement. Actually, this linear discussion shows how
logic is part of the structure of your language. We just don’t think
in that much detail, now do we?

The third operation is the or operation. This operation takes
two statements P and @ and assigns a True logical state to Por Q)
when at least one of them is True. Or to put it another way, P or ¢}
is False exactly when both P and () are False. The rest of the cases
T, F for P and @ yield a True statement, P or ().

So if we let P = The sky is blue, and if we let @ = I am human,
then P or @ is a True statement. That is, The sky is blue or I am
human is a True statement. That is because ¢} is True. The logical
state of P in this case does not matter. If it is a slate gray sky, then
The sky is blue or I am human is still a True statement. The True
statement I am human makes the compound statement The sky is
blue or I am human a Truth. But if I am writing this on Mars in
January of 1900, then The sky is blue and I am human is a False
statement because both P =The sky is blue and @ =I am human
are False statements.

The table for the operation or will again make the above discus-
sion short and mechanical.

| Por@

CECRE I R
m NN
SIS
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In other words, Por( is False exactly when both P and @ are
False. The other values T in the third column of the table are then
forced.

The first two columns give us all possible pairs of logical states
for the statements P and ). The third column gives us the logical
states of Por @} that correspond to the first two columns of the
table. Notice that the logical states in column three show that
P or @ is False exactly when both P and @) are False.

The next way to combine statements P and @) we will call im-
plication. We write

P=Q

when we want to say that P implies Q. In its simplest form, P = @
is False exactly when P is True and @ is False. In every other
instance the statement P = () is True. Its tabular description
follows from this verbal description.

PQ|P=>Q
T T T
T F F
F T T
F F T

From the table.defining implication, we see several important
properties. The first row of the table for P = @ gives us the most
important argument in mathematics, that of deductive reasoning.
The first row shows us that if we make no mistake, that is, if P = Q
is True, then the Truth of P implies the Truth of Q. Thus, if P is
True and if we make no mistakes, that is, if P = @ is True, then @
is True. We can find new Truths from old Truths in this way.

The last row shows us that if we make no mistakes in our ar-
gument, then a Falsehood @ comes from a Falsehood P. Hence, if
P = @ is True and if @) is False, then P is False. We will often
work with this argument. It is called the indirect proof.

The first line of the table allows us to deduce the second line.
The Truth of P implies the Truth of @ if we make no mistakes in
our argument P = (). Therefore, if P is True and if () is False, then
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we made a mistake somewhere, and P = @ is False. If you have
deduced a Falsehood from a Truth then you have made a mistake.
That is what the False logical state of P = () stands for: a mistake.
Thus, the implication P = 1=0 is False if P is True. The conclusion
1 = 0 is False, so the implication is a Falsehood.

There is another interesting possibility for P = . A False-
hood P will imply anything. If we begin our argument with a False
premise P, then subsequent deductions ¢} do not possess a pre-
dictable logical state. These deductions ) can be either True or
False. If P is a Falsehood then P = () is True no matter what the
logical states of @ is. Thus, if P is False, you can deduce that 1 = 0,
that All opinions are valid, and that there is a Universal Set. But,
as we will prove later, each of these is a Falsehood. The conclusion
drawn will have no logical weight whatsoever because your premise
P was False

After all, we can deduce that there are no prime numbers if
we assume that 1 = 0, but of course the conclusion is False. The
argument, goes like this. Assume that 1 =0. Then 1+1 =040
and so 2 = 0. In this manner, we can prove that n = 0 for each
n € N. That is correct. From the premise 1 = 0 we can prove
that there are no other natural numbers but 0. Since 0 is not a
prime number, we have proved that there are no prime numbers.
This is the kind of foolishness we can arrive at by proceeding from a
False premise. However, the steps in our argument were all True, so
that the implication 1=0 = there are no prime numbers is a True
statement. Think about that for awhile.

Exercise 1.2.1 Let P, ¢}, and R be statements. Make Truth Ta-
bles for the compound statements in the following exercises.

1. not(PorQ)
2. not(P and Q)

3. Pand(Q and R)

e

. Por(QorR)

(S

. ((not P} or Q) and (P or (notQ))
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1.3 Tautology

A tautology is a logical statement R that is always True. When its
table is established, the output logical states, those values in the
rightmost column, are all T'. Let us examine a few tautologies.
Consider P or (notP). We can see that this is tautological by

observing that by the table for the not operation, either P or not P
is a Truth. That is, one of P and notP is True. Examining the
table for or shows us that P or (not P) is then True. In its tabular
form, we have

P | notP | P or(notP)

T| F T

F ( T [ T
Thus, PornotP is a tautology. PornotP is a True statement
given any logical state for P. In other words, as the table suggests,
no matter which statement is used for P, the output P or (notP)
is a True statement. For example, The sky us blue or the sky is not
blue is True, asis 1 = 0 or 1 # 0. Also, the statement There
15 @ Universal Set or there is no Universal Set is True. We may
not know what a Universal Set is, but we know that the statement
There is a Universal Set or there is no Universal Set is True. That
is, it either is or it is not.

In the same way, the statement P and (not P) is False because by

definition of not, the statements P and not P have different logical
states. For instance, if P is True, then not P is False. Then by the

the definition of and, P and (notP) is False. The next table shows
all of this in tabular form.

P | notP | P and (not P)
T| F F
F| T F

For example, let X be a any statement. Given the statement P =
X is valid then not P = X is not valid. Hence, the statement

X is valid and X is not valid

is a False statement. We will encounter this kind of Falsehood often
as this chapter moves along.
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At this point, we will abandon the use of Truth Tables. One
can use them to discuss the other logical tautologies that we will
bring out presently, but we feel that in our present setting, they
are Baroque. The reader should feel free to translate our lingual
discussion into a tabular one. The exercise will do you good.

Some logical statements are combinations of two or more smaller
statements. Let P, ), and R be statements. Different ways to
combine and manipulate these statements are from the following
tautologies.

associative law ~ Pand(QandR) = (PandQ)andR
distributive law Pand(QorR) = (PandQ)or (P and R)
distributive law Por(QandR) = (PorQ)and(PorR)
the biconditional Pe@ = (P=Q)and(Q= P)

The associative law, for example, states that there is no reason to
use parentheses in conjuncted statements using the and operation.
The statement

The sky is blue and the grass is green and I am human

is unambiguous in the calculation of its logical state. The distribu-
tive laws simply give us reasons to replace commas with parentheses.
For example,

Either the sky is blue, or the grass is green and I am human

can be rewritten as

The sky is blue or the grass is green,
and the sky is blue or I am human

without changing the logical state of the compound statement.

The biconditional is a short way of writing that P implies @,
and also that @ implies P. The biconditional P < @ is read P
if and only if Q. This means If P then @ and If Q) then P. It is
common to write

Piff Q
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for P& Q.
For instance, we will prove that

1+1=2iff1+1+1=3.

Proof: We must first prove that 1+1=2=1+4+1+4+1=3. This is
done by beginning with 1 + 1 = 2, and then adding 1 to each side,
which yields 1+1+1=2+41=3.

Conversely, begin with 1+ 1+ 1 = 3, and then subtract 1 from
both sides, from which wehave 1 +1=1+14+1-1=3-1=2.
Thus, 1 +1 = 2, which is what we had to prove.

Therefore, having proved the implication 1+1 =2 = 14141 =
3 and the implication 1+ 1+1 =3 =1+ 1= 2, we conclude that
1+1=2iff 14+ 1+ 1=3. This completes the argument.

Let us prove another biconditional statement.

Let a € N. Then a < 2a iff a # 0.

Proof: We must prove that if a < 2a then a # 0 and that if
a # 0 then a < 2a. Begin by proving if a < 2a then a # 0. Suppose
that a < 2a. Then, allowing that we all know the arithmetic, 0 =
a—a < 2a—a = a. Thus a # 0, which proves this half of the larger
proof.

Conversely, we must prove if a # 0 then a < 2a. Begin with
a#0. Thena > 0,sothat 2a =a+ae¢>0+a=a. Thusa < 2a
is proved. Therefore, by having proved both if a < 2a then a # 0
and if a # 0 then a < 2a, we conclude that a # 0 iff a < 2a. This
completes the larger proof.

There will be much more to say about the biconditional state-
ment in the later pages of this book.

Another tautology that we will find useful in the rest of this
book is called DeMorgan’s Laws for Logic. It shows how the not op-
eration combines with the and and the or operations. Symbolically,
DeMorgan’s Laws for Logic look like this.

DeMorgan’s Law 1.3.1 Let P and Q) be statements. Then

1. not(Pand Q) = (not P)or (not Q)
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2. not(PorQ) = (not P) and (not Q)

Note the change from and to or and from or to and in each of
DeMorgan’s Laws. Thus

Either the sky is not blue, or the grass is not green.
has the same logical state as
It is False that the sky is blue and the grass is green.
Furthermore,
The sky is not blue and the grass is not green.
has the same logical state as
It s False that the sky is blue or that the grass is green.

Exercise 1.3.2 Let P, Q, and R be statements.

1. Show that P and (notQ) is logically equivalent to
not((not P) or Q).

2. Show that P or (notQ) is logically equivalent to
not((not P) and Q).

3. Find a shorter statement that is logically equivalent to
not(not((not P) or Q)) or R).

4. Give a highly detailed proof that
Ifa=ab thenb=1.

5. Give a highly detailed proof that
Ifz?—1=0 thenz € {-1,1}.

1.4 Logical Strategies

The first logical observation is that there is a statement that is al-
ways False, no matter what the logical value of P is. The statement
Pand (notP) is a Falsehood. It is False F' all of the time. We
discussed this in the previous section.
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Example 1.4.1 1. Let P be the statement The sky is blue. Then
the sky is blue and the sky is not blue is a Falsehood.
2. Let P be the statement There is a mountain. Then the state-
ment There is a mountain and there is no mountain is a Falsehood.
3. Let P be the statement This is True. Then This is True and
this is not True is a Falsehood.

We continue our discussion with implications. Let P and @) be
statements. It is good to know that P = ) is True or False, but
it is better to know how one uses the implication P = @ to argue
correctly. For example, let us reexamine the first line of the Truth
Table for P = . That first rowis T, T, T. It can be read as follows.
If we start with a True premise P, and if we make no mistakes in
our argument, then our conclusion ¢ is True. You might expect
this, since every deductive argument is based on it.

Example 1.4.2 1. Here is a Greek classic. Begin with the state-
ment P, Socrates is a man. It is True that If he is a man then he
is mortal. We conclude @Q that Socrates is mortal is True. I know
that P is True, and that P = ¢} is True. From this I deduce that
@ is True.

2. Let P be the statement I see the sky on Earth (on a sunny
day). It is True that If I see the sky on Earth then the sky is blue.
Therefore I conclude @ that The sky I see is blue. T have assumed
P and observed that P = @ is True. From this I deduce that @ is
True.

Example 1.4.3 1. Let P be the True statement The sky is not
blue. Argue correctly as follows. If the sky is not blue, then we are
not on Earth. Conclude the statement ¢) that We are not on Earth
is a True statement.

2. Something more advanced goes like this. Let a,b € N be
nonzero. We prove that a > ab.

Proof: We will write one True implication after another to form
our argument. We will then conclude that ¢ < ab. Begin with a
True statement. Since a,b € N are nonzero, a,b > 1. Since a > 1,
multiplying 1 < b by a implies that a = a -1 < ab. Thus, a < ab is
a True statement, which is what we had to prove.
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A more subtle argument shows us the strength of logic when
arguments are concatenated. Consider the statements

P
P=@Q
Q=R
R

and assume that P is a True statement, that P = @ is a True state-
ment, and that @ = R is a True statement. Make no assumptions
about R. Argue as follows.

From the Truth of P and the Truth Table of P = @), we deduce
that @ is a True statement. Then @ and @ = R are True, so we
may deduce that R is a True statement.

We began with the Truth of P. The Truth of the statements
P = @ and @ = R allows us to make a correct argument P = Q
and then @ = R. We then deduce the Truth of R. This justifies
our use of this compound argument in our deliberations.

More generally, we have shown that if your argument begins
with a True statement P, and if, as above, the compound argument
consists of one True implication after another, then you have formed
a longer True argument. You then deduce the Truth of the last
statement R in your argument.

Example 1.4.4 This example shows how the above discussion can
be applied to longer arguments.

a) Assume that 10 < 2'°. (This is the statement P.)

b) Because 10 < 2!°, we see that 2-10 < 2-2!°. (Thisis P = Q.)

c) Because 20 = 2 - 10, we have 11 < 2-10. (This is Q@ = R.)

d) Because 2 - 10 < 2 - 20, it follows that 2 - 10 < 21+10 = 211,
(Thisis R = S.)

e) The conclusions in lines ¢) and d) combine to show that 11 <
210 < 2.

We conclude that 11 < 2%,

We will not use this level of detail in future arguments.

Exercise 1.4.5 Find the error in the following arguments. These
errors make the arguments False.
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This approach to proof is called proof by contradiction. They all
proceed in the same way. You are given a statement that claims
either All of something has a property or Nothing has a property.
To show that these two statements are Falsehoods, and to prove
a statement about something having a property, you produce a
counterexample to the claim. Some examples will help.

Example 1.5.3 1. All numbers are even is claimed. You produce
the number 3, which is not even. This 3 is a counterexample to
the claim that all numbers are even. Thus All numbers are even is
False. You have thus proved that Some numbers are not even.

2. All people are Truth sayers is claimed. That is, it is claimed
that every person tells the Truth all of the time. You react by
producing a known False statement and then speaking it. You speak
1 = 0, thus uttering a False statement. The claim is proved False.
You have proved that Someone will sometimes speak Falsehoods.

3. All statements are False is claimed. You state that The
number line has no end. This Truth is a counterexample to the
claim. You have shown that Some statements are True.

4. Nothing is interesting is claimed. The claim is that nothing
in this world is interesting at all. You say, I find that the lack
of interesting facts in this world is interesting, thus showing that
something is interesting. With this counterexample to the claim,
you have shown that Somethings are interesting.

Exercise 1.5.4 Prove these statements using the proof by counter
example.

1. All math professors are male.

2. All numbers are positive.

If a < a? then 1 < a.

tan(f) <1 for all 8 € {—n/2,n/2).
All men are liars.

All men are Truth sayers.

NS v ok W@

Left alone things do not change.
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1.6 Universal Quantifiers

Statements about All or Nothing of something are called universal
quantifiers. We will discuss proofs of universal quantifiers in this
section. In so doing, we will show that a certain kind of statement
is always False. These statements are common when speaking about
logical ideas. We will show that these Falsehoods not only look alike
but they also have similar proofs.

A logical strategy that comes from the bottom row

P QP=Q
F F| T

of the Truth Table we used to define the implication P = Q is given
as follows. Suppose that you make no mistakes in your argument,
but that you conclude that  is False. Then your premise P is also
a Falsehood. To employ this proof, you begin by assuming that P is
True. Then you make a careful argument with no mistakes. Once
you have come upon a Falsehood, @), you can conclude that P is
False. We will continually use this strategy in this section.

The universal and existential quantifiers are logical statements
used to define the logical value of infinitely many statements without
writing down infinitely many statements. Let P(t) be a statement
that is defined in terms of a parameter ¢. For example, P(n) might

ben < n+1, or P(z) might be If x # 0 then i is defined. The uni-

versal quantifier allows us to discuss the logical values of P(n) and
P(z) all at once. It is the infinite counterpart of the and operation.
Suppose that ¢t € I for some index set I. Then

Vt € I, P(t) is read for all t in I, P(t) is True.

You may delete the is True as the language permits. The universal
quantifier V¢ € I, P(t) is True only when P(t) is True for every
t € I. Thus, Vn € N,n < n+ 1 is a True universal quantifier since
n <n+1is True for all n € N.

The ezxistential quantifier is the infinite equivalent of the or op-
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Exercise 1.6.2 In each of the following exercises, negate the False
quantifier.

1.VzeR, 22> 0

2. dr,y,2 €N, 3+ 93 =28

1
3. 3 continuous function f on [0, 1], (%f f@t)dt # f(z).
0

4. 3 a set C, C contains all sets.

5. V opinion P, P is valid.

1.7 Fun With Language and Logic

Here are some examples that will illustrate how deduction is used in
mathematics. To understand these examples, we must first examine
how to diagram a sentence.

Let Y be some quality of statements. So Y could be, but is not
restricted to, the values True, valid, known, recursive, hard to read,
impossible to understand. Let @ be the statement This statement
has quality Y. We would say that Q and This statement has quality
Y are the same. Furthermore, since This statement refers to Q, Q
is the same as This statement Q has quality Y, which is also the
same as Q has quality Y. The above discussion is easily translated
into the following table, each of whose statements are the same.

1.Q

2. This statement has quality Y

3. Thus statement Q has quality Y
4. Q has quality Y

Some clever arguments can be formed by interchanging these
equivalent ways to write Q.

Example 1.7.1 This problem goes back to ancient Greece, some-
time before 300 BC. Epimenides is a philosopher from the island of
Crete. He walks into a room of Greek scholars and cries out, All
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knowledge B. Then B represents all of the known facts, which by
the above paragraph cannot be all facts. Specifically, knowledge
is neither finite nor bounded. Consequently, there will always be
some fact to be discovered. Hence, unless we willingly stop work,
researchers and scholars cannot work themselves out of a job. There
will always be some unknown fact to be researched.

Example 1.7.3 Suppose we assume that All opinions are wvalid.
Consider the statement Q: This opinion is not valid. Since Q is an
opinion, our supposition implies that Q is valid. But Q itself states
that this opinion Q is not valid. Thus, we have deduced R: Q is
valid and its logical negation notR: Q is not valid. When combined
we have deduced the Falsehood R and (notR). Thus, our premise
All opinions are valid is False. This can be interpreted as stating
that not every opinion advanced is worth listening to.

Example 1.7.4 The above examples illustrate a general form of
statement and argument. Let Y be one of the properties in the set
{True, known, valid, complicated, assumed, hard to understand,
worth listening to}. Suppose we assume that All self-referential
statements are of type Y. Consider the statement Q: This statement
is not of type Y. Because Q is a self-referential statement, it is True
that Q is of type Y. But Q itself states that the statement Q is not
of type Y. Thus, we have deduced R: Q is of type Y and its logical
negation notR: Q s not of type Y. The Falsehood R and (notR)
shows us that All statements are Y is False.

Example 1.7.5 A perfect logician is a person who knows all of
logic. Let us decide the logical state of There is a perfect logician
PL. Assume that there is a perfect logician PL. We begin our ar-
gument with the statement Q: This statement of logic is not known
to PL. Then this logical statement, Q, is not known to PL. Fur-
thermore, by assumption, PL is a perfect logician, so Q is known
to PL. The contradiction is that we have deduced Q is not known
to PL and its logical negation Q is known to PL. Thus There is
a perfect logician PL is a Falsehood, and hence there can be no
perfect logicians.

Let us apply the previous example.
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Example 1.7.6 At the time of this writing, The World’s Hardest
Logic Puzzle has been a popular stop for those who surf the web.
The puzzle begins with 200 perfect logicians on an island, 100 of
them are blue eyed, and 100 of them are brown eyed. Once a perfect
logician has determined his eye color through the use of logic alone,
he will leave the island. The problem is to determine when all
of these perfect logicians have left the island. That’s it. That is
all that we assume in this version of the puzzle. There are some
internet versions of this puzzle that include much more detail than
this version, but they and their solutions follow from our solution
given below. In other words, once we solve this problem then we
can solve any other version of it.

The solution is that the problem begins by assuming that there
are 200 perfect logicians, while we have proved that there are no
perfect logicians. Thus the premise of the problem is False. You
can therefore deduce anything you want, but you have no way of
knowing which deduction is True. Thus, you might deduce that 200
people leave the island Friday, you might deduce that 200 people
leave the island instantly, or you might deduce that seven of them
never leave the island. But we cannot know the Truth of these
conclusions as we proceed from a False premise.

This kind of indirect argument will appear often in the succeed-
ing chapters. The readers should familiarize themselves with it.

The Q statements used above are examples of self-referential
statements. These are statements that refer to themselves. One fun
example of a self-referential statement is the following story that in
the end refers to itself.

Mythology 1.7.7 There once was a girl who liked to travel from
town to town, telling this story about herself. One day, while travel-
ing in the dense forest, she entered a small village in a small clearing.
She told them that she was hungry and tired, and then asked if she
could exchange a telling of her story for some food and a place to
sleep. But the villagers knew that only evil came from the dense
forest, so they threw garbage at her, and chased her in large num-
bers. She was so overcome by these people that she stumbled and
fell into a great blaze just outside the village. There she went up in
a dark cloud of smoke. This is always how her story ended, though,
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with her death in a fiery place. It seems that the myth and the miss
had this end in common.

We say that a statement P is a paradoz if it is neither True
nor False. While it is True that I am lying is a paradox in the
context of the conversation I am a Cretan, All Cretans are Liars,
I am lying, what follows is a statement that is a paradox without
being contained in such a conversation. That statement is called
the Liar’s Paradoz or Satan’s Statement.

Satan’s Statement: This statement is False.

In the context of the conversation

All statements are False
This statement is False,

Satan’s Statement is True. In the context of the conversation

The next statement is True
This statement is False

Satan’s Statement is a Falsehood. These examples contrast the
commonly held erroneous belief that Satan’s Statement is False in
every conversation that contains it. In Section 9.2 we will give a
correct proof that shows that Satan’s statement is neither True nor
False, thus making it a True paradox.

Exercise 1.7.8 Using (Q statements, prove that the statements
1 through 5 below are Falsehoods. Ignore simpler arguments if
they should exist.

1. All statements are valid.
2. All men are liars,

Each statement is False.

B

All that is written is known.

5. All of Algebra in known.
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6. Define: A perfect physicist is one who knows all of physics.
Show that There is a perfect physicist is a Falsehood.

7. Define: A perfect mathematician is one who knows all of

mathematics. Show that There is a perfect mathematician
is a Falsehood.



Chapter 2

Sets

Logic is our alphabet, and sets will be the words in our language of
mathematics. Some foundation has to be laid down, though, before
any discussion in this language can proceed. Our foundation is Set
Theory and its functions, and we will discuss these notions in the
next two chapters.

There is one assumption that we will use implicitly and explic-
itly throughout this book. Our underlying assumption is that all
mathematical objects considered in this book are from a Mathe-
matical Universe in which these objects exist. Thus, when we say
that R is a cardinal, it is to be understood that this cardinal lives
in a Mathematical Universe and that we can examine it there. This
Mathematical Universe is a classical idea attributed to the Greek
philosopher and mathematician Plato. Therefore in making our
universal assumption, we are following in a good classic tradition.
The intent here is clear.

Our definition of Set requires us to know when an object is given.
We will write given x if we wish to examine an object in our assumed
Mathematical Universe. As you can see, our universal assumption
goes to work right away. Whatever else you might believe, let us
agree that this our assumed Mathematical Universe exists and that
we can study the elements in it. Said assumption will not change
as we work our way through this book.

29



