THE MATHEMATICS oF SECRETS

JOSHUA HOLDEN



THE MATHEMATICS OF

SECRETS

CRYPTOGRAPHY FROM
CAESAR CIPHERS TO
DIGITAL ENCRYPTION

JOSHUA HOLDEN

PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD



Copyright (©) 2017 by Princeton University Press
Published by Princeton University Press, 41 William Street,
Princeton, New Jersey 08540
In the United Kingdom: Princeton University Press, 6 Oxford
Street, Woodstock, Oxfordshire OX20 1'TR

press.princeton.edu
Cover image courtesy of Shutterstock; design by Lorraine Betz Doneker
All Rights Reserved

First Paperback printing, 2019
Paper ISBN 9780691183312

The Library of Congress has cataloged the cloth edition as follows:

Names: Holden, Joshua, 1970- author.

Title: The mathematics of secrets : cryptography from Caesar
ciphers to digital encryption / Joshua Holden.
Description: Princeton : Princeton University Press, [2017] |
Includes bibliographical references and index.
Identifiers: LCCN 2016014840 | ISBN 9780691141756
(hardcover : alk. paper)

Subjects: LCSH: Cryptography—Mathematics. | Ciphers. |
Computer security.

Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC
record available at https://lccn.loc.gov/2016014840

British Library Cataloging-in-Publication Data is available

This book has been composed in Linux Libertine
Printed on acid-free paper. oc

Printed in the United States of America



m m s CONTENTS s = =

Preface xi

Acknowledgments  xiii

n Introduction to Ciphers and Substitution 1

1.1 Alice and Bob and Carl and Julius: Terminology and Caesar
Cipher 1

1.2 The Key to the Matter: Generalizing the Caesar Cipher 4

1.3 Multiplicative Ciphers 6

1.4 Affine Ciphers 15

1.5 Attack at Dawn: Cryptanalysis of Sample Substitution
Ciphers 18

1.6 Just to Get Up That Hill: Polygraphic Substitution Ciphers 20

1.7 Known-Plaintext Attacks 25

1.8 Looking Forward 26

E Polyalphabetic Substitution Ciphers 29

2.1 Homophonic Ciphers 29

2.2 Coincidence or Conspiracy? 31

2.3 Alberti Ciphers 36

2.4 It’s Hip to Be Square: Tabula Recta or Vigenére Square
Ciphers 39

2.5 How Many Is Many? Determining the Number of
Alphabets 43

2.6 Superman Is Staying for Dinner: Superimposition and
Reduction 52

2.7 Products of Polyalphabetic Ciphers 55

2.8 Pinwheel Machines and Rotor Machines 58

2.9 Looking Forward 73



vii « Contents

Transposition Ciphers 75
3.1 This Is Sparta! The Scytale 75
3.2 Rails and Routes: Geometric Transposition Ciphers 78
3.3 Permutations and Permutation Ciphers 81
3.4 Permutation Products 86
3.5 Keyed Columnar Transposition Ciphers 91
Sidebar 3.1 Functional Nihilism 94
3.6 Determining the Width of the Rectangle 97
3.7 Anagramming 101
Sidebar 3.2 But When You Talk about Disruption 104
3.8 Looking Forward 106

ﬂ Ciphers and Computers 109
4.1 Bringing Home the Bacon: Polyliteral Ciphers and Binary
Numerals 109
4.2 Fractionating Ciphers 115
4.3 How to Design a Digital Cipher: SP-Networks and Feistel
Networks 119
Sidebar 4.1 Digitizing Plaintext 125
4.4 The Data Encryption Standard 130
4.5 The Advanced Encryption Standard 135
4.6 Looking Forward 143

B stream Ciphers 145
5.1 Running-Key Ciphers 145
Sidebar 5.1 We Have All Been Here Before 150
5.2 One-Time Pads 153
5.3 Baby You Can Drive My Car: Autokey Ciphers 157
5.4 Linear Feedback Shift Registers 167
5.5 Adding Nonlinearity to LFSRs 174
5.6 Looking Forward 178

B Ciphers Involving Exponentiation 182
6.1 Encrypting Using Exponentiation 182
6.2 Fermat’s Little Theorem 183
6.3 Decrypting Using Exponentiation 186
6.4 The Discrete Logarithm Problem 188



Contents

6.5 Composite Moduli 190

6.6 The Euler Phi Function 192

6.7 Decryption with Composite Moduli 195
Sidebar 6.1 Fee-fi-fo-fum 197

6.8 Looking Forward 199

Public-Key Ciphers 201
7.1 Right out in Public: The Idea of Public-Key Ciphers 201
7.2 Diffie-Hellman Key Agreement 207
7.3 Asymmetric-Key Cryptography 213
74 RSA 216
7.5 Priming the Pump: Primality Testing 222
7.6 Why is RSA a (Good) Public-Key System? 226
7.7 Cryptanalysis of RSA 229
7.8 Looking Forward 233

Appendix A The Secret History of Public-Key Cryptography 235

E Other Public-Key Systems 241
8.1 The Three-Pass Protocol 241
8.2 ElGamal 247
8.3 Elliptic Curve Cryptography 251
8.4 Digital Signatures 265
8.5 Looking Forward 271

E The Future of Cryptography 276
9.1 Quantum Computing 276
9.2 Postquantum Cryptography 281
9.3 Quantum Cryptography 292
9.4 Looking Forward 301

List of Symbols 303

Notes 305

Suggestions for Further Reading 345
Bibliography 349

Index 367



Copyrighted material



m = u PREFACEm m =

This book is about the mathematics behind the modern science of send-
ing secret messages, or cryptography. Modern cryptography is a science,
and like all modern science, it relies on mathematics. Without the math-
ematics, you can only go so far in understanding cryptography. I want
you to be able to go farther, not only because I think you should know
about cryptography, but also because I think the particular kinds of
mathematics the cryptographers use are really pretty, and I want to
introduce you to them.

In A Brief History of Time, Stephen Hawking says that someone told
him that each equation he included in the book would halve the sales.
I hope that’s not true of this book, because there are lots of equations.
But I don’t think the math is necessarily that hard. I once taught a class
on cryptography in which I said that the prerequisite was high school
algebra. Probably I should have said that the prerequisite was high
school algebra and a willingness to think really hard about it. There’s
no trigonometry here, no calculus, no differential equations. There are
some ideas that don’t usually come up in an algebra course, and I'll try
to walk you through them. If you want to really understand these ideas,
you can do it without any previous college-level math—but you might
have to think hard. (The math in some of the sidebars is a little harder,
but you can skip those and still understand the rest of the book just fine.)

Mathematics isn’t all there is to cryptography. Unlike most sciences,
cryptography is about intelligent adversaries who are actively fight-
ing over whether secrets will be revealed. lan Cassels, who was both
a prominent mathematician at Cambridge and a former British crypt-
analyst from World War II, had a good perspective on this. He said that
“cryptography is a mixture of mathematics and muddle, and without the
muddle the mathematics can be used against you.” In this book I've re-
moved some of the muddle in order to focus on the mathematics. Some
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professional cryptographers may take issue with that, because I am not
really showing you the most secure systems that I could. In response,
I can say only that this book for those interested in learning about a
particular part of cryptography, namely, the mathematical foundations.
There are many additional books in Suggestions for Further Reading
and the Bibliography that you should read if you want to become a
well-rounded professional.

Here is where I have drawn my personal line: I have tried not to say
anything false in this book in the name of simplification, but T have left
things out. I have left out some details of how to use the systems most
securely, and I have left out some systems that I don’t feel contribute
to the mathematical story I want to tell. When possible, I have tried
to present systems that have actually been used to protect real secrets.
However, I have included some that were made up by me or another
academic type when I feel that they best illustrate a point.

Computer technology has changed both the types of data with
which cryptographers work and the techniques that are feasible. Some
of the systems for protecting data that I discuss are either no longer ap-
plicable or no longer secure in today’s world, even if they were in the
past. Likewise, some of the techniques I discuss for breaking these sys-
tems are no longer effective in the forms presented here. Despite this, I
feel that all the topics in this book illustrate issues that are still impor-
tant and relevant to modern cryptography. I have tried to indicate how
the principles are still used today, even when the actual systems are not.
“Looking Forward” at the end of each chapter gives you a preview of
how the chapter you just finished relates to the chapters yet to come or
to future developments that I think are possible or likely.

A lot of the chapters follow the historical development of their topic,
because that development is often a logical progression through the
ideas I'm describing. History is also a good way to tell a story, so I
like to use it when it fits. There’s lots more about the history of cryptog-
raphy out there, so if you would like to know more, definitely check out
Suggestions for Further Reading.

I tell my students that I became a math professor because I like
math and I like to talk. This book is me talking to you about a particular
application of mathematics that I really like. My hope is that by the end
of the book, you will really like it too.
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Introduction to Ciphers and Substitution

1.1 ALICE AND BOB AND CARL AND JULIUS:
TERMINOLOGY AND CAESAR CIPHER

People have been trying to hide the content of written messages almost
as long as writing itself has existed and have developed a multitude
of different methods of doing it. And almost as soon as people started
trying to hide their messages, scholars started trying to classify and de-
scribe these methods. Unfortunately, this means that I've got to hit you
straight up with a bunch of terminology. Even worse, a lot of words that
are used interchangeably in ordinary conversation have specific mean-
ings to experts in the field. It’s not really hard to get the hang of what’s
what, though.

As our first example, people who study secret messages often use
the terms code and cipher to mean two different things. David Kahn,
author of perhaps the definitive account of the history of cryptog-
raphy, said it about as well as anyone could: “A code consists of
thousands of words, phrases, letters, and syllables with the codewords or
codenumbers.. . . that replace these plaintext elements. . ..In ciphers, on
the other hand, the basic unit is the letter, sometimes the letter-pair .. .,
very rarely larger groups of letters....” A third method of sending se-
cret messages, steganography, consists of concealing the very existence
of the message, for example, through the use of invisible ink. In this book
we will concentrate on ciphers as they are generally the most interesting
mathematically, although examples of the other methods may come up
from time to time.

A few more terms will be helpful before we get started. The study
of how to send secret messages by codes and ciphers is called cryptog-
raphy, whereas the study of how to read such secret messages without
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permission is called cryptanalysis, or codebreaking. Together, the two
fields make up the field of cryptology. (Sometimes cryptography is also
used for the two fields combined, but we will try to keep the terms
separate.)

It’s become customary when talking about cryptology to talk about
Alice, who wants to send a message to Bob. We’re going to start with
Julius, though. That’s Julius Caesar, who in addition to being dicta-
tor perpetuus of Rome was also a military genius, a writer, and... a
cryptographer.

Caesar probably wasn’t the original inventor of what we now
call the Caesar cipher, but he certainly made it popular. The Roman
historian Suetonius describes the cipher:

There are also letters of his [Caesar’s] to Cicero, as well as to his intimates
on private affairs, and in the latter, if he had anything confidential to say,
he wrote it in cipher, that is, by so changing the order of the letters of
the alphabet, that not a word could be made out. If anyone wishes to
decipher these, and get at their meaning, he must substitute the fourth
letter of the alphabet, namely D, for A, and so with the others.

In other words, whenever Alice wants to send a message, she first
writes out the plaintext, or the text of the message in ordinary language.
She is going to encipher this message, or put it into secret form using
a cipher, and the result will be the ciphertext of the message. To put
it into code would be to encode it, and the term encrypt can be used
for either. For every a in the plaintext, Alice substitutes D in the cipher-
text, for every b, she substitutes E, and so on. Each letter is shifted 3
letters down the alphabet. That’s perfectly straightforward. The inter-
esting part happens when Alice gets to the end of the alphabet and runs
out of letters. The letter w becomes Z, so where does the letter x go?
It wraps around, to A! The letter y becomes B and z becomes C. For
example, the message “and you too, Brutus” becomes

paintett a n d y o u t o o b r u t u s
cphetext: D Q G B R X W R R E U X W X V

This would be the message Alice sends to Bob.
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You have actually used this “wraparound” idea in daily life since
you were a child. What's 3 hours after 1:00? It’s 4:00. Three hours after
2:00 is 5:00. What’s 3 hours after 10:00? It’s 1:00. You wrapped around.

It was around 1800 CE when Carl Friedrich Gauss codified this
wraparound idea formally. It’s now called modular arithmetic, and
the wraparound number is called the modulus. A mathematician would
write our wraparound clock example like this:

10+3=1 (mod 12)

and read it as “ten plus three is one modulo twelve”

But what about Caesar cipher? We can represent it using modular
arithmetic if we are willing to change our letters into numbers. Instead
of a think of the number 1, instead of b think of the number 2, and so
on. This changing of letters to numbers is not really considered part of
the secret cipher. It’s a pretty obvious idea to those of us in the digi-
tal age, and Alice shouldn’t really expect to keep it a secret. Only the
operations that we do on the numbers are considered secret.

Now our modulus is 26 and our Caesar cipher looks like this.

plaintext number plus3 ciphertext

a 1 4 D
b 2 5 E
X 24 1 A

25 2 B
z 26 3 C

Remember that the “plus 3” wraps around at 26.

To decipher the message, or take it from ciphertext to plaintext, Bob
shifts three letters in the opposite direction, left. This time, he has to
wrap around when he goes past a, or in terms of numbers, when he
goes past 1. 0 wraps to 26, —1 wraps to 25, and so on. In the form we
used earlier, that looks like the following.
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ciphertext number minus3 plaintext

A 1 24 x
B 2 25 v
C 3 26 z

25 22 v
Z 26 23 w

1.2 THE KEY TO THE MATTER: GENERALIZING THE CAESAR CIPHER

From Caesar’s point of view, he had a pretty secure cipher. After all,
most of the people who might intercept one of his messages couldn’t
even read, much less analyze a cipher. However, from a modern cryp-
tologic point of view it has a major drawback—once you have figured
out that someone is using Caesar cipher, you know everything about the
system. There’s no key, or extra piece of information, that lets you vary
the cipher. This is considered to be a very bad thing.

Stop to think about that a moment. What’s the big deal? Your cipher
is either secret or it isn’t, right? That was the view in Caesar’s time and
for many centuries afterward. But in 1883, Auguste Kerckhoffs pub-
lished a revolutionary essay, in which he stated, “The system must not
require secrecy and can be stolen by the enemy without causing trouble.”
Amazing! How can having your system stolen not cause trouble?

Kerckhoffs went on to point out that it is just too easy for Eve
the Eavesdropper to find out what system Alice and Bob are using. In
Kerckhoffs’ time, like Caesar’s, cryptography was used mostly by mili-
taries and governments, so Kerckhoffs was thinking about the informa-
tion that an enemy might get through bribing or capturing a member
of Alice or Bob’s staff. These are still valid concerns in many situations
today, and we can add to them the possibilities of Eve tapping phone
lines, installing spyware on computers, and plain lucky guessing.

On the other hand, if Alice and Bob have a system that requires
a key to encipher and decipher, then things aren’t so bad. If Eve finds
out what general system is being used, she still can’t easily read any
messages. Attempting to read a message without the key and/or deter-
mining the key used for a message is called cryptanalyzing the message
or cipher or, more colloquially, breaking it. And even if she manages to
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find out Alice and Bob’s key, all is not lost. If Alice and Bob are smart,
they are changing the key regularly. Since the basic system is the same,
this isn’t too hard, and then even if Eve gets the key to some of the
messages, she won’t be able to read all of them.

So we need to find a way to make small changes to Caesar cipher,
depending on the value of some key. A logical place to start would be
to ask why Alice is shifting her plaintext 3 places and not some other
number? There is no particular reason; perhaps Caesar was just fond
of the number 3. His successor, Augustus, used a similar system but
shifted each letter only 1 place to the right. The “rot13” (“rot” stands for
rotate) cipher shifts each letter forward by 13 places, wrapping around
when you get to the end. This cipher is often used on the Internet to
hide the punchlines of jokes or things that some people might find of-
fensive. The general idea of shifting by k letters (or adding k modulo
26) is called a shift cipher, or additive cipher, with a key of k. For ex-
ample, consider a shift cipher with a key of 21. Then Caesar’s message
would be:

plaintett a n d y o© u t o o b r u t u s
numbers: 1 14 4 25 15 21 20 15 15 2 8 21 20 21 19
plus 21: 22 9 25 20 10 16 15 10 10 23 13 16 15 16 14
ciphertext V. I Y T J P O J J W M P O P N

How many different keys are there? Shifting by 0 letters is probably
not a good idea, but you could do it. Shifting by 26 letters is the same
as shifting by 0 letters—or, in other words, 26 is the same as 0 modulo
26. Shifting by 27 letters is the same as shifting by 1 letter, and so on.
So there are 26 ways of shifting that actually give you different results,
or 26 keys. Note that this includes 0, the “stupid key,” which doesn’t do
anything to the message. The technical term for when a cipher doesn’t
do anything is the trivial cipher. Suppose Alice sends Bob a message
using a shift cipher and Eve intercepts it. Even if Eve has somehow
learned that Alice and Bob are using a shift cipher, she still has to try
26 different keys in order to decipher the message. That’s not a large
number, but it’s better than Caesar cipher.

Can we add some more keys? What about shifting our letters left
instead of right? Unfortunately, that doesn’t help. Suppose we shift our
plaintext 1 letter to the left and wrap around the other direction.
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plaintext a n d y o u t o o b r u t u s
numbers: 1 14 4 25 15 21 20 15 15 2 18 21 20 21 19
minus1: 0 13 3 24 14 20 19 14 14 1 17 20 19 20 18
ciphertextt Z M C X N T S N N A Q T S T R

Note that since 0 is the same as 26 modulo 26, we can assign them both
to the ciphertext letter “Z” interchangeably. If you think about it, you’ll
see that shifting 1 letter to the left is the same as shifting 25 letters to the
right. Or in terms of modular arithmetic, you can think of left shifts as
negative, so we are saying —1 is the same as 25 modulo 26. So left shifts
don’t help.

1.3 MULTIPLICATIVE CIPHERS

Let’s look at a different type of cipher for some inspiration. This is called
the decimation method of constructing a cipher. We need to pick a key,
say 3. We start by writing out our plaintext alphabet.

plaintext a b ¢ d e f g h i j k1 m n o p gqgr s tuv w x y z

Then we count off every third letter, crossing each out (or “decimating”
it) and writing each such letter as our ciphertext alphabet.

plaintext: a b ¢ d e £ g h A j k X mn 6 pq ¥ s t 4 vwig yz

e

ciphertext C F I L O R U

When you get to the end, “wrap around” to the beginning. In this case,

)

cross out the “a” and keep going.

plaintext: 4 b ¢ d e f g h 4}y k Jvd n g g qf gt f ¥ w x ¥z

SN

ciphertextt C F I L O R U X AD G J M P S VY

Finally, wrap around to the “b” and finish up:
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aWedg fog W ¥y kY wmpepgqgy g rpuy

7

R~

ciphertext: C F 1

So our final translation of plaintext to ciphertext is

plaintext:

ciphertext:

plaintext:

ciphertext:

(@]

a~l

p
\%

d
L

q
Y

e
O
r
B

g
8]
t
H

h
X

[}

K

i
A
v
N

W
Q

LORUXADUGIJ MUPS VY BE

0 =

™~

T

1
J
y
\

H K N

= B

T

Okay, now let’s try to look at this like a mathematician. How can we

describe the decimation method in terms of modular arithmetic? Well,
we should translate our letters into numbers, of course.

plaintext:
numbers:
some operation?:

ciphertext:

O W =

oo o T

c
3
9
I

4
12

15

18

g
7

21

h
8
24

i
9

L O R U X A

j

10
4
D

Very interesting! For the first eight letters, all we have to do is multi-
ply the number corresponding to the plaintext by 3 (the key) and we get
the ciphertext. For the letter i this doesn’t quite work, because 9 times 3
is 27—but 27 is the same as 1 modulo 26, which corresponds correctly to

our ciphertext letter A.

Apparently there was nothing much special about the addition part
of our additive cipher. Instead of adding 3 to each plaintext number,

we can multiply by 3 instead, wrapping around when we get to 26. This

makes sense from the “clock arithmetic” point of view also: Start at mid-
night. Three times 3 hours later is 9:00. Three times 4 hours later is 12:00.
Three times 5 hours later is 3:00, and so on. Our new multiplicative
cipher with key 3 looks like this:

Y
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plaintext number times3 ciphertext

a 1 3 C
b 2 6 F
25 23
z 26 26 Z

If we want to encipher the message “be fruitful and multiply,” it
would look like this:

plaintext: b f r u 1 t f u Il a n d
numbers: 2 5 6 18 21 9 20 6 21 12 1 14 4
times3: 6 15 18 2 11 1 § 18 11 10 3 16 12
ciphetext F O R B K A H R K J C P L

plaintext m u 1 t i p 1 vy
numbers: 13 21 12 20 9 16 12 25
times3: 13 11 10 8 1 22 10 23
ciphertextt M K ] H A V ] W

Incidentally, it’s often useful to have a faster way of dealing with
the wraparound than subtracting 26 over and over again. Luckily, you
already know one—it’s division with remainder, just like you learned
in grade school. Only now, once we have seen how many 26s go into
the number, we are going to throw all the 26s away and just keep the
remainder. For example, to encipher the last letter of the preceding
example, I multiplied 25 by 3 to get 75. Then I divided 75 by 26:

2

26) 75
—52

23

The quotient is 2, which I can throw away, and the remainder is 23,
which is the number I need for my ciphertext. Another way of thinking
about it is that the division with remainder shows that 75 = 2 x 26 + 23;
that is, 75 is twice 26 with 23 left over. But 26 is the same as 0 modulo
26, so 75 is the same as 2 x 0 + 23 = 23 modulo 26.
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How many keys does the multiplicative cipher have? At first glance,
you might expect 26 again, including one stupid key. But hold on a
moment—multiplying by 26 modulo 26 is the same as multiplying by 0.
And multiplying by 0 is bad. Not just stupid, but bad. A multiplicative
cipher with a key of 0 looks like this:

plaintext number times0 ciphertext

a 1 0 Z
b 2 0 Z
2 25
Z 26

So if we encrypt a message with this cipher, it comes out as

plaintext a r e a 1l 1 yv b a d k e vy
numbers: 1 18 5 1 12 12 25 2 1 4 11 5 25
timeso: 0 0 0 0 0 0 o o 0 0O O 0 O
ciphettext Z Z Z Z Z Z Z Z Z Z Z Z Z

There’s no way on earth to decrypt that! So we can’t use that key.
Are there any other keys we can’t use? Think about multiplying by
2—we know that any number multiplied by 2 is even. A multiplicative

cipher with a key of 2 looks like this:

plaintext number times2 ciphertext

a 1 2 B

b 2 4 D

1 12 24 X

m 13 26 Z

n 14 B

o 15 4 D
25 24
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That’s better than multiplying by 0, but it still presents a problem
when deciphering: a ciphertext B could be plaintext a or plaintext n;
similarly, there are two plaintext letters for every other ciphertext letter.
The same thing will happen with every other even key, so that makes
13 bad keys so far, and 13 left. There’s one more bad key—take a mo-
ment to try and find it. So there are actually only 12 good keys for a
multiplicative cipher, including multiplication by 1, the stupid key.

We've talked about enciphering a message with a multiplicative
cipher but not really about deciphering it. Remember that to decipher
a message, you need to do the opposite from enciphering it. To decrypt
a Caesar cipher, you shift 3 letters left instead of shifting right. To de-
crypt a shift cipher, you shift k letters left. What about a multiplicative
cipher? Well, you could just write out the whole table and use it back-
ward, and in practice you probably would most of the time. But for very
short messages, you might not want to write out the whole table. How
can you reverse a multiplication?

The everyday answer is to divide. The opposite of multiplying by
3 is dividing by 3. That works fine for some of the letters in our multi-
plicative cipher with key 3. Ciphertext C becomes 3, which divided by 3
becomes 1, which is plaintext a. Ciphertext F becomes 6, which divided
by 3 is 2, which is b. But what about A? It becomes 1, which divided
by 3 is % which isn’t a letter. The solution is in the wraparound. The
number 1 is the same as 27 modulo 26, so we could also say A becomes
27, which divided by 3 is 9, which is i. Likewise B could be not just 2 but
also 28 and 54, and 54 divided by 3 is 18, so B corresponds to r.

ciphertext number dividedby3  plaintext

B 2 % (not a letter)
B 28 9% (not a letter)
B 54 18 r

This sort of trial and error works but is not much more efficient than
writing out the table. For example, suppose your key is 15 instead of 3
for a moment. What plaintext letter does ciphertext B correspond to?
Modulo 26, B could be any of the numbers 2, 28, 54, 80, 106, 132, 158,
184, 210,....
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ciphertext number divided by 15  plaintext
2

B 2 s (not a letter)
B 28 13 (not a letter)
B 54 35 (not a letter)
B 80 52 (not a letter)
B 106 7 (not a letter)
B 132 812 (not a letter)
B 158 105 (not a letter)
B 184 124 (not a letter)
B 210 14 n

It takes 9 tries before you find a value that’s divisible by 15, and
there’s nothing to assure you that it won’t be even worse for other let-
ters. What would be really useful is a whole number that works modulo
26 like % does for ordinary numbers. We could call this number 3. Then
multiplying by 3 modulo 26 would be the same as multiplying by 3
modulo 26, which is the same as dividing by 3 modulo 26.

Why might we think that 3 exists? If we look back at our example
multiplicative cipher with key 3 from earlier, its deciphering table would
look like this:

ciphertext number divided by 3 modulo 26 plaintext

A 1 9 i

B 2 18 r

C 3 1 a

D 4 10 3
25 17

Z 26 26 z

It appears that perhaps dividing by 3 modulo 26 is the same as mul-
tiplying by 9 modulo 26. If this is true, then to decipher another letter,
say E, we could calculate as follows:

ciphertext number times3 = times9 plaintext
E 5 19 s
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Once I know what 3 is, then I can calculate this without using trial and
error or searching through the encryption table.

If k is the key to a multiplicative cipher, can we be sure k exists? If
so, how do we find it? Answering these questions will take us on a little
detour, which, strangely enough, starts back at our “bad keys” for our
multiplicative cipher.

We discovered that these bad keys are 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, and one more, which I will now reveal is 13. (You
should check that this is, in fact, bad.) What these numbers have in
common is that they are all multiples of 2, 13, or both. And 2 x 13 = 26,
which is not a coincidence. If we were working with Julius Caesar’s 21-
letter alphabet (i.e., modulo 21), then the bad keys would be multiples
of 3 or 7 (or both), since 21 = 3 x 7. Romanian has 28 letters and
28 = 2 x 2 x 7, so the bad keys would be multiples of 2 or 7 (or both).
In Danish, Norwegian, and Swedish, which have 29 letters, 29 would be
the only bad key.

What we have done with these letters (26, 21, 28, 29) is to break
them up into their smallest irreducible components, the prime num-
bers. This process, which is called factoring, can always be done in one
and only one way. This was known at least as long ago as the fourth
century BCE, when Euclid put it in his Elements. What we want to
know is whether our key and our modulus have a common divisor,
that is, a number that divides them both. The number 1 always di-
vides both numbers, but that’s considered trivial and doesn’t count for
this purpose. Euclid’s Elements also tells us how to find a common di-
visor very efficiently by finding the greatest common divisor, or GCD,
which is just what it sounds like. The method for calculating the GCD
is known as the Euclidean algorithm, although we don’t really know
whether Euclid invented it or borrowed it from someone else. An al-
gorithm is a well-defined method for doing something which always
produces a specific correct answer for each input, such as a computer
program.

Here’s an example of the Euclidean algorithm in action, calculating
the GCD of 756 and 210.
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ciphertext number times9 plaintext
A 1 9 i

Incidentally, the technical term for 3 is the multiplicative inverse
of 3 modulo 26. The general idea of inverses is terribly important in
many branches of mathematics. We've now seen additive inverses—
that is, negatives—and multiplicative inverses, and we will see other
examples in the future. A good thing to notice about inverses in mod-
ular arithmetic is that, unlike in ordinary arithmetic, there isn’t usually
any qualitative difference between a number and its inverse. That is, in
ordinary arithmetic, 2 is a positive number and —2 is a negative number,
but modulo 26, —2 = 24. So 2 and 24 are arithmetic inverses, but neither
is particularly “negative.” Likewise, in ordinary arithmetic, 3 is a whole
number and % is a fraction, but modulo 26, 3 and 9 are multiplicative
inverses, despite neither being “fractional” This is characteristic of situ-
ations where there are only finitely many numbers that are considered
distinct. Another way of looking at it is that there is no real distinction
between forward and backward in these situations. Likewise, there is
no mathematical difference between an arbitrary encryption and an ar-
bitrary decryption for ciphers that use these operations—once you have
figured out the inverse, you can “go forward to go backward.” This will
be sufficiently important in later sections that you might want to think
about it a bit before going on.

1.4 AFFINE CIPHERS

Now we have a shift cipher with 26 good keys, 1 of which is stupid, and
a multiplicative cipher with 12 good keys, 1 of which is stupid. Both
of these are pretty easy for Eve to attack with a brute-force attack,
meaning that she just tries every possible key until she gets the right
one. Even if Alice and Bob can choose either type of cipher, that still
leaves Eve only 38 choices to try. But what if Alice and Bob could use
more than one cipher at the same time?
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This has the potential to get complicated enough so that we’ll
introduce a little more mathematical notation. We’ll use P to stand for
any number between 1 and 26 that represents a plaintext letter and
C to stand for a number that represents a ciphertext letter. We'll still
use k to stand for a key. Encrypting using a shift cipher with a key of k
can be written as

C= P+ k modulo 26,

and using a multiplicative cipher with a key of k can be written as
C = kP modulo 26.
Similarly, decrypting in the shift cipher case looks like
P=C—k modulo 26,
and, in the multiplicative cipher case, looks like
P=kC modulo 26.

What if Alice tries to encrypt using two different shift cipher keys,
say k and m?* Is that twice as secure? It would look like

C=P+ k+ m modulo 26.

Unfortunately for Alice and Bob, from Eve’s point of view this looks
exactly the same as encrypting once using the key k + m, so Eve will
break the cipher just as easily if she tries a brute-force attack. The same
thing will happen if Alice uses two different multiplicative cipher keys.
But what if she uses one of each? Suppose Alice first multiplies the
plaintext by k and then adds m to get the ciphertext:

C=kP+ m modulo 26.
Bob will decrypt by first subtracting m and then multiplying by k:
P=k(C—m) modulo 26.

Notice that Bob has to not only reverse the operations, but also reverse
their order! If this seems unintuitive, think about getting dressed and
undressed. To get dressed, you have to put on your socks first, and then

*Cryptographers sometimes use m to stand for a second cipher key because it comes
after k and the letter / looks too much like the number 1.
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your shoes. To get undressed, you have to remove them both, but in the
opposite order. Otherwise bad things happen.

This combination gives us a new kind of cipher, which is technically
called an affine cipher, although I sometimes prefer to just call it a
kP + m cipher. There are 12 choices for k and 26 choices for m, so there
are 12 x 26 = 312 different keys for this cipher. This is getting to be
enough to make Eve’s brute-force attack a little difficult, although it is
still not very hard if she has access to a computer.

The idea of combining two ciphers to make a product cipher is
a fairly obvious one and goes back quite a long time in history. The
idea that one can combine any decimation method (i.e., multiplicative
cipher; see Section 1.3) with any shift cipher (i.e., additive cipher, see
Section 1.2) goes back at least as far as the 1930s. It's worth mentioning
one much older cipher that is a particular form of a kP 4+ m cipher. This
is called the atbash cipher, and it’s at least as old as the Biblical Book
of Jeremiah. Like the decimation method, it starts by writing out the
plaintext alphabet. Below it, the ciphertext alphabet is the same alphabet
written backward. We’'ll use the modern English alphabet instead of the
Hebrew alphabet:

plaintex: a b ¢ d e f g h i j k | m
ciphertext Z2 Y X W V U T § R Q P O N
plaitet m o p q r s t u v w X y Z
ciphetext M L K J I H G F E D C B A

So why is this a form of a kP + m cipher? When we translate the
numbers into letters, we get

plaintext a b ¢ d e f g h i j .- y =z
numbers: 1 2 3 4 5 6 7 8 9 10 --- 25 26

some operation?> 26 25 24 23 22 21 20 19 18 17 --- 2 1
ciphertext: 7, Y X W V U T S R Q --- B A

We see that the ciphertext obeys the rule

C=27—P modulo 26.
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Of course we can also write that as
C=(—1)P+ 27 modulo 26,
and modulo 26 that’s the same as
C=25P+1 modulo 26.

So this is a kP + m cipher with the key k = 25, m = 1.

1.5 ATTACK AT DAWN: CRYPTANALYSIS
OF SIMPLE SUBSTITUTION CIPHERS

If we continue along this path of making our operations modulo 26 more
and more complicated, we could eventually figure out a way to spec-
ify where every single plaintext letter goes individually. So a can go to
any of the 26 ciphertext letters. Then we could send b to any cipher-
text letter different from the ciphertext for a, so there are 25 choices.
There are 24 ciphertext letters still unused for ¢, then 23 for d, and
so on, until we have only one letter left for z. A cipher of this kind
is called a monoalphabetic monographic substitution cipher, mono-
graphic meaning that it makes substitutions one letter at a time and
monoalphabetic meaning that the substitution rule is the same for
every letter in the message. That’s a pretty unwieldy name and it’s a
pretty common cipher, so to save time I'm just going to call it a simple
substitution cipher. All told there are 26 x 25 x 24 X -+ - X3 x2x 1=
403,291,461,126,605,635,584,000,000 ways to make this kind of cipher,
which includes all three of the ciphers we have discussed as well as
the cryptogram puzzles that one finds in many daily papers. That’s way
too many keys to attack by brute force. Unfortunately for Alice and Bob,
Eve has a much better attack available to her.

A very effective way of breaking simple substitution ciphers is
called letter frequency analysis. This technique goes back at least as
far as the ninth-century Arab scholar Abu Yusuf Yaqub ibn Ishaq al-
Sabbah al-Kindi. The idea is simply that some letters in English, Arabic,
or any other human language are used more often than others. For ex-
ample, in a typical English text, the letter e will occur about 13% of the
time, far more than any other. If Eve has a piece of ciphertext where a
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letter, say R, occurs about 13% of the time and more often than any other
letter, then there’s a good chance that R (C = 18) represents e (P = 5). If
the cipher is an additive cipher, then Eve knows that

54+ k=18 modulo 26,

so there is a very good chance that the key is k = 13.

If Eve has another type of cipher, such as an affine cipher, this might
not be enough information. In this case, she might need to guess another
letter, such as t, which occurs about 8% of the time, or a, which occurs
about 7% of the time. For example, if Eve guesses that R represents e and
F represents a, then she knows that

5k+ m =18 modulo 26,
1k+ m=6 modulo 26.

Now Eve has two equations in two unknowns. Subtracting them gives
4k =12 modulo 26.

If the number 4 had an inverse modulo 26, then Eve could multiply
each side by that inverse to cancel out the 4 and find k. Unfortunately,
the GCD of 4 and 26 is 2, so 4 doesn’t have an inverse. This means
that our equation has either no solutions or more than one solution. If
there are no solutions, it means in this case that Eve probably made a
bad guess from the letter frequencies and she should try again. But in
this case it turns out that there are two solutions, k = 3 and k = 16,
and in either case m must be 6 — 1k modulo 26. So the possibilities are
k=3 and m = 3 or k = 16 and m = 16. Eve can then try to decrypt
using each combination and see if she gets readable text. Since a, t, and
several other letters have similar frequencies, it’s possible that neither
one is correct, in which case Eve has to go back to the beginning and
try to guess e and a again. It might take a few guesses, but in the end
Eve should be able to determine the correct key a lot faster than using
brute force.

The one big caveat to this technique is that you need to have enough
ciphertext to work with. The frequencies I have mentioned are only
averages, and short messages may very well have radically different
letter frequencies. Just imagine trying to decrypt the message “Zola is
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Similarly, Bob can multiply the top equation by k; and the bottom
equation by k;, which gives him

6x5=(6x3)P;+ (6 x5P, modulo 26,
3x2=(3x6P;+(3x1)P, modulo 26.

This time he takes the bottom minus the top to get
3x2—6x5=(3x1—6x5)P modulo26.

Notice that in both cases there is a —27 on the right-hand side, which
is kiks — kyks. This number is called the determinant of the system.
If the greatest common divisor of the determinant and 26 is 1, then the
determinant has a multiplicative inverse, and Bob can multiply each side
of his equations by that inverse to find P; and P,. This is very similar to
the case of ordinary arithmetic, where two equations in two unknowns
can always be solved as long as the determinant of the system is not
equal to zero.

In our example, the determinant is —27, as we said, which is the
same as 25 modulo 26. If Bob runs through the Euclidean algorithm, he
will find that

25 =25 modulo 26,

so he gets
P = ((1x5)—(5x2)) x25 modulo 26,
P, =((3x2)— (6 x5)) x25 modulo 26,
which finally reduces to
P, =5 modulo 26, P, = 24 modulo 26,
or ex.

In general, if kik; — k;ks has an inverse, then the solution to

Ci = kP, + kP, modulo 26,
C2 = k’;P1 + k4P2 modulo 26

is
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Py = (kiks — koks) (ks Gy — k2C;)  modulo 26,
Pz = (k1k4 — k2k3)(_k3cl + kl CZ) mOduIO 26.

The general form of this method for solving a system of several equa-
tions in the same number of unknowns is usually known as Cramer’s
rule, named for Gabriel Cramer. Cramer was an eighteenth-century
Swiss mathematician who did much work studying systems of equa-
tions and the curves they describe. The same rule seems to have been
published slightly earlier by Colin Maclaurin in Scotland. Cramer’s
rule is not the fastest way of solving large systems of equations, but
it’s certainly good enough for the block sizes one is likely to use in a
Hill cipher.
Notice that if we give new names to the numbers

my = (kiky — koks) (ks),
my = (kiks — koks)(—ks),
ms = (kiky — koks)(—ks), and
my = (kiks — koks) (ky),
then we can write

P, = mC; + mC; modulo 26,
Pg = my C1 + m4C2 modulo 26.

We can think of this system of equations as an inverse of the original
system, and we can think of my, my, ms, my as a sort of “inverse key” for
the original encryption key ki, k3, ks, k4. In our example this key would
be 25 x 1, 25 x —5, 25 X —6, 25 X 3, or 25, 5, 6, 23 modulo 26. Once Bob
has worked this out, the process of decryption works exactly the same
as encryption. This is another example of the idea of going forward to
go backward that we talked about in Section 1.3.

It’s a little involved to work out exactly how many good keys (i.e.,
keys where the determinant has an inverse) there are for a Hill cipher,
but it’s about 160,000 for a block size of 2 and about 1,600,000,000,000 for
a block size of 3, so a brute-force attack is getting to be rather difficult.
Also note that Bob needs to be aware that there may be nulls at the end
of his message. This ought to be clear when he reads it.
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In 1931, Hill followed up his original cipher with several extensions.
The most important one is now generally known as the affine Hill ci-
pher, because it combines the original Hill cipher with an addition step,
just like we combined the multiplicative and additive ciphers to get the
affine cipher. If we let the block size be 2 again, the new formulas are

Cl = klpl + kng + my modulo 26,
C, = kP + k4P + m;  modulo 26,

where the key now consists of six numbers, ki, ko, k3, ks, my, and mg, all
between 1 and 26. Once again, this is a good key as long as the greatest
common divisor of the determinant k1 k; — k;k3 and 26 is 1. (The new
key numbers m; and m; can be anything.) To decrypt, Bob just needs
to subtract m; from C; and m, from C, and then solve the system as
before.

A letter frequency analysis no longer works on a polygraphic ci-
pher, because, as you can see from the example, the same letter in the
plaintext doesn’t always go to the same letter in the ciphertext. There-
fore, the whole idea of guessing which letter is e fails. On the other
hand, we also saw that the same plaintext block always goes to the
same ciphertext block, and in the case of block size 2 or 3, it is possi-
ble to exploit this. For example, the most common digraph, or 2-letter
block, is “th,” which occurs, according to one study, approximately 2.5%
of the time. The most common trigraph (3-letter block) is “the,” which
occurs, by the same study, just under 1% of the time. Eve could use facts
like these to do a digraph or trigraph frequency analysis and perhaps
break a digraphic or trigraphic substitution cipher. However, for larger
block sizes this quickly gets very difficult, as there are a lot of possi-
ble blocks and not a lot of difference between the frequencies of the
various blocks. Even in 1929, Hill designed a machine that used a set of
gears to mechanically encipher texts using block size 6 and was thus es-
sentially unbreakable using frequency analysis. Unfortunately for Hill,
his machine never caught on.

The Hill ciphers were never used much—they were too unwieldy
to use by hand, and cryptography via mechanical devices went in the
direction of polyalphabetic substitution ciphers instead. Hill’s idea of
using systems of equations has regained substantial importance with
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the advent of digital computers in cryptography, but from a modern
point of view, these ciphers used by themselves have the problem that
they are badly vulnerable to a type of attack that is rather different from
the ones we have talked about so far.

1.7 KNOWN-PLAINTEXT ATTACKS

So far, all of the cryptanalytic attacks we have discussed are ciphertext-
only attacks, where all that Eve knows is the ciphertext message she has
intercepted passing between Alice and Bob. But suppose that somehow
Eve has gotten hold of both the plaintext and ciphertext of some message
(or part of a message) that Alice has sent. Then she can try a known-
plaintext attack, where she knows both the plaintext and the ciphertext
and the goal is to get the key. Once she has the key, she can find out the
content of not just the message she has, but other messages or parts of
messages sent with the same key.

In the case of block size 2 and the original Hill cipher, suppose Eve
recovers four letters of plaintext, P;, P, Ps, and Py, and the matching
letters of ciphertext, Cy, C;, Cs, and C;. Then she knows

C1 = k1P1 + kng modulo 26,

CZ = k3P1 + k4P2 modulo 26,

C3 = k1Ps + ksP;, modulo 26,

C4 = k3P3 + k4P4 ITlOdUlO 26.
From Eve’s point of view, only the key numbers are unknowns, so she
has four equations in four unknowns, and she can solve the system to
recover the key.

In the example from earlier, if Eve managed to recover the first and
last blocks of plaintext, she will know:

9 = k;10 + k31 modulo 26,
9 = k310 + k4,1 modulo 26,
5 = k15 + k224 modulo 26,
2 = k35 + k424 modulo 26.
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This is really two sets of equations,
9=k;10+ k»1 modulo 26,
5= ki5+ k;24 modulo 26
and
9 = k310 + k41  modulo 26,
2 = k35 + k424 modulo 26.
Eve could solve each set with Cramer’s Rule in the same way that Bob

solved his equations in the previous section. For the first set, the rule
gives

ki=(10x 24 — 1 x 5)(24 x 9 — 22 x 5) modulo 26,

ko= (10 x 24 — 1 x 5)(—5 x 9+ 10 x 5) modulo 26.
If you finish the calculations, you will see
ki =3 modulo 26, k; =5 modulo 26.

Similarly, the second set gives Eve

ks = (10 x 24 — 1 x 5)(24 x 9—1 x 2) modulo 26,

ky= (10 x 24 — 1 X 5)(=5 X 9+ 10 x 2) modulo 26.
which gives her the last two key numbers:
ks =6 modulo 26, ks =1 modulo 26.

In general, Eve will need to recover only as many blocks of plain-
text as there are letters in a block. So it’s almost as easy to break the
Hill cipher using a known-plaintext attack as it is to decipher a mes-
sage. This is considered unacceptable, so the Hill cipher is never used in
its original form. The idea of using a system of equations for polygraphic
encryption, however, forms a piece of many modern ciphers.

1.8 LOOKING FORWARD

I warned you in the preface to this book that some of the ciphers I discuss
in this book are considered obsolete in today’s world, and that includes
all the ciphers in this chapter and the next two, more or less. For one
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Polyalphabetic Substitution Ciphers

2.1 HOMOPHONIC CIPHERS

Polygraphic ciphers, which work on more than one letter at a time, are
one way to make ciphers that resist a straightforward letter frequency
analysis. As we have seen, they can be difficult or impossible to do by
hand, even with 3-letter blocks, and somewhat cumbersome even with
machines. A polyalphabetic cipher, on the other hand, still works on 1
letter at a time like a monoalphabetic cipher, but it changes the substitu-
tion rule from letter to letter. This can be as simple as giving Alice, the
encipherer, more than one ciphertext option for some or all plaintext let-
ters, which she can choose from at whim. This is called a homophonic
cipher—in linguistics, homophones are 2 letters or groups of letters that
are spelled differently but pronounced the same. In cryptography, ho-
mophones are letters or groups of letters that are written differently in
the ciphertext but deciphered the same.

As with many other aspects of cryptography, the ideas behind
homophonic ciphers seem to have been first explored by the Arabs. The
first known cipher that explicitly uses homophones as a central tech-
nique, however, appeared in Italy, having been prepared in 1401 by a
cipher secretary of the Duchy of Mantua. This cipher appears to simply
be a version of the atbash cipher, with the addition of 12 extra symbols:
3 each for the letters a, e, 0, and u, which were high-frequency letters
in fifteenth-century Italian. A representation of this idea with modern
English letters and typographical symbols might look like this:
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plaintextt a b ¢ d e f g h i j k 1 m
ciphertext Z Y X W V T S R Q P O N
! @
% &
) -
plaintett n o p q r s t u v wW X Yy Z
cphetext: M L K J I H G F E D C B A
# 3
: (

+

One suspects that this didn’t improve the security of such a sim-
ple cipher by very much, but the idea is sound: if the ciphertext letters
corresponding to high-frequency plaintext letters are randomly divided
up between multiple options, a straightforward letter frequency analy-
sis becomes rather difficult. When used properly, the cipher shown here
will produce a ciphertext in which no letter comes even near to the 13%
frequency that one expects for the ciphertext letter corresponding to e.
Instead, there will be four different symbols (V, @, &, and -), which each
occur with just over 3% frequency. Lots of other letters also occur with
4% frequency, so this doesn’t help the cryptanalyst much. This works
only if Alice really picks one of the four symbols at random. A common
pitfall is for a sloppy encipherer to primarily use only one of the options
(say V, which might be more convenient on a keyboard) and only occa-
sionally use the others—this will pretty much destroy the usefulness of
the homophones.

It is not clear how much was known in Europe at this point in time
about letter frequency analysis. The fact that the Mantuan cipher gives
homophones only for vowels, which are high frequency, leads one to
suspect that they knew something about the subject. We don’t know for
sure because unlike in the Arab world, where cryptography was mostly
an academic pursuit, in Renaissance Europe it was a deadly serious part
of diplomacy and its secrets were kept well guarded. It would not be
until 1466 or 1467 that a description of frequency analysis would appear
in print in Europe, by Leon Battista Alberti, whom we shall meet shortly.
And due, perhaps, to the stereotypical conservatism of diplomats, the
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first ciphers with homophones for consonants as well as vowels did not
appear until the mid-1500s.

2.2 COINCIDENCE OR CONSPIRACY?

So far we have been assuming Kerckhoffs” principle without too much
reflection when we take the role of Eve. Often, however, Eve doesn’t
even need to steal the system in order to make some good guesses about
how it works. For instance, how might Eve guess that a homophonic
system is being used? True, it will generally have more than 26 char-
acters. But perhaps the message is in a language other than English,
or perhaps not all the possible ciphertext letters actually appear in the
message. Can we tell what is going on?

Making a table of the frequency of each letter in the ciphertext is a
good first step. Suppose Eve has intercepted this ciphertext:

OBVDL WXTEQ GXOKT NGZJQ GKXST RQLYR
XJYG]  NALRX OTQLS LRKJQ FJYG]  NGXIK
QLYUZ GJSXQ GXSLQ XNQXL VXKO] DVJNN
BTKJZ BKPXU LYUNZ XLQXU JYQGX NTYQG
XKXQJ KXULK QJNQN LOQBYL OLKKX SJYQG
XNGLU XRSBN XOFUL YDSXU GJNSX  DNVTY
RGXUG JNLEE  SXLYU ESLYY XUQGX NSLTD
GOXKB AVBKX JYYBR XYQONQ GXKXZ LNYBS
LRPBA VLQXK JLSOB FNGLE EXYXU LSBYD
XWXKF SJQQS  XZGJS XQGXF RLVXQ BMXXK
OTQKX VLJYX UQBZG JQXZL NG

Alice has removed the spaces from her plaintext and divided it up into
5-letter groups in order to make things harder for Eve by obscuring
any short, common words. Eve starts by counting how often each letter
appears and what percentage each letter takes up of the 322 letters total
(see Table 2.1).

There are only 23 distinct characters in the ciphertext, which could
mean that Eve is dealing with a language with less than 26 letters, or
that Alice used some sort of polygraphic system which doesn’t need all
of the characters, or just that some letters in the plaintext don’t appear.
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TABLE 2.1.
Letter frequencies observed in our ciphertext

Number of Percent
Letter Occurrences Frequency
A 3 9
B 14 4.3
D 6 1.9
E 1.9
F 5 1.6
G 23 7.1
] 22 6.8
K 19 5.9
L 30 9.3
M 1 3
N 20 6.2
0 2.2
P 2 .6
Q 30 9.3
R 9 2.8
S 17 5.3
T 9 2.8
u 13 4.0
v 2.5
\Y 2 6
X 47 14.6
Y 21 6.5
Z 8 2.5

How does Eve’s table compare with the expected frequencies in
English text? See Table 2.2.

It seems reasonably plausible that what we have is a simple sub-
stitution cipher that just doesn’t happen to have some of the lowest-
frequency letters in its plaintext. If homophones were being used, we
would expect to see more low-frequency letters and fewer (if any) high-
frequency ones. It would be nice if we could make this observation more
quantitative, though.

The tool for that is called the index of coincidence, and it was in-
vented by William Friedman, easily one of the most important figures
in early twentieth-century cryptology. Friedman never set out to be a
cryptologist. He studied genetics in college and graduate school and
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TABLE 2.2.
Letter frequencies in English text compared with our ciphertext

Percent Frequency Percent Frequency
Letter in English Text Letter in Our Ciphertext

e 12.7 X 14.6
t 9.1 L 9.3
a 8.2 0 9.3
0 7.5 G 7.1
i 7.0 J 6.8
n 6.7 Y 6.5
s 6.3 N 6.2
h 6.1 K 5.9
r 6.0 S 5.3
d 4.3 B 4.3
1 4.0 8] 4.0
c 2.8 R 2.8
u 2.8 T 2.8
m 2.4 \% 2.5
w 2.4 Z 2.5
f 2.2 0 2.2
g 2.0 D 1.9
y 2.0 E 1.9
p 1.9 F 1.6
b 15 A 9
v 1.0 P 6
k 8 W .6
j 2 M 3
X .2

q 1

Z 1

was invited to join the Department of Genetics at the Riverbank Lab-
oratories, an organization founded and run by an eccentric Illinois
millionaire. Friedman got involved in cryptology when he was asked
to help with photography for a group attempting to find hidden ciphers
in the works of Shakespeare. Although he eventually concluded that
no such ciphers were present, he found both his future wife and his
future career in the Riverbank cryptology group. Friedman left River-
bank to join the US Army during World War I and eventually moved to
the National Security Agency when it was formed after World War IL.
His wife, Elizebeth, had her own distinguished career in the meantime,



