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FOREWORD

Summarizing all of mathematics in one book is a daunting and indeed impossible task.

Humankind has been exploring and discovering mathematics for millennia. Practically,
we have relied on maths to advance our species, with early arithmetic and geometry
providing the foundations for the first cities and civilizations. And philosophically, we
have used mathematics as an exercise in pure thought to explore patterns and logic.

As a subject, mathematics is surprisingly hard to pin down with one catch-all
definition. “Mathematics” is not simply, as many people think, “stuff to do with
numbers”. That would exclude a huge range of mathematical topics, including much of
the geometry and topology covered in this book. Of course numbers are still very
useful tools to understand even the most esoteric areas of mathematics, but the point
is that they are not the most interesting aspect of it. Focusing just on numbers misses
the wood for the threes.

For the record, my own definition of maths as “the sort of things that mathematicians
enjoy doing”, while delightfully circular, is largely unhelpful. Big Ideas: Simply Explained
is actually not a bad definition. Mathematics could be seen as the attempt to find the
simplest explanations for the biggest ideas. It is the endeavour of finding and
summarizing patterns. Some of those patterns involve the practical triangles required
to build pyramids and divide land; other patterns attempt to classify all of the 26
sporadic groups of abstract algebra. These are very different problems in terms of both
usefulness and complexity, but both types of pattern have become the obsession of
mathematicians throughout the ages.

There is no definitive way to organize all of mathematics, but looking at it
chronologically is not a bad way to go. This book uses the historical journey of humans
discovering maths as a way to classify it and wrangle it into a linear progression.
Which is a valiant but difficult effort. Our current mathematical body of knowledge has
been built up by a haphazard and diverse range of people across time and cultures.

So something like the short section on magic squares covers thousands of years and
the span of the globe. Magic squares - arrangements of numbers where the sum in



each row, column, and diagonal is always the same - are one of the oldest areas of
recreational mathematics. Starting in the 9th century BCE in China, the story then
bounces around via Indian texts from 100 CE, Arab scholars in the Middle Ages, Europe
during the Renaissance, and finally, modern Sudoku-style puzzles. Across a mere two
pages this book has to cover 3,000 years of history ending with geomagic squares in
2001. And even in this small niche of mathematics, there will be many magic square
developments that there was simply not enough room to include. The whole book
should be viewed as a curated tour of mathematical highlights.

Studying even just a sample of mathematics is a great reminder of how much humans
have achieved. But it also highlights where mathematics could do better: things like
the glaring omission of women from the history of mathematics cannot be ignored. A
lot of talent has been squandered over the centuries, and a lot of credit has not been
appropriately given. But I hope that we are now improving the diversity of
mathematicians, and encouraging all humans to discover and learn about
mathematics.

Because going forward, the body of mathematics will continue to grow. Had this book
been written a century earlier it would have been much the same up until about page
280. And then it would have ended. No ring theory from Emmy Noether, no computing
from Alan Turing, and no six degrees of separation from Kevin Bacon. And no doubt
that will be true again 100 years from now. The edition printed a century from now
will carry on past page 325: covering patterns totally alien to us. And because anyone
can do maths, there is no telling who will discover this new maths, and where or when.
To make the biggest advancement in mathematics during the 21st century, we need to
include all people. I hope this book helps inspire everyone to get involved.




Matt Parker



INTRODUCTION

The history of mathematics reaches back to prehistory, when early humans found
ways to count and quantify things. In doing so, they began to identify certain patterns
and rules in the concepts of numbers, sizes, and shapes. They discovered the basic
principles of addition and subtraction - for example, that two things (whether pebbles,
berries, or mammoths) when added to another two invariably resulted in four things.
While such ideas may seem obvious to us today, they were profound insights for their
time. They also demonstrate that the history of mathematics is above all a story of
discovery rather than invention. Although it was human curiosity and intuition that
recognized the underlying principles of mathematics, and human ingenuity that later
provided various means of recording and notating them, those principles themselves
are not a human invention. The fact that 2 + 2 = 4 is true, independent of human
existence; the rules of mathematics, like the laws of physics, are universal, eternal, and
unchanging. When mathematicians first showed that the angles of any triangle in a flat
plane when added together come to 180°, a straight line, this was not their invention:

they had simply discovered a fact that had always been (and will always be) true.

Early applications



The process of mathematical discovery began in prehistoric times, with the
development of ways of counting things people needed to quantify. At its simplest, this
was done by cutting tally marks in a bone or stick, a rudimentary but reliable means of
recording numbers of things. In time, words and symbols were assigned to the
numbers and the first systems of numerals began to evolve, a means of expressing
operations such as acquisition of additional items, or depletion of a stock, the basic
operations of arithmetic.

As hunter-gatherers turned to trade and farming, and societies became more
sophisticated, arithmetical operations and a numeral system became essential tools in
all kinds of transactions. To enable trade, stock-taking, and taxes in uncountable goods
such as oil, flour, or plots of land, systems of measurement were developed, putting a
numerical value on dimensions such as weight and length. Calculations also became
more complex, developing the concepts of multiplication and division from addition
and subtraction - allowing the area of land to be calculated, for example.

In the early civilizations, these new discoveries in mathematics, and specifically the
measurement of objects in space, became the foundation of the field of geometry,
knowledge that could be used in building and tool-making. In using these
measurements for practical purposes, people found that certain patterns were
emerging, which could in turn prove useful. A simple but accurate builder’s square can
be made from a triangle with sides of three, four, and five units. Without that accurate
tool and knowledge, the roads, canals, ziggurats, and pyramids of ancient Mesopotamia
and Egypt could not have been built.

As new applications for these mathematical discoveries were found - in astronomy,
navigation, engineering, book-keeping, taxation, and so on - further patterns and
ideas emerged. The ancient civilizations each established the foundations of
mathematics through this interdependent process of application and discovery, but
also developed a fascination with mathematics for its own sake, so-called pure
mathematics. From the middle of the first millennium sce, the first pure
mathematicians began to appear in Greece, and slightly later in India and China,
building on the legacy of the practical pioneers of the subject - the engineers,
astronomers, and explorers of earlier civilizations.



Although these early mathematicians were not so concerned with the practical
applications of their discoveries, they did not restrict their studies to mathematics
alone. In their exploration of the properties of numbers, shapes, and processes, they
discovered universal rules and patterns that raised metaphysical questions about the
nature of the cosmos, and even suggested that these patterns had mystical properties.
Often mathematics was therefore seen as a complementary discipline to philosophy -
many of the greatest mathematicians through the ages have also been philosophers,
and vice versa - and the links between the two subjects have persisted to the present
day.

It is impossible to be a mathematician without being a poet of the soul.

Sofya Kovalevskaya

Russian mathematician
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Arithmetic and algebra

So began the history of mathematics as we understand it today - the discoveries,
conjectures, and insights of mathematicians that form the bulk of this book. As well as
the individual thinkers and their ideas, it is a story of societies and cultures, a
continuously developing thread of thought from the ancient civilizations of
Mesopotamia and Egypt, through Greece, China, India, and the Islamic empire to



Renaissance Europe and into the modern world. As it evolved, mathematics was also
seen to comprise several distinct but interconnected fields of study.

The first field to emerge, and in many ways the most fundamental, is the study of
numbers and quantities, which we now call arithmetic, from the Greek word arithmos
(“number”). At its most basic, it is concerned with counting and assigning numerical
values to things, but also the operations, such as addition, subtraction, multiplication,
and division, that can be applied to numbers. From the simple concept of a system of
numbers comes the study of the properties of numbers, and even the study of the very
concept itself, Certain numbers - such as the constants n, e, or the prime and irrational
numbers - hold a special fascination and have become the subject of considerable
study.

Another major field in mathematics is algebra, which is the study of structure, the
way that mathematics is organized, and therefore has some relevance in every other
field. What marks algebra from arithmetic is the use of symbols, such as letters, to
represent variables (unknown numbers). In its basic form, algebra is the study of the
underlying rules of how those symbols are used in mathematics - in equations, for
example. Methods of solving equations, even quite complex quadratic equations, had
been discovered as early as the ancient Babylonians, but it was medieval
mathematicians of the Islamic Golden Age who pioneered the use of symbols to
simplify the process, giving us the word “algebra”, which is derived from the Arabic al-
Jjabr. More recent developments in algebra have extended the idea of abstraction into
the study of algebraic structure, known as abstract algebra.

Geometry is knowledge of the eternally existent.

Pythagoras

Ancient Greek mathematician

Geometry and calculus

A third major field of mathematics, geometry, is concerned with the concept of space,
and the relationships of objects in space: the study of the shape, size and position of



figures. 1t evolved from the very practical business of describing the physical
dimensions of things, in engineering and construction projects, measuring and
apportioning plots of land, and astronomical observations for navigation and
compiling calendars. A particular branch of geometry, trigonometry (the study of the
properties of triangles), proved to be especially useful in these pursuits. Perhaps
because of its very concrete nature, for many ancient civilizations, geometry was the
cornerstone of mathematics, and provided a means of problem-solving and proof in
other fields.

This was particularly true of ancient Greece, where geometry and mathematics were
virtually synonymous. The legacy of great mathematical philosophers such as
Pythagoras, Plato, and Aristotle was consolidated by Euclid, whose principles of
mathematics based on a combination of geometry and logic were accepted as the
subject’s foundation for some 2,000 years. In the 19th century, however, alternatives to
classical Euclidean geometry were proposed, opening up new areas of study, including
topology, which examines the nature and properties not only of objects in space, but of
space itself.

Since the Classical period, mathematics had been concerned with static situations, or
how things are at any given moment. It failed to offer a means of measuring or
calculating continuous change. Calculus, developed independently by Gottfried Leibniz
and Isaac Newton in the 17th century, provided an answer to this problem. The two
branches of calculus, integral and differential, offered a method of analysing such
things as the slope of curves on a graph and the area beneath them as a way of
describing and calculating change.

The discovery of calculus opened up a field of analysis that later became particularly
relevant to, for example, the theories of quantum mechanics and chaos theory in the
20th century.



Revisiting logic

The late 19th and early 20th centuries saw the emergence of another field of
mathematics - the foundations of mathematics. This revived the link between
philosophy and mathematics. Just as Euclid had done in the 3rd century Bck, scholars
including Gottlob Frege and Bertrand Russell sought to discover the logical
foundations on which mathematical principles are based. Their work inspired a re-
examination of the nature of mathematics itself, how it works, and what its limits are.
This study of basic mathematical concepts is perhaps the most abstract field, a sort of
meta-mathematics, yet an essential adjunct to every other field of modern
mathematics.

In mathematics, the art of asking questions is more valuable than solving problems.
Georg Cantor

German mathematician



New technology, new ideas

The various fields of mathematics - arithmetic, algebra, geometry, calculus, and
foundations - are worthy of study for their own sake, and the popular image of
academic mathematics is that of an almost incomprehensible abstraction. But
applications for mathematical discoveries have usually been found, and advances in
science and technology have driven innovations in mathematical thinking.

A prime example is the symbiotic relationship between mathematics and computers.
Originally developed as a mechanical means of doing the “donkey work” of calculation
to provide tables for mathematicians, astronomers and so on, the actual construction
of computers required new mathematical thinking. It was mathematicians, as much as
engineers, who provided the means of building mechanical, and then electronic
computing devices, which in turn could be used as tools in the discovery of new
mathematical ideas. No doubt, new applications for mathematical theorems will be
found in the future too - and with numerous problems still unsolved, it seems that
there is no end to the mathematical discoveries to be made.

The story of mathematics is one of exploration of these different fields, and the
discovery of new ones. But it is also the story of the explorers, the mathematicians who
set out with a definite aim in mind, to find answers to unsolved problems, or to travel
into unknown territory in search of new ideas - and those who simply stumbled upon



an idea in the course of their mathematical journey, and were inspired to see where it
would lead. Sometimes the discovery would come as a game-changing revelation,
providing a way into unexplored fields; at other times it was a case of “standing on the
shoulders of giants”, developing the ideas of previous thinkers, or finding practical
applications for them.

This book presents many of the “big ideas” in mathematics, from the earliest
discoveries to the present day, explaining them in layperson’s language, where they
came from, who discovered them, and what makes them significant. Some may be
familiar, others less so. With an understanding of these ideas, and an insight into the
people and societies in which they were discovered, we can gain an appreciation of not
only the ubiquity and usefulness of mathematics, but also the elegance and beauty that
mathematicians find in the subject.

Mathematics, rightly viewed, possesses not only truth, but supreme beauty.
Bertrand Russell

British philosopher and mathematician
]



INTRODUCTION

As early as 40,000 years ago, humans were making tally marks on wood and bone as a
means of counting. They undoubtedly had a rudimentary sense of number and
arithmetic, but the history of mathematics only properly began with the development
of numerical systems in early civilizations. The first of these emerged in the sixth
millennium BcE, in Mesopotamia, western Asia, home to the world’s earliest agriculture
and cities. Here, the Sumerians elaborated on the concept of tally marks, using
different symbols to denote different quantities, which the Babylonians then
developed into a sophisticated numerical system of cuneiform (wedge-shaped)
characters. From about 4000 Bck, the Babylonians used elementary geometry and
algebra to solve practical problems - such as building, engineering, and calculating
land divisions - alongside the arithmetical skills they used to conduct commerce and
levy taxes.

A similar story emerges in the slightly later civilization of the ancient Egyptians.
Their trade and taxation required a sophisticated numerical system, and their building
and engineering works relied on both a means of measurement and some knowledge of
geometry and algebra. The Egyptians were also able to use their mathematical skills in
conjunction with observations of the heavens to calculate and predict astronomical
and seasonal cycles and construct calendars for the religious and agricultural year.
They established the study of the principles of arithmetic and geometry as early as
2000 BCE.
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Greek rigour

The 6th century sce onwards saw a rapid rise in the influence of ancient Greece across
the eastern Mediterranean. Greek scholars quickly assimilated the mathematical ideas
of the Babylonians and Egyptians. The Greeks used a numerical system of base-10 (with
ten symbols) derived from the Egyptians. Geometry in particular chimed with Greek
culture, which idolized beauty of form and symmetry. Mathematics became a
cornerstone of Classical Greek thinking, reflected in its art, architecture, and even
philosophy. The almost mystical qualities of geometry and numbers inspired
Pythagoras and his followers to establish a cult-like community, dedicated to studying
the mathematical principles they believed were the foundations of the Universe and
everything in it.

Centuries before Pythagoras, the Egyptians had used a triangle with sides of 3, 4, and
5 units as a building tool to ensure corners were square. They had come across this
idea by observation, and then applied it as a rule of thumb, whereas the Pythagoreans
set about rigorously showing the principle, offering a proof that it is true for all right-
angled triangles. It is this notion of proof and rigour that is the Greeks’ greatest
contribution to mathematics.

Plato’s Academy in Athens was dedicated to the study of philosophy and mathematics,
and Plato himself described the five Platonic solids (the tetrahedron, cube, octahedron,
dodecahedron, and icosahedron). Other philosophers, notably Zeno of Elea, applied
logic to the foundations of mathematics, exposing the problems of infinity and change.
They even explored the strange phenomenon of irrational numbers. Plato’s pupil
Aristotle, with his methodical analysis of logical forms, identified the difference
between inductive reasoning (such as inferring a rule of thumb from observations) and
deductive reasoning (using logical steps to reach a certain conclusion from established
premises, or axioms).

From this basis, Euclid laid out the principles of mathematical proof from axiomatic
truths in his Elements, a treatise that was the foundation of mathematics for the next
two millennia. With similar rigour, Diophantus pioneered the use of symbols to



represent unknown numbers in his equations; this was the first step towards the
symbolic notation of algebra.

A new dawn in the East

Greek dominance was eventually eclipsed by the rise of the Roman Empire. The
Romans regarded mathematics as a practical tool rather than worthy of study. At the
same time, the ancient civilizations of India and China independently developed their
own numerical systems. Chinese mathematics in particular flourished between the 2nd
and 5th centuries cg, thanks largely to the work of Liu Hui in revising and expanding
the classic texts of Chinese mathematics.
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IN CONTEXT

KEY CIVILIZATION

Babylonians

FIELD
Arithmetic

BEFORE

40,000 years ago Stone Age people in Europe and Africa count using tally marks on
wood or bone.

6000-5000 BCE Sumerians develop early calculation systems to measure land and to
study the night sky.

4000-3000 Bce Babylonians use a small clay cone for 1 and a large cone for 60,
together with a clay ball for 10, as their base-60 system evolves.
AFTER

2nd century ce The Chinese use an abacus in their base-10 positional number
system.

7th century In India, Brahmagupta establishes zero as a number in its own right and
not just a placeholder.

It is given to us to calculate, to weigh, to measure, to observe; this is natural philosophy.

Voltaire

French philosopher

The first people known to have used an advanced numeration system were the
Sumerians of Mesopotamia, an ancient civilization living between the Tigris and
Euphrates rivers in what is present-day Iraq. Sumerian clay tablets from as early as the
6th millennium ce include symbols denoting different quantities. The Sumerians,



followed by the Babylonians, needed efficient mathematical tools in order to
administer their empires.

What distinguished the Babylonians from neighbours such as Egypt was their use of a
positional (place value) number system. In such systems, the value of a number is
indicated both by its symbol and its position. Today, for instance, in the decimal
system, the position of a digit in a number indicates whether its value is in ones (less
than 10), tens, hundreds, or more. Such systems make calculation more efficient
because a small set of symbols can represent a huge range of values. By contrast, the
ancient Egyptians used separate symbols for ones, tens, hundreds, thousands, and
above, and had no place value system. Representing larger numbers could require 50
or more hieroglyphs.

A system of numbers is required
to record quantifiable information.

By placing the same
symbols in different
positions, information
is conveyed efficiently.

It is impractical to
give every number
its own symbol.

The position
indicates a symbol's
numerical value.

Using different bases



The Hindu-Arabic numeration that is employed today is a base-10 (decimal) system. It
requires only 10 symbols - nine digits (1, 2, 3, 4, 5, 6, 7, 8, 9) and a zero as a placeholder.
As in the Babylonian system, the position of a digit indicates its value, and the smallest
value digit is always to the right. In a base-10 system, a two-digit number, such as 22,
indicates (2 x 10%) + 2; the value of the 2 on the left is ten times that of the 2 on the
right. Placing digits after the number 22 will create hundreds, thousands, and larger
powers of 10. A symbol after a whole number (the standard notation now is a decimal
point) can also separate it from its fractional parts, each representing a tenth of the
place value of the preceding figure. The Babylonians worked with a more complex
sexagesimal (base-60) number system that was probably inherited from the earlier
Sumerians and is still used across the world today for measuring time, degrees in a
circle (360° = 6 x 60), and geographic coordinates. Why they used 60 as a number base is
still not known for sure. It may have been chosen because it can be divided by many
other numbers - 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30. The Babylonians also based their
calendar year on the solar year (365.24 days); the number of days in a year was 360 (6 x
60) with additional days for festivals.

In the Babylonian sexagesimal system, a single symbol was used alone and repeated
up to nine times to represent symbols for 1 to 9. For 10, a different symbol was used,
placed to the left of the one symbol, and repeated two to five times in numbers up to
59. At 60 (60 x 1), the original symbol for one was reused but placed further to the left
than the symbol for 1. Because it was a base-60 system, two such symbols signified 61,
while three such symbols indicated 3,661, that is, 60 x 60 (607) + 60 + 1.

The base-60 system had obvious drawbacks. It necessarily requires many more
symbols than a base-10 system. For centuries, the sexagesimal system also had no place
value holders, and nothing to separate whole numbers from fractional parts. By
around 300 Bcg, however, the Babylonians used two wedges to indicate no value, much
as we use a placeholder zero today; this was possibly the earliest use of zero.



The Babylonian sun-god Shamash awards a rod and a coiled rope, ancient measuring devices, to
newly trained surveyors, on a clay tablet dating from around 1000 sck.

Other counting systems

In Mesoamerica, on the other side of the world, the Mayan civilization developed its
own advanced numeration system in the 1st millennium Bce - apparently in complete
isolation. Theirs was a base-20 (vigesimal) number system, which probably evolved
from a simple counting method using fingers and toes. In fact, base-20 number systems
were used across the world, in Europe, Africa, and Asia. Language often contains
remnants of this system. For example, in French, 80 is expressed as quatre-vingt (4 x 20);
Welsh and Irish also express some numbers as multiples of 20, while in English a score



is 20. In the Bible, for instance, Psalm 90 talks of a human lifespan being “threescore
years and ten” or as great as “fourscore years”.

From around 500 Bce until the 16th century when Hindu-Arabic numbers were
officially adopted in China, the Chinese used rod numerals to represent numbers. This
was the first decimal place value system. By alternating quantities of vertical rods with
horizontal rods, this system could indicate ones, tens, hundreds, thousands, and more
powers of 10, much as the decimal system does today. For example, 45 was written
with four horizontal bars representing 4 x 10! (40) and five vertical bars for 5 x 1 (5).
However, four vertical rods followed by five vertical rods indicated 405 (4 x 100, or 10?)
+5 x 1 - the absence of horizontal rods meant there were no tens in the number.
Calculations were carried out by manipulating the rods on a counting board. Positive
and negative numbers were represented by red and black rods respectively or different
cross-sections (triangular and rectangular). Rod numerals are still used occasionally in
China, just as Roman numerals are sometimes used in Western society.

The Chinese place value system is reflected in the Chinese abacus (suanpan). Dating
back to at least 200 Bc, it is one of the oldest bead-counting devices, although the
Romans used something similar. The Chinese version, which is still used today, has a
central bar and a varying number of vertical wires to separate ones from tens,
hundreds, or more. In each column, there are two beads above the bar worth five each
and five beads below the bar worth one each.

The Japanese adopted the Chinese abacus in the 14th century and developed their
own abacus, the soroban, which has one bead worth five above the central bar and four
beads each worth one below the bar in each column. Japan still uses the soroban today:
there are even contests in which young people demonstrate their ability to perform
soroban calculations mentally, a skill known as anzan.
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Cuneiform, a word derived
from the Latin cuneus (“wedge”)
to describe the shape of the
symbols, was inscribed into wet
clay, stone, or metal.

In the late 19th century, academics deciphered the
“cuneiform” (wedge-shaped) markings on clay
tablets recovered from Babylonian sites in and
around Iraq. Such marks, denoting letters and words
as well as an advanced number system, were etched
in wet clay with either end of a stylus. Like the
Egyptians, the Babylonians needed scribes to
administer their complex society, and many of the
tablets bearing mathematical records are thought to
be from training schools for scribes.

A great deal has now been discovered about
Babylonian mathematics, which extended to
multiplication, division, geometry, fractions, square
roots, cube roots, equations, and other forms,
because - unlike Egyptian papyrus scrolls - the clay

tablets have survived well. Several thousand, mostly dating from between 1800 and

1600 BCE, are housed in museums around the world.
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The Babylonian base-60 number system was built from two symbols - the single unit symbol, used
alone and combined for numbers 1 to 9, and the 10 symbol, repeated for 20, 30, 40, and 50.

The Babylonian and Assyrian civilizations have perished... yet Babylonian mathematics is still
interesting, and the Babylonian scale of 60 is still used in astronomy.
G. H. Hardy

British mathematician

Modern numeration

The Hindu-Arabic decimal system used throughout the world today has its origins in
India. In the 1st to 4th centuries ck, the use of nine symbols along with zero was
developed to allow any number to be written efficiently, through the use of place
value. The system was adopted and refined by Arab mathematicians in the 9th century.



They introduced the decimal point, so that the system could also express fractions of
whole numbers.

Three centuries later, Leonardo of Pisa (Fibonacci) popularized the use of Hindu-
Arabic numerals in Europe through his book Liber Abaci (1202). Yet the debate about
whether to use the new system rather than Roman numerals and traditional counting
methods lasted for several hundred years, before its adoption paved the way for
modern mathematical advances.

With the advent of electronic computers, other number bases became important -
particularly binary, a number system with base 2. Unlike the base-10 system with its 10
symbols, binary has just two: 1 and 0. It is a positional system but instead of
multiplying by 10, each column is multiplied by 2, also expressed as 21, 22, 2% and
upwards. In binary, the number 111 means 1 x 22 +1x 2! +1x2° thatis4+2 +1,0r 7 in
our decimal number system.

In binary, as in all modern number systems whatever their base, the principles of
place value are always the same. Place value - the Babylonian legacy - remains a
powerful, easily understood, and efficient way to represent large numbers.

The fact that we work in 10s as opposed to any other number is purely a consequence of our anatomy.
We use our ten fingers to count.
Marcus du Sautoy

British mathematician



Ebisu, the Japanese god of fishermen and one of the seven gods of fortune, uses a soroban to
calculate his profits in The Red Snapper’s Dream by Utagawa Toyohiro.



Mayan numeral system

The Dresden Codex, the oldest
surviving Mayan book, dating
from the 13th or 14th century,
illustrates Mayan number
symbols and glyphs.

century.

The Mayans, who lived in Central America from
around 2000 Bck, used a base-20 (vigesimal) number
system from around 1000 BcE to perform
astronomical and calendar calculations. Like the
Babylonians, they used a calendar of 360 days plus
festivals, to make 365.24 days based on the solar
year; their calendars helped them work out the
growing cycles of crops.

The Mayan system employed symbols: a dot
representing one and a bar representing five. By
using combinations of dots over bars they could
generate numerals up to 19. Numbers larger than 19
were written vertically, with the lowest numbers at
the bottom, and there is evidence of Mayan

calculations up to hundreds of millions. An inscription from 36 sce shows that they
used a shell-shaped symbol to denote zero, which was widely used by the 4th

The Mayans’ number system was in use in Central America until the Spanish
conquests in the 16th century. Its influence, however, never spread further.

See also: The Rhind papyrus « The abacus * Negative numbers ¢« Zero « The Fibonacci

sequence * Decimals




THE SOUARE

QUADRATIC EQUATIONS

IN CONTEXT

KEY CIVILIZATIONS
Egyptians (c. 2000 Bce), Babylonians (c. 1600 BcE)

FIELD
Algebra

BEFORE

¢. 2000 Bce The Berlin papyrus records a quadratic equation solved in ancient Egypt.

AFTER

7th century ce The Indian mathematician Brahmagupta solves quadratic equations
using only positive integers.

10th century ce Egyptian scholar Abu Kamil Shuja ibn Aslam uses negative and
irrational numbers to solve quadratic equations.

1545 Italian mathematician Gerolamo Cardano publishes his Ars Magna, setting out
the rules of algebra.

Quadratic equations are those involving unknown numbers to the power of 2 but not to
a higher power; they contain x* but not x*, x*, and so on. One of the main rudiments of



mathematics is the ability to use equations to work out solutions to real-world
problems. Where those problems involve areas or paths of curves such as parabolas,

quadratic equations become very useful, and describe physical phenomena, such as the
flight of a ball or a rocket.

Quadratic equations contain the power of 2, so are
used when calculating with two dimensions.

R

The number of dimensions is equal to the maximum
number of real solutions an equation has.

There is a maximum of two real solutions for a quadratic
equation, three for a cubic equation, and so on.

If a quadratic equation, or any equation, is set equal to zero
(e.g. x4+ 3x + 2 = 0), the solutions are called roots.

T T P R o

In a quadratic equation, these two roots are the points where a
quadratic curve crosses the x-axis on a graph.

S LI S

Ancient roots

The history of quadratic equations extends across the world. It is likely that these
equations first arose from the need to subdivide land for inheritance purposes, or to
solve problems involving addition and multiplication.



One of the oldest surviving examples of a quadratic equation comes from the ancient
Egyptian text known as the Berlin papyrus (c. 2000 ce). The problem contains the
following information: the area of a square of 100 cubits is equal to that of two smaller
squares. The side of one of the smaller squares is equal to one half plus a quarter of the
side of the other. In modern notation, this translates into two simultaneous equations:
x*+y*=100andx=('/,+'/,)y =3/, y. These can be simplified to the quadratic
equation (*/, y)* + y* = 100 to find the length of a side on each square.

The Egyptians used a method called “false position” to determine the solution. In this
method, the mathematician selects a convenient number that is usually easy to
calculate, then works out what the solution to the equation would be using that
number. The result shows how to adjust the number to give the correct solution the
equation. For example, in the Berlin papyrus problem, the simplest length to use for
the larger of the two small squares is 4, because the problem deals with quarters. For
the side of the smallest square, 3 is used because this length is 3/, of the side of the
other small square. Two squares created using these false position numbers would
have areas of 16 and 9 respectively, which when added together give a total area of 25.
This is only '/, of 100, so the areas must be quadrupled to match the Berlin papyrus
equation. The lengths therefore must be doubled from the false positions of 4 and 3 to
reach the solutions: 8 and 6.

Other early records of quadratic equations are found in Babylonian clay tablets,
where the diagonal of a square is given to five decimal places. The Babylonian tablet
YBC 7289 (c. 1800-1600 Bce) shows a method of working out the quadratic equation x? =
2 by drawing rectangles and trimming them down into squares. In the 7th century c,
Indian mathematician Brahmagupta wrote a formula for solving quadratic equations
that could be applied to equations in the form ax? + bx = c. Mathematicians at the time
did not use letters or symbols, so he wrote his solution in words, but it was similar to
the modern formula shown above.

In the 8th century, Persian mathematician al-Khwarizmi employed a geometric
solution for quadratic equations known as completing the square. Until the 10th
century, geometric methods were were often used, as quadratic equations were used to
solve real-world problems involving land rather than abstract algebraic challenges.
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Der Berliner Papyrus 6619

The Berlin papyrus was copied and published by German Egyptologist Hans Schack-Schackenburg in
1900. It contains two mathematical problems, one of which is a quadratic equation.

Negative solutions



Indian, Persian, and Arab scholars thus far had used only positive numbers. When
solving the equation x? + 10x = 39, they gave the solution as 3. However, this is one of
two correct solutions to the problem; -13 is the other. If x is -13, x* = 169 and 10x = -130.
Adding a negative number gives the same result as subtracting its equivalent positive
number, so 169 + -130 = 169 - 130 = 39.

In the 10th century, Egyptian scholar Abu Kamil Shuja ibn Aslam made use of negative
numbers and algebraic irrational numbers (such as the square root of 2) as both
solutions and coefficients (numbers multiplying an unknown quantity). By the 16th
century, most mathematicians accepted negative solutions and were comfortable with
surds (irrational roots - those that cannot be expressed exactly as a decimal). They had
also started using numbers and symbols, rather than writing equations in words.
Mathematicians now utilized the plus or minus symbol, #, in solving quadratic

equations. With the equation x? = 2, the solution is not just x = V 2 but x=+V2 . The
plus or minus symbol is included because two negative numbers multiplied together

make a positive number. While V 2 \/E = 2, it is also true that —\/g x—\/g =2.

In 1545, Italian scholar Gerolamo Cardano published his Ars Magna (The Great Art, or the
Rules of Algebra) in which he explored the problem: “What pair of numbers have a sum
of ten and product of 40?” He found that the problem led to a quadratic equation
which, when he completed the square, gave V (—15). No numbers available to
mathematicians at the time gave a negative number when multiplied by themselves,
but Cardano suggested suspending belief and working with the square root of negative
15 to find the equation’s two solutions. Numbers such as V (—15) would later be
known as “imaginary” numbers.



Number that Number on

multiplies X \ Lits own
QUADRATIC EQUATION /_\

Number that ax2 +bx+c=0
multiplies X2___AT I

QUADRATIC FORMULA 3 1
5 Xx=-b=xVb’—dac
KEY A

—’ Input of @ into the formula Plus or / 2a
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The quadratic formula is a way to solve quadratic equations. By modern convention, quadratic
equations include a number, a, multiplied by x% a number, b, multiplied by x; and a number, ¢, on its
own. The illustration below shows how the formula uses a, b, and ¢ to find the value of x. Quadratic
equations often equal 0, because this makes them easy to work out on a graph; the x solutions are the
points where the curve crosses the x axis.

Politics is for the present, but an equation is for eternity.

Albert Einstein

Structure of equations

Modern quadratic equations usually look like ax? + bx + ¢ = 0. The letters a, b, and ¢
represent known numbers, while x represents the unknown number. Equations
contain variables (symbols for numbers that are unknown), coefficients, constants
(those that do not multiply variables), and operators (symbols such as the plus and
equals sign). Terms are the parts separated by operators; they can be a number or
variable, or a combination of both. The modern quadratic equation has four terms: ax?,
bx, ¢, and 0.
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A graph of the quadratic function y = ax? + bx + c creates a U-shaped curve called a parabola. This
graph plots the points (in black) of the quadratic function where a = 1, b = 3, and ¢ = 2. This expresses
the quadratic equation x* + 3x + 2 = 0. The solutions for x are where y = 0 and the curve crosses the x
axis. These are -2 and -1.



Parabolas

A function is a group of terms that defines a relationship between variables (often x
and y). The quadratic function is generally written as y = ax* + bx + ¢, which, on a graph,
produces a curve called a parabola. When real (not imaginary) solutions to ax* + bx + ¢ =
0 exist, they will be the roots - the points where the parabola crosses the x axis. Not all
parabolas cut the x axis in two places. If the parabola touches the x axis only once, this
means that there are coincident roots (the solutions are equal to each other). The
simplest equation of this form is y = x°. If the parabola does not touch or cross the x
axis, there are no real roots. Parabolas prove useful in the real world because of their
reflective. properties. Satellite dishes are parabolic for this reason. Signals received by
the dish will reflect off the parabola and be directed to one single point - the receiver.



Parabolic Rays of light
mirror \/_

Line of
symmetry

Parabolic objects have special reflective properties. With a parabolic mirror, any ray of light parallel
to its line of symmetry will reflect off the surface to the same fixed point (A).



The Rhind papyrus in the British Museum in London provides an intriguing account of
mathematics in ancient Egypt. Named after Scottish antiquarian Alexander Henry
Rhind, who purchased the papyrus in Egypt in 1858, it was copied from earlier
documents by a scribe, Ahmose, more than 3,500 years ago. It measures 32 cm (121/,
in) by 200 cm (78'/, in) and includes 84 problems concerned with arithmetic, algebra,
geometry, and measurement. The problems, recorded in this and other ancient
Egyptian artefacts such as the earlier Moscow papyrus, illustrated techniques for
working out areas, proportions, and volumes.

The Eye of Horus, an Egyptian god, was a symbol of power and protection. Parts of it were also used
to denote fractions whose denominators were powers of 2. The eyeball, for example, represents !/,,
while the eyebrow is /4.

Representing concepts

The Egyptian number system was the first decimal system. It used strokes for single
digits and a different symbol for each power of 10. The symbols were then repeated to
create other numbers. A fraction was shown as a number with a dot above it. The
Egyptian concept of a fraction was closest to a unit fraction - that is, '/,,, where nis a



whole number. When a fraction was doubled, it had to be rewritten as one unit fraction
added to another unit fraction; for example, 2/ , in modern notation would be '/, + 1/,
in Egyptian notation (not !/, + 1/, because the Egyptians did not allow repeats of the
same fraction).

The 84 problems in the Rhind papyrus illustrate the mathematical methods in
common use in ancient Egypt. Problem 24, for example, asks what quantity, if added to
its seventh part, becomes 19. This translates as x + */, = 19. The approach applied to
problem 24 is known as “false position”. This technique - used well into the Middle
Ages - is based on trial and improvement, choosing the simplest, or “false”, value for a
variable and adjusting the value using a scaling factor (the required quantity divided
by the result).

In the workings for problem 24, one-seventh is easiest to find for the number 7, so 7 is
used first as a “false” value for the variable. The result of the calculation - 7 plus 7/,
(or 1) - is 8, not 19, so a scaling factor is needed. To find how far the guess of 7 is from
the required quantity, 19 is divided by 8 (the “false” answer). This produces a result of
2+1/,+1/4 (not 2%/, as Egyptian multiplication was based on doubling and halving
fractions), which is the scaling factor that should be applied. So, 7 (the original “false”
value) is multiplied by 2 + 1/, + 1 /4 (the scaling factor) to give the quantity 16+ !/, +
1/¢ (or 16° /).

Many problems in the papyrus deal with working out shares of commodities or land.
Problem 41 asks for the volume of a cylindrical store with a diameter of 9 cubits and a
height of 10 cubits. The method finds the area of a square whose side length is 3/, of
the diameter, and then multiplies this by the height. The figure of 8/, is used as an
approximation for the proportion of the area of a square that would be taken up by a
circle if it were drawn within the square. This method is used in problem 50 to find the
area of a circle: subtract '/, from the diameter of the circle, and find the area of the
square with the resulting side length.
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Ancient Egyptians used vertical lines to denote the numbers 1 to 9. Powers of ten, particularly those
inscribed on stone, were depicted as hieroglyphs - picture symbols.

Level of accuracy

Since the Ancient Greeks, the area of a circle has been found by multiplying the square
of its radius (r?) with the number pi (), written as nr’. The ancient Egyptians had no
concept of pi, but the calculations in the Rhind papyrus show that they were close to
its value. Their circle area calculation - with the circle diameter as twice the radius

(2r) - can be expressed as (/4 x 2r)%, which, simplified, is **¢ /g, r*, giving an equivalent
for pi of ©°/4,. As a decimal, this is about 0.6 per cent greater than the true value of pi.
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The Rhind papyrus scribe used
the hieratic system of writing
numerals. This cursive style was
more compact and practical
than drawing complex
hieroglyphs.

The Rhind and Moscow papyri are the most
complete mathematical documents to survive from
the height of the ancient Egyptian civilization. They
were painstakingly copied by scribes well versed in
arithmetic, geometry, and mensuration (the study of
measurements), and are likely to have been used for
training of other scribes. Although they captured
probably the most advanced mathematical
knowledge of the time, they were not seen as works
of scholarship. Instead, they were instruction
manuals for use in trade, accounting, construction,
and other activities that involved measurement and
calculation.

Egyptian engineers, for example, used mathematics
in the building of pyramids. The Rhind papyrus

includes a calculation for the slope of a pyramid, using the seked - a measure for the
horizontal distance travelled by a slope for each drop of 1 cubit. The steeper the side
of a pyramid, the fewer the sekeds.

See also: Positional numbers * Pythagoras « Calculating pi » Algebra » Decimals




THE SUM IS THE
SAME IN EVERY

DIREGTION

MAGIC SQUARES

IN CONTEXT

KEY CIVILIZATION
Ancient Chinese

FIELD
Number theory

BEFORE

9th century Bce The Chinese I Ching (Book of Changes) lays out trigrams and
hexagrams of numbers for use in divination.

AFTER

1782 Leonhard Euler writes about Latin squares in his Recherches sur une nouvelle
espéce de carrés magiques (Investigations on a new type of magic square).

1979 The first Sudoku-style puzzle is published by Dell Magazines in New York.

2001 British electronics engineer Lee Sallows invents magic squares called
“geomagic squares”, which contain geometric shapes rather than numbers.

There are thousands of ways in which to arrange the numbers 1 to 9 in a three-by-
three grid. Only eight of these produce a magic square, where the sum of the numbers



square does not exist because it would only work if all the numbers were identical. As
the orders increase, so do the quantities of magic squares. Order four produces 880
magic squares - with a magic total of 34. There are hundreds of millions of order five
magic squares, while the quantity of order six magic squares has not yet been
calculated.

Magic squares have been an enduring source of fascination for mathematicians. The
15th-century Italian mathematician Luca Pacioli, author of De viribus quantitatis (On the
Power of Numbers), collected magic squares. In 18th-century Switzerland, Leonhard
Euler also became interested in them, and devised a form that he named Latin squares.
The rows and columns in a Latin square contain figures or symbols that appear only
once in each row and column.

One derivation of the Latin square - Sudoku - has become a popular puzzle. Devised
in the US in the 1970s (where it was called Number Place), Sudoku took off in Japan in
the 1980s, acquiring its now-familiar name, which means “single digits”. A Sudoku
puzzle is a nine-by-nine Latin square with the added restriction that subdivisions of
the square must also contain all nine numbers.

The most magically magical of any magic square ever made by a magician.
Benjamin Franklin

Talking about a magic square that he discovered
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The Lo Shu magic square has
a magic total of 15.
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Here, 19 is added to each of the

numbers in the Lo Shu square;
the magic total is 72.
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Here, all the numbers in the Lo
Shu square have been doubled;
the magic total is 30.

Once you have one magic square you can add the same quantity to every number in the square and
still end up with a magic square. Similarly, if you multiply all the numbers by the same quantity you
still have a magic square.

See also: Irrational numbers * Eratosthenes’ sieve * Negative numbers ¢ The Fibonacci
sequence * The golden ratio * Mersenne primes ¢ Pascal’s triangle



IS THE GAUSE OF

GODS AND
DAEMONS

PYTHAGORAS

IN CONTEXT

KEY FIGURE
Pythagoras (c. 570 BcE-495 BCE)

FIELD
Applied geometry

BEFORE

c. 1800 Bce The columns of cuneiform numbers on the Plimpton 322 clay tablet from
Babylon include some numbers related to Pythagorean triples.

6th century Bce Greek philosopher Thales of Miletus proposes a non-mythological
explanation of the Universe - pioneering the idea that nature can be interpreted by
reason.

AFTER

c. 380 BcE In the tenth book of his Republic, Plato espouses Pythagoras’s theory of the
transmigration of souls.

c. 300 Bck Euclid produces a formula to find sets of primitive Pythagorean triples.



The 6th-century sce Greek philosopher Pythagoras is also antiquity’s most famous
mathematician. Whether or not he was responsible for all the many achievements
attributed to him in maths, science, astronomy, music, and medicine, there is no doubt
that he founded an exclusive community that lived for the pursuit of mathematics and
philosophy, and regarded numbers as the sacred building blocks of the Universe.
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