SCOTT E. PAGE
[ ]

THE
.MODEL -

THINKER

e What you need to know

to make data work for yeu




Copyright

Copyright © 2018 by Scott E. Page
Cover design by Chin-Yee Lai
Cover © 2018 Hachette Book Group, Inc.

Hachette Book Group supports the right to free expression
and the value of copyright. The purpose of copyright is to
encourage writers and artists to produce the creative works
that enrich our culture.

The scanning, uploading, and distribution of this book
without permission is a theft of the author’s intellectual
property. If you would like permission to use material from
the book (other than for review purposes), please contact
permissions@hbgusa.com. Thank you for your support of the
author’s rights.

Basic Books

Hachette Book Group

290 Avenue of the Americas, New York, NY 10104
www.basicbooks.com

First Edition: November 2018

Published by Basic Books, an imprint of Perseus Books, LLC, a
subsidiary of Hachette Book Group, Inc. The Basic Books
name and logo is a trademark of the Hachette Book Group.

The Hachette Speakers Bureau provides a wide range of
authors for speaking events. To find out more, go to
www.hachettespeakersbureau.com or call (866) 376-6591.

The publisher is not responsible for websites (or their



CONTENTS

Cover

Title Page
Copyright
Dedication

Epigraph

Prologue
1 The Many-Model Thinker
2 Why Model?

3 The Science of Many Models

4 Modeling Human Actors

rmal Distributions: The Bell Cur
6 Power-Law Distributions: Long Tails
7 Linear Models
8 Concavity and Convexity
9 Models of Value and Power
10 Network Models

11 Broadcast, Diffusion, and Contagion

12 Entropy: Modeling Uncertainty




13 Random Walks
14 Path Dependence

15 Local Interaction Models

16 Lyapunov Functions and Equilibria

17 Markov Models

18 Systems Dynamics Models
19 Threshold Models with Feedbacks
20 Spatial and Hedonic Choice

21 Game Theory Models Times Three
22 Models of Cooperation

23 Collective Action Problems

24 Mechanism Design

25 Signaling Models

26 Learning Models
7 Multi-A i Bandit Probl
28 Rugged-Landscape Models

29 Opioids, Inequality, and Humility

About the Author
Notes
Bibliography
Index




To Michael D. Cohen

(1945-2013)



It can scarcely be denied that the supreme goal of all
theory is to make the irreducible basic elements as
simple and as few as possible without having to
surrender the adequate representation of a single
datum of experience.

—ALBERT EINSTEIN



Prologue

To me success means effectiveness in the world, that I am able to
carry my ideas and values into the world—that I am able to change
it in positive ways.

—Maxine Hong Kingston

This book began as the result of a chance meeting with
Michael Cohen in 2005 near the flower garden in the mall
adjacent to the University of Michigan’s West Hall. Michael, a
scholar known for his generosity, made a comment that
altered my teaching career. With a twinkle in his eyes,
Michael said, “Scottie, I once taught a course called
Introduction to Modeling for Social Scientists, based on a
book written by Charles Lave and James March. You should
resurrect the course. It needs you.”

It needed me? I returned to my office a little confused, so
I chased down an old course syllabus. 1 discovered that
Michael had misled me. The course did not need me. I needed
it. T had been wanting to develop a course that would
introduce students to the core ideas of complex systems—
networks, diversity, learning, large events, path dependence,
tipping points—that would be relevant to their daily lives and
future careers. By teaching modeling, I could make students
better thinkers while introducing them to complexity. I could
teach them tools that would improve their abilities to reason,
explain, predict, design, communicate, act, and explore

The course’s motivating idea would be that we must
confront the complexity of the modern world with multiple
models. At semester’s end, rather than see the world from a



particular angle, students would see the world through many
lenses. They would be standing in houses with many
windows, able to look in multiple directions. My students
would be better prepared for the complex challenges before
them—improving education, reducing poverty, creating
sustainable growth, finding meaningful work in an age of
artificial intelligence, managing resources, and designing
robust financial, economic, and political systems.

The next fall, I resurrected the course. I contemplated
rebranding it as Thirty-Two Models That Will Turn You into a
Genius, but the culture at Michigan frowns on hyperbole, so I
stuck with Michael’s title: An Introduction to Modeling. Lave
and March’s book proved to be a brilliant introduction.
However, modeling had made huge advances in the
intervening decades. 1 needed an updated version that
included models of long-tailed distributions, networks,
rugged landscapes, and random walks. I needed a book that
discussed complexity.

So I began to write. For two years, the ground proved
rocky. My plow moved at a slow place. One spring day, I again
ran into Michael, this time in the arch-way underneath West
Hall. T had been questioning the course, which was now
drawing twenty students. Were models too abstract for
undergraduates? Should I teach a different course on a
specific issue or policy domain? Michael offered up a smile,
noting that any endeavor worth pursuing merited
questioning. As we parted, Michael commented on the
importance and value of helping people think clearly. He told
me not to give up, that he took joy in my challenges.

In the fall of 2012, the ground under the course shifted.
Vice Provost Martha Pollack asked me to teach an online
version—what is now called a MOOC. With a tablet computer,
a $29 camera, and a $90 microphone, Model Thinking was
born. With assistance from too many people at Michigan,
Coursera, and Stanford University to thank properly (a quick
shout-out to Tom Hickey, who did yeoman’s work), I
reorganized my lectures into a form suitable for an online



course, dividing each subject into modules and removing all
copyrighted material. With my dog Bounder as an audience, I
taped and retaped lectures.

The first offering of Model Thinking drew 60,000
students. That number now approaches a million. The
popularity of the online course led me to abandon the book. I
thought the project unnecessary, but, over the next two
years, my email inbox began to fill with requests for a book to
complement the online lectures. Then Michael Cohen lost his
battle with cancer, and I felt that I needed to finish the book. I
reopened the manuscript folder.

Writing a book requires large blocks of time and spaces
that allow for clear thought. The poet Wallace Stevens wrote,
“Perhaps the truth depends on a walk around the lake.” 1
relied on a close analog: mind-clearing swims across Winans
Lake, where my family spends our summers. Throughout the
writing process, the continuous life I share with the love of
my life, Jenna Bednar, our sons, Orrie and Cooper, and our
enormous dogs, Bounder, Oda, and Hildy, has brought
laughter, comfort, and opportunities—among them Orrie
having one week to correct the penultimate draft’s
mathematical errors and Jenna having two weeks to identify
instances of unclear writing, logical flaws, and muddled
thinking. As has been true of most of my written work, this
manuscript might be best described as an original draft by
Scott Page with substantial revision by Jenna Bednar.

During the seven-year period of writing this book, my
children have transitioned from pre-teens to young adults.
Orrie is now off to college. Cooper follows next year. In the
interval between sketching the initial outline and submitting
the final version, my family has consumed copious amounts
of bibimbap, pasta carbonara, and oatmeal chocolate chip
cookies, taken the saws and loppers to scores of fallen
branches and limbs, repaired dozens of breaks in the
backyard fence, embarked on numerous failed initiatives to
reduce the entropy in the basement and garage, and wished
and hoped for the ice on the lake to be suitable for skating.



We have also had to accept loss. Midway through the project,
my mother, Marilyn Tamboer Page, died from a sudden heart
attack while enjoying the bliss of her routine daily walk with
her dog. Not a day goes by when I do not reflect on the love
she showered on her family and the support she gave to
others.

The book before you is as complete as it can be at this
moment in time. Doubtless, new models will be created, and
old models will find new uses creating gaps in this current
offering. As I humbly send the manuscript out into the world,
I feel that my efforts will have been repaid if you, the reader,
find the models and ideas within to be useful and generative,
and that you are able to carry them out into the world and
change it in positive ways.

If one day, when sitting in some professor’s or graduate
student’s office, preferably at a college or university in my
beloved Midwest, I scan the bookshelves and find this book
leaning, as it has during its writing, on a well-worn copy of
Lave and March, then my efforts will have been all the
sweeter,



1. The Many-Model Thinker

To become wise you've got to have models in your head. And you've
got to array your experience—both vicarious and direct—on this
latticework of models.

—Charlie Munger

This is a book about models. It describes dozens of models in
straightforward language and explains how to apply them.
Models are formal structures represented in mathematics and
diagrams that help us to understand the world. Mastery of
models improves your ability to reason, explain, design,
communicate, act, predict, and explore.

This book promotes a many-model thinking approach: the
application of ensembles of models to make sense of complex
phenomena. The core idea is that many-model thinking
produces wisdom through a diverse ensemble of logical
frames. The various models accentuate different causal
forces. Their insights and implications overlap and
interweave. By engaging many models as frames, we develop
nuanced, deep understandings. The book includes formal
arguments to make the case for multiple models along with
myriad real-world examples.

The book has a pragmatic focus. Many-model thinking
has tremendous practical value. Practice it, and you will
better understand complex phenomena. You will reason
better. You exhibit fewer gaps in your reasoning and make
more robust decisions in your career, community activities,
and personal life. You may even become wise.

Twenty-five years ago, a book of models would have been



intended for professors and graduate students studying
business, policy, and the social sciences along with financial
analysts, actuaries, and members of the intelligence
community. These were the people who applied models and,
not coincidentally, they were also the people most engaged
with large data sets. Today, a book of models has a much
larger audience: the vast universe of knowledge workers,
who, owing to the rise of big data, now find working with
models a part of their daily lives.

Organizing and interpreting data with models has become
a core competency for business strategists, urban planners,
economists, medical professionals, engineers, actuaries, and
environmental scientists among others. Anyone who analyzes
data, formulates business strategies, allocates resources,
designs products and protocols, or makes hiring decisions
encounters models. It follows that mastering the material in
this book—particularly the models covering innovation,
forecasting, data binning, learning, and market entry timing
—will be of practical value to many.

Thinking with models will do more than improve your
performance at work. It will make you a better citizen and a
more thoughtful contributor to civic life. It will make you
more adept at evaluating economic and political events. You
will be able to identify flaws in your logic and in that of
others. You will learn to identify when you are allowing
ideology to supplant reason and have richer, more layered
insights into the implications of policy initiatives, whether
they be proposed greenbelts or mandatory drug tests.

These benefits will accrue from an engagement with a
variety of models—not hundreds, but a few dozen. The
models in this book offer a good starting collection. They
come from multiple disciplines and include the Prisoners’
Dilemma, the Race to the Bottom, and the SIR model of
disease transmission. All of these models share a common
form: they assume a set of entities—often people or
organizations—and describe how they interact.

The models we cover fall into three classes:



simplifications of the world, mathematical analogies, and
exploratory, artificial constructs. In whatever form, a model
must be tractable. It must be simple enough that within it we
can apply logic. For example, we cover a model of
communicable diseases that consists of infected, susceptible,
and recovered people that assumes a rate of contagion. Using
the model we can derive a contagion threshold, a tipping
point, above which the disease spreads. We can also
determine the proportion of people we must vaccinate to stop
the disease from spreading.

As powerful as single models can be, a collection of
models accomplishes even more. With many models, we avoid
the narrowness inherent in each individual model. A many-
models approach illuminates each component model’s blind
spots. Policy choices made based on single models may ignore
important features of the world such as income disparity,
identity diversity, and interdependencies with other
systems.! With many models, we build logical understandings
of multiple processes. We see how causal processes overlap
and interact. We create the possibility of making sense of the
complexity that characterizes our economic, political, and
social worlds. And, we do so without abandoning rigor—
model thinking ensures logical coherence. That logic can be
then be grounded in evidence by taking models to data to
test, refine, and improve them. In sum, when our thinking is
informed by diverse logically consistent, empirically
validated frames, we are more likely to make wise choices.

Models in the Age of Data

The appearance of a book on models may seem out of place in
the era of big data. Today, data exists in unprecedented
dimensionality and granularity. Customer purchase data,
which used to arrive in monthly aggregates on printed paper,
now streams instantaneously with geospatial, temporal, and
consumer tags. Student academic performance data now



includes scores on every homework, paper, quiz, and exam, as
opposed to semester-end summary grades. In the past, a
farmer might mention dry ground at a monthly Grange
meeting. Now, tractors transmit instantaneous data on soil
conditions and moisture levels in square-foot increments.
Investment firms track dozens of ratios and trends for
thousands of stocks and use natural-language processing
tools to parse documents. Doctors can pull up page upon page
of individual patient records that can include relevant genetic
markers.

A mere twenty-five years ago, most of us had access to
little more than a few bookshelves’ worth of knowledge.
Perhaps your place of work had a small reference library, or
at home you had a collection of encyclopedias and a few
dozen reference books. Academics and government and
private-sector researchers had access to large library
collections, but even they had to physically visit the material.
As late as the turn of the millennium, academics could be
found shuttling back and forth between card catalog rooms,
microfiche collections, library stacks, and special collections
in search of information.

That has all changed. Content that had been paper-bound
for centuries now flows in tiny packets through the air. So too
does the information about the here and now. News that
arrived on our doorsteps on newsprint once a day now flows
in a continuous digital stream into our personal devices.
Stock prices, sports scores, and news of political events and
cultural happenings can all be accessed with a swipe or query.

As impressive as the data may be, it is no panacea. We
now know what has happened and is happening, but, owing
to the complexity of the modern world, we may be less
capable of understanding why it happened. Empirical
findings may be misleading. Data on piece-rate work often
shows that the more people are paid per unit of output, the
less they produce. A model in which pay depends on work
conditions can explain those data. If conditions are poor so
that producing output is difficult, per unit pay may be high. If



conditions are good, per unit pay may be low. Thus, higher
pay does not lead to less productivity. Instead, more difficult
work conditions require higher per unit pay.?

In addition, most of our social data—that is, data about
our economic, social, and political phenomena—documents
only moments or intervals in time. It rarely tells us universal
truths. Our economic, social, and political worlds are not
stationary. Boys may outscore girls on standardized tests in
one decade and girls may outscore boys the next. The reasons
people vote today may differ from the reasons they vote in
coming decades.

We need models to make sense of the fire-hose-like
streams of data that cross our computer screens. Thus, it is
because we have so much data that this might also be called
the age of many models. Look across the academy,
government, the business world, and the nonprofit sector,
and you struggle to find a domain of inquiry or decision not
informed by models. Consulting giants McKinsey and Deloitte
build models to formulate business strategies. Financial firms
such as BlackRock and JPMorgan Chase apply models to select
investments. Actuaries at State Farm and Allstate use models
to calibrate risk when pricing insurance policies. The people
team at Google builds predictive analytic models to evaluate
its more than three million job applicants. College and
university admissions officers construct predictive models to
select from among tens of thousands of applicants.

The Office of Management and Budget constructs
economic models to predict the effects of tax policies. Warner
Brothers applies data analytics to create models of audience
responses. Amazon develops machine learning models to
make product recommendations. Researchers funded by the
National Institutes of Health build mathematical models of
human genomics to search for and evaluate potential cures
for cancer. The Gates Foundation uses epidemiological models
to design vaccination strategies. Even sports teams use
models to evaluate draft prospects and trade opportunities
and to formulate within-game strategies. By relying on



models to select players and strategies, the Chicago Cubs won
a World Series championship after more than a century of
failures.

To people who use models, the rise of model thinking has
an even simpler explanation: models make us smarter. Without
models, people suffer from a laundry list of cognitive
shortcomings: we overweight recent events, we assign
probabilities based on reasonableness, and we ignore base
rates. Without models, we have limited capacity to include
data. With models, we clarify assumptions and think logically.
And, we can leverage big data to fit, calibrate, and test causal
and correlative claims. With models, we think better. In head-
to-head competitions between models and people, models
win.?

Why We Need Many Models

In this book we advocate using not just one model in a given
situation but many models. The logic behind the many-model
approach builds on the age-old idea that we achieve wisdom
through a multiplicity of lenses. This idea traces back to
Aristotle, who wrote of the value of combining the
excellences of many. A diversity of perspectives was also a
motivation for the great-books movement, which collected
102 important transferable ideas in The Great Ideas: A
Syntopicon of Great Books of the Western World. The approach
finds a modern voice in the work of Maxine Hong Kingston,
who wrote in The Woman Warrior, “I learned to make my mind
large, as the universe is large, so that there is room for
paradoxes.” It is also the basis for pragmatic actions in the
world of business and policy. Recent books argue that if we
want to understand of international relations, we should not
model the world exclusively as a group of self-interested
nations with well-defined objectives, or only as an evolving
nexus of multinational corporations and intergovernmental
organizations. We should do both.*



As commonsensical as the many-model approach may
seem, keep in mind that it runs counter to how we teach
models and the practice of modeling. The traditional
approach—the one taught in high school—relies on a one-to-
one logic: one problem requires one model. For example: now
we apply Newton'’s first law; now we apply the second; now
the third. Or: here we use the replicator equation to show the
size of the rabbit population in the next period. In this
traditional approach, the objective is to (a) identify the one
proper model and (b) apply it correctly. Many-model thinking
challenges that approach. It advocates trying many models.
Had you used many-model thinking in ninth grade, you might
have been held back. Use it now, and you will move forward.

Academic papers, for the most part, follow the one-to-one
approach as well, even though they use those single models
to explain complex phenomena: Trump voters in the 2016
election were those who had been left behind economically.
Or: the quality of a child’s second-grade teacher determines
how economically successful that child will be as an adult.” A
stream of best-selling nonfiction titles present cures for our
ills based on single-model thinking: Educational success
depends on grit. Inequality results from concentrations of
capital. Our nation’s poor health is due to sugar consumption.
Each of these models may be true, but none is comprehensive.
To confront the complexity of these challenges, to create a
world of broader educational achievement, will require
lattices of models.

By learning the models in this book, you can begin to
build your own lattice. The models originate from a broad
spectrum of disciplines, addressing phenomena as varied as
the causes of income inequality, the distribution of power,
the spread of diseases and fads, the conditions that precede
social uprisings, the evolution of cooperation, the emergence
of order in cities, and the structure of the internet. The
models vary in their assumptions and their structure. Some
describe small numbers of rational, self-interested actors.
Others describe large populations of rule-following altruists.



Some describe equilibrium processes. Others produce path
dependence and complexity. The models also differ in their
uses. Some help predict and explain. Others guide actions,
inform designs, or facilitate communication. Still others
create artificial worlds for our minds to explore.

The models share three common characteristics: First,
they simplify, stripping away unnecessary details, abstracting
from reality, or creating anew from whole cloth. Second, they
formalize, making precise definitions. Models use
mathematics, not words. A model might represent beliefs as
probability distributions over states of the world or
preferences as rankings of alternatives. By simplifying and
making precise, they create tractable spaces within which we
can work through logic, generate hypotheses, design
solutions, and fit data. Models create structures within which
we can think logically. As Wittgenstein wrote in his Tractatus
Logico-Philosophicus, “Logic takes care of itself; all we have to
do is to look and see how it does it.” The logic will help to
explain, predict, communicate, and design. But the logic
comes at a cost, which leads to their third characteristic: all
models are wrong, as George Box noted.® That is true of all
models; even the sublime creations of Newton that we refer
to as laws hold only at certain scales. Models are wrong
because they simplify. They omit details. By considering
many models, we can overcome the narrowing of rigor by
crisscrossing the landscape of the possible.

To rely on a single model is hubris. It invites disaster. To
believe that a single equation can explain or predict complex
real-world phenomena is to fall prey to the charisma of clean,
spare mathematical forms. We should not expect any one
model to produce exact numerical predictions of sea levels in
10,000 years or of unemployment rates in 10 months. We
need many models to make sense of complex systems.
Complex systems like politics, the economy, international
relations, or the brain exhibit ever-changing emergent
structures and patterns that lie between ordered and
random. By definition, complex phenomena are difficult to



explain, evolve, or predict.’

Thus, we confront a disconnect. On the one hand, we need
models to think coherently. On the other hand, any single
model with a few moving parts cannot make sense of high-
dimensional, complex phenomena such as patterns in
international trade policy, trends in the consumer products
industry, or adaptive responses within the brain. No Newton
can write a three-variable equation that explains monthly
employment, election outcomes, or reductions in crime. If we
hope to understand the spread of diseases, variation in
educational performance, the variety of flora and fauna, the
effect of artificial intelligence on job markets, the impact of
humans on the earth’s climate, or the likelihood of social
uprisings, we must come at them with machine learning
models, systems dynamics models, game theory models, and
agent-based models.

The Wisdom Hierarchy

To sketch the argument for many-model thinking, we begin
with a query from poet and dramatist T. S. Eliot: “Where is
the wisdom we have lost in knowledge? Where is the
knowledge we have lost in information?” To that we might
add, where is the information we have lost in all this data?

Eliot’s questioning can be formalized as the wisdom
hierarchy. At the bottom of the hierarchy lie data: raw,
uncoded events, experiences, and phenomena. Births, deaths,
market transactions, votes, music downloads, rainfall, soccer
matches, and speciation events. Data can be long strings of
zeros and ones, time stamps, and linkages between pages.
Data lack meaning, organization, or structure.

Information names and partitions data into categories.
Examples clarify the distinction between data and
information. Rain falling on your head is data. Total rainfall
for the month of July in Burlington, Vermont, and Lake
Ontario’s water level are information. The bright red peppers



and yellow corn on farmers’ stands surrounding the capitol in
Madison, Wisconsin, on market Saturdays are data. The
farmers’ total sales are information.

WISDOM [IfD,AZ. EIseD]

KNOWLEDGE [D—A? O/A:O]
/A /

rormation ([ A/C) \D]

i
S (AT

Figure 1.1: How Models Transform Data into Wisdom

We live in an age of abundant information. A century and
a half ago, knowing information brought great economic and
social status. Jane Austen’s Emma asks if Frank Churchill is “a
young man of information.” Today she would not care.
Churchill, like everyone else, would have a smartphone. The
question is whether he could put that information to use. As
Fyodor Dostoyevsky writes in Crime and Punishment, “We've
got facts, they say. But facts aren’t everything; at least half
the battle consists in how one makes use of them!”

Plato defined knowledge as justified true belief. More
modern definitions refer to it as understandings of
correlative, causal, and logical relationships. Knowledge
organizes information. Knowledge often takes model form.
Economic models of market competition, sociological models
of networks, geological models of earthquakes, ecological
models of niche formation, and psychological models of
learning all embed knowledge. Those models explain and
predict. Models of chemical bonds explain why metallic bonds
prevent us from putting our hands through steel doors while
hydrogen bonds yield to our weight when we dive into a
lake.?

Atop the hierarchy lies wisdom, the ability to identify and
apply relevant knowledge. Wisdom requires many-model
thinking. Sometimes, wisdom consists of selecting the best
model, as if drawing from a quiver of arrows. Other times,
wisdom can be achieved by averaging models; this is common
when making predictions. (We discuss the value of model



averaging in the next section.) When taking actions, wise
people apply multiple models like a doctor’s set of diagnostic
tests. They use models to rule out some actions and privilege
others. Wise people and teams construct a dialogue across
models, exploring their overlaps and differences.

Wisdom can consist of selecting the correct knowledge or
model; consider the following physics problem: A small
stuffed cheetah falls from an airplane’s hold at 20,000 feet.
How much damage will it do upon landing? A student might
know a gravity model and a terminal velocity model. The two
models give different insights. The gravity model predicts
that the stuffed animal would tear through a car’s roof. The
terminal velocity model predicts that the toy cheetah’s speed
tops out at around 10 mph.’ Wisdom consists of knowing to
apply the terminal velocity model. A person could stand on
the ground and catch the soft cheetah in her hands. To quote
the evolutionary biologist J. B. S. Haldane, “You can drop a
mouse down a thousand-yard mine shaft; and, on arriving at
the bottom, it gets a slight shock and walks away, provided
that the ground is fairly soft. A rat is killed, a man is broken, a
horse splashes.”

In the stuffed-cheetah problem, arriving at the correct
solution requires information (the weight of the toy),
knowledge (the terminal velocity model), and wisdom
(selecting the correct model). Business and policy leaders also
rely on information and knowledge to make wise choices. On
October 9, 2008, the value of Iceland’s currency, the kréna,
began a free fall. Eric Ball, then treasurer of software giant
Oracle, was faced with a decision. A few weeks prior he had
dealt with the domestic repercussions of the home mortgage
crisis. Iceland’s situations posed an international concern.
Oracle held billions of dollars in overseas assets. Ball
considered network contagion models of financial collapse.
He also thought of economic models of supply and demand in
which the magnitude of a price change correlates with the
size of the market shock. In 2008, Iceland had a GDP of $12
billion, or less than six months’ revenues for McDonald’s



Corporation. Ball recollected thinking, “Iceland is smaller
than Fresno. Go back to work.”'® The key to understanding
this event, and many-model thinking generally, lies in
recognizing that Ball did not search among many models to
find one that supported an action that he had already decided
to take. He did not use many models to find one that justified
his action. Instead, he evaluated two models as possibly useful
and then chose the better one. Ball had the right information
(Iceland is small), chose the right model (supply and
demand), and made a wise choice.

We next show how to create a dialogue among multiple
models by reconsidering two historical events: the 2008
global financial market collapse, which reduced total wealth
(or what had been thought to be wealth) by trillions of
dollars, resulting in a four-year global recession, and the 1961
Cuban missile crisis, which nearly resulted in nuclear war.

The 2008 financial collapse has multiple explanations: too
much foreign investment, over-leveraged investment banks,
lack of oversight in the mortgage approval process, blissful
optimism among home-flipping consumers, the complexity of
financial instruments, a misunderstanding of risk, and greedy
bankers who knew the bubble existed and expected a bailout.
Superficial evidence aligns with each of these accounts:
money flowed in from China, loan originators wrote toxic
mortgages, investment banks had high leverage ratios,
financial instruments were too complex for most to
understand, and some banks expected a bailout. With models
we can adjudicate between these accounts and check the
internal consistency of these accounts: Do they make logical
sense? We can also calibrate the models and test the
magnitude of the effects.

The economist Andrew Lo, exercising many-model
thinking, evaluates twenty-one accounts of the crisis. He
finds each to be lacking. It does not make sense that investors
would contribute to a bubble that they knew would lead to a
global crisis. Hence, the extent of the bubble must have been
a surprise to many. Financial firms may well have assumed



the other firms had done due diligence when in fact they had
not. Second, what were, in retrospect, clearly toxic (low-
quality) bundles of mortgages found buyers. Had global
collapse been a foregone conclusion, the buyers would not
have existed. And while leverage ratios had increased since
2002, they were not much higher than they had been in 1998.
And as for the notion that the government would bail out the
banks, Lehman Brothers collapsed on September 15, 2008;
with over $600 billion in holdings, it was the largest
bankruptcy in US history. The government did not intervene.

Lo finds that each account contains a logical gap. The
data, such as it is, privileges no single explanation. As Lo
summarizes: “We should strive at the outset to entertain as
many interpretations of the same set of objective facts as we
can, and hope that a more nuanced and internally consistent
understanding of the crisis emerges in the fullness of time.”
He goes on to say, “Only by collecting a diverse and often
mutually contradictory set of narratives can we eventually
develop a more complete understanding of the crisis.” No
single model suffices.'

In Essence of Decision, Graham Allison undertakes a many-
model approach to explain the Cuban missile crisis. On April
17, 1961, a CIA-trained paramilitary group landed on the
shores of Cuba in a failed attempt to overthrow Fidel Castro’s
communist regime, increasing tensions between the United
States and the Soviet Union, Cuba’s ally. In response, Soviet
premier Nikita Khrushchev moved short-range nuclear
missiles to Cuba. President John F. Kennedy responded by
blockading Cuba. The Soviet Union backed down, and the
crisis ended.

Allison interprets events with three models. He applies a
rational-actor model to show that Kennedy had three possible
actions: start a nuclear war, invade Cuba, or impose a
blockade. He chose the blockade. The rational-actor model
assumes that Kennedy draws a game tree with each action
followed by the possible responses by the Soviets. Kennedy
then thinks through the Soviets’ optimal response. If, for



example, Kennedy launched a nuclear attack, the Soviets
would strike back, resulting in millions dead. If Kennedy
imposed a blockade, he would starve the Cubans. The Soviet
Union could either back down or launch missiles. Given that
choice, the Soviet Union should back down. The model
reveals the central strategic logic at play and provides a
rationale for Kennedy’s bold choice to blockade Cuba.

Like all models, though, it is wrong. It ignores relevant
details, allowing it to initially appear a better explanation
than it really is. The model neglects to add a stage in which
the Soviets put the missiles in Cuba. If the Soviets had been
rational, they should have drawn the same tree as Kennedy
and realized that they would have to remove the missiles. The
rational-actor model also fails to explain why the Soviets did
not hide the missiles.

Allison applies an organizational process model to explain
these inconsistencies. A lack of organizational capacity
explains the Soviets’ failure to hide the missiles. The same
model can explain Kennedy’s choice to blockade. At the time,
the United States Air Force lacked the capacity to wipe out
the missiles in a single strike. If even a single missile
remained, it could kill millions of Americans. Allison deftly
combines the two models. An insight from the organizational
model changes the payoffs in the rational-choice model.

Allison adds a governmental process model. The other
two models reduce countries to their leaders: Kennedy acts
for the United States and Khrushchev for the Soviet Union.
The government process model recognizes that Kennedy had
to contend with Congress and that Khrushchev needed to
maintain a political base of support. Thus, Khrushchev’s
placing of the missiles in Cuba signaled strength.

Allison’s book shows the power of models alone and in
dialogue. Each model clarifies our thinking. The rational-
actor model identifies possible actions once the missiles have
arrived and allows us to see the implications of those actions.
The organizational model draws our attention to the fact that
organizations, not individuals, carry out those actions. The



governmental process model highlights the political cost of
invasion. By evaluating events through all three lenses, we
gain a broader and deeper understanding. All models are
wrong; many are useful.

In both examples, the different models explicate distinct
causal forces. Multiple models can also focus on different
scales. In an oft-repeated tale, a child claims that the Earth
rests on the back of a giant elephant. A scientist asks the child
what the elephant stands on, to which the child replies, “A
giant turtle.” Anticipating what’s about to come next, the
child quickly adds, “Don’t even ask. It’s turtles all the way
down.”*? If the world were turtles all the way—if the world
were self-similar—then a model of the top level would apply
at every level. But the economy, the political world, and
society are not turtles all the way down, nor is the brain. At
the sub-micron level, the brain is made up of molecules that
form synapses, which in turn form neurons. The neurons
combine in networks. The networks overlap in elaborate ways
that can be studied with brain imaging. These neuronal
networks exist on a scale below that of functional systems
such as the cerebellum. Given that the brain differs at each
level, we need multiple models, and those models differ. The
models that characterize the robustness of neuronal
networks bear little resemblance to the molecular biology
models used to explain brain cell function, which in turn
differ from the psychological models used to explain
cognitive biases.

The success of many-model thinking depends on a degree
of separability. In analyzing the 2008 financial crisis, we rely
on separate models of foreign purchases of assets, of the
bundling of assets, and of increased leverage ratios. Allison
drew implications from the game theoretic model without
considering the organizational model. In studying the human
body, doctors separate the skeletal, muscular, limbic, and
nervous systems. That said, many-model thinking does not
require that these distinct models divide the system into
independent parts. Confronted with a complex system, we



cannot, to paraphrase Plato, carve the world at its joints. We
can partially isolate the major causal threads and then
explore how they are interwoven. In doing so, we will find
that the data produced by our economic, political, and social
systems exhibits coherence. Social data is more than
sequences of incomprehensible hairballs that might have
been spit up by the family cat.

Summary and Outline of the Book

To summarize, we live in a time awash in information and
data. The same technological advances generating those data
shrink time and distance. They make economic, political, and
social actors more agile, capable of responding to economic
and political events in an instant. They also increase
connectedness, and therefore complexity. We face a
technologically induced paradox: we know more about the
world, but that world is more complex. In light of that
complexity, any single model will be more likely to fail. We
should not though abandon models. To the contrary, we
should privilege logical coherence over intuition and double,
triple, and even quadruple down on models and become
many-model thinkers.

Becoming a many-model thinker requires learning
multiple models of which we gain a working knowledge; we
need to understand the formal descriptions of the models and
know how to apply them. We need not be experts. Hence, this
book balances accessibility and depth. It can function both as
a resource and as a guide. The formal descriptions are
isolated in stand-alone boxes. It avoids line after line of
equations, which overwhelm even the most dedicated
readers. The formalism that remains should be engaged and
absorbed. Modeling is a craft, mastered through engagement;
it is not a spectator sport. It requires deliberate practice. In
modeling, mathematics and logic play the role of an expert
coach. They correct our flaws.



The remainder of the book is organized as follows:
Chapters 2 and 3 motivate the many-model approach.
Chapter 4 discusses the challenges of modeling people. The
next twenty or so chapters cover individual models or classes
of models. By considering one type of model at a time, we can
better wrap our heads around its assumptions, implications,
and applications. This structure also means that we can pull
the book from our bookshelves or open it in our browsers and
find self-contained analyses of linear models, prediction
models, network models, contagion models, and models of
long-tailed distributions, learning, spatial competition,
consumer preferences, path dependence, innovation, and
economic growth. Interspersed throughout the chapters are
applications of many-model thinking to a variety of problems
and issues. The book concludes with two deeper dives into the
opioid epidemic and income inequality.



2. Why Model?

Knowing reality means constructing systems of transformations
that correspond, more or less adequately, to reality.

—Jean Piaget

In this chapter, we define types of models. Models are often
described as simplifications of the world. They can be, but
models can also take the form of analogies or be fictional
worlds mined for ideas and insights. We also describe the uses
of models. In school, we apply models to explain data. In
practice, we can also use models to predict, design, and take
actions. We can use models to explore ideas and possibilities.
And we can use models to communicate ideas and
understandings.

The value of models also resides in their ability to reveal
conditions under which results hold. Most of what we know
holds only in some cases: the square of the longest side of a
triangle equals the sum of the squares of the other sides only
if the longest side is opposite a right angle. Models reveal
similar conditions for our intuitions. With models we can
parse out when diseases spread, when markets work, when
voting leads to good outcomes, and when crowds make
accurate predictions. None of those is a sure thing.

This chapter consists of two parts. In the first, we
describe the three types of models. In the second, we cover
the uses of models: to reason, explain, design, communicate,
act, predict, and explore. These form the acronym REDCAPE,
a notso-subtle reminder that many-model thinking endows us
with superpowers.’



Types of Models

When constructing a model, we take one of three approaches.
We can aim for realism and follow an embodiment approach.
Such models include the important parts and either strip
away unnecessary dimensions and attributes or lump them
together. Models of ecological glades, legislatures, and traffic
systems take this approach, as do climate models and models
of the brain. Or we can take an analogy approach and abstract
from reality. We can model crime spreading like a disease and
the taking of political positions as choices on a left-right
continuum. The spherical cow is a favorite classroom
example of the analogy approach: to make an estimate of the
amount of leather in a cowhide, we assume a spherical cow.
We do so because the integral tables in the back of calculus
textbooks include tan(x) and cos(x) but not cow(x).?

While the embodiment approach stresses realism, the
analogy approach tries to capture the essence of a process,
system, or phenomenon. When a physicist assumes away
friction but otherwise makes realistic assumptions, she takes
the embodiment approach. When an economist represents
competing firms as different species and defines product
niches, she makes an analogy. She does so using a model
developed to embody a different system. No bright line
differentiates the embodiment approach from the analogy
approach. Psychological models of learning that assign
weights to alternatives lump together dopamine responses
and other factors; they also invoke the analogy of a scale on
which we balance alternatives.

A third approach, the alternative reality approach,
purposely does not represent or capture reality. These
models function as analytic and computational playgrounds
in which we can explore possibilities. This approach allows us
to discover general insights that apply outside our physical
and social world. They help us to understand the implications
of real-world constraints: What if energy could be sent safely
and efficiently through the air? And they allow us to run



impossible experiments: What if we tried to evolve a brain?
This book contains a few such models, notably the Game of
Life, which consists of a checkerboard whose squares are
classified as either alive (black) or dead (white) that switch
between alive and dead according to fixed rules. Though
unrealistic,c, the model produces insights into self-
organization, complexity, and, some argue, even life itself.

Whether embodying a more complex reality, creating an
analogy, or building a made-up world for exploring ideas, a
model must be communicable and tractable. We should be able
to write the model in a formal language such as mathematics
or computer code. When describing a model, we cannot toss
out terms like beliefs or preferences without providing a formal
description. Beliefs can be represented as a probability
distribution over a set of events or priors. Preferences can be
represented in several ways such as a ranking over a set of
alternatives or as a mathematical function.

How tractable something is means how amenable it is to
analysis. In the past, analysis relied on mathematical or
logical reasoning. A modeler had to be able to prove each step
in an argument. This constraint led to an aesthetic that
valued stark models. English friar and theologian William of
Ockham (1287-1347) wrote, “Plurality must never be posited
without necessity.” Einstein summed up this principle, known
as Ockham’s Razor, as follows: everything should be made as
simple as possible, but not simpler. Today, when we run up
against the constraint of analytic tractability, we can turn to
computation. We can build elaborate models with many
moving parts without concern for analytic tractability.
Scientists take this approach when constructing models of
the global climate, the brain, forest fires, and traffic. They
still pay heed to Ockham’s advice, but recognize that “as
simple as possible” might require a lot of moving parts.

The Seven Uses of Models



The academic literature describes dozens of uses of models.
Here, we focus on seven categories of uses: to reason, explain,
design, communicate, act, predict, and explore.

The Uses of Models (REDCAPE)

Reason: To identify conditions and deduce logical
implications.

Explain: To provide (testable) explanations for
empirical phenomena.

Design: To choose features of institutions, policies, and
rules.

Communicate:  To  relate knowledge and
understandings.

Act: To guide policy choices and strategic actions.

Predict: To make numerical and categorical predictions
of future and unknown phenomena.

Explore: To investigate possibilities and hypotheticals.

REDCAPE: Reason

When constructing a model, we identify the most important
actors and entities along with relevant characteristics. We
then describe how those parts interact and aggregate,
enabling us to derive what follows from what, and why. In
doing so, we improve our reasoning. While what we can
derive depends upon what we assume, we uncover more than
tautologies. Rarely can we infer the full range of implications
of our assumptions from inspection alone. We need formal
logic. Logic also reveals impossibilities and possibilities. With



it, we can derive precise and sometimes unexpected
relationships. We can discover the conditionality of our
intuitions.

Arrow’s theorem provides an example of how logic reveals
impossibilities. The model addresses the question of whether
individual preferences aggregate to form a collective
preference. This model represents preferences as ordinal
rankings over alternatives. If applied to five Italian
restaurants, denoted by the letters A through E, the model
allows any of the 120 orderings. Arrow required that the
collective ordering be monotonic (if everyone ranks A above B,
then so does the collective), independent of irrelevant
alternatives (if no person’s relative rankings of A and B are
unchanged but rankings of other alternatives change, then
the order of A and B in the collective ranking does not
change), and nondictatorial (no single person should decide
the collective ordering). Arrow then proved that if any
preferences are allowed, then no collective ordering
necessarily exists.?

Logic can also reveal paradoxes. Using models we can
show the possibility of each subpopulation containing a
larger percentage of women than men but the total
population containing a larger percentage of men, a
phenomenon (Simpson’s paradox). This actually happened:
1973, the University of California, Berkeley, accepted a larger
percentage of women in most departments. Overall, it
accepted men at a higher rate. Models also show that it is
possible for two losing bets, when played alternately, to
produce a positive expected return (Parrondo’s paradox). With
models, we can show that it is possible to add a node to a
network and reduce the total length of the edges needed to
connect all the nodes.*

We should not dismiss these examples as mathematical
novelties. Each has practical applications: efforts to increase
the population of women could backfire, combinations of
losing investments could win, and the total length of a
network of electric lines, pipelines, ethernet lines, or roads



could be be reduced by adding more nodes.

Logic also uncovers mathematical relationships. Given
Euclid’s axioms, a triangle can be uniquely determined by any
two angles and a side, or by any two sides and an angle. With
standard assumptions about consumer and firm behaviors, in
markets with a large number of competing firms, price equals
marginal cost. Some results are unexpected: among them the
friendship paradox, which states that in any friendship
network, on average, people’s friends have more friends than
they do.

The paradox arises because highly popular people have
more friends. Figure 2.1 shows Zachary’s Karate Network. The
person represented by the dark circle has six friends, denoted
by gray circles. His friends have nine friends on average.
These people are represented by white circles. Over the entire
network, twenty-nine of the thirty-four people have friends
who are more popular than they are.” Later we show that if
we make a few more assumptions, most people’s friends will
also be, on average, better-looking, kinder, richer, and
smarter than they are.

Figure 2.1: The Friendship Paradox: A Person’s Friends Have More

Friends

Last, and most important of all, logic reveals the
conditionality of truths. A politician may claim that lowering
income taxes increases government revenue by spurring
economic growth. A rudimentary model in which revenue
equals the tax rate times the income level proves that
revenue increases only if the percentage growth in income
exceeds the percentage cut in taxes.® Thus, a 10% cut in
income taxes increases revenue only if it causes income to
grow by more than 10%. The politician’s logic only holds



given certain conditions. Models identify those conditions.

The power of conditionality becomes evident when we
contrast claims derived from models with narrative claims,
even when the latter have empirical support. Consider the
management proverb first things first: the idea that when
facing multiple tasks, you should do the most important task
first. This rule is also known as big rocks first, because when
filling a bucket with rocks of various sizes, you should put the
big rocks in first—if you put the little rocks in first, the big
rocks will not fit.

The rule big rocks first, inferred from expert observation,
may be a good rule most of the time, but it is unconditional. A
model-based approach would make specific assumptions
about the task and then derive an optimal rule. In the bin
packing problem, a set of objects of various sizes (or weights)
must be allocated into bins of finite capacity. The objective is
to use as few bins as possible. Imagine, for example, you are
packing up your apartment and putting everything into 2-
foot-by-2-foot boxes. Ordering your possessions by size and
putting each object in the first box with sufficient space
(known as the first fit algorithm) turns out to be quite effective.
Big rocks first works well. However, suppose that we consider
a more complex task: allocating space on the International
Space Station for research projects. Each project has a
payload weight, a size, and power requirements along with
demands on the astronauts’ time and cognitive abilities. Each
also makes a potential scientific contribution. Even if we
came up with some measure of bigness as a weighted average
of these attributes, big rocks first would prove a poor rule
given the dimensionality of interdependencies. More
sophisticated algorithms and possibly market mechanisms
would perform much better.” Thus, under some conditions,
big rocks first is a good rule. Under other conditions, it is not.
With models, we can trace the boundaries of when we should
place the big rocks first and when we should not.

Critics of formalism claim that models repackage what we
already know, that they pour old wine into shiny



mathematical bottles, that we do not need a model to know
that two heads are better than one or that he who hesitates is
lost. We can learn the value of commitment from reading of
Odysseus tying himself to the mast. That criticism fails to
recognize that inferences drawn from models take
conditional forms: if condition A holds, then result B follows
(e.g., if you are packing bins and size is the only constraint,
pack the biggest objects first). Lessons drawn from literature
or proverbial advice from great thinkers often provide no
conditions. If we try to lead our lives or manage others by
unconditional rules, we find ourselves lost in a sea of opposite
proverbs. Are two heads better than one? Or, do too many
cooks spoil the broth?

Proverb: Two heads are better than one
Opposite: Too many cooks spoil the broth

Proverb: He who hesitates is lost
Opposite: A stitch in time saves nine

Proverb: Tie yourself to the mast
Opposite: Keep your options open

Proverb: The perfect is the enemy of the good
Opposite: Do it well or not at all

Proverb: Actions speak louder than words
Opposite: The pen is mightier than the sword

While opposite proverbs abound, opposite theorems
cannot. Within models, we make assumptions and prove
theorems. Two theorems that disagree on the optimal action,
make different predictions, or offer distinct explanations
must make different assumptions.

REDCAPE: Explain



Models provide clear logical explanations for empirical
phenomena. Economic models explain price movements and
market shares. Physics models explain the rate of falling
objects and the shape of trajectories. Biological models
explain the distributions of species. Epidemiological models
explain the speed and patterns of disease spread. Geophysical
models explain the size distribution of earthquakes.

Models can explain point values and changes in their
values. A model can explain the current price of pork belly
futures and why prices rose over the past six months. A
model can explain why a president appoints a moderate
Supreme Court justice and why a candidate moves to the left
or right. Models also explain shape: models of the diffusion of
ideas, technologies, and diseases produce an S-shaped curve
of adoption (or contagion).

The models we learn in physics, such as Boyle’s Law (a
model stating that the pressure of oxygen times the volume
equals a constant (PV = k)), explain phenomena unreasonably
well.? If we know the volume, we can estimate the constant k,
and then explain or predict pressure P as a function of V and
k. The model owes its accuracy to the fact that gases consist
of simple parts that exist in large humbers and follow fixed
rules: any two oxygen molecules placed in the identical
situation follow the same physical laws. They exist in such
large numbers that statistical averaging cancels out any
randomness. Most social phenomena share none of these
three attributes: social actors are heterogeneous, interact in
small groups, and do not follow fixed rules. People also think.
Even more problematic, people respond to social influences,
meaning that behavioral variations may not cancel out. As a
result, social phenomena are much less predictable than
physical phenomena.’

The most effective models explain both straightforward
outcomes and puzzling ones. Textbook models of markets can
explain why an unanticipated increase in the demand for a
normal good like shoes or potato chips increases the price in
the short run, an intuitive result. These same models explain



why in the long run, demand increases have less of an effect
on price than the marginal cost of producing the good.
Increases in demand can even produce reductions in price
that result from increased returns to scale in production, a
more surprising result. The same models can explain
paradoxes such as why diamonds, which have little practical
value, have high prices, but water, a necessity for survival,
costs little.

As for the claim that models can explain anything: it is
true, they can. However, a model-based explanation includes
formal assumptions and explicit causal chains. Those
assumptions and causal chains can be taken to data. A model
that claims that high levels of criminal behavior can be
explained by low probabilities of being caught can be tested.

REDCAPE: Design

Models aid in design by providing frameworks within which
we can contemplate the implications of choices. Engineers
use models to design supply chains. Computer scientists use
models to design web protocols. Social scientists used models
to design institutions.

In July 1993, a group of economists met at Caltech in
Pasadena, California, to design an auction to allocate the
electronic spectrum for cellular phones. In the past, the
government had allocated spectrum rights to large
companies for modest fees. A provision within the Omnibus
Budget Reconciliation Act of 1993 allowed for auctioning the
spectrum to raise money.

The radio signal from a tower covers a geographic range.
Therefore, the government sought to sell licenses for specific
regions:  Western  Oklahoma, Northern California,
Massachusetts, Eastern Texas, and so on. This created a
design challenge. The value of any given license for a
company depended on the other licenses that company won.
The license for Southern California would be worth more to a
company that also owned the license for Northern California,



for example. Economists refer to these interdependent
valuations as externalities. The externalities had two main
sources: construction and advertising. Holding neighboring
licenses meant lower construction costs and the potential to
exploit overlapping media markets.

The externalities created a problem with holding
simultaneous auctions. A company trying to win a bundle of
licenses might lose one license to another bidder and
therefore lose the externalities. That company might then
want to back out of its bids on other licenses. Sequential
auctions had a different shortcoming. Bidders would
underbid in early auctions to hedge against losing subsequent
licenses.

A successful auction design had to be immune to strategic
manipulation, generate efficient outcomes, and be
comprehensible to participants. The economists used game
theory models to analyze whether features could be exploited
by strategic bidders, computer simulation models to compare
the efficiency of various designs, and statistical models to
choose parameters for experiments with real people. The
final design, a multiple-round auction that allowed
participants to back out of bids and prohibited sitting out
early periods to mask intentions, proved successful. Over the
past thirty years, the FCC has raised nearly $60 billion using
this type of auction.'®

REDCAPE: Communicate

By creating a common representation, models improve
communication. Models require formal definitions of the
relevant features and their relationships that we can then
communicate with precision. The model F = MA relates three
measurable quantities, force, mass, and acceleration, and
does so in equation form. Each term is expressed in
measurable units that can be communicated without fear of
mis-interpretation. By comparison, the claim that “bigger,
faster things generate more power” offers far less precision.



Much can get lost in translation. Does bigger mean weight or
size? Does faster mean velocity or acceleration? Does power
mean energy or force? And how do bigger and faster combine
to produce power? Attempts to formalize the claim could
result in any of several forms: power could be written
incorrectly as weight plus velocity (P = W + V), weight times
velocity (P = WV), or weight plus acceleration (P= W + A).

When we formally define an abstract concept like
political ideology using a reproducible methodology, those
concepts take on some of the same features as physical
qualities such as mass and acceleration. We can use a model
to say that one politician is more liberal than another based
on their voting records. We can then communicate that claim
with precision. Liberalness is well defined and measurable.
Someone can use the same method to compare other
politicians. Of course, voting records may not be the only
measure of liberalness. We might construct a second model
that assigns ideologies based on textual analysis of speeches.
With that model as well, we can communicate with clarity
what we mean by more liberal.

Many underappreciate the impact of communication on
progress. An idea that cannot be communicated is like a tree
falling in a forest with no one around to notice it. The
remarkable economic growth in the Age of Enlightenment
was due in no small part to the transferability of knowledge,
often in model form. In fact, the evidence suggests that the
transferability of ideas may have contributed more to
economic growth during that time than did levels of
education: city-level growth in eighteenth-century France
correlates more strongly with the number of subscriptions to
Diderot’s Encyclopédie than with literacy rates.

REDCAPE: Act

Francis Bacon wrote, “The great end of life is not knowledge
but action.” Good actions require good models. Governments,
corporations, and nonprofits all use models to guide actions.



Whether it be raising or lowering prices, opening a new
location, acquiring a company, offering universal health care,
or funding an after-school program, decision-makers rely on
models. On the most important actions, decision-makers use
sophisticated models. Models are linked to data.

In 2008, as part of the Troubled Asset Relief Program
(TARP), the Federal Reserve gave $182 billion in financial
assistance to bail out the multinational insurance company
American International Group (AIG). According to the US
Department of the Treasury, the government chose to
stabilize AIG “because its failure during the financial crisis
would have had a devastating impact on our financial system
and the economy.”? The purpose of the bailout was not to
save AIG but to prop up the entire financial system.
Businesses fail every day, and the government does not
intervene."’?

The particular choices made within TARP were based on
models. Figure 2.2 shows a version of a network model
produced by the International Monetary Fund. The nodes
(circles) represent financial institutions. The edges (the lines
between the circles) represent correlations between the
values of the holdings of those institutions. The color and
width of an edge corresponds to the strength of the
correlation between the institutions, with darker and thicker
lines implying greater correlation.™

AIG occupies a central position in the network because it
sold insurance to other firms. AIG held promises to pay other
firms if those firms’ assets lost value. If prices fell, then AIG
owed those firms money. By implication, if AIG failed, so too
would the firms connected to AIG. A cascade of failures might
ensue. By stabilizing AIG’s position, the government could
prop up the market values of other firms in the network."®
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Figure 2.2: Correlation Graph Between Financial Institutions

Figure 2.2 also helps to explain why the government let
Lehman Brothers fail. Lehman did not occupy a central
position in the network. We cannot rerun history, so we
cannot know if the Federal Reserve took the correct action.
We do know that the financial industry did not collapse as a
result of Lehman’s failure. We also know that the government
earned a $23 billion profit on its loan to AIG. So, we can infer
that the policy choices—based on many-model thinking—
were not a failure.

Models that guide action, such as policy models, often
rely on data, but not all do. Most policy models also use
mathematics, though that was not always true. In the past,
policymakers built physical models as well. Phillips’s
hydraulic model of the British economy was used to think
through policy choices in the mid-twentieth century, and a
physical model of San Francisco Bay was instrumental in the
decision not to dam the bay for fresh water.'® The Mississippi
River Basin Model Waterways Experiment Station, which
covers nearly 200 acres near Clinton, Mississippi, is a
miniature replica of the river’s basin built on a horizontal
scale of 1:100. The model can test the upstream and
downstream effects of building new dams and reservoirs. The
released water follows the laws of physics within the physical
structure. In these physical models, the entities themselves
are analogs of the real world. The models are logical because



Each of these hypotheticals can be explored with models. We
can also use models to explore unrealistic environments.
What if Lamarck had been correct and acquired traits could
be passed on to our offspring, so the children of parents with
orthodontically corrected teeth would not need braces? What
happens in such a world? Asking that question and exploring
its implications can help to reveal the limits of evolutionary
processes. Abandoning the constraints of reality can spur
creativity. For this reason, advocates of the critical design
movement engage in speculative fictions to generate new
ideas."

Exploration sometimes consists of comparing common
assumptions across domains. To understand network effects,
a modeler might begin a collection of stylized network
structures and then ask whether and how network structure
affects cooperation, disease spread, or social uprisings. Or a
modeler might apply a collection of learning models to
decisions, two-person games, and multiperson games. The
purpose of these exercises is not to explain, predict, act, or
design. It is to explore and learn.

When we apply a model in practice, we may use it in any
of several ways. The same model may explain, predict, and
guide action. As an example, on August 14, 2003, sagging trees
leaning on power lines near Toledo, Ohio, created a localized
power outage that spread when a software failure prevented
an alarm from alerting technicians to redistribute power.
Within a day, more than 50 million people in the
northeastern United States and Canada had lost power. That
same year, a storm knocked out a power line between Italy
and Switzerland, leaving 60 million Europeans without
power. Engineers and scientists turned to models that
represent the power grid as a network. The models helped to
explain how the failures occurred, offered predictions of
regions where future failures might be likely, and also guided
actions by identifying locations where new lines,
transformers, and power supplies would enhance the
robustness of the network. Putting one model to many uses



will be a recurrent theme in this book. As we see next, one-to-
many is a necessary complement to our central theme of
applying many models to make sense of complex phenomena.



3. The Science of Many Models

Nothing is less real than realism. Details are confusing. It is only by
selection, by elimination, by emphasis that we get to the real
meaning of things.

—Georgia O’Keeffe

In this chapter, we take a scientific approach to motivate the
many-model approach. We begin with the Condorcet jury
theorem and the diversity prediction theorem, which make
quantifiable cases for the value of many models in helping us
act, predict, and explain. These theorems may overstate the
case for many models. To show why, we introduce
categorization models, which partition the world into boxes.
Using categorization models shows us that constructing many
models may be harder than we expect. We then apply this
same class of model to discuss model granularity—how
specific our models should be—and help us decide whether to
use one big model or many small models. The choice will
depend on the use. When predicting, we often want to go big.
When explaining, smaller is better.

The conclusion addresses a lingering concern. Many-
model thinking might seem to require learning a lot of
models. While we must learn some models, we need not learn
as many as you might think. We do not need to master a
hundred models, or even fifty, because models possess a one-
to-many property. We can apply any one model to many cases
by reassigning names and identifiers and modifying
assumptions. This property of models offers a counterpoise to
the demands of many-model thinking. Applying a model in a



new domain requires creativity, an openness of mind, and
skepticism. We must recognize that not every model will
appropriate to every task. If a model cannot explain, predict,
or help us reason, we must set it aside.

The skills required to excel at one-to-many differ from
the mathematical and analytic talents many people think of
as necessary for being a good modeler. The process of one-to-
many involves creativity. It is to ask: How many uses can I think
of for a random walk? To provide a hint of the forms that
creativity takes, at the end of the chapter we apply the
geometric formula for area and volume as a model and use it
to explain the size of supertankers, to criticize the body mass
index, to predict the scaling of metabolisms, and to explain
why we see so few women CEOs.

Many Models as Independent Lies

We now turn to formal models that help reveal the benefits of
many-model thinking. Within those models, we describe two
theorems: the Condorcet jury theorem and the diversity
prediction theorem. The Condorcet jury theorem is derived
from a model constructed to explain the advantages of
majority rule. In the model, jurors make binary decisions of
guilt or innocence. Each juror is correct more often than not.
In order to apply the theorem to collections of models instead
of jurors, we interpret each juror’s decision as a classification
by a model. These classifications could be actions (buy or sell)
or predictions (Democratic or Republican winner). The
theorem then tells us that by constructing multiple models
and using majority rule we will be more accurate than if we
used one of the constituent models. The model relies on the
concept of a state of the world, a full description of all relevant
information. For a jury, the state of the world consists of the
evidence presented at trial. For models that measure the
social contribution of a charitable project, the state of the
world might correspond to the project’s team, the



organizational structure, the operational plan, and the
characteristics of the problem or situation the project would
address.

Condorcet Jury Theorem

Each of an odd number of people (models) classifies an
unknown state of the world as either true or false. Each
person (model) classifies correctly with a probability p >
1 and the probability that any person (model) classifies
correctly is statistically independent of the correctness
of any other person (model).

Condorcet jury theorem: A majority vote classifies
correctly with higher probability than any person
(model), and as the number of people (models) becomes
large, the accuracy of the majority vote approaches
100%.

Ecologist Richard Levins elaborates on how the logic of
the theorem applies to the many-model approach:
“Therefore, we attempt to treat the same problem with
several alternative models each with different simplifications
but with a common biological assumption. Then, if these
models, despite their different assumptions, lead to similar
results, we have what we can call a robust theorem, which is
relatively free of the details of the model. Hence our truth is
the intersection of independent lies.”® Note that here he
aspires to a unanimity of classification. When many models
make a common classification, our confidence should soar.

Our next theorem, the diversity prediction theorem, applies
to models that make numerical predictions or valuations. It
quantifies the contributions of model accuracy and model
diversity to the accuracy of the average of those models.?



and “summer vacations.” We use categories to guide actions.
We categorize restaurants by ethnicity—Italian, French,
Turkish, or Korean—to decide where to have lunch. We
categorize stocks by their price-to-earnings ratios and sell
stocks with low price-to-earnings ratios. We use categories to
explain, as when we claim that Arizona’s population has
grown because the state has good weather. We also use
categories to predict: we might forecast that a candidate for
political office with military experience has an increased
chance of winning.

We can interpret the contributions of categorization
models within the wisdom hierarchy. The objects constitute
the data. Binning the objects into categories creates
information. The assigning of valuations to categories
requires knowledge. To critique the Condorcet jury theorem,
we rely on a binary categorization model that partitions the
objects or states into two categories, one labeled “guilty” and
one “innocent.” The key insight will be that the number of
relevant attributes constrains the number of distinct
categorizations, and therefore the number of useful models.

Categorization Models

There exists a set of objects or states of the world, each
defined by a set of attributes and each with a value. A
categorization model, M, partitions these objects or
states into a finite set of categories {S,, S,,..., S,} based on
the object’s attributes and assigns valuations {M,, M,,...,
M,} for each category.

Imagine we have one hundred student loan applications,
half of which were paid back and half of which were
defaulted. We know two pieces of information for each loan:
whether the loan amount exceeded $50,000, and whether the



recipient majored in engineering or the liberal arts. These are
the two attributes. With two attributes we can distinguish
between four types of loans: large loans to engineers, small
loans to engineers, large loans to liberal arts majors, and
small loans to liberal arts majors.

A binary categorization model classifies each of these four
types as either repaid or defaulted. One model might classify
small loans as repaid and large loans as defaulted. Another
model might classify loans to engineers as repaid and loans to
liberal arts majors as defaulted. It seems plausible that each
of these models could be correct more than half the time, and
that the two models might be approximately independent of
each other. A problem arises when we try to construct more
models. There exist only sixteen unique models that map four
categories into two outcomes. Two of those models classify all
loans as repaid or defaulted. Each of the remaining fourteen
has an exact opposite. Whenever the model classifies
correctly, its opposite model classifies incorrectly. Thus, of
the fourteen possible models, at most seven can be correct
more than half the time. And if any model happens to be
correct exactly half of the time, then so must its opposite.

The dimensionality of our data limits the number of
models we can produce. At most we can have seven models.
We cannot construct eleven independent models, much less
seventy-seven. Even if we had higher-dimensional data—say,
if we knew the recipient’s age, grade point average, income,
marital status, and address—the categorizations that relied
on those attributes must yield accurate predictions. Each
subset of attributes would have to be relevant to whether the
loan was repaid and be uncorrelated with the other
attributes. Both are strong assumptions. For example, if
address, marital status, and income are correlated, then
models that swap those attributes will be correlated as well.*
In the stark probabilistic model, independence seemed
reasonable: different models make independent mistakes.
When we unpack that logic with categorization models, we
see the difficulty of constructing multiple independent



models.

Attempts to construct a collection of diverse, accurate
models encounter a similar problem. Suppose that we want to
build an ensemble of categorization models that predict
unemployment rates across five hundred mid-size cities. An
accurate model must partition cities into categories such that
within a category the cities have similar unemployment rates.
The model must also predict unemployment accurately for
each category. For two models to make diverse predictions,
they must categorize cities differently, predict differently, or
do both. Those two criteria, though not in contradiction, can
be difficult to satisfy. If one categorization relies on average
education level and a second relies on average income, they
may categorize similarly. If so, the two models will be
accurate but not diverse. Creating twenty-six categories using
the first letter of each city’s name will create a diverse
categorization but probably not an accurate model. Here as
well, the takeaway is that in practice “many” may be closer to
five than fifty.

Empirical studies of prediction align with that inference.
While adding models improves accuracy (they have to, given
the theorems), the marginal contribution of each model falls
off after a handful of models. Google found that using one
interviewer to evaluate job candidates (instead of picking at
random) increases the probability of an above-average hire
from 50% to 74%, adding a second interviewer increases the
probability to 81%, adding a third raises it to 84%, and using a
fourth lifts it to 86%. Using twenty interviewers only
increases the probability to a little over 90%. That evidence
suggests a limit to the number of relevant ways of looking at
a potential hire.

A similar finding holds for an evaluation of tens of
thousands of forecasts by economists regarding
unemployment, growth, and inflation. In this case, we should
think of the economists as models. Adding a second
economist improves the accuracy of the prediction by about
8%, two more increase it by 12%, and three more by 15%. Ten



economists improve the accuracy by about 19%. Incidentally,
the best economist is only about 9% better than average—
assuming you knew which economist was best. So three
random economists perform better than the best one.’
Another reason for averaging many and not relying on the
economist who has been best historically is that the world
changes. The economist who performs at the top today may
be middling tomorrow. That same logic explains why the US
Federal Reserve relies on an ensemble of economic models
rather than just one: the average of many models will
typically be better than the best model.

The lesson should be clear: if we can construct multiple
diverse, accurate models, then we can make very accurate
predictions and valuations and choose good actions. The
theorems validate the logic of many-model thinking. What
the theorems do not do, and cannot do, is construct the many
models that meet their assumptions. In practice, we may find
that we can construct three or maybe five good models. If so,
that would be great. We need only read back one paragraph:
adding a second model yields an 8% improvement, while
adding a third gets us to 15%. Keep in mind, these second and
third models need not be better than the first model. They
could be worse. If they are a little less accurate, but
categorically (in the literal sense) different, they should be
added to the mix.

One Big Model and the Granularity Question

Many models work in theory and in practice. That does not
mean that they are always the correct approach. Sometimes
we are better off constructing a single large model. In this
section, we put some thought into when we should use each
approach and along the way take up the granularity question of
how finely we should partition our data.

To take on the first question, of whether to use one big
model or many small ones, recall the uses of models: to



reason, explain, design, communicate, act, predict, and explore.
Four of these uses—to reason, explain, communicate, and
explore—require simplification. By simplifying, we can apply
logic allowing us to explain phenomena, communicate our
ideas, and explore possibilities.

Think back to the Condorcet jury theorem. Within it, we
could unpack logic, explain why an approach that uses many
models was more likely to produce a correct result, and
communicate our findings. Had we constructed a model of
jurors with personality types and described the evidence as
vectors of words, we would have been lost in a mangle of
detail. Borges elaborates on this point in an essay on science.
He describes mapmakers who make ever more elaborate
maps: “The Cartographers Guilds struck a Map of the Empire
whose size was that of the Empire, and which coincided point
for point with it. The following Generations, who were not so
fond of the Study of Cartography as their Forebears had been,
saw that this vast Map was useless.”

The three other uses of models—to predict, design, and
act—can benefit from high-fidelity models. If we have BIG
data, we should use it. As a rule of thumb, the more data we
have, the more granular we should make our model. This can
be shown by using categorization models to structure our
thinking. Suppose first that we want to construct a model to
explain variation in a data set. To provide context, suppose
that we have an enormous data set from a chain of grocery
stores detailing monthly spending on food for several million
households. These households differ in the amount they
spend, which we measure as variation: the sum of the squared
differences between what each family spends and average
spending across all households. If average spending is $500 a
month and a given family spends $520, that family
contributes 400, or 20 squared, to the total variation.
Statisticians call the proportion of the variation that a model
explains the model’s R?.

If the data had a total variation of 1 billion and a model
explains 800 million of that variation, then the model has an



Model Error Decomposition Theorem

The Bias-Variance Trade-off

Model Error = Categorization Error + Valuation Error
() - vx)y = 2Z(vm—vf B i(m -V
where M(x) and M; denote the model’s values for data

point x and category S; and V(x) and V; denote their true
values.®

One-to-Many

Learning models takes time, effort, and breadth. To reduce
those demands, we take a one-to-many approach. We advocate
mastering a modest number of flexible models and applying
them creatively. We use a model from epidemiology to
understand the diffusion of seed corn, Facebook, crime, and
pop stars. We apply a model of signaling to advertising,
marriage, peacock feathers, and insurance premiums. And we
apply a rugged-landscape model of evolutionary adaption to
explain why humans lack blowholes. Of course, we cannot
take any model and apply it to any context, but most models
are flexible. We gain even when we fail because attempts at
creative uses of models reveal their limits. And it is fun.

The one-to-many approach is relatively new. In the past,
models belonged to specific disciplines. Economists had
models of supply and demand, monopolistic competition, and
economic growth; political scientists had models of electoral
competition; ecologists had models of speciation and
replication; and physicists had models describing laws of
motion. All of these models were developed with specific
purposes in mind. One would not apply a model from physics
to the economy or a model from economics to the brain any
more than one would use a sewing machine to repair a leaky



pipe.

Taking models out of their disciplinary silos and
practicing one-to-many has produced notable successes. Paul
Samuelson reinterpreted models from physics to explain how
markets attain equilibria. Anthony Downs applied a model of
ice cream vendors competing on a beach to explain the
positioning of political candidates competing in ideological
space. Social scientists have applied models of interacting
particles to explain poverty traps, variation in crime rates,
and even economic growth across countries. And economists
have taken models of self-control based on economic
principles to understand the functioning of the brain.”

One-to-Many: Higher Powers (X")

Creatively applying models requires practice. To provide a
preview of the potential of the many-to-one principle, we take
the familiar formula of a variable raised to a power, X", and
apply it as a model. When the power equals 2, the formula
gives the area of a square, when the power equals 3, it gives
the volume of a cube. When raised to higher powers, it
captures geometric expansion or decay.

Supertankers: Our first application considers a cubic
supertanker whose length is eight times its depth and width,
which we denote by S. As shown in figure 3.1, the supertanker
has a surface area of 345* and a volume of 85°. The cost of
building a supertanker depends primarily on its surface area,
which determines the amount of steel used. The amount of
revenue a supertanker generates depends on its volume.
Computing the ratio of volume to surface area, 5 5,
reveals a linear gain in profitability from increasing size.

85




Figure 3.1: A Cubic Supertanker: Surface Area = 345%, Volume = 853

Shipping magnate Stavros Niarchos, who knew this ratio,
built the first modern supertankers and made billions during
the period of rebuilding that followed World War II. To give
some sense of scale: the T2 oil tanker used during World War
II measured 500 feet long, 25 feet deep, and 50 feet wide.
Modern supertankers such as the Knock Nevis measure 1,500
feet long, 80 feet deep, and 180 feet wide. Imagine tipping the
Willis (Sears) Tower in Chicago on its side and floating it in
Lake Michigan. The Knock Nevis resembles a T2 oil tanker
scaled up by a factor of a little over three. The Knock Nevis has
about ten times the surface area as a T2 oil tanker and over
thirty times the volume. A question arises as to why
supertankers are not even larger. The short answer is that
tankers must pass through the Suez Canal; the Knock Nevis
squeezes through with a gap of a few feet on each side.?

Body mass index: Body mass index (BMI) is used by the
medical profession to define weight categories. Developed in
England, BMI equals the ratio of a person’s weight (in
kilograms) to her height in meters squared.” Holding height
constant, BMI increases linearly with weight. If one person
weighs 20% more than another person of the same height, the
first person’s BMI will be 20% higher.

We first apply our model to approximate a person as a
perfect cube made up of some mixture of fat, muscle, and
bone. Let M denote the weight of one cubic meter of our cubic
person. The human cube’s weight equals its volume times the
weight per cubic meter, or H> - M. Our cube’s BMI equals H - M.
Our model reveals two flaws: BMI increases linearly with
height, and given that muscle weighs more than fat, fit people
have higher M and therefore higher BMIs. Height should be
unrelated to obesity, and muscularity is the opposite of
fatness. These flaws remain if we make the model more
realistic. If we make a person’s depth (thickness front to
back) and width proportional to height using parameters d



and w, then BMI <can be written as follows:
BMI = LUHWIIM _ gy, The BMIs of many NBA stars and
other athletes place them in the overweight category (BMI >
25), along with many of the world’s top male decathletes.'
Given that even moderately tall, physically fit people will
likely have high BMIs, we should not be surprised that a
meta-analysis of nearly a hundred studies with a combined
sample size in the millions found that slightly overweight

people live longest."!

Metabolic rates: We now apply our model to predict an
inverse relationship between an animal’s size and its
metabolic rate. Every living entity has a metabolism, a
repeated sequence of chemical reactions that breaks down
organic matter and transforms it into energy. An organism’s
metabolic rate, measured in calories, equals the amount of
energy needed to remain alive. If we construct cubic models
of a mouse and an elephant, figure 3.2 shows that the smaller
cube has a much larger ratio of surface area to volume.

Mouse Elephant

Surface Area: 14 in? Surface Area: 57,600 in?
Volume: 3in? Volume: 864,000 in?

Figure 3.2: The Exploding Elephant

We can model the mouse and the elephant as composed of
cells 1 cubic inch in volume, each with a metabolism. Those
metabolic reactions produce heat that must dissipate through
the surface of the animal. Our mouse has a surface area of 14
square inches and a volume of 3 cubic inches, a surface-to-
volume ratio of roughly 5:1."” For each cubic-inch cell in its
volume, the mouse has five square inches of surface area
through which it can dissipate heat. Each heat-producing cell



in the elephant has only one-fifteenth of a square inch of
surface area. The mouse can dissipate heat at seventy-five
times the rate of the elephant.

For both animals to maintain the same internal
temperature, the elephant must have a slower metabolism. It
does. An elephant with a mouse’s metabolism would require
15,000 pounds of food per day. The elephant’s cells would also
produce too much heat to be dissipated through its skin. As a
result, elephants would smolder and then explode. The
reason elephants do not blow up is that they have a
metabolism roughly twenty times lower than that of mice.
The model does not predict the rate at which metabolism
scales with size, only the direction. More elaborate models
can explain the scaling laws."

Women CEOs: For our last application, we increase the
exponent in the formula and use the model to explain why so
few women become CEOs. In 2016, fewer than 5% of Fortune
500 companies had women CEOs. To become a CEO a person
must receive multiple promotions. We can model those
promotion opportunities as probabilistic events: a person has
some probability of receiving a promotion. We further
assume that to become CEO, a person must be promoted at
each opportunity.

We assume fifteen promotion opportunities as a
benchmark, as that corresponds to a promotion every two
years on a thirty-year path to CEO. The weight of evidence
reveals modest biases in favor of men, which we can model as
men having a higher probability of being promoted.!” We
model this as a man’s probability of promotion, P, being
slightly larger than a woman’s, P,. If we benchmark these
probabilities at 50% and 40%, respectively, then a man is
nearly thirty times more likely than a woman to become
CEO." The model reveals how modest biases accumulate. A
10% difference in promotion rates becomes a 30-fold bias at
the top. This same model provides a novel explanation for
why a much larger percentage (about 25%) of college and



Bagging and Many Models

Often we fit a model to a sample from an existing data
set and then test that same model against the remainder
of the data. Other times we fit a model to existing data
and use that model to predict future data. This type of
modeling creates a tension: the more parameters we
include in our model, the better we can fit data and the
more we risk overfitting. Good fit does not imply a good
model. Physicist Freeman Dyson tells of Enrico Fermi’s
reaction to a piece of Dyson’s research that had
exceptional model fit. “In desperation 1 asked Fermi
whether he was not impressed by the agreement
between our calculated numbers and his measured
numbers. He replied, ‘How many arbitrary parameters
did you use for your calculations?” 1 thought for a
moment about our cut-off procedures and said, ‘Four.’
He said, ‘I remember my friend Johnny von Neumann
used to say, with four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.” With
that, the conversation was over.”®

The estimates used to “wiggle the trunk” often
include higher-order terms: squares, cubes, and fourth
powers. This introduces a risk of large errors, because
higher-order terms amplify. While 10 is twice as large as
5, 10* is 16 times as large as 5°. The figure below shows
an example of overfitting.

Overfitting and Out-of-Sample Error




The graph on the left shows (hypothetical) sales data
from a company that manufactures industrial 3-D
printers as a function of the number of site visits made
(on average) per month by their sales team. The graph
on the left shows a nonlinear best fit that includes
nonlinear terms up to the fifth power. The graph on the
right shows that the model predicts sales of 100 printers
if sales visits reach 30. That cannot be correct if
customers buy at most one 3-D printer. By overfitting,
the model makes a huge error out of the sample.

To prevent overfitting, we could avoid higher-order
terms. A more sophisticated solution known as bootstrap
aggregation or bagging constructs many models. To
bootstrap a data set, we create multiple data sets of
equal size by randomly drawing data points from the
original data. The points are drawn with replacement—
after we draw a data point, we put it back in the “bag”
so that we might draw it again. This technique produces
a collection of data sets of equal size, each of which
contains multiple copies of some data points and no
copies of others.

We then fit (nonlinear) models to each data set,
resulting in multiple models."” We can then plot all the
models on the same set of axes, creating a spaghetti
graph (see below). The dark line shows the average of
the different models.
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Bootstrapping and a Spaghetti Graph

Bagging will capture robust nonlinear effects, as
they will be evident in multiple random samples of the
data, while avoiding fitting idiosyncratic patterns in any




single data set. By building diversity through random
samples and then averaging the many models, bagging
applies the logic that underpins the diversity prediction
theorem. It creates diverse models, and as we know, the
average of those models will be more accurate than the
models themselves.




4, Modeling Human Actors

It is not possible yet to point to a single theory of human behavior
that has been successfully formulated and tested in a variety of
settings.

—Elinor Ostrom

In this chapter, we address a question that lies at the core of
this book: How do we model people? In many of the models
that follow, people will be the fundamental unit of analysis.
We will construct models of people who vote, cooperate, start
uprisings, participate in fads, invest in retirement accounts,
and become addicted to drugs. Within each model, we will
have to make assumptions about people. What are their
objectives? Do they only care about themselves or are they
altruistic? What are their potential actions? How do they
choose what action to take, or do they not even have a
choice?

We could make ad hoc assumptions for each model. But to
do so would invite confusion and miss an opportunity. We
would be left with an idiosyncratic set of constructions. Each
new model would require new thinking about how people act.
The resulting heterogeneity would limit our ability to think
across and combine models. We could not be effective many-
model thinkers.

The approach we follow stresses coherence along with
variety. We will model people as either rule-based actors or
rational actors. Within the set of rule-based actors, we consider
those who act based on simple fixed rules and those who act
based on adaptive rules. Someone acting based on an adaptive



rule can change her behavior based upon information or past
success or because she watches others. As we shall discuss, no
bright lines distinguish these cases from one another; an
adaptive rule can sometimes be interpreted as a fixed rule,
and sometimes rational actions will take the form of simple
rules.

How we choose to model people will depend on the
context and on our goals. Are we predicting or explaining?
Are we evaluating policy actions? Are we trying to design an
institution? Or are we exploring? In low-stakes environments,
such as modeling what color coat people buy or whether they
stand for an ovation after a show, we will most often assume
that people apply fixed rules. When people decide whether or
not to cooperate in a venture or to trust another person, we
will assume that people learn and adapt. Finally, in high-
stakes environments, we will assume that informed,
sophisticated people make optimal choices.

Before describing our approach in more detail, we first
address some common misconceptions. Many people first
encounter formal models of social phenomena in
introductory economics courses. Those models often rely on a
rudimentary rational-actor model in which everyone is self-
interested and capable of optimizing. The model may also
assume everyone has the same preferences and income level.
Economists then solve for equilibria within these models,
enabling them to evaluate the effects of shocks to a market or
policy changes. These models, though based on incorrect
assumptions, are wuseful. They help economists to
communicate and students to understand.

Based on this experience, many people infer that formal
modeling requires a narrow, unrealistic view of human
nature, in which people are self-interested and never make
mistakes. That is not the case. In fact, not even economists
think that to be true. The frontiers of economics consist of
models with imperfectly informed, heterogeneous actors who
adapt in response to what they learn, and who sometimes,
though not always, care about the payoffs to others. The



The Challenge of Modeling People

Modeling people presents a challenge because while models
require low-dimensional representations, people defy simple
characterizations. People are diverse, we are socially influenced,
we are error-prone, we are purposive, and we learn. In addition,
people possess agency—we have the capacity to act.

By way of contrast, physical objects, such as carbon atoms
and billiard balls, exhibit none of these six properties. Carbon
atoms lack diversity (though they can occupy heterogeneous
positions within compounds, such as in propane). Carbon
atoms never violate the laws of physics nor do the lead
purposive lives. They do not change their behaviors based on
past experiences. They lack agency; they do not decide to lead
uprisings or switch careers. Hence the oft-repeated quip by
social scientists: how difficult physics would be if electrons
could think. Physics would be even harder if electrons could
write models.

We can start with the problems created by diversity.
People differ in our preferences, in our capacity to act, in the
social networks we form, in our levels of altruism, and in the
level of cognitive attention we allocate to actions. Modeling
would be easier if everyone were the same. Sometimes we
rely on statistical logic and assume that the behavioral
diversity cancels. For example, we might construct a model
that predicts charitable donations as a function of income.
For a given income level and tax rate, some people may be
more altruistic than we assume and others may be less. If the
deviations from the model average out (and in Chapter 5 we
cover models of distributions that explain why they might),
then our model may be accurate. This canceling out of
diversity will not occur unless actions are independent. When
behavior is socially influenced, extreme actions can create
spillovers. This occurs when political activists energize
voters. We will encounter this effect of diversity when we
model riots.

Whether or not mistakes cancel in the aggregate depends



on the context. Errors that result from a lack of cognitive
attachment may be random and independent. Errors that
arise from cognitive biases may be systematic and correlated.
For example, people may overweight recent events and recall
narratives better than statistics. A shared bias like this will
not cancel out.

The next challenge relates to what people desire. A
central challenge in writing models of people will be making
an accurate assessment of their goals and objectives. Some
people desire wealth and fame. Others want to contribute to
the betterment of their communities and the world. In the
rational-actor model, we represent a person’s payoff directly
in the form of a function. In rule-based models, purposes are
more implicit. A behavioral rule in which people seek to live
in an integrated neighborhood but move out of a
neighborhood if the percentage of people who share their
racial identity falls below 10% embeds certain beliefs about
what people desire.

The final challenge to modeling people results from the
fact that people have agency: the ability to take action, to
change what we do, and to learn. That said, in some contexts,
people may be better characterized as creatures of habit.
Actions may be outside our control. Few people choose to be
addicted to opioids or to be poor. Yet people take actions that
produce those outcomes.

Often, when people take actions that produce bad
outcomes, they adapt their behavior. We can capture this by
including learning in our models. How people learn varies by
context. When learning how many hours they need to study
for an exam in order to get a good grade, or how many times
a week they need to exercise, people may learn based on
individual experiences and introspection. When learning
what grocery store to visit or whether to contribute to a
charity, people may learn through observing others. In
Chapter 26, we show how in non-strategic contexts, learning
generally works. People learn the best action. We also show
that in strategic contexts, which we model as games, all bets



are off. Neither individual nor social learning necessarily
produces good outcomes.

Each of these six characteristics are potential model
features. If we include a feature, we must decide how much of
it to include. How diverse do we make our actors? How much
social influence do we include? Do people learn from others?
How do we define objectives? How much agency do people
possess? We may possess less agency than we believe.
Jonathan Haidt describes our lack of agency with his
metaphor of the rider and the elephant. “The image I came
up with for myself, as I marveled at my weakness, was that I
was a rider on the back of an elephant. I'm holding the reins
in my hands, and by pulling one way or the other I can tell
the elephant to turn, to stop, or to go. I can direct things, but
only when the elephant doesn’t have desires of his own.
When the elephant really wants to do something, I'm no
match for him.”' Sometimes we do ride the elephant.
Sometimes we do not. No single approach to modeling
humans will be appropriate in all settings, so we model
humans in a variety of ways.

The Rational-Actor Model

The rational-actor model assumes that people make optimal
choices given a payoff or utility function. These actions can
be decisions, where the payoff depends only on the
individual’s own action, or they can take place within a game,
where payoffs depend on what others do. In a game with
simultaneous choices or with incomplete information, the
rational-actor model also specifies beliefs about what the
other actors will do.

Rational-Actor Model

An individual’s preferences are represented by a



mathematical utility or payoff function defined over a
set of possible actions. The individual chooses the action
that maximizes the function’s value. In a game, that
choice may require beliefs about the actions of other
players.

As an example, we construct a primitive rational-actor
model of an individual’s decision for how much income to
allocate to housing. The model characterizes her utility as a
function of housing and all other consumption, with the
latter including food, clothing, and entertainment (see box).
The model assumes a price for housing and a price for all
other goods. The model is far from realistic. It treats all
housing the same. And, it lumps all other goods into one
category called consumption and prices them all the same.
We can set those inaccuracies aside for the moment, as the
purpose of the model is to explain the proportion of income
spent on housing.

A Rational-Actor Model of Consumption

Assumption: An individual’s utility from general
consumption, C, and housing, H, can be written as
follows:

U(C,H) = C3H?

Result: A utility-maximizing individual (a rational
actor) spends exactly one-third of her income on
housing.?

In the model, the proportion of income a person spends
on housing does not depend on the price of housing or on



