ANNIVERSARY EDITION WITH FOUR NEW CHAPTERS

ss3

SAY

O
Z
i)
§ O
R M
-
2
»
| A
m
m
L
-
Z
R M
m
-
Z
n

MY THICA L
MAN-MONTH

FREDERICK P. BROOKS, JR.

Cover drawing: C. R. Knight, Mural of the La Brea Tar Pits. Courtesy
of the George C. Page Museum of La Brea Discoveries, The Natural
History Museum of Los Angeles County.

The essay entitled, No Silver Bullet, is from Information Processing
1986, the Proceedings of the IFIP Tenth World Computing
Conference, edited by H.-J. Kugler, 1986, pages 1069-1076. Reprinted
with the kind permission of IFIP and Elsevier Science B.V .,
Amsterdam, The Netherlands.

Library of Congress Cataloging-in-Publication Data

Brooks, Frederick P., Jr. (Frederick Phillips)

The mythical man-month : essays on software engineering /

Frederick P. Brooks, Jr. — Anniversary ed.
p. cm.

Includes bibliographical references and index.

ISBN 0-201-83595-9

1. Software engineering. I. Title.
QA76.758.B75 1995
005.1°068—dc20 94-36653

CIpP

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial caps or
all caps.

Copyright © 1995 by Addison-Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher and author.

ISBN 0-201-83595-9

Text printed in the United States on recycled paper at RR Donnelley
Crawfordsville in Crawfordsville, Indiana.

Printing 35th January 2010

Table of Contents

About the Author
Preface to the 20th Anniversary Edition
Preface to the First Edition

Chapter 1. The Tar Pit

The Programming Systems Product
The Joys of the Craft

Th f raf
Chapter 2. The Mythical Man-Month
Optimism
The Man-Month
Systems Test
Gutless Estimating
Regenerative Schedule Disaster

Chapter 3. The Surgical Team
The Problem

Mills's Proposal
How It Works
Scaling Up
Chapter 4. Aristocracy, Democracy, and System Design
Conceptual Integrity

Achieving Conceptual Integrity
Aristocracy and Democracv

What Does the Implementer Do While Waiting?
Chapter 5. The Second-System Effect
Interactive Discipline for the Architect
Self-Discipline—The Second-System Effect
Chapter 6. Passing the Word
ritten ifications—the M 1
Formal Definitions

Direct Incorporation
Conferences and Courts

Multiple Implementations

The Telephone Log

Product Test
Chapter 7. Why Did the Tower of Babel Fail?

A Management Audit of the Babel Project

Communication in the L.arge Programming Project

The Project Workbook

Organization in the Large Programming Project
Chapter 8. Calling the Shot

Portman's Data

Aron's Data

Harr's Data

0S/360 Data

Corbato's Data
Chapter 9. Ten Pounds in a Five-Pound Sack

Program Space as Cost

Size Control

Space Techniques

Representation Is the Essence of Programming
Chapter 10. The Documentary Hypothesis

Documents for a Computer Product

Documents for a University Department

Documents for a Software Project
Why Have Formal Documents?

Chapter 11. Plan to Throw One Away

Pilot Plants and Scaling Up
The Only Constancy Is Change Itself
Plan the Svstem for Change

Plan the Organization for Change
Two Steps Forward and One Step Back

One Step Forward and One Step Back
Chapter 12. Sharp Tools

Target Machines
Vehicle Machi 1T Servi

High-T.evel L.anguage and Interactive Programming
Chapter 13. The Whole and the Parts
Designing the Bugs Out
Component Debugging
System Debugging
Chapter 14. Hatching a Catastrophe
Milestones or Millstones?
"The Other Piece Is Late. Anvway"
Under the Rug
Chapter 15. The Other Face
What Documentation Is Required?
The Flow-Chart Curse
Self-Documenting Programs
Chapter 16. No Silver Bullet—Essence and Accident in Software
Engineering
Abstract
Introduction
D LU Be Hard?—F 1 Difficulti
Past Breakthroughs Solved Accidental Difficulties
Hopes for the Silver
Promising Attacks on the Conceptual Essence
Chapter 17. "No Silver Bullet" Refined
On Werewolves and Other Legendary Terrors
Thereis T ilver Bullet—AND HERE IT IS!

Obscure Writing Will Be Misunderstood

Harel's Analysis
Jones's Point—Productivity Follows Quality

So What Has Happened to Productivity?
Object-Oriented Programming—Will a Brass Bullet Do?
What About Reuse?

Learning [arge Vocabularies—A Predictable but Unpredicted
Problem for Software Reuse

Net on Bullets—Position Unchanged
Chapter 18. Propositions of The Mvthical Man-Month: True or

False?
Chapter 1. The Tar Pit
Chapter 2. The Mythical Man-Month
Chapter 3. The Surgical Team

Chapter 4. Aristocracy, Democracy, and System Design

Chapter 5. The Second-System Effect
Chapter 6. Passing the Word

Chapter 7. Why Did the Tower of Babel Fail?
Chapter 8. Calling the Shot

Chapter 9. Ten Pounds in a Five-Pound Sack
Chapter 10. The Documentary Hypothesis
Chapter 11. Plan to Throw One Away
Chapter 12. Sharp Tools

Chapter 13. The Whole and the Parts

Chapter 14. Hatching a Catastrophe
Chapter 15. The Other Face
Original Epilogue
Chapter 19. The Mythical Man-Month after 20 Years
Why Is There a Twentieth Anniversary Edition?
The Central Argument: Conceptual Integrity and the Architect
The Second-System Effect: Featuritis and Frequency-Guessing
The Triumph of the WIMP Interface

Don't Build One to Throw Away—The Waterfall Model Is
Wrong!

An Incremental-Build Model Is Better—Progressive Refinement
Parnas Families

Microsoft's "Build Every Night" Approach
Incremental-Build and Rapid Prototvping

Parnas Was Right, and I Was Wrong about Information Hiding
How Mythical Is the Man-Month? Boehm's Model and Data
People Are Everything (Well, Almost Everything)

The Power of Giving Up Power

What's the Biggest New Surprise? Millions of Computers
Whole New Software Industry—Shrink-Wrapped Software

Buy and Build—Shrink-Wrapped Packages As Components

The State and Future of Software Engineering
Fifty Years of Wonder, Excitement, and Joy

Notes and References

Copyrighted material

About the Author

Photo credit: © Jerry Markatos

Frederick P. Brooks, Jr., is Kenan Professor of Computer Science at
the University of North Carolina at Chapel Hill. He is best known as
the "father of the IBM System/360," having served as project manager
for its development and later as manager of the Operating System/360
software project during its design phase. For this work he, Bob Evans,
and Erich Bloch were awarded the National Medal of Technology in
1985. Earlier, he was an architect of the IBM Stretch and Harvest
computers.

At Chapel Hill, Dr. Brooks founded the Department of Computer
Science and chaired it from 1964 through 1984. He has served on the
National Science Board and the Defense Science Board. His current
teaching and research is in computer architecture, molecular graphics,
and virtual environments.

Copyrighted material

Preface to the 20th Anniversary Edition

To my surprise and delight, The Mythical Man-Month continues to be
popular after 20 years. Over 250,000 copies are in print. People often
ask which of the opinions and recommendations set forth in 1975 I still
hold, and which have changed, and how. Whereas I have from time to
time addressed that question in lectures, I have long wanted to essay it
in writing.

Peter Gordon, now a Publishing Partner at Addison-Wesley, has been
working with me patiently and helpfully since 1980. He proposed that
we prepare an Anniversary Edition. We decided not to revise the
original, but to reprint it untouched (except for trivial corrections) and
to augment it with more current thoughts.

Chapter 16 reprints "No Silver Bullet: Essence and Accidents of
Software Engineering," a 1986 IFIPS paper that grew out of my
experience chairing a Defense Science Board study on military
software. My coauthors of that study, and our executive secretary,
Robert L. Patrick, were invaluable in bringing me back into touch with
real-world large software projects. The paper was reprinted in 1987 in
the IEEE Computer magazine, which gave it wide circulation.

"No Silver Bullet" proved provocative. It predicted that a decade would
not see any programming technique that would by itself bring an order-
of-magnitude improvement in software productivity. The decade has a
year to run; my prediction seems safe. "NSB" has stimulated more and
more spirited discussion in the literature than has The Mythical Man-
Month. Chapter 17, therefore, comments on some of the published
critique and updates the opinions set forth in 1986.

In preparing my retrospective and update of The Mythical Man-Month,
I was struck by how few of the propositions asserted in it have been
critiqued, proven, or disproven by ongoing software engineering
research and experience. It proved useful to me now to catalog those
propositions in raw form, stripped of supporting arguments and data. In
hopes that these bald statements will invite arguments and facts to
prove, disprove, update, or refine those propositions, I have included
this outline as Chapter 18.

Chapter 19 is the updating essay itself. The reader should be warned
that the new opinions are not nearly so well informed by experience in
the trenches as the original book was. I have been at work in a
university, not industry, and on small-scale projects, not large ones.
Since 1986, I have only taught software engineering, not done research
in it at all. My research has rather been on virtual environments and

their applications.

In preparing this retrospective, I have sought the current views of
friends who are indeed at work in software engineering. For a
wonderful willingness to share views, to comment thoughtfully on
drafts, and to re-educate me, I am indebted to Barry Boehm, Ken
Brooks, Dick Case, James Coggins, Tom DeMarco, Jim McCarthy,
David Parnas, Earl Wheeler, and Edward Yourdon. Fay Ward has
superbly handled the technical production of the new chapters.

[thank Gordon Bell, Bruce Buchanan, Rick Hayes-Roth, my
colleagues on the Defense Science Board Task Force on Military
Software, and, most especially, David Parnas for their insights and
stimulating ideas for, and Rebekah Bierly for technical production of,
the paper printed here as Chapter 16. Analyzing the software problem
into the categories of essence and accident was inspired by Nancy
Greenwood Brooks, who used such analysis in a paper on Suzuki
violin pedagogy.

Addison-Wesley's house custom did not permit me to acknowledge in
the preface to the 1975 edition the key roles played by their staff. Two
persons' contributions should be especially cited: Norman Stanton, then
Executive Editor, and Herbert Boes, then Art Director. Boes developed
the elegant style, which one reviewer especially cited: "wide margins,
[and] imaginative use of typeface and layout." More important, he also
made the crucial recommendation that every chapter have an opening
picture. (I had only the Tar Pit and Reims Cathedral at the time.)
Finding the pictures occasioned an extra year's work for me, but I am
eternally grateful for the counsel.

Soli Deo gloria—To God alone be glory.

F.P.B., Jr.
Chapel Hill, N.C.
March 1995

Copyrighted material

Preface to the First Edition

In many ways, managing a large computer programming project is like
managing any other large undertaking—in more ways than most
programmers believe. But in many other ways it is different—in more
ways than most professional managers expect.

The lore of the field is accumulating. There have been several
conferences, sessions at AFIPS conferences, some books, and papers.
But it is by no means yet in shape for any systematic textbook
treatment. It seems appropriate, however, to offer this little book,
reflecting essentially a personal view.

Although I originally grew up in the programming side of computer
science, I was involved chiefly in hardware architecture during the
years (1956—-1963) that the autonomous control program and the high-
level language compiler were developed. When in 1964 I became
manager of Operating System/360, I found a programming world quite
changed by the progress of the previous few years.

Managing OS/360 development was a very educational experience,
albeit a very frustrating one. The team, including F. M. Trapnell who
succeeded me as manager, has much to be proud of. The system
contains many excellencies in design and execution, and it has been
successful in achieving widespread use. Certain ideas, most noticeably
device-independent input-output and external library management,
were technical innovations now widely copied. It is now quite reliable,
reasonably efficient, and very versatile.

The effort cannot be called wholly successful, however. Any OS/360
user is quickly aware of how much better it should be. The flaws in
design and execution pervade especially the control program, as
distinguished from the language compilers. Most of these flaws date
from the 1964—65 design period and hence must be laid to my charge.
Furthermore, the product was late, it took more memory than planned,
the costs were several times the estimate, and it did not perform very
well until several releases after the first.

After leaving IBM in 1965 to come to Chapel Hill as originally agreed
when I took over OS/360, I began to analyze the OS/360 experience to
see what management and technical lessons were to be learned. In
particular, I wanted to explain the quite different management
experiences encountered in System/ 360 hardware development and
0S/360 software development. This book is a belated answer to Tom
Watson's probing questions as to why programming is hard to manage.

In this quest I have profited from long conversations with R. P. Case,

assistant manager 1964—65, and F. M. Trapnell, manager 1965-68. I
have compared conclusions with other managers of jumbo
programming projects, including F. J. Corbato of M.I.T., John Harr and
V. Vyssotsky of Bell Telephone Laboratories, Charles Portman of
International Computers Limited, A. P. Ershov of the Computation
Laboratory of the Siberian Division, U.S.S.R. Academy of Sciences,
and A. M. Pietrasanta of IBM.

My own conclusions are embodied in the essays that follow, which are
intended for professional programmers, professional managers, and
especially professional managers of programmers.

Although written as separable essays, there is a central argument
contained especially in Chapters 2—7. Briefly, I believe that large
programming projects suffer management problems different in kind
from small ones, due to division of labor. I believe the critical need to
be the preservation of the conceptual integrity of the product itself.
These chapters explore both the difficulties of achieving this unity and
methods for doing so. The later chapters explore other aspects of
software engineering management.

The literature in this field is not abundant, but it is widely scattered.
Hence I have tried to give references that will both illuminate particular
points and guide the interested reader to other useful works. Many
friends have read the manuscript, and some have prepared extensive
helpful comments; where these seemed valuable but did not fit the flow
of the text, I have included them in the notes.

Because this is a book of essays and not a text, all the references and
notes have been banished to the end of the volume, and the reader is
urged to ignore them on his first reading.

I am deeply indebted to Miss Sara Elizabeth Moore, Mr. David
Wagner, and Mrs. Rebecca Burris for their help in preparing the
manuscript, and to Professor Joseph C. Sloane for advice on
illustration.

F.P.B., Jr

Chapel Hill, N.C.
October 1974

Copyrighted material

Chapter 1. The Tar Pit

Een schip op het strand is een baken in zee.
[A ship on the beach is a lighthouse to the sea.]
—DUTCH PROVERB

No scene from prehistory is quite so vivid as that of the mortal
struggles of great beasts in the tar pits. In the mind's eye one sees
dinosaurs, mammoths, and sabertoothed tigers struggling against the
grip of the tar. The fiercer the struggle, the more entangling the tar, and
no beast is so strong or so skillful but that he ultimately sinks.

Large-system programming has over the past decade been such a tar
pit, and many great and powerful beasts have thrashed violently in it.
Most have emerged with running systems—few have met goals,
schedules, and budgets. Large and small, massive or wiry, team after
team has become entangled in the tar. No one thing seems to cause the
difficulty—any particular paw can be pulled away. But the
accumulation of simultaneous and interacting factors brings slower and
slower motion. Everyone seems to have been surprised by the
stickiness of the problem, and it is hard to discern the nature of it. But
we must try to understand it if we are to solve it.

Therefore let us begin by identifying the craft of system programming
and the joys and woes inherent in it.

The Programming Systems Product

One occasionally reads newspaper accounts of how two programmers
in a remodeled garage have built an important program that surpasses
the best efforts of large teams. And every programmer is prepared to
believe such tales, for he knows that he could build any program much
faster than the 1000 statements/year reported for industrial teams.

Why then have not all industrial programming teams been replaced by
dedicated garage duos? One must look at what is being produced.

In the upper left of Fig. 1.1 is a program. It is complete in itself, ready
to be run by the author on the system on which it was developed. That
is the thing commonly produced in garages, and that is the object the
individual programmer uses in estimating productivity.

Figure 1.1. Evolution of the programming systems product

There are two ways a program can be converted into a more useful, but
more costly, object. These two ways are represented by the boundaries
in the diagram.

Moving down across the horizontal boundary, a program becomes a
programming product. This is a program that can be run, tested,
repaired, and extended by anybody. It is usable in many operating
environments, for many sets of data. To become a generally usable
programming product, a program must be written in a generalized
fashion. In particular the range and form of inputs must be generalized
as much as the basic algorithm will reasonably allow. Then the
program must be thoroughly tested, so that it can be depended upon.
This means that a substantial bank of test cases, exploring the input
range and probing its boundaries, must be prepared, run, and recorded.
Finally, promotion of a program to a programming product requires its
thorough documentation, so that anyone may use it, fix it, and extend

it. As a rule of thumb, I estimate that a programming product costs at
least three times as much as a debugged program with the same
function.

Moving across the vertical boundary, a program becomes a component
in a programming system. This is a collection of interacting programs,
coordinated in function and disciplined in format, so that the
assemblage constitutes an entire facility for large tasks. To become a
programming system component, a program must be written so that
every input and output conforms in syntax and semantics with
precisely defined interfaces. The program must also be designed so that
it uses only a prescribed budget of resources—memory space, input-
output devices, computer time. Finally, the program must be tested
with other system components, in all expected combinations. This
testing must be extensive, for the number of cases grows
combinatorially. It is time-consuming, for subtle bugs arise from
unexpected interactions of debugged components. A programming
system component costs at least three times as much as a stand-alone
program of the same function. The cost may be greater if the system
has many components.

In the lower right-hand corner of Fig. 1.1 stands the programming
systems product. This differs from the simple program in all of the
above ways. It costs nine times as much. But it is the truly useful
object, the intended product of most system programming efforts.

The Joys of the Craft

Why is programming fun? What delights may its practitioner expect as
his reward?

First is the sheer joy of making things. As the child delights in his mud
pie, so the adult enjoys building things, especially things of his own
design. I think this delight must be an image of God's delight in making
things, a delight shown in the distinctness and newness of each leaf and
each snowflake.

Second is the pleasure of making things that are useful to other people.
Deep within, we want others to use our work and to find it helpful. In
this respect the programming system is not essentially different from
the child's first clay pencil holder "for Daddy's office."

Third is the fascination of fashioning complex puzzle-like objects of
interlocking moving parts and watching them work in subtle cycles,
playing out the consequences of principles built in from the beginning.
The programmed computer has all the fascination of the pinball
machine or the jukebox mechanism, carried to the ultimate.

Fourth is the joy of always learning, which springs from the

nonrepeating nature of the task. In one way or another the problem is
ever new, and its solver learns something: sometimes practical,
sometimes theoretical, and sometimes both.

Finally, there is the delight of working in such a tractable medium. The
programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds his castles in the air, from air, creating by
exertion of the imagination. Few media of creation are so flexible, so
easy to polish and rework, so readily capable of realizing grand
conceptual structures. (As we shall see later, this very tractability has
its own problems.)

Yet the program construct, unlike the poet's words, is real in the sense
that it moves and works, producing visible outputs separate from the
construct itself. It prints results, draws pictures, produces sounds,
moves arms, The magic of myth and legend has come true in our time.
One types the correct incantation on a keyboard, and a display screen
comes to life, showing things that never were nor could be.

Programming then is fun because it gratifies creative longings built
deep within us and delights sensibilities we have in common with all
men.

The Woes of the Craft

Not all is delight, however, and knowing the inherent woes makes it
easier to bear them when they appear.

First, one must perform perfectly. The computer resembles the magic
of legend in this respect, too. If one character, one pause, of the
incantation is not strictly in proper form, the magic doesn't work.
Human beings are not accustomed to being perfect, and few areas of
human activity demand it. Adjusting to the requirement for perfection

is, I think, the most difficult part of learning to program.m

Next, other people set one's objectives, provide one's resources, and
furnish one's information. One rarely controls the circumstances of his
work, or even its goal. In management terms, one's authority is not
sufficient for his responsibility. It seems that in all fields, however, the
jobs where things get done never have formal authority commensurate
with responsibility. In practice, actual (as opposed to formal) authority
is acquired from the very momentum of accomplishment.

The dependence upon others has a particular case that is especially
painful for the system programmer. He depends upon other people's
programs. These are often maldesigned, poorly implemented,
incompletely delivered (no source code or test cases), and poorly
documented. So he must spend hours studying and fixing things that in
an ideal world would be complete, available, and usable.

The next woe is that designing grand concepts is fun; finding nitty little
bugs is just work. With any creative activity come dreary hours of
tedious, painstaking labor, and programming is no exception.

Next, one finds that debugging has a linear convergence, or worse,
where one somehow expects a quadratic sort of approach to the end. So
testing drags on and on, the last difficult bugs taking more time to find
than the first.

The last woe, and sometimes the last straw, is that the product over
which one has labored so long appears to be obsolete upon (or before)
completion. Already colleagues and competitors are in hot pursuit of
new and better ideas. Already the displacement of one's thought-child
is not only conceived, but scheduled.

This always seems worse than it really is. The new and better product
is generally not available when one completes his own; it is only talked
about. It, too, will require months of development. The real tiger is
never a match for the paper one, unless actual use is wanted. Then the
virtues of reality have a satisfaction all their own.

Of course the technological base on which one builds is always
advancing. As soon as one freezes a design, it becomes obsolete in
terms of its concepts. But implementation of real products demands
phasing and quantizing. The obsolescence of an implementation must
be measured against other existing implementations, not against
unrealized concepts. The challenge and the mission are to find real
solutions to real problems on actual schedules with available resources.

This then is programming, both a tar pit in which many efforts have
floundered and a creative activity with joys and woes all its own. For
many, the joys far outweigh the woes, and for them the remainder of
this book will attempt to lay some boardwalks across the tar.

Copyrighted material

Chapter 2. The Mythical Man-Month

Good cooking takes time. If you are made to wait, it is to serve
you better, and to please you.
—MENU OF RESTAURANT ANTOINE, NEW ORLEANS

More software projects have gone awry for lack of calendar time than
for all other causes combined. Why is this cause of disaster so
common?

First, our techniques of estimating are poorly developed. More
seriously, they reflect an unvoiced assumption which is quite untrue,
i.e., that all will go well.

Second, our estimating techniques fallaciously confuse effort with
progress, hiding the assumption that men and months are
interchangeable.

Third, because we are uncertain of our estimates, software managers
often lack the courteous stubbornness of Antoine's chef.

Fourth, schedule progress is poorly monitored. Techniques proven and
routine in other engineering disciplines are considered radical
innovations in software engineering.

Fifth, when schedule slippage is recognized, the natural (and
traditional)) response is to add manpower. Like dousing a fire with
gasoline, this makes matters worse, much worse. More fire requires
more gasoline, and thus begins a regenerative cycle which ends in
disaster.

Schedule monitoring will be the subject of a separate essay. Let us
consider other aspects of the problem in more detail.

Optimism

All programmers are optimists. Perhaps this modern sorcery especially
attracts those who believe in happy endings and fairy godmothers.
Perhaps the hundreds of nitty frustrations drive away all but those who
habitually focus on the end goal. Perhaps it is merely that computers
are young, programmers are younger, and the young are always
optimists. But however the selection process works, the result is
indisputable: "This time it will surely run," or "I just found the last
bug."

So the first false assumption that underlies the scheduling of systems
programming is that all will go well, i.e., that each task will take only
as long as it "ought" to take.

The pervasiveness of optimism among programmers deserves more
than a flip analysis. Dorothy Sayers, in her excellent book, The Mind of
the Maker, divides creative activity into three stages: the idea, the
implementation, and the interaction. A book, then, or a computer, or a
program comes into existence first as an ideal construct, built outside
time and space, but complete in the mind of the author. It is realized in
time and space, by pen, ink, and paper, or by wire, silicon, and ferrite.
The creation is complete when someone reads the book, uses the
computer, or runs the program, thereby interacting with the mind of the
maker.

This description, which Miss Sayers uses to illuminate not only human
creative activity but also the Christian doctrine of the Trinity, will help
us in our present task. For the human makers of things, the
incompletenesses and inconsistencies of our ideas become clear only
during implementation. Thus it is that writing, experimentation,
"working out" are essential disciplines for the theoretician.

In many creative activities the medium of execution is intractable.
Lumber splits; paints smear; electrical circuits ring. These physical
limitations of the medium constrain the ideas that may be expressed,
and they also create unexpected difficulties in the implementation.

Implementation, then, takes time and sweat both because of the
physical media and because of the inadequacies of the underlying
ideas. We tend to blame the physical media for most of our
implementation difficulties; for the media are not "ours" in the way the
ideas are, and our pride colors our judgment.

Computer programming, however, creates with an exceedingly
tractable medium. The programmer builds from pure thought-stuff:
concepts and very flexible representations thereof. Because the
medium is tractable, we expect few difficulties in implementation;
hence our pervasive optimism. Because our ideas are faulty, we have
bugs; hence our optimism is unjustified.

In a single task, the assumption that all will go well has a probabilistic
effect on the schedule. It might indeed go as planned, for there is a
probability distribution for the delay that will be encountered, and "no
delay" has a finite probability. A large programming effort, however,
consists of many tasks, some chained end-to-end. The probability that
each will go well becomes vanishingly small.

The Man-Month

The second fallacious thought mode is expressed in the very unit of
effort used in estimating and scheduling: the man-month. Cost does
indeed vary as the product of the number of men and the number of

months. Progress does not. Hence the man-month as a unit for
measuring the size of a job is a dangerous and deceptive myth. It
implies that men and months are interchangeable.

Men and months are interchangeable commodities only when a task
can be partitioned among many workers with no communication
among them (Fig. 2.1). This is true of reaping wheat or picking cotton;
it is not even approximately true of systems programming.

Figure 2.1. Time versus number of workers—perfectly
partitionable task

Months

Men

When a task cannot be partitioned because of sequential constraints,
the application of more effort has no effect on the schedule (Fig. 2.2).
The bearing of a child takes nine months, no matter how many women
are assigned. Many software tasks have this characteristic because of
the sequential nature of debugging.

Figure 2.2. Time versus number of workers—unpartitionable task

Months

Men

In tasks that can be partitioned but which require communication
among the subtasks, the effort of communication must be added to the
amount of work to be done. Therefore the best that can be done is
somewhat poorer than an even trade of men for months (Fig. 2.3).

Figure 2.3. Time versus number of workers—partitionable task
requiring communication

Months

vien

The added burden of communication is made up of two parts, training
and intercommunication. Each worker must be trained in the
technology, the goals of the effort, the overall strategy, and the plan of
work. This training cannot be partitioned, so this part of the added

effort varies linearly with the number of workers.[Ll

Intercommunication is worse. If each part of the task must be
separately coordinated with each other part, the effort increases as n(n—
1)/2. Three workers require three times as much pairwise
intercommunication as two; four require six times as much as two. If,
moreover, there need to be conferences among three, four, etc.,

workers to resolve things jointly, matters get worse yet. The added
effort of communicating may fully counteract the division of the
original task and bring us to the situation of Fig. 2.4.

Figure 2.4. Time versus number of workers—task with complex
interrelationships

Months

Men

Since software construction is inherently a systems effort—an exercise
in complex interrelationships—communication effort is great, and it
quickly dominates the decrease in individual task time brought about
by partitioning. Adding more men then lengthens, not shortens, the
schedule.

Systems Test

No parts of the schedule are so thoroughly affected by sequential
constraints as component debugging and system test. Furthermore, the
time required depends on the number and subtlety of the errors
encountered. Theoretically this number should be zero. Because of

optimism, we usually expect the number of bugs to be smaller than it
turns out to be. Therefore testing is usually the most mis-scheduled part
of programming.

For some years I have been successfully using the following rule of
thumb for scheduling a software task:

1/3 planning

1/6 coding

1/4 component test and early system test
1/4 system test, all components in hand.

This differs from conventional scheduling in several important ways:

1. The fraction devoted to planning is larger than normal. Even so, it
is barely enough to produce a detailed and solid specification, and
not enough to include research or exploration of totally new
techniques.

2. The half of the schedule devoted to debugging of completed code
is much larger than normal.

3. The part that is easy to estimate, i.e., coding, is given only one-
sixth of the schedule.

In examining conventionally scheduled projects, I have found that few
allowed one-half of the projected schedule for testing, but that most did
indeed spend half of the actual schedule for that purpose. Many of

these were on schedule until and except in system testing.[l1

Failure to allow enough time for system test, in particular, is peculiarly
disastrous. Since the delay comes at the end of the schedule, no one is
aware of schedule trouble until almost the delivery date. Bad news, late
and without warning, is unsettling to customers and to managers.

Furthermore, delay at this point has unusually severe financial, as well
as psychological, repercussions. The project is fully staffed, and cost-
per-day is maximum. More seriously, the software is to support other
business effort (shipping of computers, operation of new facilities, etc.)
and the secondary costs of delaying these are very high, for it is almost
time for software shipment. Indeed, these secondary costs may far
outweigh all others. It is therefore very important to allow enough
system test time in the original schedule.

Gutless Estimating

Observe that for the programmer, as for the chef, the urgency of the
patron may govern the scheduled completion of the task, but it cannot
govern the actual completion. An omelette, promised in two minutes,
may appear to be progressing nicely. But when it has not set in two

minutes, the customer has two choices—wait or eat it raw. Software
customers have had the same choices.

The cook has another choice; he can turn up the heat. The result is
often an omelette nothing can save—burned in one part, raw in
another.

Now I do not think software managers have less inherent courage and
firmness than chefs, nor than other engineering managers. But false
scheduling to match the patron's desired date is much more common in
our discipline than elsewhere in engineering. It is very difficult to make
a vigorous, plausible, and job-risking defense of an estimate that is
derived by no quantitative method, supported by little data, and
certified chiefly by the hunches of the managers.

Clearly two solutions are needed. We need to develop and publicize
productivity figures, bug-incidence figures, estimating rules, and so on.
The whole profession can only profit from sharing such data.

Until estimating is on a sounder basis, individual managers will need to
stiffen their backbones and defend their estimates with the assurance
that their poor hunches are better than wish-derived estimates.

Regenerative Schedule Disaster

What does one do when an essential software project is behind
schedule? Add manpower, naturally. As Figs. 2.1 through 2.4 suggest,
this may or may not help.

Let us consider an exarnple.[il Suppose a task is estimated at 12 man-
months and assigned to three men for four months, and that there are
measurable mileposts A, B, C, D, which are scheduled to fall at the end
of each month (Fig. 2.5).

Figure 2.5.

o

Men

[W1

1 £ I 4 o 4] ! =]
Months
Now suppose the first milepost is not reached until two months have
elapsed (Fig. 2.6). What are the alternatives facing the manager?

1. Assume that the task must be done on time. Assume that only the
first part of the task was misestimated, so Fig. 2.6 tells the story
accurately. Then 9 man-months of effort remain, and two months,
so 4 1/2 men will be needed. Add 2 men to the 3 assigned.

Figure 2.6.

Men

AN

] £ e 3 2 Q ' (]
Months

. Assume that the task must be done on time. Assume that the

whole estimate was uniformly low, so that Fig. 2.7 really
describes the situation. Then 18 man-months of effort remain, and
two months, so 9 men will be needed. Add 6 men to the 3
assigned.

Figure 2.7,

o

Men

1 Z 3 q b b / H
Months

3. Reschedule. I like the advice given by P. Fagg, an experienced
hardware engineer, "Take no small slips." That is, allow enough
time in the new schedule to ensure that the work can be carefully
and thoroughly done, and that rescheduling will not have to be
done again.

4. Trim the task. In practice this tends to happen anyway, once the
team observes schedule slippage. Where the secondary costs of
delay are very high, this is the only feasible action. The manager's
only alternatives are to trim it formally and carefully, to
reschedule, or to watch the task get silently trimmed by hasty
design and incomplete testing.

In the first two cases, insisting that the unaltered task be completed in
four months is disastrous. Consider the regenerative effects, for
example, for the first alternative (Fig. 2.8). The two new men, however
competent and however quickly recruited, will require training in the
task by one of the experienced men. If this takes a month, 3 man-
months will have been devoted to work not in the original estimate.
Furthermore, the task, originally partitioned three ways, must be
repartitioned into five parts; hence some work already done will be
lost, and system testing must be lengthened. So at the end of the third
month, substantially more than 7 man-months of effort remain, and 5
trained people and one month are available. As Fig. 2.8 suggests, the
product is just as late as if no one had been added (Fig. 2.6).

Figure 2.8.

m

Men

[Z 3 q o (] ! el
Months

To hope to get done in four months, considering only training time and
not repartitioning and extra systems test, would require adding 4 men,
not 2, at the end of the second month. To cover repartitioning and
system test effects, one would have to add still other men. Now,
however, one has at least a 7-man team, not a 3-man one; thus such
aspects as team organization and task division are different in kind, not
merely in degree.

Notice that by the end of the third month things look very black. The
March 1 milestone has not been reached in spite of all the managerial
effort. The temptation is very strong to repeat the cycle, adding yet
more manpower. Therein lies madness.

The foregoing assumed that only the first milestone was misestimated.
If on March 1 one makes the conservative assumption that the whole
schedule was optimistic, as Fig. 2.7 depicts, one wants to add 6 men
just to the original task. Calculation of the training, repartitioning,
system testing effects is left as an exercise for the reader. Without a
doubt, the regenerative disaster will yield a poorer product, later, than
would rescheduling with the original three men, unaugmented.

Oversimplifying outrageously, we state Brooks's Law:

Adding manpower to a late software project makes it later.

