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INTRODUCTION

In the pages of this book you will read about the myth of artificial in-
telligence. The myth is not that true Al is possible. As to that, the
future of Al is a scientific unknown. The myth of artificial intelligence
is that its arrival is inevitable, and only a matter of time—that we
have already embarked on the path that will lead to human-level Al,
and then superintelligence. We have not. The path exists only in our
imaginations. Yet the inevitability of Al is so ingrained in popular
discussion—promoted by media pundits, thought leaders like Elon
Musk, and even many Al scientists (though certainly not all)—that
arguing against it is often taken as a form of Luddism, or at the very
least a shortsighted view of the future of technology and a dangerous
failure to prepare for a world of intelligent machines.

AsIwill show, the science of Al has uncovered a very large mystery
at the heart of intelligence, which no one currently has a clue how to
solve. Proponents of Al have huge incentives to minimize its known
limitations. After all, AI is big business, and it’s increasingly domi-
nant in culture. Yet the possibilities for future Al systems are limited
by what we currently know about the nature of intelligence, whether
we like it or not. And here we should say it directly: all evidence sug-
gests that human and machine intelligence are radically different.
The myth of Al insists that the differences are only temporary, and
that more powerful systems will eventually erase them. Futurists like
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Ray Kurzweil and philosopher Nick Bostrom, prominent purveyors
of the myth, talk not only as if human-level Al were inevitable, but
as if, soon after its arrival, superintelligent machines would leave us
far behind.

This book explains two important aspects of the Al myth, one sci-
entific and one cultural. The scientific part of the myth assumes that
we need only keep “chipping away” at the challenge of general intelli-
gence by making progress on narrow feats of intelligence, like playing
games or recognizing images. This is a profound mistake: success on
narrow applications gets us not one step closer to general intelligence.
The inferences that systems require for general intelligence—to read
a newspaper, or hold a basic conversation, or become a helpmeet like
Rosie the Robot in The Jetsons—cannot be programmed, learned, or
engineered with our current knowledge of AI. As we successfully
apply simpler, narrow versions of intelligence that benefit from faster
computers and lots of data, we are not making incremental progress,
but rather picking low-hanging fruit. The jump to general “common
sense” is completely different, and there’s no known path from the
one to the other. No algorithm exists for general intelligence. And we
have good reason to be skeptical that such an algorithm will emerge
through further efforts on deep learning systems or any other ap-
proach popular today. Much more likely, it will require a major scien-
tific breakthrough, and no one currently has the slightest idea what
such a breakthrough would even look like, let alone the details of get-
ting to it.

Mythology about Al is bad, then, because it covers up a scientific
mystery in endless talk of ongoing progress. The myth props up belief
in inevitable success, but genuine respect for science should bring us
back to the drawing board. This brings us to the second subject of
these pages: the cultural consequences of the myth. Pursuing the
myth is not a good way to follow “the smart money,” or even a neutral

stance. It is bad for science, and it is bad for us. Why? One reason is
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that we are unlikely to get innovation if we choose to ignore a core
mystery rather than face up to it. A healthy culture for innovation em-
phasizes exploring unknowns, not hyping extensions of existing
methods—especially when these methods have been shown to be in-
adequate to take us much further. Mythology about inevitable suc-
cess in Al tends to extinguish the very culture of invention necessary
for real progress—with or without human-level AI. The myth also
encourages resignation to the creep of a machine-land, where genuine
invention is sidelined in favor of futuristic talk advocating current
approaches, often from entrenched interests.

Who should read this book? Certainly, anyone should who is ex-
cited about AI but wonders why it is always ten or twenty years away.
There is a scientific reason for this, which I explain. You should also
read this book if you think AT’s advance toward superintelligence is
inevitable and worry about what to do when it arrives. While I cannot
prove that AI overlords will not one day appear, I can give you reason
to seriously discount the prospects of that scenario. Most generally,
you should read this book if you are simply curious yet confused about
the widespread hype surrounding Al in our society. I will explain the
origins of the myth of AI, what we know and don’t know about the pros-
pects of actually achieving human-level Al, and why we need to better

appreciate the only true intelligence we know—our own.

IN THIS BOOK

In Part One, The Simplified World, I explain how our AI culture has
simplified ideas about people, while expanding ideas about tech-
nology. This began with AI’s founder, Alan Turing, and involved under-
standable but unfortunate simplifications I call “intelligence errors.”
Initial errors were magnified into an ideology by Turing’s friend and
statistician, I. J. Good, who introduced the idea of “ultraintelligence”

as the predictable result once human-level AI had been achieved.
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Between Turing and Good, we see the modern myth of AI take shape.
Its development has landed us in an era of what I call technological
kitsch—cheap imitations of deeper ideas that cut off intelligent en-
gagement and weaken our culture. Kitsch tells us how to think and
how to feel. The purveyors of kitsch benefit, while the consumers of
kitsch experience a loss. They—we—end up in a shallow world.

In Part Two, The Problem of Inference, I argue that the only type
of inference—thinking, in other words—that will work for human-
level AT (or anything even close to it) is the one we don’t have a clue
how to program or engineer. The problem of inference goes to the
heart of the AI debate because it deals directly with intelligence, in
people or machines. Our knowledge of the various types of inference
dates back to Aristotle and other ancient Greeks, and has been devel-
oped in the fields of logic and mathematics. Inference is already de-
scribed using formal, symbolic systems like computer programs, so
a very clear view of the project of engineering intelligence can be
gained by exploring inference. There are three types. Classic Al ex-
plored one (deduction), modern Al explores another (induction). The
third type (abduction) makes for general intelligence, and, surprise,
no one is working on it—at all." Finally, since each type of inference is
distinct—meaning, one type cannot be reduced to another—we know
that failure to build AT systems using the type of inference undergirding
general intelligence will result in failure to make progress toward arti-
ficial general intelligence, or AGIL.

In Part Three, The Future of the Myth, I argue that the myth has
very bad consequences if taken seriously, because it subverts sci-
ence. In particular, it erodes a culture of human intelligence and in-
vention, which is necessary for the very breakthroughs we will need
to understand our own future. Data science (the application of Al to
“big data”) is at best a prosthetic for human ingenuity, which if used
correctly can help us deal with our modern “data deluge.” If used as a

replacement for individual intelligence, it tends to chew up invest-
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Chapter 1

. e .

THE INTELLIGENCE ERROR

The story of artificial intelligence starts with the ideas of someone
who had immense human intelligence: the computer pioneer Alan
Turing.

In 1950 Turing published a provocative paper, “Computing Ma-
chineryand Intelligence,” about the possibility of intelligent machines.!
The paper was bold, coming at a time when computers were new and
unimpressive by today’s standards. Slow, heavy pieces of hardware sped
up scientific calculations like code breaking. After much preparation,
they could be fed physical equations and initial conditions and crank
out the radius of a nuclear blast. IBM quickly grasped their potential for
replacing humans doing calculations for businesses, like updating
spreadsheets. But viewing computers as “thinking” took imagination.

Turing’s proposal was based on a popular entertainment called
the “imitation game.” In the original game, a man and a woman are
hidden from view. A third person, the interrogator, relays questions to
one of them at a time and, by reading the answers, attempts to deter-
mine which is the man and which the woman. The twist is that the
man has to try to deceive the interrogator while the woman tries to
assist him—making replies from either side suspect. Turing replaced
the man and woman with a computer and a human. Thus began what
we now call the Turing test: a computer and a human receive typed
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questions from a human judge, and if the judge can’t accurately iden-
tify which is the computer, the computer wins. Turing argued that
with such an outcome, we have no good reason to define the machine
as unintelligent, regardless of whether it is human or not. Thus, the
question of whether a machine has intelligence replaces the question
of whether it can truly think.

The Turing test is actually very difficult—no computer has ever
passed it. Turing, of course, didn’t know this long-term result in 1950;
however, by replacing pesky philosophical questions about “conscious-
ness” and “thinking” with a test of observable output, he encouraged the
view of Al as alegitimate science with a well-defined aim. As AT took
shape in the 1950s, many of its pioneers and supporters agreed with
Turing: any computer holding a sustained and convincing conversa-
tion with a person would be, most of us would grant, doing something

that requires thinking (whatever that is).

TURING'S INTUITION /
INGENUITY DISTINCTION

Turing had made his reputation as a mathematician long before he
began writing about Al In 1936, he published a short mathematical
paper on the precise meaning of “computer,” which at the time re-
ferred to a person working through a sequence of steps to get a defi-
nite result (like performing a calculation).? In this paper, he replaced
the human computer with the idea of a machine doing the same work.
The paper ventured into difficult mathematics. But in its treatment of
machines it made no reference to human thinking or the mind. Ma-
chines can run automatically, Turing said, and the problems they
solve do not require any “external” help, or intelligence. This external
intelligence—the human factor—is what mathematicians sometimes

call “intuition.”
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Turing’s 1936 work on computing machines helped launch com-
puter science as a discipline and was an important contribution to
mathematical logic. Still, Turing apparently thought that his early defi-
nition missed something essential. In fact, the same idea of the mind or
human faculties assisting problem-solving appeared two years later in
his PhD thesis, a clever but ultimately unsuccessful attempt to bypass a
result from the Austrian-born mathematical logician Kurt Gédel (more
on this later). Turing’s thesis contains this curious passage about in-
tuition, which he compares with another mental capability he calls
ingenuity:

Mathematical reasoning may be regarded rather schematically
as the exercise of a combination of two faculties, which we may
call intuition and ingenuity. The activity of the intuition con-
sists in making spontaneous judgments which are not the result
of conscious trains of reasoning. These judgments are often but
by no means invariably correct (leaving aside the question as to
what is meant by “correct”). Often it is possible to find some
other way of verifying the correctness of an intuitive judgment.
One may for instance judge that all positive integers are uniquely
factorable into primes; a detailed mathematical argument leads to
the same result. It will also involve intuitive judgments, but they
will be ones less open to criticism than the original judgment
about factorization. I shall not attempt to explain this idea of

“intuition” any more explicitly.

Turing then moves on to explain ingenuity: “The exercise of inge-
nuity in mathematics consists in aiding the intuition through suitable
arrangements of propositions, and perhaps geometrical figures or draw-
ings. Itis intended that when these are really well arranged the validity of

the intuitive steps which are required cannot seriously be doubted.”
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system has limits, at any rate. It cannot prove in its own language
something that is true. In other words, we can see something that the
computer cannot.’

Godel’s result dealt a massive blow to a popular idea at the time,
that all of mathematics could be converted into rule-based opera-
tions, cranking out mathematical truths one by one. The zeitgeist was
formalism—not talk of minds, spirits, souls, and the like. The formalist
movement in mathematics signaled a broader turn by intellectuals
toward scientific materialism, and in particular, logical positivism—a
movement dedicated to eradicating traditional metaphysics like Pla-
tonism, with its abstract Forms that couldn’t be observed with the
senses, and traditional notions in religion like the existence of God.
The world was turning to the idea of precision machines, in effect.
And no one took up the formalist cause as vigorously as the German

mathematician David Hilbert.

HILBERT’S CHALLENGE

At the outset of the twentieth century (before Godel), David Hilbert
had issued a challenge to the mathematical world: show that all of
mathematics rested on a secure foundation. Hilbert’s worry was un-
derstandable. If the purely formal rules of mathematics can’t prove
any and all truths, it’s at least theoretically possible for mathematics
to disguise contradictions and nonsense. A contradiction buried some-
where in mathematics ruins everything, because from a contradic-
tion anything can be proven. Formalism then becomes useless.
Hilbert expressed the dream of all formalists, to prove finally that
mathematics is a closed system governed only by rules. Truth is just
“proof.” We acquire knowledge by simply tracing the “code” of a proof
and confirming no rules were violated. The larger dream, thinly dis-
guised, was really a worldview, a picture of the universe as itself a

mechanism. Al began taking shape as an idea, a philosophical posi-
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tion that might also be proven. Formalism treated intelligence as a
rule-based process. A machine.

Hilbert issued his challenge at the Second International Congress
of Mathematicians in Paris in 1900. The intellectual world was lis-
tening. His challenge had three main parts: to prove that mathe-
matics was complete; to prove that mathematics was consistent; and
to prove that mathematics was decidable.

Godel dealt the first and second parts of Hilbert’s challenge a
death blow with the publication of his incompleteness theorems in
1931. The question of decidability was left unanswered. A system is de-
cidable if there is a definite procedure (a proof, or sequence of deter-
ministic, obvious steps) to establish whether any statement con-
structed using the rules of the system is true or false. The statement
2+ 2=4 must be True, and 2+ 2=5 must be False. And so for all state-
ments that one can validly make using the symbols and rules of the
system. Since arithmetic was thought to be the foundation of mathe-
matics, proving mathematics was decidable amounted to proving the
result for arithmetic and its extensions. This would amount to saying
that mathematicians, playing a “game” with rules and symbols (the
formalist idea), were in fact playing a valid game that never led to con-
tradiction or absurdity.

Turing was fascinated with Godel’s result, which demonstrated
not the power of formal systems but rather their limitations. He took
up work on the remaining part of Hilbert’s challenge, and began
thinking in earnest about whether a decision procedure for formal
systems might exist. By 1936, in his paper “Computable Numbers,” he
proved that it must not. Turing realized that Godel’s use of self-
reference also applied to questions about decision procedures or, in
effect, computer programs. In particular, he realized that there must
exist (real) numbers that no definite method could “calculate,” by
writing out their decimal expansion, digit by digit. He imported a re-

sult from the nineteenth-century mathematician Georg Cantor, who
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proved that real numbers (those with a decimal expansion) were more
numerous than the integers, even though real numbers and integers
are both infinite. Turing stood on the shoulders of giants, perhaps.
But in the end, his work in “Computable Numbers” proved again a
negative. It was a limiting result: no universal decision procedure was
possible. In other words, rules—even in mathematics—aren’t enough.

Hilbert was wrong.

IMPLICATIONS FOR Al

What is important to Al here is this: Turing disproved that mathe-
matics was decidable by inventing a machine, a deterministic ma-
chine, requiring no insight or intelligence to solve problems. Today,
we refer to his abstract formulation of a machine as a Turing machine.
I am typing on one right now. Turing machines are computers. It is
one of the great ironies of intellectual history that the theoretical
framework for computation was put in place as a side-thought, a
means to another end. While working to disprove that mathematics
itself was decidable, Turing first invented something precise and me-
chanical, the computer.

In his 1938 PhD thesis, Turing hoped that formal systems might be
extended by including additional rules (then sets of rules, and sets of
sets of rules) that could handle the “Godel problem.” He discovered,
rather, that the new, more powerful system would have a new, more
complicated Godel problem. There was no way around Gédel’s incom-
pleteness. Buried in the complexities of Turing’s discussion of formal
systems, however, is an odd suggestion, relevant to the possibility of
Al Perhaps the faculty of intuition cannot be reduced to an algo-
rithm, to the rules of a system?

Turing wanted to find a way out of Godel’s limiting result in his
1938 thesis, but he discovered that this was impossible. Instead, he
switched gears, exploring how, as he put it, to “greatly reduce” the re-
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quirement of human intuition when doing calculations. His thesis
considered the powers of ingenuity, by creating ever more complicated
systems of rules. (Ingenuity, it turned out, could become universal—
there are machines that can take as input other machines, and thus
run all the machines that can be built. This insight, technically a uni-
versal Turing machine and not a simple Turing machine, was to be-
come the digital computer.) But in his formal work on computing,
Turing had (perhaps inadvertently) let the cat out of the bag. By al-
lowing for intuition as distinct from and outside of the operations of a
purely formal system like a computer, Turing in effect suggested that
there may be differences between computer programs that do math
and mathematicians.

It was a curious turn, therefore, that Turing made from his early
work in the 1930s to the more wide-ranging speculation about the
possibility of intelligent computers in “Computing Machinery and
Intelligence,” published a little over a decade later. By 1950, discussion
of intuition disappeared from Turing’s writings about the implica-
tions of Godel. His interests turned, in effect, to the possibility that
computers might become “intuition-machines” themselves. In essence,
he decided that Godel’s result didn’t apply to the question of Al: if we
humans are highly advanced computers, Godel’s result means only
that there are some statements that we cannot understand or see to be
true, just as with less complicated computers. The statements might
be fantastically complicated and interesting. Or, possibly, they might
be banal yet overwhelmingly complex. Gédel’s result left open the
question of whether minds were just very complicated machines,
with very complicated limitations.

Intuition, in other words, had become part of Turing’s ideas about
machines and their powers. Gédel’s result couldn’t say (to Turing,
anyway) whether minds were machines or not. On the one hand, in-
completeness says that some statements can be seen to be true using

intuition, but cannot be proved by a computer using ingenuity. On
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the other hand, a more powerful computer can use more axioms (or
more bits of relevant code) and prove the result—thus showing that
intuition is not beyond computation for that problem. This becomes
an arms race: more and more powerful ingenuity substituting for in-
tuition on more and more complicated problems. No one can say who
wins the race, so no one can make a case—using the incompleteness
result—about the inherent differences between intuition (mind) and
ingenuity (machine). But as Turing no doubt knew, if this were true,
then so too was at least the possibility of artificial intelligence.

Thus, between 1938 and 1950, Turing had a change of heart about
ingenuity and intuition. In 1938, intuition was the mysterious “power
of selection” that helped mathematicians decide which systems to
work with and what problems to solve. Intuition was not something
in the computer. It was something that decided things about the com-
puter. In 1938, Turing thought intuition wasn’t part of any system,
which suggested not only that minds and machines were fundamen-
tally different but that Al-as-human-thinking was well-nigh impossible.

Yet by 1950 he had reversed his position. With the Turing test, he
offered a challenge for skeptics and a sort of defense of intuition in
machines, asking in effect: Why not? This was a radical about-face. A
new view of intelligence, it seemed, was taking shape.

Why the shift? Something outside the world of strict mathematics
and logic and formal systems had happened to Turing between 1938
and 1950. It had happened, in fact, to all of Great Britain, and indeed
to most of the world. What happened was the Second World War.
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The codes were generated by a typewriter-looking device known
as the Enigma, a kind of machine that had been in commercial use
since the 1920s but that the Germans had strengthened significantly
for use in the war. Modified Enigmas were used for all strategic com-
munications in the Nazi war effort. The Luftwaffe, for instance, used
the Enigma machine in its conduct of the air war, as did the Kriegs-
marine in its naval operations. Messages encrypted with the modified
Enigma were widely thought to be undecipherable.

Turing’s role in Bletchley and his subsequent rise to national hero
after the war is a story that has been told many times. (In 2014, the
major motion picture The Imitation Game dramatized his work at
Bletchley, as well as his subsequent role in developing computers.)
Turing’s major breakthrough was, by pure mathematical standards,
relatively uninteresting because it exploited an old idea from deduc-
tive logic. The method that he and others half-jokingly referred to as
“Turingismus” involved eliminating large numbers of possible solu-
tions to Enigma codes by finding combinations with contradictions.
Contradictory combinations are impossible; we cannot have both “A”
and “not-A” in some logical system, just as we cannot be both “at the
store” and “at home” at the same time. Turingismus was a winning idea,
and became a huge success at Bletchley. It did what was required of the
“boy geniuses” sequestered in the think tank by speeding up the task of
decrypting Enigma messages. Other scientists devised different strate-
gies for cracking the codes at Bletchley.* Ideas were tested on a machine
called a Bombe—its tongue-in-cheek name borrowed from a prede-
cessor machine in Poland, the Bomba, and possibly inspired by the
small noise made when a calculation was finished. Think of the Bombe
as a proto-computer, capable of running different programs.

The advantage in war swung from the Axis to Allied powers by
1943 or thereabouts, in no small part because of the sustained effort
of the Bletchley code-crackers. The team was a celebrated success,

and its members became war heroes. Careers were made. Bletchley,
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meanwhile, also proved a haven for thinking about computation:
Bombes were machines, and they ran programs to solve problems that

humans, by themselves, could not.

INTUITIVE MACHINES? NO.

For Turing, Bletchley played a major role in crystallizing his ideas
about the possibility of intelligent machines. Like his colleagues Jack
Good and Claude Shannon, Turing saw the power and utility of their
“brain games” as cryptanalysts during the war: they could decipher
messages that were otherwise completely opaque to the military. The
new methods of computation were not just interesting for consid-
ering automated chess-playing. Computation could, quite literally,
sink warships.

Turing was thinking about an abstraction (yet again): minds and
machines, or the general idea of intelligence. But there was something
odd about his view of what it meant. In the 1940s, intelligence was a
trait not typically attributed to formal systems like the purely mechan-
ical code-breaking Bombes of Bletchley. Godel had demonstrated that,
in general, truth cannot be reduced to formality, as in playing a formal
game with a set sequence of rules—but recall that his proof left open
the question of whether specific machines might actually incorporate
the intuition that minds use to make choices about rules to follow,
even if no supreme system could exist that could prove everything
(which Gédel had shown so definitely in 1931).

After Bletchley, Turing turned increasingly to the question of
whether powerful machines could be built that used intuition and in-
genuity. The vast number of possible combinations to check to deci-
pher German codes swamped human intuition. But systems with the
right programs could accomplish the task by simplifying such vast
mathematical possibilities. To Turing, this suggested that intuition
could be embodied in machines. In other words, the success at Bletchley
implied that perhaps an artificial intelligence could be built.
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To make sense of his line of thought, however, some particularidea
about “intelligence” had to be settled on. Intelligence as displayed by
humans needed to be reducible—analyzable—in terms of the powers
of a machine. In essence, intelligence had to be reducible to problem-
solving. That is what playing chess is, after all, and that is what breaking
a code is, as well.

And here we have it: Turing’s great genius, and his great error,
was in thinking that human intelligence reduces to problem-solving.
Whether or not the ideas about intelligent machines in his 1950 “Com-
puting Machinery and Intelligence” became explicit in the war years,
itis clear that his experience at Bletchley crystallized his later view of
Al and it is clear that Al in turn followed closely and without neces-
sary self-analysis precisely in his path.

But a closer look at the Bletchley code-cracking success immedi-
ately reveals a dangerous simplification in the philosophical ideas
about man and machine. Bletchley was an intelligent system—a co-
ordination of military efforts (including spying and espionage, as well
as capture of enemy vessels), social intelligence between the military
and the various scientists and engineers at Bletchley, and (as with all
of life) sometimes sheer dumb luck. In truth, as a practical reality, the
German-modified Enigma was unbreakable by purely mechanical
means. The Germans knew this based on mathematical arguments
about the difficulty of mechanical deciphering. Part of Bletchley’s
success was, ironically, the stubborn confidence of Nazi commanders
in the impregnability of the Enigma ciphers—thus they fail at crucial
times to modify or strengthen the machines after discovering certain
ciphers had been cracked, blaming covert spying operations rather
than scientific defeat. But the fog of war mixes together not just new
technologies but new forms of human and social intelligence. War is
not chess.

Early in the war, for instance, Polish forces had recovered impor-
tant fragments of Enigma communications that later provided in-
valuable clues to Bletchley efforts. The Poles had used these fragments
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(along with others from Russian sources) to develop their own, sim-
pler Bomba as early as 1938. Turing’s much improved version in the
early months of 1940—the Bombe using his “Turingismus”—relied
on the early work the Poles made possible by events on the battlefield.
Turing, too, would see his own design improved in response to im-
provements in the Enigma by his colleague Gordon Welchman, by
which a “diagonal board” was added to further simplify the search
for contradictions.” Here were two human minds, using intuition,
working together socially.

More events in the theater of war proved vitally important. Off the
shores of Norway, a British aircraft carrier was sunk on June 8, 1940.
The attack provided the location of German U-boats, albeit at the
heavy cost of many sailors left at the bottom of the sea. Just weeks be-
fore, in late April 1940, the German patrol boat VP2623, a particularly
devastating member of the fleet, was captured with a trove of Enigma
evidence inside. The necessary pieces of the Enigma puzzle were get-
ting into Allied hands, and finding their way to the Bletchley group.

These bits and pieces by themselves were grossly inadequate for
quick deciphering of future German communications, amounting to
what one Turing biographer called “guesswork” for Bletchley crypt-
analysts. But they facilitated an all-important first step in figuring out
how to program the Bombes. Turing and colleagues called it the
“weight of evidence,” borrowing a term coined by the American sci-
entist and logician C. S. Peirce (who is prominently featured in Part
Two of this book).®

Weight of evidence can be understood by mathematicians in dif-
ferent ways, but for Bletchley’s success (and for larger issues regarding
Al) itamounts to the application of informed guesses, or intuition, to
give direction to ingenuity, or machines. A scrap of deciphered text
recovered from a captured U-boat could mean anything, just as a
white ball found near a bag of white balls could mean anything, butin
each case, we can make intelligent guesses to understand what hap-
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pened. We think the ball is very likely from the bag, even though we
didn’t see it taken out. Still, it’s a guess. Guesses of this sort can’t be
proven true, but the better human intuition does at setting initial con-
ditions for devising mechanical procedures, the better chance those
procedures have of terminating on desired outcomes, rather than,
say, running on aimlessly in false or misleading directions. Weight of
evidence—guessing—made Bombes work.

Bletchley scientists were not merely feeding information into
Bombes, leaving them to do the tireless and important work of elimi-
nating millions of incorrect codes or ciphers. To be sure, the Bombes
were necessary—this is what Turing saw so clearly, and what no
doubt suffused his imagination with the possibility that his “mechan-
ical procedures” could reproduce or supersede human intelligence.
But the fact is that the Bletchley group was first and foremost engaged
in guesswork. They were forming hypotheses by recognizing the clues
hidden in the patchwork of scraps of instructions, ciphers, and mes-
sages coming in from the battlefield. Guessing is known in science as
forming hypotheses (a term Charles Sanders Peirce also used), and it
is absolutely fundamental to the advancement of human knowledge.
Small wonder then that the Bletchley effort amounted to a system of
guessing well. Its sine qua non was not mechanical but rather what we
might callinitial intelligent observation. The Bombes had to be pointed
at something, and then set on their course.

In line with a theme we will explore in Part Two, Peirce had recog-
nized early on, by the late nineteenth century, that every observation
that shapes the complex ideas and judgments of intelligence begins
with a guess, or what he called an abduction:

Looking out of my window this lovely spring morning I see an
azaleain full bloom. No, no! I do not see that; though that is the
only way I can describe what I see. That is a proposition, a sen-

tence, a fact; but what I perceive is not proposition, sentence,
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error and, further, one that has been passed down through genera-
tions of Al scientists, right up to the present day.

TURING'S INTELLIGENCE ERROR
AND NARROW Al

The problem-solving view of intelligence helps explain the produc-
tion of invariably narrow applications of Al throughout its history.
Game playing, for instance, has been a source of constant inspiration
for the development of advanced Al techniques, but games are simpli-
fications of life that reward simplified views of intelligence. A chess pro-
gram plays chess, but does rather poorly driving a car. IBM’s Watson
system plays Jeopardy!, but not chess or Go, and massive programming
or “porting” efforts are required to use the Watson platform to perform
other data mining and natural language processing functions, as with
recent (and largely unsuccessful) forays into health care.

Treating intelligence as problem-solving thus gives us narrow ap-
plications. Turing no doubt knew this, and speculated in his 1950
paper that perhaps machines could be made to learn, thus overcoming
the constraints that are a natural consequence of designing a com-
puter system narrowly to solve a problem. If machines could learn to
become general, we would witness a smooth transition from specific
applications to general thinking beings. We would have AL

What we now know, however, argues strongly against the learning
approach suggested early on by Turing. To accomplish their goals,
what are now called machine learning systems must each learn some-
thing specific. Researchers call this giving the machine a “bias.” (‘This
doesn’t carry the negative connotation it does in the broader social
world; it doesn’t mean that the machine is pigheaded or difficult to
argue with, or has an agenda in the usual sense of the word.) A bias in
machine learning means that the system is designed and tuned to

learn something. But this is, of course, just the problem of producing
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narrow problem-solving applications. (This is why, for example, the
deep learning systems used by Facebook to recognize human faces
haven’t also learned to calculate your taxes.)

Even worse, researchers have realized that giving a machine learning
system a bias to learn a particular application or task means it will do
more poorly on other tasks. There is an inverse correlation between a
machine’s success in learning some one thing, and its success in
learning some other thing. Even seemingly similar tasks are inversely
related in terms of performance. A computer system that learns to
play championship-level Go won't also learn to play championship-
level chess. The Go system has been specifically designed, with a par-
ticular bias toward learning the rules of Go. Its learning curve, as they
call it, thus follows the known scoring of that particular game. Its
learning curve regarding some other game, say Jeopardy! or chess, is
useless—in fact, nonexistent.

Machine learning bias is typically understood as a source of learning
error, a technical problem. (It has also taken on the secondary meaning,
hewing to ordinary language usage, of producing results that are unin-
tentionally and unacceptably weighted by, say, race or gender.) Machine
learning bias can introduce error simply because the system doesn’t
“look” for certain solutions in the first place. But bias is actually neces-
sary in machine learning—it’s part of learning itself.

A well-known theorem called the “no free lunch” theorem proves
exactly what we anecdotally witness when designing and building
learning systems. The theorem states that any bias-free learning system
will perform no better than chance when applied to arbitrary prob-
lems. This is a fancy way of stating that designers of systems must give
the system a bias deliberately, so it learns what’s intended. As the
theorem states, a truly bias-free system is useless. There are compli-
cated techniques, like “pre-training” on data using unsupervised
methods that expose the features of the data to be learned. All of
this is part and parcel of successful machine learning. What's left out
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of the discussion, however, is that tuning a system to learn what’s in-
tended by imparting to it a desired bias generally means causing it to
become narrow, in the sense that it won't then generalize to other
domains. Part of what it means to build and deploy a successful ma-
chine learning system is that the system is not bias-free and general
but focused on a particular learning problem. Viewed this way, nar-
rowness is to some extent baked in to such approaches. Success and
narrowness are two sides of the same coin.

This fact alone casts serious doubt on any expectation of a smooth
progression from today’s Al to tomorrow’s human-level Al People
who assume that extensions of modern machine learning methods
like deep learning will somehow “train up,” or learn to be intelligent
like humans, do not understand the fundamental limitations that
are already known. Admitting the necessity of supplying a bias to
learning systems is tantamount to Turing’s observing that insights
about mathematics must be supplied by human minds from outside
formal methods, since machine learning bias is determined, prior to

learning, by human designers.'

TURING’S LEGACY

To sum up the argument, the problem-solving view of intelligence
necessarily produces narrow applications, and is therefore inadequate
for the broader goals of AI. We inherited this view of intelligence
from Alan Turing. (Why, for instance, do we even use the term arti-
ficial intelligence, rather than, perhaps, speaking of “human-task-
simulation”?)!! Turing’s great genius was to clear away theoretical
obstacles and objections to the possibility of engineering an autono-
mous machine, but in so doing he narrowed the scope and definition of
intelligence itself. It is no wonder, then, that ATbegan producing narrow

problem-solving applications, and it is still doing so to this day.
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Turing, again, disliked viewing thinking or intelligence as some-
thing social or situational. Yet despite his proclivities to see human
intelligence as an individual mechanical process—ushering in untold
media references to the “mechanical brain” as early computers ap-
peared in the 1940s—it is obvious that talk of intelligence always in-
volves, as it must necessarily involve, situating it in a broader context.
General (non-narrow) intelligence of the sort we all display daily is
not an algorithm running in our heads, but calls on the entire cul-
tural, historical, and social context within which we think and act in
the world. AT would hardly have moved forward if developers had em-
braced such a large and complicated understanding of intelligence—
that is true enough. At the same time, as a result of Turing’s simplifi-
cation, we've ended up with narrow applications, and we have no
reason to expect general ones without a radical reconceptualization
of what we mean by AL

Turing anticipated some of these difficulties in his 1950 paper by
suggesting that machines might be made to learn. What we now
know, however (contra recent excitement about machine learning), is
thatlearningitselfis a kind of problem-solving, made possible only by
introducing a bias into the learner that simultaneously makes possible
the learning of a particular application, while reducing performance on
other applications. Learning systems are actually just narrow problem-
solving systems, too. Given that there is no known theoretical bridge
from such narrow systems to general intelligence of the sort displayed by
humans, AT has fallen into a trap. Early errors in understanding intelli-
gence have led, by degrees and inexorably, to a theoretical impasse at the
heart of AL

Consider again Turing’s original distinction between intuition
and ingenuity. The question of AI for him was whether intuition—
that which is supplied by the designer of a system—could in fact be
“pulled into” the formal part of the system (the ingenuity machine),
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thus making a system capable of escaping the curse of narrowness by
using intuition to choose its own problems—to grow smarter and to
learn. So far, no one has done this with any computer. No one even
has the slightest clue how this would work. We do know that designers
use intuition outside AI systems to tell such systems what specific
problems to solve (or to learn to solve). The question of systems using
intuition autonomously goes straight to the core of what I will call the
Problem of Inference, to which we will turn in Part Two.

There will also be much more to say about the “narrowness trap” of
Al in Part Two. First, however, there is more ground to cover in this
part. We will turn next to superintelligence, another intelligence error,

and a natural extension of the first.
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sible and therefore not requiring further explanation. But it does; we
do need to understand the “how.”

If we suppose a simple enhancement like superior hardware, the
proposal is too trivial and silly to entertain further. Even a stalwart
believer in inexorable progress like Ray Kurzweil isn’t likely to reduce
intelligence that far—we don'’t think adding RAM to a MacBook
makes it (really and truly) more intelligent. The device is now faster,
and can load bigger applications, and so on. But if intelligence means
anything interesting, it must be more complicated than loading ap-
plications faster. This harder part of intelligence is left unsaid.

Or suppose we borrow language from the biological world (as AI
so often does), and then confidently declare that computational capa-
bility doesn’t devolve, it evolves. Looking deeper, we see that this ar-
gument is plagued once again by an inadequate and naive view of
intelligence. The problem—a glaring omission—is that we have no
evidence in the biological world of anything intelligent ever designing
a more intelligent version of itself. Humans are intelligent, but in the
span of human history we have never constructed more intelligent
versions of ourselves.

A precondition for building a smarter brain is to first understand
how the ones we have are cognitive, in the sense that we can imagine
scenarios, entertain thoughts and their connections, find solutions,
and discover new problems. Things occur to us; we reason through
our observations and what we already know; answers pop into our
heads. All of this buzz of biclogical magic remains opaque, its “pro-
cessing” still vastly uncharted. And yet, we have been contemplating
and investigating our thinking processes and brain functions for
millennia.

Why should a generally intelligent machine suddenly have insight
into its own global cognitive capacities, when we clearly do not? And
even if it did, how could the machine use this knowledge to make it-

self smarter?
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This is not a matter of self-improvement. We can, for instance,
make ourselves more intelligent by reading books or going to school;
educating ourselves makes possible further intellectual development,
and so on. All of this is uncontroversial. And none of it is the point.
One major problem with assumptions about increases in intelligence
in Al circles is the problem of circularity: it takes (seemingly general)
intelligence to increase general intelligence. A closer look reveals no
linear progression, but only mystery.

VON NEUMANN AND
SELF-REPRODUCING MACHINES

Good introduced the idea of self-improving Als leading to ultraintel-
ligence in the mid-1960s, but nearly two decades earlier John Von
Neumann had considered the idea and rejected it. In a 1948 talk at the
Institute for Advanced Studies at Princeton, Von Neumann explained
that, while human reproduction often improves on prior “designs,” it’s
clear that machines tasked with designing new and better machines face
a fundamental stumbling block, since any design for a new machine
must be specified in the parent machine. The parent machine would
then necessarily be more complex, not less, than its creation: “An organ-
ization which synthesizes something is necessarily more complicated, of
a higher order, than the organization it synthesizes,” he said.?

In other words, Von Neumann pointed to a fundamental differ-
ence between organic life as we know it, and the machines we build. Jack
Good’s prediction of ultraintelligence was a bit of science fiction.

Von Neumann theorized that a self-reproducing machine would
need, at minimum, eight parts, including a “stimulus organ,” a “fusing
organ” to connect parts together, a “cutting organ” to sever connec-
tions, and a “muscle” for motion. He then sketched plausible mecha-
nisms for cognitive improvements including a randomizing element,
akin to biological mutation, to allow for the necessary modifications.
But Von Neumann thought that, rather than advance the machine’s
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thinking, such random mutations were more likely to “devolve” de-
sired functions and capacities. The most probable outcome was non-
function, the equivalent of a lethal change: “So, while this system is
exceedingly primitive, it has the trait of an inheritable mutation, even
to the point that a mutation made at random is probably lethal, but
may be non-lethal and inheritable.”

For the machines to get something better, essentially smarter,
from their designs they would need a creative element added to their
stimulus and fusing organs. Unlike biological evolution, the idea wasn’t
to wait around millions of years, but to require of parent systems the
necessary Promethean spark in themselves, leading more or less di-
rectly to better designs. This was fiction, thought Von Neumann. As
he explained to his colleagues at Princeton, no science or engineering
theories could make sense of it. Von Neumann, no Luddite, was ex-
ploding the “intelligence explosion.”

One obvious flaw in predictions of an intelligence explosion leading
to superintelligence is that we already have human-level intelligence—
we are human. By Good’s logic, we should then be capable of de-
signing something better than human. This is just a restatement of the
goals of the field of A, so we are getting trapped in a circle. The
humans who are Al researchers already know it’s a mystery how to
design smarter artifacts, just as Von Neumann explained. Transferring
this mystery from our own intelligence to an envisioned machine’s
doesn’t help. To unpack this more, consider a genius Al researcher
we'll call Alice.

INTELLIGENCE EXPLOSIONS,
THE VERY IDEA

Let’s suppose Alice is an AT scientist who has a dull neighbor, Bob.
Bob has common sense, can read the newspaper, and can carry on a
conversation (although perhaps it’s boring), so he’s worlds ahead of
the best Al systems coming out of Google’s DeepMind.
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Alice works for an amazing new startup (soon to be acquired by
Google), and wants to build an Al that is as smart as Bob. She’s
sketched out two systems, in the spirit of Daniel Kahneman’s well-
known System 1 and System 2.* They are intuition pumps or meta-
phors that give a rough blueprint for the types of problems needing to
be solved to get to artificial general intelligence. In Alice’s context,
we'll call these System X, for competence on well-defined tasks like
game play (as in chess or Go) and System Y, for general intelligence.
The latter system includes Bob’s competence at reading and conversa-
tion, but also the murkier area of novel ideas and insights.

Bob is terrible at chess, and in fact his X system is pathetic com-
pared not only to a system like AlphaGo but also to many other
humans. His short-term memory is worse than most people’s; he
scores poorly on IQ tests; and he struggles with crossword puzzles. As
for his Y system, his general intelligence shows a conspicuous lack of
interest in or ability at novel or insightful thinking. Bob is not the
kind of neighbor that gets many invitations to dinner parties.

Alice’s strategy is first to design a Bob-Machine that matches Bob’s
intelligence. Shereasons thatif she succeedsin creatinga Bob-Machine,
that machine can design a smarter version of itself, leading eventually
to an intelligence explosion. Now, again, keep in mind that designing
a Bob-Machine is no easy task, because Bob has a System Y—which
means he has solved the problem of commonsense reasoning and has
general cognitive abilities. He can pass a Turing test, for one. And he
can read children’s stories and the sports section and summarize
them. Bob therefore blows away Google’s best natural language un-
derstanding systems, like Ray Kurzweil’s Talk to Books semantic
search tool. This is why Alice is excited about her Bob-Machine project;
it would be a huge advance in AL

The question is: how to get there? Alice’s first approach is to maxi-
mize the Bob-Machine’s System X capabilities. She gives it a computer

memory and access to the web via Google. Unfortunately, this ver-
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sion of the Bob-Machine quickly proves Stuart Russell’s point that
supercomputers without real intelligence just get to wrong answers
more quickly.® The Bob-Machine remembers the wrong things and
fails to ask the right questions. All the improvements on the System X
side just make the machine more competent at recalling and coughing
up crackpot theories and making pronouncements about the world
with more facts, all misused and poorly understood from a System Y
perspective. Sure, the Bob-Machine plays flawless chess, but its chess
competence makes it less interesting to Alice, who realizes that the
machine she has created has no hope of designing a “more intelligent”
version of itself.

In an aha! moment, though, Alice realizes that Bob himself couldn’t
design a smarter version of himself. So how could the Bob-Machine?
The problem, she thinks, is that System X optimization does not
supply resources to System Y of the necessary kind. The Bob-Machine
(like Bob himself) has to see its own intelligence as something of a
certain quantity, assess how it is limited and to what extent, and then
actively redesign itself so as to become smarter in the important and
relevant ways. But this is precisely the way in which the Bob-Machine
(like Bob) is unintelligent! The Bob-Machine can’t do this, because it
lacks these System Y capabilities for insight, discovery, and innova-
tion. Alice must go back to the drawing board.

Alice then decides that the Bob-Machine is just too stupid to be
part of a bootstrapping process to superintelligence. (In a moment of
sheer panic, it occurs to her that this logic jeopardizes the entire en-
terprise of getting to superintelligence, but she manages to suppress
this concern quickly.) Alice decides, in deference to Al’s founder and
to the eager-beaver marketing department of her company, Ultra++,
that she’ll instead focus on designing a machine as intelligent as Alan
Turing, called the Turing-Machine.

Now, assuming that Turing was smarter than Alice (though who is

to say?), she can’t just design a Turing-Machine directly, and anyway
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scientists from the responsibility of needing to make scientific break-
throughs or develop revolutionary ideas. Artificial intelligence just
evolves, like we did. We can call the futurists and Al believers in this
camp evolutionary technologists, or ETs.

The ET view is popular among new age technologists like Wired
cofounder Kevin Kelly, who argues in his 2010 book What Technology
Wants that AI won’t come about as the work of a “mad scientist,” but
simply as an evolutionary process on the planet, much like natural
evolution.® According to this view, the world is becoming “intelli-
genized” (Kelly’s word), and more and more complex and intelligent
forms of technology are emerging without explicit human design.”
Such thinkers also might envision the World Wide Web as a giant,
growing brain. Humans, in this view, become a link in a cosmic his-
torical chain that reaches into the future to true AI, where we get left
behind or assimilated.

Organic life evolves extremely slowly, but ETs view technolog-
ical progress as accelerating. As Kurzweil famously argues, tech-
nology is getting more complicated on an accelerating curve, according
to a law he thinks is discernible in history, the Law of Accelerating
Returns. Thus, human-level intelligence and then superintelligence
will emerge on the planet in drastically short timeframes, as com-
pared to organic evolution. In decades or even years, we will be con-
fronted with them.

This is a simple, tidy story of humanity. We are transitioning to
something else, which will be smarter and better.

Notice that the story is not testable; we just have to wait around
and see. If the predicted year of true AT’s coming is false, too, another
one can be forecast, a few decades into the future. Al in this sense is
unfalsifiable and thus—according to the accepted rules of the scien-
tific method—unscientific.

Note that I'm not saying that true Al is impossible. As Stuart Rus-
sell and other AI researchers like to point out, twentieth-century
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scientists such as Ernest Rutherford thought that building an atomic
bomb was impossible, but Leo Szilard figured out how nuclear chain
reactions work—a mere twenty-four hours after Rutherford pro-
nounced the idea dead.® It’s a good reminder not to bet against sci-
ence. But note that nuclear chain reactions grew from scientific theo-
ries that were testable. Theories about mind power evolving out of
technology aren’t testable.

The claims of Good and Bostrom, presented as scientific inevita-
bility, are more like imagination pumps: just think if this could be!
And there’s no doubt, it would be amazing. Perhaps dangerous. But
imagining a what-if scenario stops far short of serious discussion
about what’s up ahead.

For starters, a general superintelligence capability must be con-
nected to the broader world in such a way that it can observe and
“guess” more productively than we do. And if intelligence is also so-
cial and situational, as it seems it must be, then an immense amount
of contextual knowledge is required to engineer something more in-
telligent. Good’s problem is not narrow and mechanical, but rather
pulls into its orbit the whole of culture and society. Where is the
barest, even remotely plausible blueprint for this?

Good’s proposal, in other words, is based once again on an inade-
quate and simplified view of intelligence. It presupposes the original
intelligence error, and adds to it yet another reductive sleight of hand:
that an individual mechanical intelligence can design and constructa
greater one. That a machine would be situated at such an Archime-
dean point of creation seems implausible, to put it mildly. The idea of
superintelligence is in reality a multiplication of errors, and it repre-
sents in barest form the extension of the fantasy about the rise of AL

To dig deeper into all of this, we should push further into this fan-
tasy. It’s called the Singularity, and we turn to it next.
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THE SINGULARITY,

THEN AND NOW

In the 19508, the mathematician Stanislaw Ulam recalled an old con-
versation with John Von Neumann, in which Von Neumann dis-
cussed the possibility of a technological turning point for humanity:
“the ever accelerating progress of technology . . . gives the appearance
of approaching some essential singularity in the history of the race
beyond which human affairs, as we know them, could not continue.”

Von Neumann likely made this comment as digital computers
were arriving on the technological scene. But digital computers were
the latest innovation in a long and seemingly unbroken sequence of
technologies.” By the 1940s, it had become clear that the scientific and
industrial revolutions of the past three hundred years had set in mo-
tion forces of immense, symbiotic power: the fruits of new science
seeded the development of new technology, which in turn made pos-
sible more scientific discovery. For example, science gave us the tele-
scope, which in turn improved astronomy.

Inextricably tied to changes in science and technology was social
change—rapid, chaotic at times, and seemingly irreversible. City
populations exploded (with considerable doses of squalor and injus-
tice), and entirely new forms of social and economic organization
emerged, seemingly overnight. Steam engines revolutionized trans-

portation, as did, later, internal combustion engines. Trains, trolleys,



