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Preface

“The field of intelligence is dead.” So said one of my graduate-school
mentors, Lee Cronbach, himself an expert on intelligence, in 1972. T had
just started as a graduate student at Stanford and had gone to see him
about possibly doing some work with him in the field of intelligence; but
he displayed no optimism about the field. Perhaps I should not have been
surprised. About a decade earlier, one of his colleagues at Stanford, Quinn
McNemar, had written a paper published under the title “Lost: Our
Intelligence? Why?” (McNemar, 1964).

The collaboration with Cronbach never happened, and it was not until
my second year as a graduate student that I started working in the field of
intelligence under the mentorship of my primary adviser, Gordon Bower.
But the year that I started working on intelligence, unbeknownst to me,
the field that McNemar suggested was lost was found again — or, to put it
in terms of Cronbach’s metaphor, it became undead and resurrected. Earl
Hunt, to whom this volume is dedicated, and two of his colleagues had
just published a book chapter that, in some respects, would bring intelli-
gence to life (Hunt, Lunneborg, & Lewis, 1975). Hunt and his colleagues
showed that a productive path to understanding intelligence would be
through the cognitive analysis of intellectual functioning. Hunt and col-
leagues followed up two years later with a cognitive analysis specifically
of verbal ability (Hunt, Lunneborg, 8 Lewis, 1975). Two years after that,
I proposed a related although in some respects competing approach to
studying intelligence (Sternberg, 1977). The rest, as they say, is history.
Today, the field of intelligence research is about as active as any field could
be. Indeed, its form seems to change every few years, or, arguably, every
few months!

Once upon a time, recognizing that the field of intelligence was thriv-
ing, I edited a series that updated advances in the field on a regular basis.
The series started in 1982 and was called Advances in the Psychology of
Human Intelligence (Sternberg, 1982a). But that series lasted only through

xi



xii Preface

five volumes. A few years after my first edited volume, Douglas Detterman
(1985) started a related series, Current Topics in Human Intelligence. But that
series too is long gone. The field continued to be updated through a series
of handbooks edited by myself (e.g., Sternberg, 1982b, 2000; Sternberg &
Kaufman, 2011) and others (e.g., Goldstein, Princiotta, & Naglieri, 2015;
Wolman, 1985), but these handbooks were intended to be comprehensive
reviews rather than updates regarding current research on particular topics.
Yet, the field continued to advance rapidly.

So I recently decided to edit a volume of updates on intelligence
research. In the past, I had just chosen colleagues to write whose work
I admired because of its impact on the field. But at the same time, [ real-
ized that my selections were always colored by my own biases about what
kinds of research were worthwhile to the field. Those biases led to some
kinds of work being included, but not others. This time I wanted to do
things a bit differently.

When I started this volume, I recently had coedited a volume of essays
by eminent psychologists who were chosen in an objective (statistically
based) way (Sternberg, Fiske, & Foss, 2016), and I decided to try an analog
to this approach for the current volume. I started with what I considered
to be the three principal contemporary textbooks on intelligence — ones by
Hunt (2011), Mackintosh (2011), and Sternberg and Kaufman (2011) — and
tabulated citations in these volumes to the various authors whose work
was mentioned. I then chose as my potential authors the scholars whose
work was most frequently cited. Almost everyone I wrote to then agreed
to write. Earl Hunt was an exception, and I later realized that the reason
was that he was in the last months of his life. It therefore is fitting that this
volume is dedicated to him. (I have written elsewhere about his landmark
contributions to the field — Sternberg, 2017). This volume thus represents
the contributions of the most-cited authors in the field of intelligence, at
least as represented in three textbooks published in 2011. Because one of
the textbooks, the Cambridge Handbook of Intelligence, is edited, I believe
it fair to say that the authors have been chosen to represent those scholars
who the field believes to have made the highest-impact contributions to
the study of intelligence.

Regrettably, some of the most highly cited scholars in the field of
human intelligence have died in recent years, not just Hunt but also John
B. Carroll (e.g., Carroll, 1993), John Horn (e.g., Horn, Donaldson, &
Engstrom, 1981), and Arthur Jensen (e.g., Jensen, 1998), among others.
'This book would have been enriched greatly had these scholars lived and
been willing to contribute.
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The scholars who have written for this volume represent diverse per-
spectives, or “metaphors of mind” (Sternberg, 1990). These perspectives
include primarily biological (including behavior-genetic), cognitive, cul-
tural, developmental, psychometric, and group-difference approaches.
This book does not include all possible approaches, and there are many
excellent scholars, especially ones early in their careers, who have not writ-
ten for it. But this certainly will not be the last edited book of advances
in the field of human intelligence, and later volumes (edited by others)
doubtless will include approaches that may be underrepresented here.

Although intelligence always has been important to society, one might
argue that, in some respects, it is more important now than ever before.
On the one hand, intelligence as measured by IQ tests increased greatly in
the 20th century (Flynn, 2009). On the other hand, we are seeing in the
215t century more stupid behavior than one might have believed possible,
given these rising IQs (Sternberg, 2002). Earl Hunt (1995) asked, before
the dawn of the 21st century, “Will we be smart enough?” It was a good
question to ask. I hope the essays in this book provide some enlightenment
as to the answer!
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2 PHILLIP L. ACKERMAN

First, intelligence is, more or less, contextually (and culturally)
bounded. That is, because performance criteria (such as success in school
or work) differ to some degree from one cultural environment to another,
the underlying components of intelligence that are relevant to predict-
ing success may differ from one environment to another. For example,
‘intelligence’ for writing a novel is not exactly the same as ‘intelligence’ for
solving calculus problems. That is not to say that these two intelligences
are unrelated to one another. Indeed, there are many intelligences that are
highly related to each other, which ultimately gives rise to the notion of
‘general intelligence’ (or g).

Second, intelligence is a ‘relative’ or normative construct. One of
Binet’s seminal contributions to the assessment of intelligence was to
introduce the idea that we can best index intelligence, especially during
childhood when rapid cognitive development occurs, as the individual’s
performance in comparison to a reference group (e.g., all six-year-old chil-
dren). It is almost universally accepted that one can only quantify an
individual’s intelligence by referring to the reference or norming group.
The principal advantage to this approach is that an individual’s intel-
ligence is indexed in a way that it has the same meaning, even though
norming groups may change from one decade to the next (e.g., in terms
of the core knowledge and skills that are within the capabilities of the
larger reference group). The principal disadvantage to this approach is
that it renders comparisons across norming groups somewhat problem-
atic. For example, it is arguably nonsensical to say that a large sample
of today’s 18-year-olds is more or less ‘intelligent’ than a large sample
of 18-year-olds in 1930. The average 18-year-old today has very different
knowledge and skills from the 18-year-old in 1930, in areas of math, sci-
ence, arts and literature, and so on (see, e.g., Learned & Wood, 1938). An
intelligence test designed for 18-year-olds in 1930 would be expected to
yield very different performance norms if administered today, yet an 1Q
score for 18-year-olds in 1930 on a then-current test has the same norma-
tive meaning as an 1Q score for an 18-year-old today on a current test.
The 1Q score only tells us the individual’s standing with respect to other
members of the norming sample.

Third, intelligence is dynamic. That is, although one’s IQ score may be
relatively constant (e.g., see Thorndike, 1940), the underlying capabilities
of the individual (and the reference group) change with age. Over the
course of the life span, intellectual development is quite rapid in early
childhood, slows in adolescence and early adulthood, and then, for many
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components of intellectual ability, shows declines in middle-to-late adult-
hood (e.g., see Schaie, 1996).

Fourth, because prediction is the key determinant of the utility of intel-
ligence assessments, one can make a critical distinction between intelli-
gence potentiality and intelligence actuality. These terms are derived from
Aristotle’s Metaphysics (see Gill, 2005), but they are especially appropriate
for understanding the construct of intelligence, the practicalities of intel-
ligence assessment, and the insights that can be derived from individual
intelligence scores. Moreover, as will be introduced later, this particular
consideration illustrates the importance of non-ability constructs in the
development and expression of intelligence.

Potentiality, in Aristotle’s view, can be imagined in terms of a block
of bronze (metal). It has the ‘potential’ to become a statue of a person
or many other objects. Yet, in order to realize the goal of a statue, ‘work’
must be done to transform the block of bronze, by carving or hammer-
ing and so on. A completed bronze statue represents an actuality — which
is the result of the work done to it by the artist. In terms of intelligence,
performance scores on an IQ test are an actuality, but they are not gener-
ally of interest, in and of themselves, for many of the reasons provided
previously. Consistent with Wechsler’s (1975) suggestions, the goal for an
intelligence assessment is an index of the individual’s potential for intel-
lectually demanding learning and task performance. Yet, there are three
problems that prevent one from reasonably equating an IQ score with an
individual’s potential: (a) the test score only represents the individual’s
actual performance, and as such, potential can only be indirectly inferred
(see Anastasi, 1983); (b) although one may be able to make effective pre-
dictions of later academic and occupational achievement from a current
IQ score, it is impossible to know what future scientific and/or medi-
cal developments might be made that would fundamentally change the
capability of individuals of different 1Q levels to acquire new intellec-
tual skills and knowledge (e.g., so-called brain drugs or new educational
instructional techniques); and (c) like Aristotle’s example, the translation
from the block of bronze to a statue requires the substantial investment of
work time and effort on the part of the artist. For an individual to acquire
new intellectually demanding knowledge and skills, he/she must invest
time and effort, which in turn, implicates non-ability constructs, such as
personality and motivation. In the next sections, I will discuss how these
key concepts relate to the scientific study of intellectual development and
expression.
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Adolescent and Adult Intellectual Development

Prior to adolescence in the developed world, nearly all children are sub-
jected to a set of relatively common educational topics (e.g., the traditional
reading, writing, and arithmetic). Once they reach early adolescence, how-
ever, educational experiences become differentiated across individuals. In
addition to core courses in language, math, and sciences, most secondary
schools allow students to select a subset of ‘elective’ or optional courses
across the arts, humanities, sciences, and technology domains. These
opportunities present both an opportunity and a challenge to researchers
who hope to use intelligence assessments for predicting individual differ-
ences in subsequent educational and occupational success. The opportunity
is represented by the fact that students can choose among courses that have
greater or lesser intellectual demands, and they can choose to specialize in a
particular domain or to broaden their intellectual horizons across multiple
domains. Selective enrollment in these courses provides the researcher with
natural experiments, where the researcher can examine differences in the
acquisition of knowledge and skills of students who have varied educational
experiences. Researchers can examine how such enrollments lead to changes
in the depth and breadth of an individual’s intellectual repertoire.

The challenge for intellectual assessment, though, is perhaps more daunt-
ing than is the opportunity for understanding of intellectual growth and
diversification. That is, when students no longer have educational experi-
ences in common, it becomes problematic to compare them using a stan-
dard intelligence test. If one student chooses to complete elective courses
in Spanish throughout high school, and another student chooses instead
to take courses in computer programming, then it becomes difficult to
figure out how to rank-order the individuals on their respective levels of
intelligence. An intelligence test that included Spanish vocabulary knowl-
edge would put the computer science student at a disadvantage, because
he/she would receive no credit for knowledge of computer science, and
vice versa. On one hand, an intelligence test that excluded both Spanish
and computer science would inadequately sample the knowledge of these
individuals, but, on the other hand, an intelligence test that sampled all of
the different domains of both in-school elective courses and out-of-school
courses of study would be unreasonably long and impractical to admin-
ister. This challenge only gets more difficult as students transition from
secondary school to higher education or occupations, because the content
of their respective intellectual repertoires gets increasingly differentiated
and specialized.
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The traditional solution to such challenges has been to focus only on
what knowledge and skills are common to most students (i.e., not directly
sampling knowledge and skills from elective courses), and is further com-
promised when testing adults, who are many years beyond their high
school educational experience. For example, the SAT and ACT tests,
used for college/university selection, only assess mathematics knowledge
and skills through algebra and geometry, because only a portion of the
college-applying population advances to elective courses beyond these top-
ics (e.g., calculus). Four years after the student completes the SAT or ACT,
he/she might be considering postgraduate study. Yet, because of the lack
of common core courses at the college/university level, the most widely
used entrance examination for graduate study, the Graduate Records
Examination (GRE) is still only testing algebra and geometry — topics that
some students may have only encountered in high school, while other stu-
dents may have continued with a rigorous study of advanced mathemat-
ics at university. Cattell (1957) called this testing of ‘historical” crystallized
intelligence (Gc), as opposed to ‘current’ Ge.

As individuals reach adulthood, what they can accomplish on intellec-
tually demanding tasks becomes much more importantly determined by
their prior specialized experience. Nearly every profession or expert perfor-
mance depends on knowledge that has been acquired over a long period
of learning and practice. Indeed, I have previously argued (e.g., Ackerman,
1996) that most of the tasks that adults perform on a day-to-day basis are
much more highly associated with an adult’s specialized knowledge and
skills, rather than the kinds of intelligence associated with abstract reason-
ing and working memory. Jobs that vary broadly share this fundamental
property, whether in health care (doctors, nurses), other knowledge work
(e.g., accounting, law, science), and in various ‘trades’ (e.g., carpentry,
plumbing). Ultmately, this turns out to be fortuitous for adults, because
with increasing age into the middle-adult years, there is typically a decline
in the ‘fluid’ intellectual abilities (Gf), relative to adolescents and younger
adults (Cattell, 1943; Hebb, 1942). The implication of these changes is that
middle-aged and older adults are less effective in performing abstract rea-
soning kinds of tasks, that in turn, appear to be important for the acqui-
sition of novel task knowledge and skills. But adults who have acquired
expertise in their own professions or other areas often have an advantage
in acquiring new knowledge and skills within their own areas of expertise,
because transfer-of-training/transfer-of-knowledge is a very powerful posi-
tive influence for acquisition of new knowledge, when it can be incorpo-
rated into existing knowledge structures (e.g., see Ferguson, 1956).
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Intelligence of Young and Middle-Aged Adults

For much of the modern period of intelligence theory and assessment, it
has been claimed that intelligence declines in middle-aged years, compared
to adolescents and young adults (for a review, see Ackerman, 2000). The
evidence for this is somewhat complex, because as noted earlier, IQ scores
for different age cohorts — those born in different decades — are fundamen-
tally incommensurable, because intelligence tests are normed for particular
cohort groups. Thus cross-sectional studies, where groups of individuals of
different age cohorts are given the same intelligence test, yield results where
age effects are confounded with cohort differences (Schaie & Strother,
1968). Longitudinal studies, where the same individuals are given the same
intelligence test repeatedly, are more informative about the effects of aging
compared to cross-sectional studies, but they have other confounds that
must be taken into account (such as practice effects). Nonetheless, the
accumulated evidence across these studies strongly supports the notion
that in adulthood, there is a normative decline in Gf abilities, but much
less decline or stability in ‘historical’ Gc, at least into later adulthood,
when there are normative declines, with stronger decline gradients for Gf,
compared to Ge (Schaie, 1996). Great efforts have been expended in recent
decades to determine factors that may slow or stop the decline of intel-
lectual abilities with increasing age in adulthood, ranging from so-called
brain-training games to physical exercise. A discussion of the efficacy of
such programs is beyond the scope of this chapter, but see Hertzog and
colleagues (2009).

Directly Assessing the Knowledge Components of Intelligence

In studies examining current Ge in young and middle-aged adults, we
developed tests of content knowledge across a wide spectrum of domains
of intellectual expertise. While one cannot reasonably hope to sample
all different types of knowledge possessed by adults, we obtained a rep-
resentative sampling of areas of knowledge that are found in both tradi-
tional classrooms and advanced study areas in postsecondary education
(e.g., physical and social sciences, literature, art, business, and law), and
also domains outside the traditional educational context (knowledge
of current events, health and safety, technology, financial planning).
Performance was indicated by raw scores rather than norm-based, so that
direct comparisons are made between age groups, while keeping in mind
that different cohort groups may have different levels of experience and
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score would be referenced to the sex of the examinee (Yerkes, Bridges, &
Hardwick, 1915). Terman, however, decided that there was adequate justi-
fication for equality of IQ scores across the sexes, and so he constructed his
IQ test to be specifically balanced by including subtests where the sex dif-
ferences in the overall scale were eliminated. Subsequent IQ tests generally
adopted this same approach to eliminating sex differences.

But, when it comes to individual domain knowledge tests that are
content-referenced rather than norm-referenced, sex differences are clearly
observed. The majority of the academic domain knowledge tests (e.g.,
Ackerman & Rolfhus, 1999) show advantages to males, though such dif-
ferences are not typically found in current-events knowledge tests, and
women have a distinct advantage in domains of health knowledge (Beier &
Ackerman, 2001, 2003). When one examines sex differences in knowledge
tests where the individuals self-select into particular areas of study, these
differences are also seen in young adults (College Board, 2011). Ultimately,
these results suggest that both individual and sex differences relate to the
direction and intensity of effort devoted to the acquisition of domain-
specific knowledge and skills.

Ability and Non-ability Traits and Intellectual Investment

Elementary education is largely a system for transmitting core educational
content, and as such, there is great commonality among students in terms
of the instruction they receive. Homework, for example, starts off rela-
tively modest in demands for time and effort on the part of students. Once
students reach secondary school, they have options toward or away from
the investment of their time and effort for acquiring knowledge in intel-
lectually demanding domains. Homework often increases in terms of time
and effort, and demands consequently increase for self-regulated cognitive
investments. It is during this critical period that an individual’s personality
and motivational traits appear to increase in influence on the direction and
intensity of intellectual investments. For a conceptual discussion of invest-
ment and intellectual development, see Cattell (1971; also see Schmidt,
2014; von Stumm & Ackerman, 2013). Intellectual investments continue
through decisions about postsecondary education, including whether to
attend university study, selection of a major, and choice of early career
paths. Together with Gf and both historical and current Gc abilities, non-
ability traits also appear to be influential in determining how individu-
als invest their cognitive resources well into middle adulthood, in terms
of seeking out or avoiding intellectual challenges, such as acquiring new
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knowledge and skills in and out of the workplace, and in terms of refining
and improving one’s performance on relatively routine tasks.

Several personality and motivational traits are, or become, associated
with individual differences in intellectual abilities and domain knowledge
during adolescent and adult development. Affective (personality) traits
such as openness to experience and conscientiousness are positively related
to individual differences in domain knowledge in many areas, while person-
ality traits like neuroticism and extroversion tend to be negatively related
to domain knowledge. Similarly, conative (will, motivation) traits such as
a mastery orientation or a desire to learn are positively related to individual
differences in domain knowledge, while worry and anxiety in achievement
contexts are negatively related to individual differences in domain knowl-
edge. In addition, there is a moderate association of vocational interests
to differences in domain knowledge, such as investigative interests and
artistic interests being positively associated with domain knowledge in the
sciences and humanities, and a negative association between social and
enterprising interests and a variety of academic knowledge domains. These
non-ability traits are related to one another, even though they represent
different aspects of individuals. This commonality has been a major fac-
tor in the development of the concept of “trait complexes™ (Ackerman &
Heggestad, 1997) — that is, constellations of personality, motivation, and
other traits that: (a) appear more frequently in the population, and (b) are
associated with orientations toward or away from intellectual develop-
ment. Trait complexes of intellectual/cultural traits and science/math traits
are associated with higher levels of domain knowledge in the arts, humani-
ties, and social sciences, and in STEM (science, technology, engineering,
and math) domains, respectively. Complexes of social and conventional
traits are associated with lower levels of knowledge in a variety of academic
and other intellectually demanding domains (Ackerman, 2000). Based on
these considerations, a general framework for understanding adult intel-
lectual development can be illustrated as shown in Figure 1.2.

In the figure, early adolescent intellectual potendality is represented in
terms of what is measured with an IQ test, that is, Gf and historical Ge.
As individuals develop into adulthood, non-ability trait complexes interact
with levels of intellectual potentiality to determine the investment (time
and effort) the individual makes into one or more of a variety of different
directions, both intellectual and non-intellectual. The result is found in an
adult’s breadth and depth of domain knowledge and skills, which represent
the vocational and avocational (e.g., hobbies) intellectual repertoire of the
individual. T propose this is the main source of individual differences in
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Figure 1.2 An abstracted illustration of the influences on intellectual growth from
adolescent intellectual potentiality o adult intellect actuality, based on Ackerman (1996).

adult intelligence. This is nof to say that Gf-type abilities are unimportant
in adulthood (Deary et al., 2004), but it is to say that for the majority of
day-to-day activities, Gf abilities are much less influential in determin-
ing an individual’s performance, in comparison to the individual’s current
domain-specific and domain-general Gc abilities. In a nutshell, the propo-
sition is that it is easier and more effective to know and recall the answer
to an intellectually demanding problem than it is to figure it out from
scratch using abstract reasoning (Ackerman, 1996) — which in essence, is
the difference between an ‘expert system’ and a ‘general-problem-solving’
engine. One would hardly be advised to get onto an airplane piloted by an
individual with high Gf but no pilot experience, over an individual with
perhaps an average level of Gf but 20 years of experience piloting com-
mercial aircraft.

Current Issues

From the theoretical foundation outlined earlier, and the body of research
reviewed, two issues are important for educational and public policy
perspectives. First and foremost is the finding of sex differences in
domain knowledge among adolescents and adults. Large sex differences
in knowledge about STEM areas among adolescents are likely a nontrivial
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determinant of disparities between men and women who select and per-
sist in STEM majors in postsecondary study, and in later career choices
(Ackerman, Kanfer, & Calderwood, 2013). That these differences are man-
ifest during the high school years suggests that it may generally be too
late to remedy these differences by the time an adolescent starts college.
Efforts are needed to understand whether there are systematic influences
external to the individual that are responsible for these differences (e.g.,
school policies, parental or peer influences), or whether the influences are
largely internally driven, in terms of the student’s interests, preferences,
and personality characteristics.

The second issue is related to the first. That is, whart is needed is a bet-
ter understanding of the malleability of the connections between non-
ability traits and an individual’s investment of effort toward acquisition
of knowledge and skills in particular domains, and overall. While a sci-
entific consensus exists that Gf and historical Ge are limited in malle-
ability, at least within the variety of environments students encounter
in the developed world, substantially less research has been conducted
that explores the limits of guidance or instruction on either developing
affective and conative traits to better focus student efforts toward acqui-
sition of domain knowledge, or to modifying the connections between
these non-ability traits and acquisition of domain knowledge. Efforts in
this area might have benefits both in reducing sex differences in STEM
achievements and in generally improving the educational and occupa-
tional outlooks for many students.

Future Directions

In many ways, theory and research on traditional IQ assessment for chil-
dren and early adolescents has become moribund, perhaps partly because
of the clear success of the Binet-inspired tests for predicting overall aca-
demic success in the elementary school system. Yet, if one considers that
adult intelligence differs fundamentally from Gf and historical Ge, in that
it includes the breadth and depth of current Ge knowledge and skills,
understanding of adult intelligence is woefully incomplete. Assessments
that give credit to adults for the wide variety of knowledge and skills that
they possess have yet to be developed. A high proportion of an adult’s
day-to-day intellectual life is simply unaccounted for by modern IQ assess-
ments. As a result, there is little knowledge about how current Ge develops,
is maintained, or declines, especially in older-age populations. Current Ge
is essentially equivalent to the ‘dark matter’ hypothesized by physicists.
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That is, current Ge is clearly necessary to gain a complete understanding
of how adults function in an intellectually demanding society, even as Gf
abilities decline with each additional decade of adult life, yet it has not
been adequately measured and described. Perhaps the second century of
modern intelligence theory and assessments will usher in a reorientation
to both the intellectual and nonintellectual determinants of the adult rep-
ertoire for intelligent task performance.
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It is worth emphasizing Darwin’s astute comment that there is a differ-
ence between intelligence and motivation (zeal) and effort (hard work),
and that the difference is important. Galton himself was well aware of
the difference and argued that all three were influenced by heredity. “The
triple event, of ability combined with zeal and with capacity for hard
labour[,] is inherited” (Galton, 1892/1962, p. 78). Galton’s speculative
proposal has been nicely confirmed. We now know that virtually all traits
(human and nonhuman, psychological and otherwise) are influenced
by heredity (Bouchard, 2004; Lynch & Walsh, 1998, p. 175; Polderman
et al., 2015).

What Is g?

The definition of intelligence given previously in this chapter, like almost
all others, implies that many mental processes (abilities) underlie intel-
ligence and that they are related at a deeper level. The idea that there are
many independent mental abilities (faculties) is a very old one and used
to be called faculty psychology. It continues to be manifest today in the
brilliant work of Tooby and Cosmides (2015). These authors argue strongly
that many abilities evolved to solve very specific problems — they are modu-
lar and adaptive. I largely agree with this view. What intelligence research-
ers like myself are concerned with is the fact that virtually all measures of
mental abilities correlate positively and in many instances quite strongly.
Guttman and Levey (1991) call this the first law of intelligence testing. This
empirical fact can be characterized as a general factor, or, more specifically,
as Spearman’s g, in honor of the investigator who first described it math-
ematically (Spearman, 1904). For investigators who approach the question
“What is intelligence?” from a factor point of view, the more technical
question is, “What is g2”

A useful way to address this question is by looking at it from the point
of view of its most severe critics. Steven J. Gould® (1981, 1996), the distin-
guished paleontologist, evolutionary biologist, and historian of science,
argued strongly against the idea of a general factor of intelligence. He
argued that belief in ¢ constituted an error of reification:

The notion that such a nebulous socially defined concept as intelligence
might be identified as a “thing” with a locus in the brain and a definite
degree of heritability — and that it might be measured as a single number,
thus permitting a unilinear ranking of people according to the amount they
possess. (Gould, 1981, p. 239)
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In addition he argued that g was chimerical.

Spearman’s g is not an ineluctable entity; it represents one mathematical
solution among many equivalent alternatives. The chimerical nature of
g is the rotten core of Jensen’s edifice, and the entire hereditarian school.
(Gould, 1981, p. 320)

Spearman’s g is a theoretical construct, not a “thing.” Whether it has a
“locus in the brain” is an empirical question (Korb, 1994). Is there a physi-
cal substructure to intelligence? Modern brain mapping suggests that there
may well be (Haier, 2017). Indeed, I believe that advances in this domain,
in conjunction with molecular genetics, are among the most promising
future avenues of research in the domain of intelligence (Colom, 2014;
Ponsoda et al., 2016).

Is ¢ chimerical or ineluctable? Gould’s understanding of factor analysis
was, in Bartholomew’s words, “half a century out of date” (Bartholomew;,
2004, p. 70). Experts in the field strongly reject Gould’s views (Reeve &
Charles, 2008, p. 685). There is simply no doubt that a g factor is unavoid-
able (ineluctable) when correlation matrices of mental abilities are exam-
ined empirically (Reeve & Blacksmith, 2009). It is sometimes asserted that
the g in one battery of tests is different from the g derived from a differ-
ent battery. This is simply not true if each battery contains a reasonable
number of tests and samples a broad set of abilities (Major, Johnson, &
Bouchard, 2011). When such an assessment is carried out appropriately,
there is just one ¢ (Johnson & Bouchard, 2011; Salthouse, 2013).

Do we need a definition of intelligence? My answer is yes. The litera-
ture is rife with poor measures of g and claims that “this or that ¢” fails to
predict key outcomes (i.e., academic achievement, etc.) better than some
alternative (e.g., so-called complex problem solving) (Lotz, Sparfeldt, &
Greiff, 2016). As pointed out earlier, my preferred definition requires
numerous mental abilities (reasoning, planning, solving problems, think-
ing abstractly, comprehending complex ideas). Without such a guide, the
choice of tests to include in a battery designed to measure g will be much
too narrow. The classic case is the use of the Raven as a substitute for g;
it is far from sufficient, as no single measure is adequate (Gignac, 2015).
This is the problem of factor indeterminacy. Lee and Kuncel (2015) pro-
vide a thoughtful discussion applicable to any general factor. There is no
substitute for careful measurement of the construct of interest and that
requires both a meaningful definition implemented in the form of a theory
and adequate quantification of the theoretical construct. To paraphrase
my former colleague Paul Meehl, “theories built around poorly conceived
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constructs are scientifically unimpressive and technologically worthless”
(Meehl, 1978, p. 806). I and others (Borsboom, 2013) believe that his argu-
ments continue to be valid.

For those who prefer Grit and Practice over g, and zeal and hard work as
alternative explanations of achievement, I refer them to Simonton(2016),
who found the arguments of the major proponents of these constructs less
than adequate. Others agree with this argument (Crede, Tynan, & Harms,
2016; Hambrick et al., 2016). I continue to prefer the terms “zeal” and
“hard work.” As McNemar pointed out long ago, the first cardinal prin-
ciple of psychological progress is: “Give new names to old things” (1964,
p- 872).

Those who believe in the threshold hypothesis — “there is little evidence
that those scoring at the very top of the range in standardized tests are
likely to have more successful careers in the sciences” (Muller et al., 2005) —
are simply wrong (Arneson, Sackett, & Beatty, 2011). Monotonicity even
applies when one looks at the top 1% of the ability distribution (Makel
etal., 2016). Indeed the opposite of a threshold effect (increasing predictive
power at higher levels) may be true (Coyle, 2015).

The Heritability of Intelligence

I have always had an interest in biology, and my fondest memory of high
school was laboratory work in a biology course. Early exposure to bio-
logical and genetic thinking (Bouchard, 2016b) prepared me for my most
influential work, a study of twins reared apart (Bouchard et al., 1990a;
Segal, 2012). I would like to emphasize two important facts about this
work. It is an experimental study, a fact that is widely underappreciated
and often barely recognized. First, twins are an experiment of nature. In
simple terms, monozygotic twins (MZ) share all their genes and dizygotic
twins (DZ) share half their genes. When they are reared apart, they allow
us to estimate the magnitude of genetic influence on any trait. In par-
ticular, the correlation for 1Q of monozygotic twins reared apart (MZA)
directly estimates the heritability (Bouchard et al., 1990b). There are addi-
tional complexities (Segal, 2017) but, as I show in what follows, it is a
very good model when used in conjunction with other designs. Second,
adoption is an experiment of society. Again there are complexities, but it
is still a very good model. Thus, we have a combination of an experiment
of nature and an experiment of nurture. Unlike laboratory experiments,
the adoption experiment is a very powerful one in terms of magnitude of
influence, as it involves a treatment that is applied day in and day out for
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many years.’ Before turning to work on the genetics of intelligence, I will
again discuss the point of view of an intense critic.

Gould Again

The idea that intelligence has a heritable component has been vigorously
attacked for a very long time, sometimes viciously, as noted by Gould’s
use of the term “rotten core” cited earlier. Gould’s attacks focused on the
works of Cyril Burt with monozygotic twins reared apart and Burt’s work
on social mobility (1981, chap. 6). Gould drew largely on the writings
of Leon Kamin (1974) and Donald Dorfman (1979). I hesitate to argue
that this long-running controversy is over, but I will assert that the so-
called evidence brought to bear against Burt in support of the accusa-
tion of fraud is far from conclusive. Dorfman claimed that “The eminent
Briton is shown, beyond reasonable doubt, to have fabricated data on
IQ and social class™ (p. 117). According to a panel that reexamined the
“Burt Affair” (Mackintosh, 1995), the data on IQ and social class were key
in deciding that Burt was guilty of fraud, as there was reasonable doubt
about other charges. Tredoux (2015) has shown that critics of Burt’s social
mobility work did not understand his procedures and demonstrated that
methods available to Burt at the time of his analysis easily explain his pur-
portedly falsified results. Gould’s larger focus, captured in his title “The
Mismeasure of Man,” argued that work in this domain was largely charac-
terized by bias. There is now striking evidence to suggest that it was Gould
who was biased in his analysis and interpretation of the data gathered by
others (Fancher, 1987; Glenn & Ellis, 1988; Lewis et al., 2o11; Zenderland,
1988). Even more interestingly, data Gould took at face value — work by
Franz Boas (1912) — rather than examining for bias, and that he used as a
basis of criticism of the hereditarian paradigm (Gould, 1981, p. 108), have
turned out to support the hereditarian paradigm (Sparks & Jantz, 2002).
For a more thorough analysis of Gould’s many errors, omissions, and dis-
tortions, see Bouchard (2014) and Rushton (1997). Pinker discusses the
similar role Gould played in the larger “sociobiology wars” (Pinker, 2002,
chap. 6).

The Wilson Effect

A major reason why there was so much controversy regarding the magni-
tude of genetic influence on intelligence is the fact that there is a massive
age (developmental) effect. For many years, psychologists believed that
genetic influence was manifest at birth and experience altered behavioral
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and other traits. For example, ]. P Scott, one of the founders of behavior
genetics as a systematic discipline, asserted:

We thought that the best time to study the effects of genetics would be
soon after birth, when behavior still had little opportunity to be altered
by experience. On the contrary, we found that the different dog breeds
were most alike as newborns; that is, genetic variation in behavior develops
postnatally, in part as a result of the timing of gene action and in part from
the interaction of gene action and experience, social, and otherwise. (Scott,

1990, p. vii)

This effect appears to be rather general (Bergen, Gardner, & Kendler,
2007). In the domain of intelligence, the effect is now called the Wilson
Effect (Bouchard, 2013), and the results of the various relevant studies are
shown in Figure 2.1.

Figure 2.1 illustrates that the results are consistent a) across multiple
rescarch designs (twins, adoptees, various combinations of kinships), b)
measure of intelligence, ¢) Westernized industrialized countries, and
d) kinds of samples, some very comprehensive and others much more
restricted.

I have always thought it was amazing that while psychologists and oth-
ers heavily emphasize the role of family environment, thus the emphasis
on socioeconomic status (SES), in the shaping of intelligence in children,
they conducted almost no studies of unrelated individuals reared together
(URT). The URT design is the most powerful one to assess this source of
influence. As Figure 2.1 shows, this design suggests a value near zero in
adulthood for shared environment (see the asterisks in Figure 2.1), a value
below that suggested by twin designs, namely, about 10%. My view is that
psychologists have been plagued by confirmation bias and highly resistant
to strong inference and refutation of their theories (Bouchard, 2009). The
influence of genes on 1Q and SES was laid out for us a great many years ago
by a brilliant and highly underappreciated psychologist, namely Barbara
Burks (Burks, 1938; King, Montanez-Raminez, & Wertheimer, 1996).

The Structure of Mental Abilities

It is important to realize that ¢ is not the only mental ability. There are
important special abilities. One of the goals of the Minnesota Study of
Twins Reared Apart (MISTRA) was to formally test competing models
regarding the structure of mental abilities. Advances in confirmatory factor
analysis had made clear that it would be possible to pit models against each



Hereditary Ability 23

I have revised the theory somewhat and applied it to intelligence (Bouchard,
2014), genius (Johnson & Bouchard, 2014), and personality (Bouchard,
20162). The “theory” is admittedly weak in the sense it is difficult to refute
as currently formulated and it should perhaps be called a “meta-theory” or
a “heuristic” pointing investigators in a potentially fruitful direction. What
it does do, however, is give a specific name to what I believe is a widely held
point of view, namely, that the mind has been shaped by the environment,
via evolution, and that the content of individual minds is shaped to an
important extent by the content of the environment.

Behavior geneticists have long held this view. A nice example applied to
genetic influence on social attitudes is given next.

In no way does our model minimize the role of learning and social interac-
tion in behavioral development. Rather, it sees humans as exploring organ-
isms whose innate abilities and predispositions help them select what is
relevant and adaptive from the range of opportunities and stimuli presented
by the environment. The effects of mobility and learning, therefore, aug-
ment rather than eradicate the effects of the genotype on behavior. (Martin
et al., 1986, p. 4368)

EPD theory needs to be more rigorously formulated, but, if correct, it has
the virtue of answering the “how” question (Anastasi, 1958). The answer
is “nature via nurture”; that is, “the genome impresses itself on the psyche
largely by influencing the character, selection, and impact of experience
during development” (Bouchard et al., 1990a. p. 228).

Notes

1 The book was originally published in 1869. In the 1892 edition Galton admit-
ted that the title was misleading, that it had lictle to do with genius, and that it
should have been titled Hereditary Ability (Galton, 1892/1962, p. 26). As Darwin
noted in the quote that follows, the idea of “intellect,” a fixed characteristic or
a trait in which individuals did not differ, has a very long history.

2 Gould was one of the most widely read scientists of the 20th century and was
highly influential among both academics and the literate public (Shermer, 2002).

3 It is not widely recognized that any given experimental manipulation is simply
one of many possible implementations of a causal mechanism and is not an infal-
lible procedure (Johnson & Bouchard, 2014, footnote 1). The “fadeout effect” is
a dramatic example in the domain of intelligence research. Interventions appear
to influence g, but the effect fades with time (Protzko, 2016).

4 'The reason the IQ and social class issue enters the discussion is because it relates
to the hereditarian argument that higher-IQ individuals migrate to higher
social classes via the influence of 1Q on education and occupational success.



24 THOMAS J. BOUCHARD, ]JR.

Ipso facto higher-social-status individuals are genetically superior, at least
with respect to IQ. This has been a taboo topic (Bouchard, 1995). The classic
adoption studies on 1Q and social class are, in my view, dispositive (Scarr &
Weinberg, 1978), and molecular genetic techniques have begun to confirm that
conclusion (Kong et al., 2017; Selzam et al., 2016), although the actual effect
sizes remain quite small.

s I had a special interest in spatial and mental rotation abilities (Bouchard &
McGee, 1977; Lubinski, 2010), and, as a result, the MISTRA test batteries more
adequately represent this domain relative to most other batteries. Work on the

VPR model was spearheaded by my colleague Wendy Johnson.
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CHAPTER 3

Culture, Sex, and Intelligence

Stephen . Ceci, Donna K. Ginther, Shulamit Kahn, &
Wendy M. Williams

In this chapter we focus on findings from our research on sex differences
in academic achievemenrt and what they say about the role of culture in
shaping mathematical and spatial cognition. Our research focuses on the
policy and educational implications of spatial and mathematical ability
that are correlated with psychometric data (e.g., SAT, GRE, NAEP) and
raises questions about the nature and development of these differences and
what role policy has in ameliorating them.

Sex Differences in Quantitative Fields

Women are underrepresented in all math-intensive fields in the acad-
emy. According to the NSF’s 2010 Survey of Doctorate Recipients (SDR),
women in Geoscience, Engineering, Economics, Math/Computer science,
and the Physical sciences (GEEMP) in 2010 comprised only 25%—44% of
tenure-track assistant professors and only 7%-16% of full professors. There
is debate over why women are so conspicuously absent in these fields com-
pared with the Life sciences, Psychology, and Social sciences (LPS), where
the comparable figures show women at 66% of tenure-track assistant pro-
fessorships in psychology, 45% in social sciences (excluding economics),
and 38% in life sciences; for full professors, the figures are 35%, 23%, and
24%, respectively. So, compared with their presence in LPS fields, women’s
presence in mathematically intensive (GEEMP) fields is much lower. Why
is this? What does it say about spatial and quantitative aptitude? And what,
if anything, ought to be done to narrow this gap between the sexes? To
answer these questions, we have taken a developmental perspective, start-
ing early in life and tracking cohorts through adulthood. Before examin-
ing early sex differences, however, we review sex differences at the college,
graduate school, and professional levels.

Females comprise 57% of college graduates and 57% of STEM (Science,
Technology, Engineering, and Mathematics) majors. Figure 3.1 shows the
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Figure 3.1 Percent of bachelor and doctorate degrees awarded to females and percent
female of assistant professors, by STEM category. Data drawn from the NSF’s
WebCASPAR database. (ncsesdata.nsf.gov/webcaspar/) and the NSF’s 1973—2010

Survey of Doctorate Recipients.

percentages of females among college graduates, PhD recipients, and assis-
tant professors. Since 2000, 69% of majors in the life sciences, psychology,
and social sciences (LPS) are women. In contrast, women comprise only
a quarter of undergraduates in GEEMP fields. Because of these disparities
across fields, combining across all STEM majors misses important field-
specific sex differences.

As seen in this figure, women have made significant gains in both cate-
gories of STEM at each of these levels over the past 40 years. By 2011, there
was little difference in women’s and men’s advancement from baccalaure-
ate to PhD and then to tenure-track assistant professorships — in GEEMP
frelds only. Thus, although far fewer women begin in GEEMP fields, of
those who do, their progress resembles male GEEMP majors and in fact
slightly exceeds males in transitioning from baccalaureate to PhD (Ceci
et al., 2014, fig. 11). Recently, research showed that women with under-
graduate engineering degrees persisted in the workforce 7-8 years post-
baccalaureate degree nearly identically to males (Kahn & Ginther, 2015).

In contrast, in 2011, the probability of advancing from an LPS bacca-
laureate to a PhD was not as high for women as for men, nor as high as
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Source: Ceci et al., 2014, data from ETS and Webcaspar.

For example, sex differences favoring men in spatial 3-D tasks do not
translate directly to superiority in geometry, but depend on whether the
dependent variable is grades in geometry or scores on standardized tests
that cover materials not directly taught (Else-Quest, Hyde, & Linn, 2010;
Lindberg et al., 2010). For that matter, sex differences in mathematics
scores do not translate into grades in math classes, including complex
math classes in college (Ceci et al., 2009): women obtain slightly higher
grades in college classes and 40—48% of baccalaureates in mathematics for
two decades (see Ceci et al., 2014, table A1A). None of this means that bio-
logical sex differences play no role in the shortage of women in GEEMP
fields. But it does mean that care must be taken in touting them as he
primary causal factor.

At the midpoint of the quantitative distribution, there are no systematic
sex differences through middle school (see Ceci et al., 2014). Hyde and
her colleagues have analyzed the sex gap in average mathematics ability,
using large-scale national probability samples (Hyde, Fennema & Lamon,
1990; Hyde et al., 2008). They showed that mean scores highly overlap
(d's between 0.05—0.26 favoring males): Hyde and colleagues’ 1990 meta-
analysis of 100 studies found no significant sex differences for children at
any age and for any type of mathematical problem — the only exception
was a small male advantage, 4 = 0.29, for complex math problems for
high school-aged students. Hyde and colleagues (2008) even found small



34 STEPHEN J. CECI ET AL.

female advantages for most years through ninth grade. However, they also
found significant male advantages in grades 10 and 11.

By the early 2000s, average U.S. sex differences were small even on the
most complex items, leading Hyde and Mertz (2009) to conclude: “effect
sizes were found to average d = 0.07, a trivial difference. These findings
provide further evidence that the average U.S. girl has now reached parity
with the average boy, even in high school, and even for measures requiring
complex problem solving” (p. 8802).

Some have found small differences on math tests earlier than middle
school, but not at entrance to kindergarten. For instance, Fryer and
Leavitt (2010) and Penner and Paret (2008), studying the same 1998-1999
kindergarten cohort, found no differences entering kindergarten but dif-
ferences starting at tiny levels by the end of kindergarten that rose to 0.15—
0.20 SDs by fifth grade. Cross-national studies found countries differ.
For instance, Mullis and colleagues (2000b) reported no U.S. average sex
difference on the fourth-grade TIMSS, but a male advantage for Korea
and Japan.

In sum, there is agreement that in the United States, there are either
nonexistent male advantages in average math scores, or very small ones
relative to the overlap of the distributions, on the order of less than o.0o1,
or less than 0.1% SD.

Sex differences at the right tail. Perhaps the shortage of women in
GEEMP fields is the result of sex differences in high math ability. As seen
in Figure 3.3, most graduate students in GEEMP fields at one of our uni-
versities have GRE-Q scores in the top 18% (750), which is equivalent to
the updated scale used earlier.

What is known about sex differences at the right tail? A male advantage
in math ability is unreliable until early adolescence (Ceci et al., 2009).
Lohman and Lakin (2009) analyzed more than 300,000 American 9- to
17-year-olds and found a higher proportion of boys in in the top 4% of the
math distribution, which was stable across national samples from 1984 to
2000 (Figure 3.4). Strand and colleagues (2006) reported a similar male
overrepresentation at the right tail of this test for more than 300,000 11-
year-olds from the UK, with boys significantly more likely to score in the
top group (+1.75 SDs above the mean); boys are also more likely to score in
the bottom 4% in quantitative ability. Hedges and Nowell’s (1995) analyses
of six national data sets also showed consistency in the sex ratios at the top
tail over a 32-year period.

Wai and colleagues (2010); Wai and Putallaz (2011), and Hyde and col-
leagues (2008) also reported substantial sex differences at the right tail
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Figure 3.5 SAT-Math scores by sex and percentile, 2013.
Source: Ceci et al., 2014, data from College Board.

TIMSS at grade 8, but consistent male superiority by grade 12, particu-
larly among the highest quartile of mathematics scorers. Relatedly, Stoet
and Geary (2013) analyzed PISA data for the 33 countries that participated
in all waves from 2000—2009. They, too, found slowly narrowing sex dif-
ferences of 15-year-olds at the right tail, ending at 1.7:1 favoring males at
the top 5% and 2.3:1 at the top 1%. Thus, large-scale analyses converge on
the conclusion that there is a sizable male advantage at the right tail of the
math distribution.

Sex differences favoring males on the SAT-Mathematics are similar:
the same score that gets a girl into the top 5% of the female mathemartics
distribution gets a boy into only the top 10% of the male distribution; the
same score that gets a girl into the top 10% gets a boy into only the top
20% (Figure 3.5).

There is inconsistency in sex differences at the right tail, even when
comparing large national samples or meta-analyses (for review, see Ceci
etal., 2009). For instance, among certain age children in Iceland, Singapore,
and Indonesia, more girls scored in the top 1% than boys (Hyde &
Mertz, 2009). Further, the male advantage at the right tail has been
decreasing, more in some countries than in others, and the greater male
variance in math scores is not always the case. In Lohman and Lakin’s
(2009) data, females narrowed the right tail gap on the Cognitive Abilities
Test Nonverbal Battery: ninth stanine female-to-male ratios changed from
0.72 in 1984, to 0.83 in 1992, to 0.87 in 2000. Relatedly, the male-to-
female ratio at the top 4% is larger in the United States (two to one) than
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it is in the UK (roughly three to two), further illustrating the influence of
cultural factors.

Researchers have reported variations across ethnic groups in the United
States. Hyde and Mertz (2009) found large differences favoring white
males at the extreme right tail, but the opposite for Asian Americans,
with more females at the righ tail, and these differences varied by cohort.
Miller and Halpern (2014), note that “sex differences in high mathemat-
ics test performance are reversed (female advantage) among Latino kin-
dergarteners, indicating the early emerging effects of family and culture”
(p- 39)-

Finally, there are cross-state variations in the United States in the male/
female ratio at the 95th percentile, with sex differences in some states less
than half the size in others (Pope & Sydnor, 2010): the males-to-females
ratio among the top §% scorers in math/science is approximately 1.8 in
the Eastern South Central states, but only 1.4 in the New England states.
However, the ratio of females-to-males NAEP 9sth percentile scores in
reading is approximately 2.1 in the New England states and 2.6 in the
East South Central states. States with more gender-equal math and sci-
ence scores also have more gender-equal reading scores at the right tail
(which otherwise has more girls), suggesting gender norms strongly influ-
ence mathematic and verbal achievement at the top tail. Along these lines,
Ellison and Swanson (2010) found that local school culture was highly
influential in determining how many girls competed at the highest level of
mathematics in national competitions.

Boys are overrepresented in both tails of the distribution. Transnational
mathematics analyses (TIMMS, PISA) show boys™ higher variance ratios
(VRs) — the male variance divided by the female variance (e.g., Else-Quest
et al., 2010; Penner, 2008). Else-Quest and colleagues report VRs -1:1.19
in the United States, 1:1.06 in the UK, 1:0.99 in Denmark, and 1:0.95 in
Indonesia. In representative studies, VRs average 1.15, and on average there
is at least a 2-to-1 ratio favoring males among the top 1% of math scor-
ers. These sex differences are real. However, transnational and trans-state
differences suggest that something more than mathematical potential is
driving the higher male variability. Yet VRs may underestimate popula-
tion variance because more males are developmentally delayed and not
included in assessments (see Halpern, 2012). Thus, state-by-state, transna-
tional, cohort, and ethnic data all indicate that sex differences at the right
tail are fluid; these ratios can and do change.

Moreover, data sources used in these analyses are vulnerable to varia-
tions in context, (e.g., changes over time in test content that favor one sex,
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Figure 3.7a  Spatial task used by Huguet and Regner (2009); can be framed
as geometry or art.
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Figure 3.7b  Shows the interaction between framing and sex differences.

is framed as an art task. Huguet and Regner (2009) presented Figure 3.7a
to middle school students for 9o seconds and gave them five minutes to
reproduce it from memory.

Boys outperformed girls when the task was presented as a geometry
problem, but the reverse was true when it was presented as an artistic task
(Figure 3.7b).

Various interventions to teach spatial processing demonstrate that the
sex gap can be narrowed, though not fully closed within the confines of the
training durations, which have been one semester or less (Ceci et al., 2009).
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If boys’ spatial superiority is due to playing dynamic video games,
Lincoln logs, erector sets, Legos, etc., then exposing girls to these activities
could narrow the gap. Some research shows that spatial activities between
the ages of two and four years (e.g., shaping clay, drawing, and cutting
2-D figures) predicts mathematical skills at age four and a half (Grissmer
et al,, 2013). They showed that an intervention based on transforming
spatial materials to 2-D and 3-D elevated disadvantaged children on the
Woodcock-Johnson Applied Problems and KEYMATH3-Numeration
tests from - 32nd to the 48th percentile; visual-spatial ability was also ele-
vated due to play activity, from 33% to 47%.

There is some evidence, however, of sex differences in spatial processing
prior to the onset of activities. Four studies have shown that male infants
outperform females on rotation tasks. However, this depends on whether
they are speeded and/or entail rigid surface transformations (see Miller &
Halpern, 2014). And there is some evidence that crawling experience fos-
ters spatial ability. Moore and Johnson (2011) employed a habituation
paradigm using the spatial task in Figure 3.6. Following habituation to an
object, when infants are shown it in a new perspective, three-month-old
boys prefer the novel display over the rotated version of the familiar dis-
play, whereas girls look at the familiar and novel objects equally, indicating
that only the boys mentally rotated objects. This suggests that boys’ spa-
tial intelligence is evident somewhat earlier than girls’. (Quinn and Liben,
2008, found a similar result for three—four-month-olds with 2-D rotation
though, as noted, sex differences are primarily found for 3-D rotations.)
Although these studies strongly suggest an early biological basis of early
sex differences, some argue they cannot rule out environmental causes (see
Miller & Halpern, 2014, p. 39).

As noted, 3-D mental rotation is linked to seemingly small differences
favoring infants who engage in early crawling and manual manipulation.
Researchers presented nine-month-olds with a 3-D rotation task; half had
been crawling for nine weeks, and some were likely to manipulate five
objects presented to them. The infants were habituated to a video of an
object rotating back and forth through a 240° angle around its longitudinal
axis. When tested with the same object rotating through the unseen 120°
angle, the crawlers focused longer at the novel (mirror) object, regardless
of their manual manipulation scores. In contrast, the non-crawlers’ rota-
tion was influenced by their manual manipulation (Schwarzer, Freitag, &
Schum, 2013). These findings indicate that subtle environmental differ-
ences, such as early crawling and object manipulation, influence spatial
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cognition. Of course this does not preclude a biological role in male spatial
superiority (perhaps early crawling is biologically determined and occurs
earlier for male babies), but it suggests an intervention to induce infant
gitls to manipulate and crawl.

A Seeming Paradox

There is a seeming paradox: females outperform males on classroom math-
ematics achievement. Yet males are more numerous at the right tail of
mathematics performance on standardized tests such as the SAT-Math, the
NAEP, PISA, and GRE-Q. Males are also more likely to major in GEEMP
disciplines, obtain GEEMP masters and PhDs, and work in GEEMP fields.

Explanations for this paradox may lie in gender stereotypes that associate
math with boys and reading with girls. Cvencek, Meltzoff, and Greenwald
(2011) report that by second grade, boys and girls demonstrated implicit
and explicit stereotypes associating math with maleness and reading with
femaleness.

Paradoxically, these stereotypes are incongruent with what children
observe in classrooms, including math and science. Part of the paradox
may be related to girls associating in early grades brilliance with being
male. This stereotype has a sudden onset, sometime between kindergarten
and second grade. Bian, Leslie, and Cimpian (2017) demonstrated that
children’s sense of what it means to be brilliant changes between five and
seven. In their study, children had to guess which of two boys and two
girls was “really, really smart” and most likely to solve a hard problem.
Five-year-old boys and girls associated brilliance with their own gender. Yet
between five and seven, girls become less likely than boys to associate bril-
liance with their gender. This also extended to children rating adults, they
begin to exhibit a bias in favor of males between six and seven. However,
there is no bias in favor of males in predicting who had better academic
achievement; there was an expectation that gitls will get better grades, con-
sistent with the actual data showing gitls do get better grades. Finally, addi-
tional experiments in Bian and colleagues (2017) found that girls were less
interested than boys in a game they associated with smart children: “Many
children assimilate the idea that brilliance is a male quality at a young age.
This stereotype begins to shape children’s interest as soon as it is acquired
and is thus likely to narrow the range of careers they will one day contem-
plate” (Bian et al., 2017, pp. 390-391).

There is some evidence that a belief that math ability can be developed
is self-fulfilling, and that girls are less likely to have this so-called growth
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until later in high school and they do not predict the later specific gender
segregation observed in college majors (Legewie & DiPrete, 2012), they
nevertheless reveal early career leanings.

However, several enigmas remain. Even if sex differences in math and
science orientation/identification begin as early as ages six and seven and
solidify by the end of middle school, it is unclear why they should result
in the particular gendered pattern of career aspirations observed. Among
high school students, sex differences in STEM courses and plans to major
in STEM fields are well-established and demonstrated by the lower par-
ticipation rates (23% to 42% female) in AP exams such as Calculus BC,
computer science, and Physics C, and between 20% and 60% more males
receive top scores of 5 (Ceci et al., 2014). Yet, even among those women
who escape stereotypical influences, who take and excel in math-intensive
advanced coursework in high school and college (where almost half of bac-
calaureates in mathematics are awarded to women), we still see far fewer
women entering GEEMP careers; instead, they choose careers in micro-
biology, medicine, or statistics, fields in which women have achieved sig-
nificant presence.

Thus, research converges on the following three conclusions. a)
Stereotypes are important: girls/boys learn them early, although it does not
translate into lower average math ability in testing until puberty. b) There
is higher variance and more representation at the right tail for males. This
appears to be mutable to some degree, although we do not know fully
whether this can be eliminated. Yet this alone is not enough to explain the
difference in GEEMP representation. And ¢) in addition to stereotypes
and math ability differences (that may or may not be due to biology),
there are gender differences in interests, with females more interested in
people-related careers and males more interested in nonsocial things (e.g.
Auyeung, Lombardo, & Baron-Cohen, 2013; Thorndike, 1911). Lippa has
repeatedly documented very large sex differences in occupational interests,
including in transnational surveys, with men more interested in “thing’-
oriented activities and occupations, such as engineering and mechanics,
and women more interested in people-oriented occupations, such as nurs-
ing, counseling, and elementary school teaching (e.g., Lippa, 1998, 2001,
2010). In an extensive meta-analysis of more than halfa million people, Su,
Rounds, and Armstrong (2009) reported a sex difference on this dimen-
sion of a full standard deviation (see also Su & Rounds, 2015). However,
the extent to which these gendered interests and outcomes are influenced
by early biases and stereotypes remains to be demonstrated.
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