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Pure mathematics consists entirely of such asseverations as that, if such and
such a proposition is true of anything, then such and such another proposi-
tion is true of that thing. It is essential not to discuss whether the first prop-
osition is really true, and not to mention what the anything is of which it
is supposed to be true. . . . If our hypothesis is about anything and not
about some one or more particular things, then our deductions constitute
mathematics. Thus mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what we are saying is

true. —BERTRAND RUSSELL

The Nature of Mathematics

By PHILIP E. B. JOURDAIN
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INTRODUCTION

AN eminent mathematician once remarked that he was never satisfied
with his knowledge of a mathematical theory until he could explain it to
the next man he met in the street. That is hardly exaggerated; however,
we must remember that a satisfactory explanation entails duties on both
sides. Any one of us has the right to ask of a mathematician, “What is the
use of mathematics?” Any one may, I think and will try to show, rightly
suppose that a satisfactory answer, if such an answer is anyhow possible,
can be given in quite simple terms. Even men of a most abstract science,
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2 Philip E. B. Jourdain

such as mathematics or philosophy, are chiefly adapted for the ends of
ordinary life; when they think, they think, at the bottom, like other men.
They are often more highty trained, and have a technical facility for
thinking that comes partly from practice and partly from the use of the
contrivances for correct and rapid thought given by the signs and rules
for dealing with them that mathematics and modern logic provide. But
there is no real reason why, with patience, an ordinary person should not
understand, speaking broadly, what mathematicians do, why they do it,
and what, so far as we know at present, mathematics is.

Patience, then, is what may rightly be demanded of the inquirer. And
this really implies that the question is not merely a rhetorical one—an
expression of irritation or scepticism put in the form of a question for the
sake of some fancied effect. If Mr. A. dislikes the higher mathematics be-
cause he rightly perceives that they will not help him in the grocery
business, he asks disgustedly, “What’s the use of mathematics?”’ and does
not wait for an answer, but turns his attention to grumbling at the lateness
of his dinner. Now, we will admit at once that higher mathematics is of
no more use in the grocery trade than the grocery trade is in the naviga-
tion of a ship; but that is no reason why we should condemn mathematics
as entirely useless. I remember reading a speech made by an eminent sur-
geon, who wished, laudably enough, to spread the cause of elementary
surgical instruction. “The higher mathematics,” said he with great satis-
faction to himself, “do not help you to bind up a broken leg!” Obviously
they do not; but it is equally obvious that surgery does not help us to add
up accounts; . . . or even to think logically, or to accomplish the closely
allied feat of seeing a joke.

To the question about the use of mathematics we may reply by pointing
out two obvious consequences of one of the applications of mathematics:
mathematics prevents much loss of life at sea, and increases the commer-
cial prosperity of nations. Only a few men—a few intelligent philosophers
and more amateur philosophers who are not highly intelligent—would
doubt if these two things were indeed benefits. Still, probably, all of us
act as if we thought that they were. Now, I do not mean that mathema-
ticians go about with life-belts or serve behind counters; they do not
usually do so. What I mean I will now try to explain,

Natural science is occupied very largely with the prevention of waste
of the labour of thought and muscle when we want to call up, for some
purpose or other, certain facts of experience. Facts are sometimes quite
useful. For instance, it is useful for a sailor to know the positions of the
stars and sun on the nights and days when he is out of sight of land.
Otherwise, he cannot find his whereabouts. Now, some people connected
with a national institution publish periodically a Nautical Almanac
which contains the positions of stars and other celestial things you see
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through telescopes, for every day and night years and years ahead. This
Almanac, then, obviously increases the possibilities of trade beyond coast-
ing-trade, and makes travel by ship, when land cannot be sighted, much
safer; and there would be no Nautical Almanac if it were not for the sci-
ence of astronomy; and there would be no practicable science of as-
tronomy if we could not organise the observations we make of sun and
moon and stars, and put hundreds of observations in a convenient form
and in a little space—in short, if we could not economise our mental or
bodily activity by remembering or carrying about two or three little for-
mulg instead of fat books full of details; and, lastly, we could not econ-
omise this activity if it were not for mathematics.

Just as it is with astronomy, so it is with all other sciences—both those
of Nature and mathematical science: the very essence of them is the pre-
vention of waste of the energies of muscle and memory. There are plenty
of things in the unknown parts of science to work our brains at, and we
can only do so efficiently if we organise our thinking properly, and conse-
quently do not waste our energies.

The purpose of this little volume is not to give—like a text-book—a
collection of mathematical methods and examples, but to do, firstly, what
text-books do not do: to show how and why these methods grew up. All
these methods are simply means, contrived with the conscious or uncon-
scious end of economy of thought-labour, for the convenient handling of
long and complicated chains of reasoning. This reasoning, when applied
to foretell natural events, on the basis of the applications of mathematics,
as sketched in the fourth chapter, often gives striking results. But the
methods of mathematics, though often suggested by natural events, are
purely logical. Here the word “logical” means something more than the
traditional doctrine consisting of a series of extracts from the science of
reasoning, made by the genius of Aristotle and frozen into a hard body of
doctrine by the lack of genius of his school. Modern logic is a science
which has grown up with mathematics, and, after a period in which it
moulded itself on the model of mathematics, has shown that not only the
reasonings but also conceptions of mathematics are logical in their nature.

In this book I shall not pay very much attention to the details of the
elementary arithmetic, geometry, and algebra of the many text-books, but
shall be concerned with the discussion of those conceptions—such as that
of negative number—which are used and not sufficiently discussed in
these books. Then, too, I shall give a somewhat full account of the de-
velopment of analytical methods and certain examinations of ptinciples.

I hope that I shall succeed in showing that the process of mathematical
discovery is a living and a growing thing. Some mathematiciahs have lived
long lives full of calm and unwavering faith—for faith in mathematics, as
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I will show, has always been needed—some have lived short lives full of
burning zeal, and so on; and in the faith of mathematicians there has been
much error.

Now we come to the second object of this book. In the historical part
we shall see that the actual reasonings made by mathematicians in build-
ing up their methods have often not been in accordance with logical rules.
How, then,'can we say that the reasonings of mathematics are logical in
their nature? The answer is that the one word “mathematics™ is habitually
used in two senses, and so, as explained in the last chapter, I have distin-
guished between “mathematics,” the methods used to discover certain
truths, and “Mathematics,” the truths discovered. When we have passed
through the stage of finding out, by external evidence or conjecture, how
mathematics grew up with problems suggested by natural events, like the
falling of a stone, and then how something very abstract and intangible
but very real separated out of these problems, we can turn our attention
to the problem of the nature of Mathematics without troubling ourselves
any more-as to how, historically, it gradually appeared to us quite clearly
that there is such a thing at all as Mathematics—something which exists
apart from its application to natural science. History has an immense
value in being suggestive to the investigator, but it is, logically speaking,
irrelevant. Suppose that you are a mathematician; what you eat will have
an important influence on your discoveries, but you would at once see
how absurd it would be to make, say, the momentous discovery that 2
added to 3 makes 5 depend on an orgy of mutton cutlets or bread and
jam. The methods of work and daily life of mathematicians, the connect-
ing threads of suggestion that run through their work, and the influence
on their work of the allied work of others, all interest the investigator be-
cause these things give him examples of research and suggest new ideas
to him; but these reasons are psychological and not logical.

But it is as true as it is natural that we should find that the best way to
become acquainted with new ideas is to study the way in which knowl-
edge about them grew up. This, then, is what we will do in the first place,
and it is here that I must bring my own views forward. Briefly stated, they
are these. Every great advance in mathematics with which we shall be
concerned here has arisen out of the needs shown in natural science or
out of the need felt to connect together, in one methodically arranged
whole, analogous mathematical processes used to describe different natural
phenomena. The application of logic to our system of descriptions, which
we may make either from the motive of satisfying an intellectual need
(often as strong, in its way, as hunger) or with the practical end in view
of satisfying ourselves that there are no hidden sources of error that may
ultimately lead us astray in calculating future or past natural events, leads
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at once to those modern refinements of method that are regarded with dis-
favour by the old-fashioned mathematicians.

In modern times appeared clearly—what had only been vaguely sus-
pected before—the true nature of Mathematics. Of this I will try to give
some account, and show that, since mathematics is logical and not psy-
chological in its nature, all those petty questions—sometimes amusing and
often tedious—of history, persons, and nations are irrelevant to Mathe-
matics in itself. Mathematics has required centuries of excavation, and the
process of excavation is not, of course, and never will be, complete. But
we see enough now of what has been excavated clearly to distinguish be-
tween it and the tools which have been or are used for excavation. This
confusion, it should be noticed, was never made by the excavators them-
selves, but only by some of the philosophical onlookers who reflected on
what was being done. I hope and expect that our reflections will not lead
to this confusion.

CHAPTER 1

THE GROWTH OF MATHEMATICAL SCIENCE IN ANCIENT TIMES
IN the history of the human race, inventions like those of the wheel, the
lever, and the wedge were made very early—judging from the pictures on
ancient Egyptian and Assyrian monuments. These inventions were made
on the basis of an instinctive and unreflecting knowledge of the processes
of nature, and with the sole end of satisfaction of bodily needs. Primitive
men had to build huts in order to protect themselves against the weather,
and, for this purpose, had to lift and transport heavy weights, and so on.
Later, by reflection on such inventions themselves, possibly for the pur-
poses of instruction of the younger members of a tribe or the newly-joined
members of a guild, these isolated inventions were classified according to
some analogy. Thus we see the same elements occurring in the relation of
a wheel to its axle and the relation of the arm of a lever to its fulerum—
the same weights at the same distance from the axle or fulcrum, as the
case may be, exert the same power, and we can thus class both instru-
ments together in virtue of an analogy. Here what we call “scientific”
classification begins. We can well imagine that this pursuit of science is
attractive in itself; besides helping us to communicate facts in a compre-
hensive, compact, and reasonably connected way, it arouses a purely in-
tellectual interest. It would be foolish to deny the obvious importance to
us of our bodily needs; but we must clearly realise two things:—(1) The
intellectual need is very strong, and is as much a fact as hunger or thirst;
sometimes it is even stronger than bodily needs—Newton, for instance,
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often forgot to take food when he was engaged with his discoveries.
(2) Practical results of value often follow from the satisfaction of intel-
lectual needs. It was the satisfaction of certain intellectual needs in the
cases of Maxwell and Hertz that ultimately led to wireless telegraphy; it
was the satisfaction of some of Faraday’s intellectual needs that made the
dynamo and the electric telegraph possible. But many of the results of
strivings after intellectual satisfaction have as yet no obvious bearing on
the satisfaction of our bodily needs. However, it is impossible to tell
whether or no they will always be barren in this way. This gives us a new
point of view from which to consider the question, “What is the use of
mathematics?” To condemn branches of mathematics because their results
cannot obviously be applied to some practical purpose is short-sighted.

The formation of science is peculiar to human beings among animals.
The lower animals sometimes, but rarely, make isolated discoveries, but
never seem to reflect on these inventions in themselves with a view to
rational classification in the interest either of the intellect or of the indirect
furtherance of practical ends. Perhaps the greatest difference between man
and the lower animals is that men are capable of taking circuitous paths
for the attainment of their ends, while the lower animals have their minds
so filled up with their needs that they iry to seize the object they want, or
remove that which annoys them, in a direct way. Thus, monkeys often
vainly snatch at things they want, while even savage men use catapults or
snares or the consciously observed properties of flung stones.

The communication of knowledge is the first occasion that compels dis-
tinct reflection, as everybody can still observe in himself. Further, that
which the old members of a guild mechanically pursue strikes a new mem-
ber as strange, and thus an impulse is given to fresh reflection and in-
vestigation.

When we wish to bring to the knowledge of a person any phenomena
or processes of nature, we have the choice of two methods: we may allow
the person to observe matters for himself, when instruction comes to an
end; or, we may describe to him the phenomena in some way, so as to
save him the trouble of personally making anew each experiment. To
describe an event—like the falling of a stone to the earth—in the most
comprehensive and compact manner requires that we should discover
what is constant and what is variable in the processes of nature; that we
should discover the same law in the moulding of a tear and in the motions
of the planets. This is the very essence of nearly all science, and we will
return to this point later on.

We have thus some idea of what is known as “the economical function
of science.” This sounds as if science were governed by the same laws as
the management of a business; and so, in a way, it is. But whereas the
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aims of a business are not, at least directly, concerned with the satisfaction
of intellectual needs, science—including natural science, logic, and mathe-
matics—uses business methods consciously for such ends. The methods
are far wider in range, more reasonably thought out, and more intelli-
gently applied than ordinary business methods, but the principle is the
same. And this may strike some people as strange, but it is nevertheless
true: there appears more and more as time goes on a great and compelling
beauty in these business methods of science.

The economical function appears most plainly in very ancient and mod-
ern science. In the beginning, all economy had in immediate view the satis-
faction simply of bodily wants. With the artisan, and still more so with the
investigator, the most concise and simplest possible knowledge of a given
province of natural phenomena—a knowledge that is attained with the
least intellectual expenditure—naturally becomes in itself an aim; but
though knowledge was at first a means to an end, yet, when the mental
motives connected therewith are once developed and demand their satis-
faction, all thought of its original purpose disappears. It is one great object
of science to replace, or save the trouble of making, experiments, by the
reproduction and anticipation of facts in thought. Memory is handier than
experience, and often answers the same purpose. Science is communi-
cated by instruction, in order that one man may profit by the experience
of another and be spared the trouble of accumulating it for himself; and
thus, to spare the efforts of posterity, the experiences of whole generations
are stored up in libraries. And further, yet another function of this
economy is the preparation for fresh investigation.?

The economical character of ancient Greek geometry is not so apparent
as that of the modern algebraical sciences. We shall be able to appreciate
this fact when we have gained some ideas on the historical development of
ancient and modern mathematical studies.

The generally accepted account of the origin and early development of
geometry is that the ancient Egyptians were obliged to invent it in order to
restore the landmarks which had been destroyed by the periodical inunda-
tions of the Nile. These inundations swept away the landmarks in the
valley of the river, and, by altering the course of the river, increased or
decreased the taxable value of the adjoining lands, rendered a tolerably
accurate system of surveying indispensable, and thus led to a systematic
study of the subject by the priests. Proclus (412-485 A.p.), who wrote a
summary of the early history of geometry, tells this story, which is also
told by Herodotus, and observes that it is by no means strange that the
invention of the sciences should have originated in practical needs, and
that, further, the transition from perception with the senses to reflection,

*Cf. pp. 5, 13, 15, 16, 42, 71.
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and from reflection to knowledge, is to be expected. Indeed, the very name
“geometry”—which is derived from two Greek words meaning measure-
ment of the earth—seems to indicate that geometry was not indigenous to
Greece, and that it arose from the necessity of surveying. For the Greek
geometricians, as we shall see, seem always to have dealt with geometry
as an abstract science—to have considered lines and circles and spheres
and so on, and not the rough pictures of these abstract ideas that we see
in the world around us—and to have sought for propositions which should
be absolutely true, and not mere approximations. The name does not
therefore refer to this practice.

However, the history of mathematics cannot with certainty be traced
back to any school or period before that of the Ionian Greeks. It seems
that the Egyptians’ geometrical knowledge was of a wholly practical
nature. For example, the Egyptians were very particular about the exact
orientation of their temples; and they had therefore to obtain with accu-
racy a north and south line, as also an east and west line. By observing
the points on the horizon where a star rose and set, and taking a plane
midway between them, they could obtain a north and south line. To get
an east and west line, which had to be drawn at right angles to this, cer-
tain people were employed who used a rope ABCD, divided by knots or
marks at B and C, so that the lengths AB, BC, CD were in the proportion
3:4:5. The length BC was placed along the north and south line, and
pegs P and Q inserted at the knots B and C. The piece BA (keeping it
stretched all the time) was then rotated round the peg P, and similarly the
piece CD was rotated round the peg Q, until the ends A and D coincided;
the point thus indicated was marked by a peg R. The result was to form a
triangle PQR whose angle at P was a right angle, and the line PR would
give an east and west line. A similar method is constantly used at the
present time by practical engineers, and by gardeners in marking tennis
courts, for measuring a right angle. This method seems also to have been
known to the Chinese nearly three thousand years ago, but the Chinese
made no serious attempt to classify or extend the few rules of arithmetic
or geometry with which they were acquainted, or to explain the causes of
the phenomena which they observed.

The geometrical theorem of which a particular case is involved in the
method just described is well known to readers of the first book of Euclid’s
Elements. The Egyptians must probably have known that this theorem is
true for a right-angled triangle when the sides containing the right angle
are equal, for this is obvious if a floor be paved with tiles of that shape.
But these facts cannot be said to show that geometry was then studied as
a science. Our real knowledge of the nature of Egyptian geometry depends
mainly on the Rhind papyrus.

The ancient Egyptian papyrus from the collection of Rhind, which was
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written by an Egyptian priest named Ahmes considerably more than a
thousand years before Christ, and which is now in the British Museum,
contains a fairly complete applied mathematics, in which the measurement
of figures and solids plays the principal part; there are no theorems prop-
erly so called; everything is stated in the form of problems, not in general
terms, but in distinct numbers. For example: to measure a rectangle the
sides of which contain two and ten units of length; to find the surface of
a circular area whose diameter is six units. We find also in it indications
for the measurement of solids, particularly of pyramids, whole and trun-
cated. The arithmetical problems dealt with in this papyrus—which, by
the way, is headed “Directions for knowing all dark things”—contain
some very interesting things. In modern language, we should say that the
first part deals with the reduction of fractions whose numerators are 2 to
a sum of fractions each of whose numerators is 1. Thus 249 is stated to be
the sum of 44, Y68, ¥474, and Y432, Probably Ahmes had no rule for forming
the component fractions, and the answers given represent the accumulated
experiences of previous writers. In one solitary case, however, he has indi-
cated his method, for, after having asserted that %: is the sum of % and %,
he added that therefore two-thirds of one-fifth is equal to the sum of a
half of a fifth and a sixth of a fifth, that is, to %o + %o.

That so much attention should have been paid to fractions may be ex-
plained by the fact that in early times their treatment presented consider-
able difficulty. The Egyptians and Greeks simplified the problem by re-
ducing a fraction to the sum of several fractions, in each of which the
numerator was unity, so that they had to consider only the various de-
nominators: the sole exception to this rule being the fraction 2. This re-
mained the Greek practice until the sixth century of our era. The Romans,
on the other hand, generally kept the denominator equal to twelve, ex-
pressing the fraction (approximately) as so many twelfths.

In Ahmes’ treatment of multiplication, he seems to have relied on re-
peated additions. Thus, to multiply a certain number, which we will denote
by the letter “a,” by 13, he first multiplied by 2 and got 24, then he
doubled the results and got 4a, then he again doubled the result and got
8a, and lastly he added together @, 4a, and 8a.

Now, we have used the sign “a” to stand for any number: not a par-
ticular number like 3, but any one. This is what Ahmes did, and what we
learn to do in what we call “algebra.” When Ahmes wished to find a num-
ber such that it, added to its seventh, makes 19, he symbolised the number
by the sign we translate “heap.” He had also signs for our “+,” “—,” and
“=".2 Nowadays we can write Ahmes’ problem as: Find the number x

2 In this book I shall take great care in distinguishing signs from what they signify.
Thus 2 is to be distinguished from “2”: by “2” I mean the sign, and the sign written
without inverted commas indicates the thing signified. There has been, and is, much
confusion, not only with beginners but with eminent mathematicians between a sign
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x
such that x 4+ — = 19. Ahmes gave the answer in the form 16 + % + %.
7

We shall find that algebra was hardly touched by those Greeks who
made of geometry such an important science, partly, perhaps, because the
almost universal use of the abacus 3 rendered it easy for them to add and
subtract without any knowledge of theoretical arithmetic. And here we
must remember that the principal reason why Ahmes’ arithmetical prob-
lems seem so easy to us is because of our use from childhood of the
system of notation introduced into Europe by the Arabs, who originally
obtained it from either the Greeks or the Hindoos. In this system an in-
tegral number is denoted by a succession of digits, each digit representing
the product of that digit and a power of ten, and the number being equal
to the sum of these products. Thus, by means of the local value attached
to nine symbols and a symbol for zero, any number in the decimal scale
of notation can be expressed. It is important to realise that the long and
strenuous work of the most gifted minds was necessary to provide us with
simple and expressive notation which, in nearly all parts of mathematics,
enables even the less gifted of us to reproduce theorems which needed the
greatest genius to discover. Each improvement in notation seems, to the
uninitiated, but a small thing: and yet, in a calculation, the pen sometimes
seems to be more intelligent than the user. Our notation is an instance of
that great spirit of economy which spares waste of labour on what
is already systematised, so that all our strength can be concentrated
either upon what is known but unsystematised, or upon what is un-
known.

Let us now consider the transformation of Egyptian geometry in Greek
hands. Thales of Miletus (about 640-546 B.c.), who, during the early
part of his life, was engaged partly in commerce and partly in public
affairs, visited Egypt and first brought this knowledge into Greece. He dis-
covered many things himself, and communicated the beginnings of many
to his successors. We cannot form any exact idea as to how Thales pre-
sented his geometrical teaching. We infer, however, from Proclus that it
consisted of a number of isolated propositions which were not arranged
in a logical sequence, but that the proofs were deductive, so that the
theorems were not a mere statement of an induction from a large number
of special instances, as probably was the case with the Egyptian geometri-

and what is signified by it. Many have even maintained that numbers are the signs
used to represent them. Often, for the sake of brevity, I shall use the word in inverted
commas (say “a”) as short for “what we call ‘a,”” but the context will make plain
what is meant.

3 The principle of the abacus is that a number is represented by counters in a series
of grooves, or beads strung on parallel wires; as many counters being put on the first
groove as there are units, as many on the second as there are tens, and so on. The
rules to be followed in addition, subtraction, multiplication, and division are given in
various old works on arithmetic.
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cians. The deductive character which he thus gave to the science is his
chief claim to distinction. Pythagoras (born about 580 B.c.) changed
geometry into the form of an abstract science, regarding its principles in
a purely abstract manner, and investigated its theorems from the imma-
terial and intellectual point of view. Among the successors of these men,
the best known are Archytas of Tarentum (428-347 B.C.), Plato (429-
348 B.c.), Hippocrates of Chios (born about 470 B.c.), Menaechmus
(about 375-325 B.c.), Euclid (about 330-275 B.c.), Archimedes (287-
212 B.c.), and Apollonius (260-200 B.C.).

The only geometry known to the Egyptian priests was that of surfaces,
together with a sketch of that of solids, a geometry consisting of the
knowledge of the areas contained by some simple plane and solid figures,
which they had obtained by actual trial. Thales introduced the ideal of
establishing by exact reasoning the relations between the different parts of
a figure, so that some of them could be found by means of others in a
manner strictly rigorous. This was a phenomenon quite new in the world,
and due, in fact, to the abstract spirit of the Greeks. In connection with
the new impulse given to geometry, there arose with Thales, moreover,
scientific astronomy, also an abstract science, and undoubtedly a Greek
creation. The astronomy of the Greeks differs from that of the Orientals
in this respect: the astronomy of the latter, which is altogether concrete
and empirical, consisted merely in determining the duration of some
periods or in indicating, by means of a mechanical process, the motions
of the sun and planets; whilst the astronomy of the Greeks aimed at
the discovery of the geometrical laws of the motions of the heavenly
bodies.

Let us consider a simple case. The area of a right-angled field of length
80 yards and breadth 50 yards is 4000 square yards. Other fields which
are not rectangular can be approximately measured by mentally dissecting
them—a process which often requires great ingenuity and is a familiar
problem to land-surveyors. Now, let us suppose that we have a circular
field to measure. Imagine from the centre of the circle a large number of
radii drawn, and let each radius make equal angles with the next ones
on each side of it. By joining the points in succession where the radii meet
the circumference of the circle, we get a large number of triangles of
equal area, and the sum of the areas of all these triangles gives an approxi-
mation to the area of the circle. It is particularly instructive repeatedly to
go over this and the following examples mentally, noticing how helpful
the abstract ideas we call “straight line,” “circle,” “radius,” *“angle,” and
so on, are. We all of us know them, recognise them, and can easily feel
that they are trustworthy and accurate ideas. We feel at home, so to speak,
with the idea of a square, say, and can at once give details about it which
are exactly true for it, and very nearly true for a field which we know is



The Nature of Mathematics 13

There are two branches of mathematics which began to be cultivated
by the Greeks, and which allow a connection to be formed between the
spirits of ancient and modern mathematics.

The first is the method of geometrical analysis to which Plato seems to
have directed attention. The analytical method of proof begins by assum-
ing that the theorem or problem is solved, and thence deducing some
result. If the result be false, the theorem is not true or the problem is in-
capable of solution: if the result be true, if the steps be reversible, we get
(by reversing them) a synthetic proof; but if the steps be not reversible,
no conclusion can be drawn. We notice that the leading thought in analysis
is that which is fundamental in algebra, and which we have noticed in the
case of Ahmes: the calculation or reasoning with an unknown entity,
which is denoted by a conventional sign, as if it were known, and the de-
duction at last, of some relation which determines what the entity must be.

And this brings us to the second branch spoken of: algebra with the
later Greeks. Diophantus of Alexandria, who probably lived in the early
half of the fourth century after Christ, and probably was the original in-
ventor of an algebra, used letters for unknown quantities in arithmetic
and treated arithmetical problems analytically. Juxtaposition of symbols
represented what we now write as “+,” and “—” and “=" were also
represented by symbols. All these symbols are mere abbreviations for
words, and perhaps the most important advantage of symbolism—the
power it gives of carrying out a complicated chain of reasoning almost
mechanically—was not made much of by Diophantus. Here again we
come across the economical value of symbolism: it prevents the weari-
some expenditure of mental and bodily energy on those processes which
can be carried out mechanically. We must remember that this economy
both emphasises the unsubjugated—that is to say, unsystematised—prob-
lems of science, and has a charm—an @&sthetic charm, it would seem—of
its own,

Lastly, we must mention “incommensurables,” “loci,” and the begin-
nings of “trigonometry.”

Pythagoras was, according to Eudemus and Proclus, the discoverer of
“incommensurable quantities.” Thus, he is said to have found that the
diagonal and the side of a square are “incommensurable.” Suppose, for
example, that the side of the square is one unit in length; the diagonal is
longer than this, but it is not two units in length, The excess of the length
of the diagonal over one unit is not an integral submultiple of the unit.
And, expressing the matter arithmetically, the remainder that is left over
after each division of a remainder into the preceding divisor is not an in-
tegral submultiple of the remainder used as divisor. That is to say, the
rule given in text-books on arithmetic and algebra for finding the greatest



